WO1997005087A1 - Composition explosive pour coussin gonflable de securite et son procede de production - Google Patents

Composition explosive pour coussin gonflable de securite et son procede de production Download PDF

Info

Publication number
WO1997005087A1
WO1997005087A1 PCT/JP1996/002102 JP9602102W WO9705087A1 WO 1997005087 A1 WO1997005087 A1 WO 1997005087A1 JP 9602102 W JP9602102 W JP 9602102W WO 9705087 A1 WO9705087 A1 WO 9705087A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosive composition
combustion
same
airbag
tetrazole
Prior art date
Application number
PCT/JP1996/002102
Other languages
English (en)
French (fr)
Inventor
Yuji Ito
Eishi Sato
Akihiko Tanaka
Makoto Iwasaki
Kenjiro Ikeda
Eri Oishi
Ryo Minoguchi
Eiichiro Yoshikawa
Akihiko Kuroiwa
Original Assignee
Sensor Technology Co., Ltd.
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensor Technology Co., Ltd., Nippon Kayaku Kabushiki-Kaisha filed Critical Sensor Technology Co., Ltd.
Priority to DE19681514T priority Critical patent/DE19681514B4/de
Priority to US08/983,507 priority patent/US6033500A/en
Publication of WO1997005087A1 publication Critical patent/WO1997005087A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive

Definitions

  • the present invention relates to an explosive composition used as a gas generating agent or an enhancer (transfer agent) for an airbag, which is an occupant protection device for an automobile, and a method for producing the same.
  • the present invention relates to an explosive composition for airbags, which can be produced safely, has excellent heat shock resistance and strength of the obtained tablets, and has a clean gas produced by combustion, and a method for producing the same.
  • An airbag device is an occupant protection device that has been widely adopted in recent years as a measure to improve the safety of occupants of automobiles.
  • the principle is that a gas generator is activated by a signal from a sensor that detects a collision and the bag is activated. Is deployed between the occupant and the vehicle body.
  • This gas generator is required to generate clean gas without harmful gas and to generate necessary and sufficient gas in a short time.
  • the gas generating agent is used in the form of tablets, and the explosive is used in the form of granules. These tablets, etc. are required to maintain the initial combustion characteristics over a long period of time even under various harsh environments.
  • JP-A-49-87583, JP-A-2-184590 or JP-A-2-221179 discloses metal azide.
  • a method has been proposed in which a tetrazole such as aminotetrazole is mixed with a compound and used in combination. Since tetrazole has a high ratio of nitrogen atoms constituting the molecule and suppresses generation of C 0, it hardly generates C 0 in the combustion gas similarly to the metal azide compound. It is superior in that it is much less dangerous and toxic than metal compounds.
  • the gas generating agent composed of a mixture of the metal azide compound and the metal azide compound has a problem that the gas generating agent containing the metal azide compound as a main component has a problem as compared with the case of using the metal azide compound alone. It is successful in reducing it.
  • an azide metal compound is used, the above-mentioned problems have not been fundamentally solved.
  • Hei 6-229857 has been proposed.
  • the former there is the above-mentioned safety problem of the metal azide compound
  • the latter The use of a strong oxidizing agent while using highly safe tetrazole has led to a problem of reduced safety.
  • chlorate or perchlorate is used as an oxidizing agent
  • the combustion temperature is increased, and as a result, a new problem of generation of NOx is caused.
  • nitrates or nitrites having poor flammability may be used as the oxidizing agent.
  • the nitrate or nitrite is used in the reaction between the oxidizing agent and the tetrazole. Since it has the property of decomposing by absorbing heat, the disadvantages of both poor ignitability and low burning rate are amplified, and even if ignition occurs, the gas generating agent does not burn completely. To be left unresolved Become.
  • the combustion rate of the gas generating agent is proportional to the pressure ⁇ raised to the ⁇ power
  • the gas discharge rate from the gas generator is proportional to the pressure ⁇ raised to the 0.5 power.
  • a metal azide compound forms slag which can be easily filtered when used in combination with silicon dioxide.
  • slag which can be easily filtered is not easily formed.
  • the fuel component is an organic compound such as the aforementioned tetrazol, but the oxidizing agent is an inorganic compound such as chlorate or perchlorate.
  • the binder When the binder was used, there was a problem in the moldability of tablets and the like, and the mechanical strength of the obtained molded articles such as tablets was considerably inferior to that of the azide-based gas generating agent. Also, in a thermal shock test in which the environmental temperature of the molded body repeatedly rises and falls, the binding force of the binder gradually decreases due to the difference in the coefficient of thermal expansion between the organic compound and the inorganic compound. There were even cases. Therefore, Japanese Patent Application Laid-Open No.
  • Hei 6-219882 proposes to use a combustible polymer such as polyurethane, cellulose acetate, hydroxy-terminated polybutadiene, and ethyl cellulose as a binder.
  • a combustible polymer such as polyurethane, cellulose acetate, hydroxy-terminated polybutadiene, and ethyl cellulose
  • the use of these organic polymer compounds has the disadvantage of increasing the concentration of harmful carbon monoxide (CO) in the combustion gas, and also increases the calorific value, thereby cooling the generated gas.
  • CO harmful carbon monoxide
  • it becomes necessary to increase the amount of coolant (such as wire mesh) for the purpose and as a result, the size and weight of the gas generator are increased, which goes against the demands of the era of smaller and lighter equipment.
  • a so-called “poron nitrite j” mainly comprising boron and nitric acid rim is generally used. Regardless of whether or not tetrazole is used as the gas generating agent, each component composition is completely different, so it must be produced in a separate process independent of the gas generating agent manufacturing process. There was no problem.
  • the present invention solves the problems of the above-described conventional explosive composition for airbags such as a gas generating agent and a hanhansa agent.
  • the gas generating agent component is a nitrogen-containing organic compound. Good moldability is obtained and
  • the problem with the gas generating agent based on the conventional metal azide compound described above, which solves the problem with the gas generating agent based on tetrazole, has a good flammable explosive for airbags.
  • it provides a novel explosive composition for airbags that is highly safe and easily controls combustion and has high slag forming ability, taking full advantage of tetrazole compounds. It is.
  • the objects of the present invention are as follows.
  • the present invention provides a novel binder that can obtain good moldability and properties in the presence of an inorganic oxidizing agent.
  • the present invention relates to an explosive composition for an airbag, comprising a fuel component, an oxidizing agent, and a binder for binding the fuel component, wherein the binder is represented by the following general formula (1): Talcite (Hydr 0 ta 1 cite)
  • M 2 + ,-governmentM 3 + « (OH) 2) M + CA ⁇ mH 2 0] K ⁇ — (1)
  • M 2 + is M g 2+ , M n 2+ , F e 2 +, C o 2+, n i 2+, C u 2 +, 2 -valent metals such as Z n 2+.
  • M 3 + is, a 1 3+, F e 3+ , C r 3+.
  • X is 0 ⁇ x ⁇ 0.33.
  • formula Mg s A ⁇ 2 (OH) 16 C 03 ⁇ 4 H 2 0 represented by synthetic human Dorotarusai preparative (hereinafter abbreviated as RHTSj) and, Mg s F e 2 (OH ) 16 C 0 3 ⁇ 4 H 2 0 of Biroura wells (P yroaurite) preferably used.
  • the content of the hydrotalcites is preferably 2 to 30% by weight in the explosive composition, and particularly preferably 3 to 10% by weight. Within this range, an appropriate amount of a fuel component and an oxidizing agent can be contained. Further, the 50% average particle size based on the number of the hydrotalcites is preferably 30 m or less, and if it is this particle size, the function as a binder between the fuel component and the oxidizer component is exhibited well. it can.
  • a nitrogen-containing organic compound containing nitrogen as a main atom in the structural formula is preferable. Particularly preferred is one or more selected from the group.
  • the number-based 50% average particle size of these tetrazole compounds is preferably 5 to 80 m. If the particle size is within this range, the fuel component is uniformly distributed in the explosive composition, and the combustion control is improved. It will be easier.
  • the oxidizing agent added to the explosive composition of the present invention is preferably at least one of nitrate and nitrite. Use of this oxidizing agent makes it possible to suppress the generation of harmful nitrogen oxides. Further, by adding an oxohalogenate to this oxidizing agent, it is possible to improve the ignitability of tetrazole compounds.
  • the 50% average particle size of these oxidizing agents is adjusted to 5 to 80 m based on the number of the oxidizing agents.
  • the explosive composition of the present invention further contains a combustion regulator selected from one or more of the following groups (1) and (2) in addition to the fuel component and the oxidizing agent. Therefore, combustion control can be easily performed.
  • the 50% average particle diameter based on the number of these combustion regulators is adjusted to be 10 rn or less, and if it is in this range, uniform mixing with the fuel component and other components is facilitated. Combustion adjustment becomes easy.
  • the tetrazole is used as a fuel component
  • stotium nitrate is used as an oxidizing agent
  • the hydrotalcite is used as a binder.
  • This provides a good explosive composition with good moldability, flammability, slag collection and long-term stability. Can be.
  • strontium nitrate is used as an oxidizing agent, unlike other nitrates, it is a remarkable combination that good performance can be obtained without necessarily using the above-mentioned combustion regulator. .
  • a water-soluble polymer such as polyethylene glycol, polypropylene glycol, or polybutyl ether may be used as a moldability improving agent.
  • a water-soluble polymer such as polyethylene glycol, polypropylene glycol, or polybutyl ether
  • Formability can be improved by adding one or more types.
  • the water-soluble polymer is polyvinyl alcohol, the addition amount is preferably set to 0.01 to 0.5% by weight.
  • Examples of the lubricant for tablet formation of the above explosive composition include, for example, stearate, zinc stearate, magnesium stearate, calcium stearate, aluminum stearate, molybdenum disulfide, graphite, Formability can be improved by adding at least one selected from finely divided silica and boron nitride.
  • the lubricant serves as an anti-caking agent, so that the pulverization can be performed efficiently.
  • finely divided silica it is preferable to use finely divided silica. In this case, it is preferable to add 0.1 to 2.0% by weight to the fuel component or the oxidizing agent, and then perform the pulverizing operation.
  • the explosive composition of the present invention can be formed into tablets or discs and used as a gas generating agent, or can be formed into granules having a diameter of O mm or less and used as an enhancer. It is possible.
  • the method for producing the explosive composition of the present invention includes the steps of: preparing the tetrazole, the oxidizing agent, and the talcites having a closed mouth as the binder; Baking modifier. Add a moldability improver, a lubricant, etc. as appropriate, mix them, form them into a predetermined shape, and heat treat them at 100 to 120 ° C for 2 to 24 hours. Manufactured. Thereby, an explosive composition having excellent heat resistance can be obtained.
  • 50% average particle size is 5 to 80 ⁇
  • 50% average particle size of the binder is 30 / "m or less, based on the number of combustion regulators 50 It is preferable to use those having a% average particle size of 10 m or less.
  • FIG. 1 is a conceptual diagram of a gas generator used in an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a PT diagram of a 60 ⁇ ⁇ tank test used in an embodiment of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the hydrotalcites used as a binder for the explosive composition for airbags are P47 to P53 of Gypsum & Lime No. 187 (1983). As described in the above, it is a compound represented by the following general formula (1).
  • M 2 + is Mg 2+ , Mn 2+ , F e 2+, C o 2+, n i 2+, C u 2+, 2 -valent metals such as Z n 2+.
  • M 3 + is, a 1 3+, F e 3+ , C r 3+, C o Trivalent metals such as 3+ , In 3+ etc.
  • X is 0 ⁇ x ⁇ 0.33.
  • hydrotalcites are substances used as antacids, and are porous substances having water of crystallization.
  • the present inventors have found that this open mouth talcites is extremely effective as a binder for a non-azide organic compound gas generating agent, and reached the present invention. That is, the explosive composition containing the hydrotalcites as a binder can be used as a binder even at a low tableting pressure, as described later, in particular, as a non-azide-based gas generating composition containing tetrazole as a main component. When applied, it is possible to obtain a much higher hardness (25-30 kg) than the tablet hardness of a general azide-based gas generant of 10-15 kg (Monsanto hardness meter).
  • hydro TP talcites include synthetic hydrotalcite (HTS) represented by the chemical formula Mg 6 A £ 2 (OH), 6 C 0 a ⁇ 4 H 20 or the chemical formula Mg bicycloheptyl Rourai preparative represented by 6 F e 2 (OH) 16 C 0 3 ⁇ 4 H 2 0 , but is preferably synthetic human de Tarusai preparative the ease and price point of availability.
  • HTS synthetic hydrotalcite
  • Mg 6 A £ 2 (OH) 6 C 0 a ⁇ 4 H 20
  • Mg bicycloheptyl Rourai preparative represented by 6 F e 2 (OH) 16 C 0 3 ⁇ 4 H 2 0
  • 6 F e 2 (OH) 16 C 0 3 ⁇ 4 H 2 0 but is preferably synthetic human de Tarusai preparative the ease and price point of availability.
  • hydrotalcites do not generate harmful gases when combusted as gas generating agents or enhancers. This is thought to be because, for example, in the case of a hydrological site, a reaction like the following equation (2) occurs. In this case, since the reaction itself is an endothermic reaction, there is also an effect of reducing the calorific value of the gas generating agent. W
  • Mg 0 and A £ 2 Os obtained by the decomposition reaction is an oxide of a refractory, explosive composition and a £ 2 0 3 to alkali metal oxide contained in the oxidizing agent and (K 2 0 for example) caused by the decomposition of the human Dorotarusai preparative such in reacts as following equation (3) It is thought that glassy aluminum oxide, which can be easily filtered with a filter, is produced as slag.
  • the decomposition product itself of the hydrotalcite can be easily obtained by the slag reaction, which is the acid-base reaction shown in the following Eq. (4). It is believed to form a filterable aluminum oxide magnesium.
  • This bi Sunda is generally added in the range of 2-3 0% by weight of the explosive composition. If it is less than 2%, the function as a binder is difficult to achieve, and if it exceeds 30%, the amount of other components added is so small that the function as an explosive composition becomes difficult to achieve. In particular, it is preferably added in the range of 3 to 10%.
  • the particle size of the binder is also an important factor in production technology, and in the present invention, it is preferable that the average particle size based on the number is 50 wm or less. If the particle size is larger than this, the function of binding the above components is weakened, and it is difficult to expect the effect as a binder, and there is a possibility that a predetermined strength of the molded product may not be obtained.
  • the 50% average particle size on a number basis is a method of expressing the particle size distribution on a number basis.
  • the number of all particles is 100, the particle size when 50 particles are integrated from the smaller one is reached. Is referred to as a 50% average particle size based on the number.
  • an organic compound containing nitrogen as a constituent atom hereinafter referred to as a nitrogen-containing organic compound
  • an organic compound which easily burns and has a large proportion of nitrogen atoms is used as a fuel component in the explosive composition of the present invention. Any compound can be used, for example, the following tetrathazoles can be used
  • tetrazole examples include tetrazole, aminotetrazol, triazol, bitol tolazole, guanidine, aminoguanzine, triaminoguanidine nitrate, uttoguanidine, azoviguanidine, porponamide, azoponamide.
  • examples thereof include dicarbonamide, hydrazocarbonamide, hydrazine, forminolehydrazine, formamidine, monoethylhydrazine, carbohydrazine, dicyandiamide, oxalic acid hydrazide, and salts thereof.
  • tetrathazoles used in the present invention are known compounds, and have a structure in which the ratio of nitrogen atoms in the molecular structure is high and the generation of harmful CO gas is basically suppressed as described above. It has various advantages over metal azide compounds, such as high safety in handling.
  • tetrahydrozole containing a hydrogen atom of 1) is generally commercially available 1H-tetrazole, 5,5-bis-1H-tetrazole, 1-methyl-1 H-Tetrazole, 5-Methyl-1H-Tetrazol, 1,5-Dimethyl-1H-Tetrazol, 1-Ethyl-5-Methyl-1H-Tetrazol, 5-Mercapto-1H-Te Tolazole, 1-Methyl-5-mercapto-1H-Tetrazol, 1-E Cyl-5-mercapto 1 H-tetrazole, 1-hydroxylboxymethyl-5-mercapto-1 H-tetrazole, 1-phenyl-5-mercapto 1 H-tetrazole, 1— (4-hydrophenyl 1) 5-mercapto 1 H-tetrazole, 5-phenyl 1 ⁇ trazol, 1-ethyl-1 5-hydroxy 1 ⁇
  • 5-amino-1H-tetrazole 11- (3-acetamidophenyl) -5-mercapto-1H-tetrazole, 1-N, N-dimethylaminoethyl 5-Mercapto-1H-tetrazole and the like, and one or more of these are used, or one or more selected from alkaline metal salts, alkaline earth metal salts, and ammonium salts.
  • 5-amino-1-H-tetrazole or a salt thereof is preferable because the nitrogen content in the molecule is high, the price is substantially low, and the compound is easily available in large quantities.
  • a lubricant for example, finely divided silica having an anti-caking function
  • the particle size is adjusted so that the 50% average particle size on a number basis is 5 to 80 "m. If the particle size is made smaller than this, the combustion speed is too fast for use in an airbag gas generator. If the particle size is larger than this, the combustion speed may be too slow, making it difficult to use for an airbag.
  • nitrates, nitrites, oxohalogenates and the like can be used as the oxidizing agent for burning the fuel, and the nitrates include nitrates and ammonium salts of alkaline metal or alkaline earth metals. Specific examples include sodium nitrate, potassium nitrate, barium nitrate, strontium nitrate, and ammonium nitrate. Examples of the nitrite include a nitrate and an ammonium salt of an alkali metal or an alkaline earth metal. Examples include sodium nitrite, potassium nitrite, barium nitrite, strontium nitrite and ammonium nitrite.
  • oxohalogenates examples include chlorates (eg, chlorinated lithium, sodium chlorate, and sodium chlorate), bromates (eg, brominated lithium and sodium bromates). Strontium bromate, etc.), iodate (potassium iodate, sodium iodate, etc., sodium iodate), perchlorate (potassium perchlorate, sodium perchlorate) Tritium, sodium n-perchlorate, etc.), perbromate (rhodium perbromide, sodium perbromate, sodium n-perbromate, etc.), periodate (period) Potassium iodate, sodium periodate, and sodium pi-periodate).
  • chlorates eg, chlorinated lithium, sodium chlorate, and sodium chlorate
  • bromates eg, brominated lithium and sodium bromates.
  • Strontium bromate, etc. iodate (potassium iodate, sodium iodate, etc., sodium iodate), perchlorate (pot
  • nitrate and nitrite alone have the property of decomposing by absorbing heat during the reaction as described above, and therefore have lower flammability than other oxidizing agents, and often burn during combustion.
  • tetrazole having improved flammability and inferior flammability by being used in combination with the hydrotalcites, which is the binder of the present invention, or with a combustion regulator described further below. Even it is possible to burn completely to the end.
  • ammonium salt has a problem in terms of hygroscopicity, considering that the explosive composition itself for airbags is formed into pellets or granules and sealed in a closed container, The problem is not a major one, but the effect of increasing gas generation during combustion is greater.
  • strontium nitrate behaves in a unique manner in the presence of H-U talcites, showing good combustion characteristics and slag collection without using a combustion regulator.
  • oxohalogenate alone has a large pressure index n of the combustion reaction, making combustion control difficult.
  • the pressure index n can be reduced, and the combustion control becomes easier.
  • the combined use of the salt and the above-mentioned nitrate or nitrite makes it possible to compensate for the low flammability of the nitrate or nitrite with the strong flammability of the oxo-salt, and Since the presence of the combustion regulator further compensates for both disadvantages, a mixed oxidizer in which the main components of the oxidizer are nitrates and nitrites and the remainder is an oxohalogenate is also a preferable combination.
  • nitrate that decomposes by absorbing heat during the reaction.
  • the disadvantage of nitrite is that it suppresses the rapid combustion of ⁇ -salts and consequently lowers the combustion temperature and reduces the amount of ⁇ 0X generated. There is also an effect to make it.
  • the mixing ratio of the oxidizing agent and the tetrazole compound may be the stoichiometric amount necessary for the oxidation of the tetrazole compound, and is usually used in the range near the stoichiometric amount.
  • Z r 0 2 zirconium oxide
  • H f 0 2 hafnium oxide
  • Mo 0 3 trioxide molybdenum
  • Mo S 2 disulfide molybdenum
  • W data tungsten
  • W0 3 tungsten trioxide
  • Mn 02 manganesese dioxide
  • KMn 0 4 permanganate Li um
  • F e iron
  • F e 2 0 3 iron oxide
  • F e S Iron sulfide
  • Ni0 nickel oxide
  • the function when using these combustion regulators is that the oxidizing agent and tetrazole It consists in adjusting the oxidation reaction (combustion) rate, and specifically has the function of increasing or decreasing the pressure index n and the function of increasing or decreasing the combustion rate.
  • this combustion regulator is added, 10% by weight of the total explosive composition is used so as not to impair the amount of gas generated per unit explosive composition and not to generate excessive combustion residue. % Or less is preferable.
  • This explosive composition has a basic composition of a fuel component, an oxidizing agent, and a binder.
  • the fuel component includes the above-mentioned tetrazoles (1) to (3), ie, (2): tetrazoles containing hydrogen atoms.
  • polyethylene glycol, propylene glycol, polybutyl ether, polymaleic acid copolymer, polyethyleneimine, polybutylalcohol, polybutylpyrrolilate may be used. It is also a preferred embodiment to add a water-soluble polymer such as don, polyacrylamide, sodium polyacrylate, or ammonium polyacrylate as a moldability improver. In particular, from the viewpoint of cost, performance and process, polybutyl alcohol is preferred.
  • stearyl acid, zinc stearate, zinc stearate, magnesium stearate, calcium stearate, stearate are used for the purpose of improving the flowability of the mixture.
  • one or more lubricants selected from the group consisting of aluminum phosphate, molybdenum disulfide, graphite, finely divided silica, and boron nitride.
  • the addition amount may be 2% or less based on the entire explosive composition.
  • Mo S 2 molybdenum sulfide
  • BN boron nitride
  • graphite boronitride
  • these substances also have a function as a lubricant. It is also possible to reduce the amount of the lubricant component added.
  • the lubricant for this purpose, among the above lubricants, finely divided silica is most preferred, and the amount of addition is preferably in the range of 0.1 to 2.0% by weight based on the fuel component or oxidizing agent to be pulverized. No.
  • the (a) tetrazoles, (b) the oxidizing agent and the hydrosites as a binder are each described above.
  • the mixture is pulverized to a desired particle size as described above and mixed, and if necessary, the above-mentioned (c) a combustion regulator, a formability improver, and a lubricant are appropriately added and mixed, and the mixture is filled into a mold by an ordinary method.
  • a combustion regulator, a formability improver, and a lubricant are appropriately added and mixed, and the mixture is filled into a mold by an ordinary method.
  • each component is pulverized and mixed in the same manner as in the case of the gas generating agent, and then formed into granules.
  • the diameter is particularly high, because it requires a higher burning rate than the gas generant.
  • granules of O mm or less are preferable to use. It is preferable to use granules of O mm or less, particularly 0.1 mm to 1.0 mm.
  • the composition ratio does not need to be particularly changed as compared with the case where the gas generating agent is molded.
  • the granules of the gas generating agent obtained by the press molding or the enhancer agent obtained by the granulation described above can be used after the molding.
  • a gas generating agent or an enhancer agent with little change over time can be obtained. In particular, even if a severe heat aging test is performed at 107 ° C for 400 hours, the granules hardly change with time if this heat treatment is performed.
  • the heat treatment time is less than 2 hours, it is insufficient. If it exceeds 24 hours, the heat treatment becomes meaningless. Therefore, it is preferable to select an appropriate heat treatment time in the range of 2 to 24 hours. Preferably, 5 to 20 hours are good.
  • the heat treatment temperature is less effective at temperatures below 100 ° C, and if it exceeds 120 ° C, it may deteriorate rather.Therefore, the heat treatment temperature should be selected within the range of 100 ° C to 120 ° C. . It is preferably about 105 ° C to 115 ° C.
  • a stainless steel plate having 10 mm ⁇ X 7 holes was placed at the boundary between the tablet combustion chamber 40 cc and the residue collection chamber 960 cc, and the stainless steel plate was placed on the stainless steel plate.
  • a combustion test was conducted in a stainless steel sealed container with a metal mesh (20 mesh, wire diameter 0.4 mm) and aluminum foil (50 "thick). Ignition was carried out by an igniter that ignited the target, and the pressure generated was measured with an oscilloscope using a pressure sensor, and the time required to reach the maximum pressure was measured.
  • the tablet was sealed in an aluminum container, and a heat shock test was repeated 200 times at 140 ° C X 30 minutes to 90 ° C X 30 minutes, and the tablet crushing strength test before and after the heat shock was performed. And a combustion test. The results are shown in Table 1.
  • Example 4 2): 5.1 parts by weight, respectively, and granulated in the same manner as in Example 1.St-Mg was added as a lubricant, and 0.2 part by weight was added and mixed. Tableting The same test as in Example 1 was performed for comparison using the tablets obtained by molding. The results are shown in Table 1.
  • the tablet crushing strength of the gas generating agents of Examples 1 to 3 using hydrotalcite as a binder and Comparative Example 2 using tricalcium phosphate as a binder before the thermal shock was higher than that of the conventional tablet. It shows a value higher than the crushing strength of 10 to 15 kg, which is the gas generating agent using an azide compound as a fuel component.
  • the tablet of Comparative Example 2 is reduced to the initial value of 1 Z 3 or less.
  • the tableting may be carried out with a cabbage.
  • 5-Aminotetrasol calcium salt 5ATZ—K: 42.0 parts by weight (including 0.42 parts by weight of finely divided silica) and 1.0 parts by weight of finely divided silica as well added to the particle size 1 0 0 m KN as the oxidizing agent the number reference 50% average particle size was pulverized to 2 5 m or less 0 3: 4 8.9 parts by weight (atomized silica mosquitoes to 0.4 8 Parts by weight) and 50% or less particle size 50% or less based on number 50% HTS pre-ground to 10m average particle size: 4.6 parts by weight and 30% or less particle size based on number 5 0%
  • Various combustion regulators pre-ground to an average particle size of 2 m: 4.5 parts by weight, after thoroughly mixing each with a V-type mixer, St-Mg as a lubricant 0.2 Weight percent, mix and fill into a given mold, press-mold into tablets To give a diameter of 7 mm, thickness 4 mm, the pellets of the gas generating agent having
  • Example 3 2 Same as above T i 0 2 Same as above (Example 5)
  • No. 33 Gas generating agent using conventional sodium azide as a fuel component.
  • N o 34 5 AT as a fuel component Z: 4 1. 2 parts by weight, as an oxidizing agent KC £ 0 4: 58. a mixture of a and 8 parts by weight, include the combustion modifier and human Dorotarusai preparative acids No known tetrazole-based gas generating agents.
  • a gas generating agent and a gas generating agent (comparative example) to which the combustion regulator of N 0.30 was not added were mounted on the gas generator 1 shown in FIG. 1 for 3 Og, respectively.
  • a test gas generator was manufactured.
  • the gas generator 1 is divided into an innermost combustion chamber A, an intermediate combustion chamber B, and an outermost filter chamber C by two inner partition walls a and b and an outer wall c.
  • the ignition chamber A is provided with an igniter 2 that is ignited by energization from the outside, and an enhancer agent 3 that is ignited by the igniter 2.
  • the high-temperature gas generated by the combustion of the gas burns the gas generating agent 5 filled in the closed vessel (not shown) in the combustion chamber B through the heat transfer hole 4 provided in the inner partition wall a. .
  • the gas generated by the combustion of the gas generating agent 5 enters the filter chamber C through the first gas outlet 6 formed in the partition wall b, and is contained in the gas by the filter 7 disposed in the chamber.
  • the structure is such that the slag is removed, the slag is cooled, and the slag is discharged to the outside through the second gas outlet 8 formed in the outer wall c.
  • the size of the opening area of the first gas outlet 6 regulates the gas outflow speed. That is, when the opening area of the first gas outlet 6 is small and smaller than the amount of gas generated in the combustion chamber B, the internal pressure in the combustion chamber B increases with time, and is expressed by the above equation (5). As can be seen, the burning rate is even faster, and in extreme cases will explode the gas generator. Conversely, when the opening area of the first gas outlet 6 is large and is larger than the amount of gas generated in the combustion chamber B, the internal pressure in the combustion chamber B does not increase, and the combustion speed decreases.
  • the total opening area of the first gas outlet 6 is 2 0 0 mm 2, 3 0 0 mm 2, was 6 0 Tankutesu preparative using 4 0 0 mm 2 and the three kinds of the gas generator.
  • Table 4 shows the test results.
  • the 60 £ tank test is a test in which the gas generator is installed in a closed tank of 60 £, the gas generator is operated, and the change in the tank pressure P at that time is measured with time t.
  • t. Is the time when the gas generator started to operate
  • t Is the time when the gas generator started to operate
  • Test number Combustion regulator Condition A Condition B Condition C
  • N o 1 9 5 AT Z as a fuel component.: 3 7.5 parts by weight of an oxidizing agent strongly oxidizing KC ⁇ C: 5 3. F e 2 0 3 as 4 parts by weight and the combustion modifier: 4
  • the explosive composition of the present invention containing 5 parts by weight and HTS: 4.6 parts by weight.
  • No. 30 Explosive composition as a comparative example to which the combustion regulator used in Examples 4 and 5 was not added.
  • No. 33 Explosive composition containing sodium azide as a main component used in Example 2.
  • N o 3 5:.. N o 1 9 explosive composition as a comparative example without addition of F e 2 0 3 as a combustion modifier.
  • Each of the above five types of explosive compositions was filled in a predetermined mold and press-molded to obtain a molded body having a length of 8 mm, a width of 5 mm, a length of 5 Omm, and a weight of about 3.6 g.
  • two holes with a diameter of 0.5 mm were drilled at appropriate intervals in the longitudinal direction, and a fuse was passed through this hole to produce a test piece.
  • one end of the test piece is heated with a dichrome wire and ignited, and the fuse is blown when the combustion surface passes.
  • the combustion time was measured by measuring the time, and dividing the interval between the two fuses by the time difference between the breaks. Content
  • the combustion rate was determined by changing the pressure in the vessel to 1 to 50 atm, and the pressure index n was calculated by the above equation (5). Table 5 shows the results.
  • n 0.4, which is preferable for gas generators and is in the range of 0.3 to 0.45, but does not contain a combustion regulator.
  • the pressure index n is as high as 0.6. Further, even when using nitric acid mosquito potassium to (KN 0 3) as an oxidizing agent, of the present invention
  • the pressure index n is 0.3, which shows the same combustion characteristics as that of the conventional explosive composition containing sodium azide as the main component (No. 33).
  • the combustion regulator of the present invention also has a function of lowering the pressure index n, which is further improved by oxo oxides such as strong oxidizing potassium perchlorate, which was difficult to control in the past. It has been shown that the addition of a specific combustion regulator also reduces the pressure index n and facilitates the combustion control of a combination of a halogenate and tetrazole granules.
  • finely divided silica with a particle size of 1 m or less is added in advance, and 0 parts by weight are added.
  • the particle size is 100 / «m or less.
  • 34.1 parts by weight (including finely divided silica: 0.3 parts by weight) and 1.0 part by weight of the finely divided silica as an oxidizing agent are added in advance, and the particle size is 100 m or less.
  • 50% average particle KN0 diameter was ground to a 3 5 m 3: 5 6. 8 parts by weight ( ⁇ silica: 0.
  • binders pre-ground to a particle size of 10 m: 4.6 parts by weight
  • various combustion regulators pre-ground to a particle size of 30 m or less and an average particle size of 2 m: 4 5 parts by weight with a V-type mixer, respectively, then add 0.1 part by weight of St-Mg as a lubricant, fill and mix into tablets, and form tablets. Press forming 7 mm in diameter, 4 mm in thickness, weight of about 250 mg To give tablets generator.
  • a fuel component 1.0 parts by weight of finely divided silica having a particle size of 1 / m or less is added in advance, and the particle size is 100 / "m or less.
  • Example 7 Using the explosive composition (No. 101-116, 130-132) of the explosive composition used in Example 8 above, a tablet crushing strength test at the initial stage of molding and after a thermal impact test, and in a 1 II container A combustion test was performed. Table 7 shows the results.
  • This thermal shock test is a test in which a heat cycle of 40 ° C. X 30 minutes to + 90 ° C. X 30 minutes is repeated 200 times.
  • the combustion test in a 1 ⁇ container is based on the time t until the pressure in the container reaches the maximum pressure after ignition of 10 g of the drug in a sealed 1 £ container and reaches the maximum pressure t — Pm a X ( ms: milliseconds).
  • Example 6 A 60 £ tank test was performed in the same manner as in Example 6, and the combustion state and the amount of slag released from the gas generator were measured along with the PT curve. Table 8 shows the test results. Similarly to Example 6 In this test, the maximum pressure P m is 1 5 0-2 5 0 k P a and the preferred range, the time t m to reach the maximum pressure 1 5 0 m s (millimeter Seconds) The following values are preferred, and the amount of slag release is preferably 2 g or less.
  • the maximum ultimate pressure P m is the time t m to reach there and has become higher as the opening area becomes smaller in the first gas outlet in any case It can be seen that they tend to be shorter and burn more easily.
  • the pressure P m while indicating both satisfactory value time t m, most slag discharge amount release, the slag may filtered Indicates that it was not formed.
  • the values of P m and t m continuously change regardless of the change of the opening area, and the discharge slag The amount is also low, around 1 g.
  • N o 1 0 3 A explosive composition of the present invention obtained in Example 8, 9, the KN0 3 as an oxidizing agent, a Mo 0 3 as a combustion modifier, a HT S as a pie Sunda Each one used.
  • N o 1 33:.. N o 1 1 9 explosive composition as a comparative example without addition of F e 2 0 3 as a combustion modifier.
  • nitric acid mosquito re lays KN0 3
  • one containing combustion modifier N 0. 1 0 3, 1 30
  • the pressure index n is 0.3, which is in the range of 0.3 to 0.45, which is preferable for the gas generator. This indicates that the binder used in the present invention does not affect the pressure index. Therefore, it can be seen that the pressure index can be adjusted by using a combustion regulator.
  • test tablets Nos. 140 to 145 obtained by subjecting the tablets to heat treatment at various temperatures for X hours were obtained.
  • test tablets (Nos. 140 to 145) obtained by subjecting the tablets to heat treatment at various temperatures for X hours were obtained.
  • test tablets using the tablets of N 0.110 obtained in Example 5, the same heat treatment was performed to obtain test tablets (Nos. 150 to 154).
  • Each of these tablets (30 g) was filled in an aluminum container and sealed, and subjected to a heat aging test at 107 ° C for 400 hours, and the lid material of the aluminum container after the heat aging test was tested.
  • the effect of the heat treatment was tested according to the degree of swelling or breaking. Table 10 shows the results.
  • the lid was sealed to break at an internal pressure of 0.4 kg ⁇ / cm 2 .
  • a fuel component As a fuel component, 0 parts by weight of finely divided silica with a particle size of 1 m or less was added in advance and pulverized to 50% or less with a particle size of 50 m or less and 50% average particle size of 10 ATZ: 33.0 weight Parts (including 0.33 parts by weight of finely divided silica) and 1.0 parts by weight of the above-mentioned finely divided silica in advance as an oxidizing agent.
  • the amount of released slag was measured by the 60 ⁇ ⁇ tank test, and the results are shown in Table 11.
  • 10 g of the weighed tablet was placed in a rotating drum having a free fall distance of about 15 Omm, and rotated 250 times (10 minutes) at 25 rpm. After that, a test method was adopted in which the amount (%) of the material passing through a 0.5 mm round sieve was used as the degree of attrition.
  • Table 1 1 As is apparent from the HTS and by Sunda, and S r (N0 3) 2 oxidizing agent, the PV A and moldability modifiers, fine I spoon silica having a caking preventing function and S t-
  • the gas generating agent 16 1 of the present invention which contains Zn as a lubricant, has the best crushing strength, friability, and moldability, is stable in combustion state, has the smallest amount of released slag, and is the best gas. You can see that it is a generator.
  • the gas generating agent 162 of the present invention containing no moldability improver is slightly inferior in moldability, but is otherwise similar to the above gas generating agent 161. Absent.
  • the explosive composition of the present invention can be expected to have the following remarkable effects.
  • hydrotalcite as a binder, it becomes possible to improve the thermal shock resistance and combustion characteristics of a gas generating agent for an airbag using a nitrogen-containing organic compound as a fuel.
  • the low-flammability which is a disadvantage of the explosive composition mainly composed of conventional tetrazole, is specified while taking advantage of its safety. Improvement can be achieved by adding a combustion regulator. In addition, no harmful gas is generated even when burned, so that a safe airbag device can be obtained.
  • the use of the binder of the present invention promotes the combustion slag generation and facilitates filtration of the combination of tetrazole with nitrite or nitrite of alkaline metal or alkaline earth metal.
  • a clean gas can be obtained in the airbag device.
  • the combination of the above-mentioned combustion regulator is not required. Thus, it is possible to obtain a gas generating agent having good combustion and good slag collecting property.
  • the explosive composition of the present invention can be used both as a gas generating agent and as an enhancer, it is possible to use two types of explosive compositions each of which has been conventionally produced in a separate process.
  • the production of a single explosive composition reduces the risk of the production process, which is a great advantage in such a pyrotechnic production site involving dangerous work.
  • the same composition as the overwhelmingly large amount of gas generating agent can be used as an enhancer agent, so the production of a small amount of enhancer agent is not required, and the cost can be reduced. Contribute.
  • the explosive composition of the present invention can be used as a gas generating agent for airbags and as an enhancer, and is particularly useful as a safe explosive composition for airbags in the production process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Air Bags (AREA)

Description

明 細 書 エアバッグ用火薬組成物及び該火薬組成物の製造方法 技術分野
本発明は、 自動車の乗員保護装置であるエアバッグ用のガス発生剤又 はェンハンサ剤 (伝火剤) として使用される火薬組成物とその製造方法 に関するものであり、 燃焼速度の制御が容易でしかも安全に製造出来、 得られた錠剤の耐熱衝擊性と強度が優れ、 また、 燃焼によって生じるガ スがク リ ーンであるエアバッグ用火薬組成物とその製造方法に関するも のである。 背景技術
エアバッグ装置は、 自動車の乗員の安全性向上の方策として近年広く 採用されてきている乗員保護装置であり、 その原理は、 衝突を検出した センサ一からの信号によりガス発生器を作動させてバッグを乗員と車体 との間で展開させるものである。 このガス発生器には、 有害ガスを含ま ずク リーンなガスを発生する事, 短時間で必要且つ十分なガスを発生す る事という機能が要求される。 一方、 燃焼の安定化の為に、 ガス発生剤 は錠剤状に加圧成形されており、 又、 伝火薬は顆粒状に成形して使用さ れている。 これらの錠剤等は、 様々な過酷な環境下においても長期間に 亘つて初期の燃焼特性を維持する事が要求される。 若し、 錠剤等の形状 が経年変化や環境の変化等によって崩れたり強度低下を起こした場合に は、 これら火薬組成物の燃焼特性が所期の燃焼特性よりも異常に速い燃 焼特性を示す事になり、 自動車の衝突の際に、 異常燃焼によりエアバッ グが破れたりガス発生器自体が破損する恐れがあり、 乗員保護の目的を 達成できないばかりか、 逆に乗員に傷害を与える恐れすら生じる。 そこで、 これらの機能を満足するものとして従来よりアジ化ソーダ, アジ化力 リゥム等のアジ化金属化合物を主成分とするガス発生剤が使用 されている。 このガス発生剤は、 瞬時にして燃焼し且つ燃焼ガス成分が 実質的に窒素ガスのみであり C 0 (—酸化炭素) や N O x (窒素酸化物 ) の如き有害ガスを発生させない事、 及び燃焼速度が周囲の環境の影響 即ちガス発生器の構造の影響を受け難いのでガス発生器の設計が容易で ある事、 等の利点から多用されている反面、 衝擊ゃ摩擦によって容易に 爆発する性質を有しているため、 その製造工程において散見される大小 の爆発事故が示す様に、 その防爆が困難である。 更に水や酸の存在下で は分解して有毒ガスを発生するという大きな問題点を有している。 この ため最近では、 このアジ化金属化合物を生成分とするガス発生剤に代わ る安全なガス発生剤の開発 ·実用化が急務とされている。
これに対して、 例えば特開昭 4 9 - 8 7 5 8 3公報, 特開平 2— 1 8 4 5 9 0号公報或いは特開平 2— 2 2 1 1 7 9号公報には、 アジ化金属 化合物と共にァミ ノテ トラゾール等のテ トラゾール類を混合して併用す る方法が提案されている。 テ トラゾ一ル類は、 分子を構成する窒素原子 の比率が高く C 0の発生が抑えられるので、 アジ化金属化合物と同様に 燃焼ガス中に C 0を殆ど発生せず、 しかも上記したアジ化金属化合物に 比べて危険性や有毒性が遙に小さいという点で優れている。 従って、 こ れとァジ化金属化合物との混合物からなるガス発生剤は、 ァジ化金属化 合物単独使用に比べて上記アジ化金属化合物を主成分とするガス発生剤 が持つ問題点を軽減させる点では成功している。 しかしながらァジ化金 属化合物を使用する限り、 上記した問題点を根本的に解決するには至つ ていない。
そこで、 このテ トラゾール類の利点を生かすため、 アジ化金属化合物 との併用を止めてテ トラゾール類を単独で使用する方法が、 特公昭 6 4 - 6 1 5 6号公報, 特公昭 6 4— 6 1 5 7号公報, 特開平 2— 2 2 5 1 5 9号公報, 特開平 2— 2 2 5 3 8 9号公報, 特開平 3— 2 0 8 8 8号 公報, 特開平 5— 2 1 3 6 8 7号公報, 特開平 6— 8 0 4 9 2号公報, 特開平 6— 2 3 9 6 8 4号公報及び特開平 6— 2 9 8 5 8 7号公報等に 示されている。 特に水素を含まないテ トラゾール類を用いる場合 (特公 昭 6 4— 6 1 5 6号, 同 6 1 5 7号, 特開平 6— 8 0 4 9 2号及び同 2 3 9 6 8 4号) には、 その発生ガス中にエアバッグ中で凝縮して容積を 急激に減少させる水分を含まない点で優れているが、 テ トラゾ一ル類自 体は燃焼性が悪く、 ガス発生剤として使用した場合には、 しばしば燃焼 を途中で中断し、 ガス発生剤が完全に燃焼しないという問題点があつた そこで燃焼性を改善するために再びアジ化金属化合物との併用に立ち 帰ったり (上記特開平 2— 2 2 1 1 7 9号等) 或いは塩素酸塩や過塩素 酸塩の如き強力な酸化剤を使用する方法 (上記特開平 6— 2 9 8 5 8 7 号等) が提案されているが、 前者においては、 アジ化金属化合物の持つ 前記した安全上の問題があり、 後者においては、 折角安全性の高いテ ト ラゾール類を用いながら、 強力な酸化剤を使用する事により、 その安全 性が低下する問題があった。 加えて塩素酸塩や過塩素酸塩を酸化剤とし て用いる場合には燃焼温度が高くなり、 その結果 N 0 Xの発生という新 たな問題を生じた。 尚、 N O Xの発生抑止には、 燃焼性の悪い硝酸塩, 亜硝酸塩を酸化剤として用いればよいが、 この場合には、 酸化剤とテ ト ラゾール類との反応に当り、 この硝酸塩, 亜硝酸塩が吸熱して分解する 性質を有しているので、 着火性が悪く且つ燃焼速度も遅いという両者の 欠点が増幅されて、 一旦着火してもガス発生剤を完全に燃焼し尽くすに 至らないという前述の致命的な問題点が解決されないまま残される事に なる。
更に塩素酸塩や過塩素酸塩の如き強力な酸化剤を用いた系では、 燃焼 反応の圧力指数が高く燃焼が制御し難いという重大な欠点を有していた 即ち、 火薬の燃焼における燃焼速度 (dWZd t ) と圧力との関係は 次式で示される。
dW/d t =A · P n (5) 式 上式中、 W:火薬の燃焼量 (g) , t : 時間 (秒) . A:系による定 数, P :圧力 ( a t m) , n :圧力指数 (系による定数)
一方、 ガス発生器から放出されるガスの放出速度 (dWc /d t ) と 圧力との関係は、 次式で示される。
d WG /d t =K · P。'5 (6) 式 上式中、 Wc : ガス放出 S (g) , t :時間 (秒) , K:系による定 数, P :圧力 (a t m)
上記 (5) , (6) 式より、 ガス発生剤の燃焼速度は圧力 Ρの η乗に 比例し、 ガス発生器からのガス放出速度は圧力 Ρの 0. 5乗に比例する から、 圧力指数の ηが 0. 5より大きいと、 ガス発生器からのガス放出 量よりも燃焼量の方が多くなり、 ガス発生器内の圧力は次第に高くなる 事が分かる。 ここで圧力指数 ηが著しく大きいと、 ガス発生器内の圧力 が急激に上昇し、 その結果燃焼速度は益々上昇する結果、 更にガス発生 器内圧力が上昇し、 遂には容器の爆裂を起こす事になる。 上記した塩素 酸塩や過塩素酸塩の如き強力な酸化剤を用いる場合には (上記特開平 6 - 2 985 87号等) 、 この圧力指数が大きくなり、 燃焼制御が困難で あるという問題点を有していた。
更に、 アジ化金属化合物は二酸化珪素と併用する事により容易に濾過 し得るスラグを形成させる事が知られているが、 テ トラゾール類を用い た場合には、 容易に濾過し得るスラグが形成され難いという欠点も有し ている。
これら非アジ化系ガス発生剤組成物では、 燃料成分が前述のテ トラゾ ール等の有機化合物であるが、 酸化剤は塩素酸塩や過塩素酸塩等の無機 化合物である為、 通常のバイ ンダを用いた場合錠剤等の成形性に問題が あり、 得られた錠剤等成形体の機械的強度は、 アジ化系ガス発生剤に比 ベて可成り劣っていた。 又、 成形体の環境温度の上昇と下降を繰り返す 熱衝擊試験においても、 有機化合物と無機化合物との熱膨張率の差から 、 次第にバイ ンダの結合力が低下し、 甚だしい場合には粉化する場合す らあった。 そこで、 バイ ンダとして、 特開平 6— 2 1 9 8 8 2号公報で は、 ポリ ウレタ ン, 酢酸セルローズ、 ヒ ド キシ末端ボリブタ ジエン, ェチルセル ϋ ース等の可燃性高分子を用いる事が提案されているが、 こ れらの有機高分子化合物を使用すると、 燃焼ガス中の有害な一酸化炭素 ( C O ) 濃度が高くなる欠点と共に発熱量が高くなり、 この為、 発生ガ スを冷却する為の冷却材 (金網等) の量を増加させる必要を生じ、 結果 としてガス発生器の大きさ, 重量を増加させ、 装置の小型化, 軽量化と いう時代の要求に逆行する事になる。
又、 ガス発生剤を着火するためのェンハンサ剤としては、 ボロ ンと硝 酸力 リゥムを主成分とする所謂 『ポロン硝石 j が一般的であるが、 これ は、 アジ化金属化合物をガス発生剤とする場合にしてもテ トラゾール類 をガス発生剤とする場合にしても、 各々の成分組成は全くの別物である ので、 ガス発生剤の製造工程とは独立した別工程で生産しなければなら ないという問題点を有していた。
本発明は、 上述した従来のガス発生剤ゃェンハンサ剤等のエアバッグ 用火薬組成物の有する問題点を解決するもので、 具体的には、 ガス発生 剤成分が、 含窒素有機化合物であっても、 良好な成形性が得られ且つ上 述した従来のアジ化金属化合物を主成分とするガス発生剤の有する問題 点ゃテ トラゾール類を主成分とするガス発生剤の持つ問題点を解決して 、 燃焼性の良好なエアバッグ用火薬組成物を提供すると共に、 特にテ ト ラゾール類の利点を最大限に生かした安全性の高い、 しかも燃焼制御の 容易な且つスラグ形成能力の高い新規なエアバッグ用の火薬組成物を提 供するものである。 換言すると本発明の目的は、 以下の通りである。
( 1 ) 燃料成分がテ トラゾール類その他の含窒素有機化合物であっても
、 無機系の酸化剤との共存下で良好な成形性と特性の得られる新規なパ ィ ンダを提供する。
( 2 ) 取扱が容易で且つ有毒ガスを発生しない安全性の高い火薬組成物 を提供する。
( 3 ) テ トラゾール類と塩素酸塩, 過塩素酸塩の如き強力な酸化剤との 組み合わせにおいても、 圧力指数の低い即ち燃焼制御の容易な火薬組成 物を提供する。
( 4 ) テ トラゾール類と硝酸塩, 亜硝酸塩の如き燃焼性の悪い酸化剤と の組み合わせにおいても、 その燃焼性を向上させて、 火薬組成物を完全 に燃焼させる事のできる新規な火薬組成物を提供する。
( 5 ) 容易に濾過可能なスラグを形成してク リーンなガスを得る事がで きる新規な火薬組成物を提供する。
( 6 ) ガス発生剤と同一成分組成でェンハンサ剤としても使用できる新 規な火薬組成物を提供する。 発明の開示
本発明は、 燃料成分と酸化剤とこれらを結合するバイ ンダとを含有す るエアバッグ用火薬組成物であって、 前記バイ ンダが、 次の一般式 ( 1 ) で表されるヒ ド nタルサイ ト (H y d r 0 t a 1 c i t e ) 類であり 、 これにより、 成形性が良好で且つ環境変化に強い安定した性能を維持 することができる様にしたものである。
[M2+,-„ M3 + « (OH) 2 ) M+ CA · mH2 0] K~ — ( 1) ここで、 M2 +は、 M g 2+, M n 2+, F e 2+, C o 2+, N i 2+, C u 2 + , Z n 2+等の 2価金属。 M3 +は、 A 1 3+, F e 3+, C r 3+. C o 3+, I n 3+等の 3価金属。 A n-は、 ΟΗ- , F - , C I " , N03 - , C 03 2 - , S O,2- , F e (C N) s3— , CH3 COO , 蓚酸イオン, サリ チル酸イオン等の n価のァニオン。 Xは、 0< x≤ 0. 33である。 このヒ ドロタルサイ ト類としては、 化学式 Mg s A ^ 2 (OH) 16C 03 · 4 H 2 0で表される合成ヒ ドロタルサイ ト (以下単に rHTSj と略記する) や、 Mg s F e 2 (OH) 16C 03 · 4 H 2 0のビロウラ イ ト (P y r o a u r i t e) を用いるのが好ましい。 かかる HT S等 は、 容易に入手可能であり、 且つ有害なガスゃスラグ成分を生成し難い 利点がある。 又、 このヒ ドロタルサイ ト類の含有は、 火薬組成物中の 2 〜 30重量%が好ましく、 特に好ましい範囲は 3~ 1 0重量%である。 この範囲であれば、 適性な量の燃料成分と酸化剤とを含有させる事がで きる。 更に、 このヒ ドロタルサイ ト類の個数基準の 5 0%平均粒径は、 30 m以下とするのが好ましく、 この粒度であれば燃料成分と酸化剤 成分とのバイ ンダとしての機能が良好に発揮できる。
次に、 本発明の火薬組成物で使用する燃料成分としては、 窒素を構造 式中の主要原子として含有する含窒素有機化合物が好ましく、 その中で も、 次の①〜③のテ トラゾール類の群から選択された 1種以上であるも のが特に好ましい。
①:水素原子を含むテ トラゾール類。
②: ①以外のァミノテ トラゾール類。
③:上記①又は②のテ トラゾール類のアル力 リ金属塩又はアル力 リ土 類金属塩若しく はアンモユウム塩。
これらのテ トラゾ一ル類は、 燃焼しても有害な C 0ガスの発生が極め て少ない特性を有している。 又、 これらテ トラゾール類の個数基準の 5 0 %平均粒径は、 5〜 8 0 mとするのが好ましく、 この粒度であれば 火薬組成物中に均一に燃料成分が分布し、 燃焼調整が容易になる。 次に、 本発明の火薬組成物に添加する酸化剤としては、 硝酸塩又は亜 硝酸塩の 1種以上である事が好ましい。 この酸化剤の使用により、 有害 な窒素酸化物の発生を抑制する事が可能となる。 更にこの酸化剤にォキ ソハロゲン酸塩を添加する事により、 テ トラゾール類の着火性を改善す ることが可能である。 尚、 これら酸化剤の個数基準 5 0 %平均粒径は 5 〜 8 0 mに調整しておくのが好ましく、 この範囲であると、 燃料成分 その他の成分との均一混合が容易となり、 従って燃焼調整が容易となる 更に、 本発明の火薬組成物には、 前記燃料成分, 酸化剤の他に、 次の ④又は⑤の 1種以上の群から選択された燃焼調整剤を含有させる事によ り、 容易に燃焼制御を行う事が出来る。
④: ジルコニウム, ハフニウム, モリ ブデン, タ ングステン, マンガ ン, ニッケル, 鉄又はその酸化物若しくは硫化物の 1種以上。
⑤:炭素. 硫黄, リ ンの 1種以上。
又、 これらの燃焼調整剤の個数基準 5 0 %平均粒径は 1 0 rn以下に 調整しておくのが好ましく、 この範囲であると、 燃料成分その他の成分 との均一混合が容易となり、 従って燃焼調整が容易となる。
更に、 本発明の火薬組成物の一例としては、 前記テ トラゾール類を燃 料成分とし、 酸化剤としては硝酸ス ト口ンチウムを使用し、 バイ ンダと しては前記ヒ ドロタルサイ ト類を使用するものがある。 これは、 成形性 , 燃焼性, スラグ捕集性, 長期安定性共に良好な火薬組成物を与える事 ができる。 酸化剤として硝酸ス トロ ンチウムを用いる場合には、 他の硝 酸塩を用いる場合と異なり、 前述の燃焼調整剤を必ずしも用いなくても 、 良好な性能が得られる事は特筆すべき組合せである。
又、 上記の火薬組成物を、 ペレツ ト状或いはディ スク状に成形する場 合に、 その成形性改良剤として水溶性高分子、 例えば、 ポリエチレング リ コ一ル, ポリプロ ピレングリ コール, ポリ ビュルエーテル, ポリマレ ィ ン酸共重合体, ポリ エチレンィ ミ ン, ポリ ビュルアルコール, ポリ ビ ュルビ口 リ ドン, ポリ アク リルアミ ド, ポリ アク リル酸ナ ト リ ウム, ポ リアク リル酸アンモユウムの群から選択された 1種以上を添加する事に より、 成形性を改善する事も可能である。 特に前記水溶性高分子がポリ ビニルアルコールの場合には、 その添加量を 0 . 0 1〜 0 . 5重量%と するのが好ましい。 又、 上記の火薬組成物の錠剤成形時の滑剤として、 例えばステアリ ン酸, ステアリ ン酸亜鉛, ステアリ ン酸マグネシウム, ステアリ ン酸カルシウム, ステアリ ン酸アルミ ニウム, 二硫化モリブデ ン, グラフアイ ト, 微粒化シリカ, 窒化硼素から選択された 1種以上を 添加する事により、 成形性を改善する事も可能である。
又、 燃料成分及び酸化剤を所望の粒径に粉砕するに当たり、 前記滑剤 を少量添加する事により、 該滑剤が固結防止剤の役割を果たし、 効率よ く粉砕する事が可能となる。 特に前記滑剤の内、 微粒化シリカを適用す るのが好ましく、 その場合燃料成分あるいは酸化剤に対して 0 . 1〜 2 . 0重量%添加し、 粉砕作業を行うのが好ましい。
更に本発明の火薬組成物は、 錠剤或いはディスク状に成形されてガス 発生剤として使用する事も可能であり、 又、 直径し O m m以下の顆粒 状に成形されてェンハンサ剤として使用する事も可能である。
次に、 本発明の火薬組成物の製造方法は、 前記テ トラゾール類と酸化 剤と前記パイ ンダとしてのヒ ド口タルサイ ト類、 或いは、 これに前記燃 焼調整剤. 成形性改良剤, 滑剤等を適宜添加して混合し、 これを所定形 状に成形した後、 1 0 0〜 1 2 0°Cで 2〜 24時間、 熱処理する事によ り製造される。 これにより耐熱性の優れた火薬組成物が得られる。 この 場合にも、 前述の通り、 ヒ ド タルサイ ト類として化学式 Mg s A £ 2
(OH) 1BC 0 a ' 4 H 2 0で表されるヒ ド タルサイ ト、 又は、 Mg 6 F e a (OH) 16C 03 · 4 H 2 0で表されるピロウライ トを用いる のが好ましく、 更に、 前記テ トラゾール類の個数基準 5 0%平均粒径が
5〜 8 0 前記酸化剤の個数基準 5 0 %平均粒径が 5~ 8 0 τη, 前記バイ ンダの 5 0%平均粒径が 3 0 /" m以下、 前記燃焼調整剤の個数 基準 5 0%平均粒径が 1 0 m以下のものを用いるのが好ましい。 図面の簡単な説明
第 1図は、 本発明の実施例に使用したガス発生器の概念図であり、 第 2図は、 本発明の実施例に使用した 6 0 ·^タンクテス トの P— t線図の 概念図である。 発明を実施するための最良の形態
以下に、 本発明の内容について詳細に説明する。 先ず、 本発明で、 ェ アバッグ用火薬組成物のバイ ンダとして使用するヒ ドロタルサイ ト類と は、 G y p s u m & L i m e N o . 1 8 7 ( 1 9 8 3) の P 4 7 〜P 5 3に記載されている様に、 次の一般式 ( 1 ) で示される化合物で ある。
[M2+,_„ Ma +„ (OH) 2 ) K+ CAn-„/n - mH2 0〕 -. ( 1) ここで、 M2 +は、 Mg 2+, Mn 2+, F e 2+, C o 2+, N i 2+, C u 2+ , Z n 2+等の 2価金属。 M3 +は、 A 1 3+, F e 3+, C r 3+, C o 3+, I n 3+等の 3価金属。 An-は、 ΟΗ- , F - , C 1 " , N03 _ , C 03 2 - , S 042~ . F e (C N) 6 3- . CH3 C OO , 蓚酸イオン, サリ チル酸イオン等の n価のァニオン。 Xは、 0< x≤ 0. 33である。
このヒ ドロタルサイ ト類は、 制酸剤として使用されている物質であつ て、 結晶水を有する多孔質の物質である。 本発明者等は、 非アジ化系の 有機化合物系のガス発生剤のバイ ンダとして、 このヒ ド口タルサイ ト類 が極めて有効である事を発見し本発明に到った。 即ち、 ヒ ドロタルサイ ト類をパイ ンダとして含有する火薬組成物は、 後述する様に低い打錠圧 力においても、 特に後述のテ トラゾール類を主成分とする非アジド系ガ ス発生剤組成物に適用した場合には、 一般のアジド系ガス発生剤の錠剤 硬度 1 0〜 1 5 k g (モンサント型硬度計) よりも遙かに高い硬度 (2 5〜 30 k g) を得る事が可能となる。 これはヒ ドロタルサイ ト類が共 通して水分を吸着し易い性質を有しており、 この性質が火薬組成物の各 成分を強固に結合させる作用をなすものと考えられる。 又、 このパイ ン ダを用いた錠剤は、 高温 ·低温の繰り返しによる熱衝撃に対しても錠剤 の特性及び燃焼特性に変化がなく、 従って実際に車両に搭載した後の経 年変化が少なく、 形状の安定した錠剤を得る事が可能となる。
又、 ヒ ド TPタルサイ ト類の代表的なものとしては、 化学式 Mg 6 A £ 2 (OH) ,6C 0 a · 4 H 2 0で表される合成ヒ ドロタルサイ ト (HT S) 又は化学式 Mg 6 F e 2 (OH) 16C 03 · 4 H 2 0で表されるビ ロウライ トがあるが、 入手の容易性及び価格面から合成ヒ ド タルサイ トが好ましい。
更に、 このヒ ドロタルサイ ト類は、 ガス発生剤或いはェンハンサ剤と しての燃焼に際して有害ガスを発生しない。 これは、 例えばヒ ドロタル サイ 卜の場合には、 次の (2) 式のような反応が起こるためと考えられ る。 この場合、 反応自体は吸熱反応であるので、 ガス発生剤の発熱量を 低減させる効果もある。 W
M g 6 k S. 2 (OH) 16C 0 a · 4 H 2 0
― 6Mg O + A £ 2 03 + C 02 + 1 2 H2 0 ( 2) 式 更に、 分解反応で得られる Mg 0や A £ 2 Os は、 高融点の酸化物で あり、 火薬組成物中の酸化剤中に含有されるアルカ リ金属酸化物 (例え ば K2 0) と前記ヒ ドロタルサイ ト類の分解により生じる A £ 2 03 と が、 次の ( 3) 式の如く反応して容易にフィルタで濾過可能なガラス状 の酸化アル ミユウムカ リウムをスラグとして生成すると考えられる。
K a 0 + A £ 2 03 → K 2 A £ 2 04 ( 3) 式 又、 ヒ ドロタルサイ トの分解生成物自体も、 次の ( 4) 式に示す酸 · 塩基反応であるスラグ反応によって容易に濾過可能な酸化アル ミニゥム マグネシゥムを形成すると考えられる。
Mg 0 + A £ 2 03 → M g A 2 04 ( 4) 式 このバイ ンダは、 一般に火薬組成物中の 2~ 3 0重量%の範囲で添加 される。 2%より少ないとバイ ンダとしての機能が達成し難く、 3 0% を越えると、 他の成分の添加量が少なくなって火薬組成物としての機能 が果たし難くなるからである。 特に 3〜 1 0%の範囲で添加されるのが 好ましい。
このパイ ンダの粒径も生産技術上の重要な要素であり、 本発明では、 個数基準 5 0%平均粒径で 3 0 wm以下とするのが好ましい。 これより 粒度が大きいと、 上記各成分を結合させる機能が弱くなって粘結剤とし ての効果が期待し難くなり所定の成形体強度が得られなくなるおそれが ある。
因みに個数基準 5 0%平均粒径とは、 個数基準で粒度分布を表す方法 であり、 全粒子の個数を 1 0 0としたとき、 小さい方から積算して 5 0 個に達したときの粒度を個数基準の 5 0%平均粒径という。 次に、 本発明の火薬組成物において燃料成分として使用する窒素を構 成原子とする有機化合物 (以下含窒素有機化合物) としては、 容易に燃 焼し、 且つ、 窒素原子の占める割合の大きい有機化合物であれば、 いず れも使用可能であるが、 例えば、 次のテ トラゾール類が使用可能である
①:水素原子を含むテトラゾール類。
②: ①以外のァミノテ トラゾール類。
③: これらのアル力 リ金属塩又はアル力 リ土類金属塩若しくはアンモ ユウム塩。
使用しうるテ トラゾール類の例としては、 テ トラゾール, アミノテ ト ラゾール, ト リァゾール, ビテ トラゾ一ル, グァニジン, ァミノグァュ ジン, ト リアミノグァ二ジンナイ トレート, ュト グァニジン, ァゾビ グァニジン, 力ルポンァミ ド, ァゾジカルボンァミ ド, ヒ ドラゾカルボ ンアミ ド, ヒ ドラジン, ホルミノレヒ ドラジン, ホルムアミ ジン, モノエ チルヒ ドラジン, カルボヒ ドラジン, ジシァンジアミ ド. 蓚酸ヒ ドラジ ド或いはこれらの塩等が挙げられる。
本発明で使用するこれらのテ トラゾール類自体は公知の化合物であり 、 前述した如く、 分子構造中の窒素原子の比率が高く有害な C 0ガスの 発生を基本的に抑制する構造を有しており、 しかも取扱上の安全性も高 い等のアジ化金属化合物に比べて種々の利点を有している。 上記テトラ ゾール類の具体的な例として、 先ず①の水素原子を含むテ トラゾール類 としては、 一般に市販されている 1 H—テ トラゾール、 5 , 5—ビス一 1 H—テ トラゾール、 1ーメチルー 1 H—テ トラゾール、 5ーメチルー 1 H—テ トラゾ一ル、 1 , 5—ジメチルー 1 H—テ トラゾ一ル、 1ーェ チルー 5—メチル一 1 H—テ トラゾール、 5—メルカプト一 1 H—テ ト ラゾール、 1 —メチルー 5一メ ルカプト一 1 H—テ トラゾール、 1ーェ チル一 5ーメルカプ トー 1 H—テ ト ラゾール、 1一力ルボキシメチルー 5—メルカプト— 1 H—テ ト ラゾール、 1—フェニールー 5—メ ルカブ ト ー 1 H—テ トラゾール、 1— ( 4—ヒ ドロ フェニール) 一 5—メルカ プト ー 1 H—テ トラゾール、 5一フ エ二ルー 1→トラゾール、 1 ーェ チル一 5—ヒ ドロキシー 1→トラゾール等があり、 次に②の上記以外 のアミノテ トラゾール類としては、 同様に市販されている 5—ァミノ一 1 H—テ ト ラゾール、 1一 ( 3—ァセ トアミ ドフエニール) 一 5—メル カプト一 1 H—テ ト ラゾール、 1— N , N—ジメチルアミ ノエチルー 5 —メ ルカプト一 1 H—テ トラゾール等があり、 これらの 1種以上又はァ ルカ リ金属塩, アル力 リ土類金属塩或いはアンモユウム塩から選ばれた 1種以上が使用される。 特に分子中の窒素含有率が高く且つ実質的に安 価で大量入手の容易な点から、 5—ァミノ _ 1 H—テ トラゾール又はこ の塩が好ましい。
これらのテ トラゾール類を使用するに当たっては、 事前に固結防止機 能を有する滑剤 (例えば微粒化シリカ等) を少量添加した後、 粉砕して 粒径を調整しておくのが好ましく、 本発明では個数基準 5 0 %平均粒径 が 5 ~ 8 0 " mとなる様に調整する。 これより微粒にすると、 エアバッ グ用ガス発生器に使用するには、 燃焼速度が速過ぎてガス発生器を爆裂 するおそれがあり、 又、 これより粒子径が大きいと逆に燃焼速度が遅過 ぎてエアバッグ用には使用困難となるおそれがある。
次に、 上記燃料を燃焼させる酸化剤としては、 硝酸塩, 亜硝酸塩, ォ キソハロゲン酸塩等が使用でき、 硝酸塩としてはアル力 リ金属又はアル 力 リ土類金属の硝酸塩及びアンモニゥム塩が挙げられ、 具体的には硝酸 ナ ト リ ウム, 硝酸カ リ ウム, 硝酸バリ ウム, 硝酸ス トロ ンチウム及び硝 酸アンモニゥムが例示される。 亜硝酸塩としては、 アルカ リ金属又はァ ルカ リ土類金属の硝酸塩及びアンモニゥム塩が挙げられ、 具体的には亜 硝酸ナ ト リ ウム. 亜硝酸カ リ ウム. 亜硝酸バリ ウム, 亜硝酸ス トロ ンチ ゥム及び亜硝酸アンモユウムが例示される。 又ォキソハロゲン酸塩とし ては、 塩素酸塩 (塩素酸力 リ ゥム, 塩素酸ナ ト リ ウム, 塩素酸ス ト口 ン チウム等) , 臭素酸塩 (臭素酸力 リゥム, 臭素酸ナ ト リ ゥム. 臭素酸ス トロンチウム等) , 沃素酸塩 (沃素酸カ リウム, 沃素酸ナ ト リウム, 沃 素酸ス ト P ンチウム等) , 過塩素酸塩 (過塩素酸カ リウム, 過塩素酸ナ ト リ ウム, 過塩素酸ス ト n ンチウム等) , 過臭素酸塩 (過臭素酸力 リゥ ム, 過臭素酸ナ ト リ ウム, 過臭素酸ス ト π ンチウム等) , 過沃素酸塩 ( 過沃素酸力 リウム, 過沃素酸ナ ト リウム, 過沃素酸ス ト π ンチウム等) 等が挙げられる。 本発明では、 これらの群から選ばれた 1種又は 2種以 上の混合物が使用される。
特に、 これらの酸化剤の内、 硝酸塩及び亜硝酸塩は、 単独では前述の 通り反応時に吸熱して分解する性質があるので、 他の酸化剤に比べて燃 焼性が劣り、 しばしば燃焼が途中で中断する欠点があるが、 前記本発明 のバイ ンダであるヒ ドロタルサイ ト類との併用或いは更に後述する燃焼 調整剤と併用する事により、 燃焼性が改善され、 燃焼性の劣るテ トラゾ ール類ですら最後まで完全に燃焼させる事が可能となる。 一方アンモニ ゥム塩は、 吸湿性の面では問題があるが、 エアバッグ用の火薬組成物自 体はペレツ ト状或いは顆粒状に成形されて密閉容器に封入される事を考 慮すると、 この問題は大きな問題ではなく、 燃焼時にガス発生量を増加 させる効果の方が大きい。
尚、 硝酸塩の内、 硝酸ス トロンチウムだけは、 ヒ ド Uタルサイ ト類と の共存下で特異な挙動を示し、 燃焼調整剤を用いなく とも良好な燃焼特 性とスラグ捕集性を示す。
ォキソハロゲン酸塩は、 単独では前述の通り燃焼反応の圧力指数 nが 大きく、 燃焼制御が困難となるが、 後述する燃焼調整剤と併用する事に より、 圧力指数 nを低下させる事ができ、 燃焼制御も容易になる。 又、 才キソハ nゲン酸塩と前述の硝酸塩又は亜硝酸塩と併用する事により、 硝酸塩, 亜硝酸塩の燃焼性の低さをォキソハ σゲン酸塩の強力な燃焼性 で補う事が可能となり、 且つ前記燃焼調整剤の存在により両者の欠点を 更に補う事になるので、 酸化剤の主成分は硝酸塩, 亜硝酸塩とし、 残部 をォキソハロゲン酸塩とする混合酸化剤も好ましい組み合わせである。 加えて反応時に吸熱して分解する硝酸塩. 亜硝酸塩の欠点が、 逆にォヰ ソハ σゲン酸塩による急激な燃焼を抑制し、その結果燃焼温度を低下さ せて Ν 0 X発生量を低減させる効果もある。
そしてこれらの酸化剤とテ トラゾール系類との配合割合は、 そのテ ト ラゾール類の酸化に必要な化学量論量で良く、 通常、 化学量論量近傍の 範囲で使用される。
次に本発明に必要により用いられる燃焼調整剤について説明する。 本 発明において燃焼調整剤としては、 前述の通り、
④金属状 Z r, H f , Mo, W, M n , N i , F e又はこれらの酸化 物若しく は硫化物の 1種以上、 又は
⑤炭素, 硫黄, リ ンの単体の 1種以上の 2つの群の中から選ばれた 1 種以上が使用される。
具体的には④の群では、 Z r 02 (酸化ジルコニウム) , H f 02 ( 酸化ハフニウム) , Mo 03 (三酸化モリ ブデン) , Mo S 2 (二硫化 モリ ブデン) , W (タ ングステン) , W03 (三酸化タングステン) , Mn 02 (二酸化マンガン) , KMn 04 (過マンガン酸カ リ ウム) , F e (鉄) , F e 2 03 (酸化鉄) . F e S (硫化鉄) , N i 0 (酸化 ニッケル) の使用が可能であり、 ⑤の群では、 炭素としてグラフアイ ト 或いは活性炭が、 又リ ンとしては赤リ ンの使用が可能である。 これらの 燃焼調整剤を使用する場合の機能は、 前記酸化剤とテ トラゾール類との 酸化反応 (燃焼) 速度の調整にあり、 具体的には前述の圧力指数 nを高 めたり低下させたりする機能と燃焼速度を速めたり遅く したりする機能 を有するものである。 この燃焼調整剤を添加する場合は、 単位火薬組成 物当りのガス発生量を損なわない様に且つ過剰の燃焼残査を生じさせな い様にするため、 全火薬組成物重量に対して 1 0 %以下とする事が好ま しい。
これらの燃焼調整剤と前述した硝酸塩, 亜硝酸塩を併用する場合には 、 テ トラゾール類の有する衝擊, 摩擦に対する安全性をそのまま維持さ せ、 且つ硝酸塩, 亜硝酸塩の有する燃焼温度の低さを殆ど変化させる事 なく燃焼性を改善し、 テ トラゾール類の未燃焼残渣を生じる事なく完全 に燃焼させ得る事を種々の実験を通して知見した。 又、 これら硝酸塩, 亜硝酸塩を酸化剤として用いても N O Xの発生抑制効果がそのまま維持 される事になる。 一方、 これらの燃焼調整剤と前述した塩素酸塩, 過塩 素酸塩等のォキソハ ゲン酸塩と併用する場合には、 これらの強い酸化 剤の有する燃焼性の高さを維持しつつ前述の圧力指数 nを低下させ、 燃 焼制御を容易にする事が知見された。 この結果これらのォヰソハ ゲン 酸塩を単独で用いた場合の異常燃焼によるガス発生器の爆裂等の事故を 防止でき、 エアバッグ装置の安全性を向上させる事が可能である。 次に、 本発明の火薬組成物の組合せの一例について説明する。 この火 薬組成物は、 燃料成分と酸化剤とバイ ンダとを基本構成となし、 燃料成 分としては、 前記①〜③のテ トラゾ一ル類、 即ち①:水素を原子を含む テ トラゾール類, ②: ①以外のアミノテ トラゾール, ③:上記①又は② のテ トラゾール類のアル力 リ金属塩又はアル力 リ土類金属塩若しくはァ ンモニゥム塩の 1種以上を用い、 酸化剤としては硝酸ス トロ ンチウムを 用い、 これをバイ ンダとしてのヒ ドロタルサイ ト類で結合したものであ る。 この組合せの場合には、 特に前述の燃焼調整剤を用いなく とも、 ヒ ド αタルサイ ト類の作用によりテ トラゾール類の燃焼を安定して行わせる 事ができると共に、 容易に捕集可能なスラグを形成するという効果が発 揮される。
又、 本発明に係る火薬組成物の成形性を改善する目的で、 更にポリェ チレングリ コール, ボリプロ ピレングリ コール, ポリ ビュルエーテル, ポリマレイ ン酸共重合体, ポリ エチレンィ ミ ン, ポリ ビュルアルコール , ポリ ビュルピロ リ ドン, ポリ アク リ ルァミ ド, ポリアク リル酸ナ ト リ ゥム, ポリアク リル酸アンモニゥム等の水溶性高分子を成形性改良剤と して添加する事も好ましい態様である。 特に、 コス ト面, 性能面及びェ 程面から総合的に判断すると、 ポリ ビュルアルコールが好ましい。 又、 本発明の火薬組成物の成形に当り、 該混合物の流動性を改善する 目的で、 ステアリ ン酸, ステアリ ン酸亜鉛, ステアリ ン酸亜鉛, ステア リ ン酸マグネシウム, ステアリ ン酸カルシウム, ステアリ ン酸アルミ ュ ゥム, 二硫化モリブデン, グラフアイ ト, 微粒化シリカ, 窒化硼素の群 から選ばれた 1種以上の滑剤を添加する事が可能である。 その添加量は 、 火薬組成物全体に対して 2 %以下でよい。 但し、 前記した燃焼調整剤 として M o S 2 (硫化モリ ブデン) 又は B N (窒化硼素) 或いはグラフ アイ トを採用した場合には、 これらの物質は滑剤としての機能も備えて いるので、 上記した滑剤成分の添加量を減らす事も可能である。
又、 燃料成分及び酸化剤を所望の粒径に効率良く粉砕するため、 前記 滑剤を少量添加する。 これにより、 粉砕時の粒子同士の固結が防止され 、 粉砕作業が効率よく行われる事になる。 特にこの目的の滑剤としては 、 前記滑剤の内、 微粒化シリカが最も好ましく、 その添加量は、 粉砕す る燃料成分或いは酸化剤に対して 0 . 1〜 2 . 0重量%の範囲が好まし い。 次に、 本発明の火薬組成物を用いてガス発生剤を製造する場合には、 前記 ( a ) テ トラゾ一ル類, (b) 酸化剤及びバイ ンダとしての前記ヒ ドロタルサイ ト類を夫々前述した如き所望の粒度に粉砕して混合し、 更 に必要に応じて前述の (c ) 燃焼調整剤, 成形性改良剤, 滑剤を適宜添 加混合して通常の方法で型内に充塡し、 適宜の錠剤或いはディスク形状 にプレス成形するが、 成形可能な成形品の形状, 大きさに特に制限はな く、 種々の大きさ形状に成形可能である。
又、 本発明の火薬組成物を用いてェンハンサ剤を製造する場合には、 上記ガス発生剤の場合と同様に各成分を粉砕, 混合した後、 顆粒状に成 形する。 特にガス発生剤よりも速い燃焼速度を必要とするため、 直径は
1. O mm以下、 特に 0. l mm〜 l . 0 m mの顆粒状とするのが好ま しい。 組成比は、 ガス発生剤を成形する場合と特に変更する必要はない 又、 上述のプレス成形して得られたガス発生剤或いは顆粒成形して得 られたェンハンサ剤の顆粒は、 かかる成形後に 1 0 0〜 1 2 0 °Cの温度 で 2〜 2 4時間程度熱処理する事により、 経時変化の少ないガス発生剤 或いはェンハンサ剤を得る事ができる。 特に 1 0 7 °CX 4 0 0時間の過 酷な耐熱老化試験を行っても、 この熱処理を行なえば、 顆粒の経時変化 が少ない。 尚、 熱処理時間は、 2時間未満では不十分であり、 2 4時間 を越えると、 意味のない熱処理となるので、 2~ 2 4時間の範囲で適当 に選定するのが良い。 好ましく は 5~ 2 0時間が良い。 又、 熱処理温度 は、 1 0 0 °C以下では効果が少なく、 1 2 0 °Cを越えると却って劣化の おそれがあるので、 1 0 0〜 1 2 0 °Cの範囲で選定する事になる。 1 0 5 °C〜 1 1 5 °C程度が好ましい。 実施例 次に、 本発明の実施例について、 従来例及び比較例と共に対比して詳 細に説明する。 先ず、 本発明においてバイ ンダであるヒ ドロタルサイ ト 類の作用効果について実施例によって説明する。
〔実施例 1〕
燃料成分として 5—アミ ノテ トラゾール ( 5 AT Z) : 3 9. 2重量 部と、 酸化剤としての過塩素酸カ リ ウム (K C £ 04 ) : 5 5. 7重量 部と、 バイ ンダとしての HT S CM g 6 A £ 2 (OH) 16C 03 . 4 H 2 0〕 : 5. 1重量部とを夫々混合し、 水を少量添加して攪拌ライカイ 機によって 1 0分間混練した後、 目開き 1 mmの篩いを通して整粒した 。 これを加熱乾燥後、 滑剤としてのステアリ ン酸マグネシウム (S t— Mg) を、 外割りで 0. 2重量部 (前記混合物 1 0 0重量部に対して 0 . 2重量部。 以下同じ) 添加して混合して本発明の火薬組成物を得、 つ いで、 回転式打錠器でプレス成形して直径 7. Ο πιτη φ , 厚さ 3mmの 円盤状のガス発生剤の錠剤を得た。 この錠剤の直径方向の圧壊強度をモ ンサント型硬度計にて測定した (測定値は 2 0個の圧壊強度の平均値で 示した。 以下同じ) 。 この錠剤を、 錠剤燃焼室 4 0 c c , 残渣捕集室 9 6 0 c cの 2室の境界部に 1 0 mm ø X 7個の孔を有するステンレス板 を配置し、 該ステンレス板の上にステンレス製金網 ( 2 0メ ッ シュ, 線 径 0. 4mm) とアルミ箔 (厚さ 5 0 ") を配置したステンレス製密閉 容器に入れて燃焼試験を行った。 燃焼試験は、 ガス発生剤を電気的に着 火する点火具により着火させ、 発生する圧力を圧力センサにてォシ ス コープで測定し、 最大圧力に達するまでの時間を測定した。
更に、 この錠剤をアルミ製容器に密封し、 一 4 0 °CX 3 0分〜 9 0°C X 3 0分を 2 0 0回繰り返す耐熱衝擊試験を行い、 この熱衝撃前後の錠 剤圧壊強度試験と燃焼試験を行った。 その結果を表 1に示す。
酸化剤滑 ¾バ ¾ィダ期ン
【表 1】 パインダの効果比較試験結果一覧表
本 発 明 比 較 例 実施例 1 実施例 2 実施例 3 比較例 1 比較例 2
5 ATZ 39. 2 35. 7 34. 3 39. 2 料 5 ATZ-N a 4 1. 0
KC £ 0 55. 7 5 5. 7
KN0 59. 5 54. 2
S r (N03 ) 2 6 1. 0
HTS 5. 1 4. 8
ビロウライ ト 4. 8
ベントナイ ト 4. 7
C a 3(P0 5. 1
S t -Mg 0. 2 0. 2
S t - Z n 0. 2
M o S a 0. 2
グラファィ ト 0. 2
錠剤圧壊強度 (kg) 27. 5 28. 6 27. 7 1 4. 9 24. 0
P— t max. (ms) 50 57 5 Ί 50 52 錠剤圧壊強度 (kg) 2 1. 8 27. 0 24. 1 4. 1 1 1. 0
P— t max. (ms) 5 1 59 56 1 2 24
* :滑剤の添加量は外割り。 〔実施例 2〕
燃料成分として 5 AT Z : 3 5. 7重量部と、 酸化剤として硝酸力 リ ゥム (KNOa ) : 5 9. 5重量部と、 バイ ンダとして HT S : 4. 8 重量部とを夫々混合して実施例 1と同様に造粒し、 滑剤として二硫化モ リブデン (Mo S 2 ) を外割りで 0. 2重量部を混合して同様に打錠成 形し、 得られた錠剤を用いて実施例 1と同様の試験を行った。 その結果 を表 1に示す。
〔実施例 3〕
燃料成分として 5—アミノテ トラゾールナ ト リ ウム塩 ( 5 AT Z— N a) : 4 1. 0重量部と、 酸化剤として KN03 : 54. 2重量部と、 バイ ンダとしてビロウライ ト : 4. 8重量部とを夫々混合して実施例 1 と同様に造粒し、 滑剤としてグラフアイ トを外割りで 0. 2重量部を添 加混合して同様に打錠成形し、 得られた錠剤を用いて実施例 1と同様の 試験を行った。 その結果を表 1に示す。
〔比較例 1〕
燃料成分として 5 AT Z : 34. 3重量部と、 酸化剤として硝酸ス ト ロンチウ厶 〔S r (N 03 ) 2 3 : 6 1. 0重量部と、 バイ ンダとして ベン トナイ ト : 4. 7重量部とを夫々混合して実施例 1と同様に造粒し 、 滑剤としてステアリ ン酸亜鉛 (S t - Z n) を外割りで 0. 2重量部 を添加混合して同様に打錠成形し、 得られた錠剤を用いて、 比較のため に実施例 1と同様の試験を行った。 その結果を表 1に示す。
〔比較例 2〕
燃料成分として 5AT Z : 39. 2重量部と、 酸化剤として K C £ 0 * : 5 5. 7重量部と、 パイ ンダとして燐酸三カルシウム (C a 3(P 0
4) 2) : 5. 1重量部とを夫々混合して実施例 1と同様に造粒し、 更に滑 剤として S t一 Mgを外割りで 0. 2重量部を添加混合して同様に打錠 成形し、 得られた錠剤を用いて、 比較のために実施例 1と同様の試験を 行った。 その結果を表 1に示す。
表 1から明らかな様に、 ヒ ドロタルサイ ト類をバイ ンダとする実施例 1〜 3と燐酸三カルシウムをバイ ンダとする比較例 2のガス発生剤の熱 衝擊前の錠剤圧壊強度は、 従来のアジ化化合物を燃料成分とするガス発 生剤の圧壊強度である 1 0〜 1 5 k gよりも高い値を示している。 熱衝 擊後の圧壊強度は、 本発明の錠剤では殆ど変化がないが、 比較例 2の錠 剤は、 初期の値の 1 Z 3以下に下がっている。 又、 ベントナイ トをパイ ンダとする比較例 1の錠剤の場合には、 圧壊強度を高める為に強い力で 打錠しょうとすると、 打錠の際にキヤ ッ ビングや甚だしい場合にはラ ミ ネ一ショ ンを生じる為に、 1 5 k g以上の圧壊強度を得る事は不可能で あった。 又、 熱衝擊試験後の錠剤圧壊強度は、 実施例 1〜 3の錠剤は、 殆ど変化がなく、 形状もそのままであつたが、 ベントナイ トをバイ ンダ とする比較例 1では、 圧壊強度が大きく低下するのみならず錠剤の一部 は崩壊していた。 この結果、 燃焼試験における最高圧力到達時間 (P— t raax)も、 本発明のものは、 熱衝撃試験前後において大差はなく、 長期 安定性を有している事が分かるが、 比較例 1では粉末燃焼と同様の激し い燃焼速度を示し、 比較例 2も初期の 2倍以上の速い燃焼速度を示し、 いずれも安定性に欠ける事が分かる。
〔実施例 4〕
次に、 本発明で使用するテ トラゾール類とヒ ド iタルサイ ト類との組 合せにおける燃焼調整剤の作用効果について実施例によって説明する。 予め粒径 1 m以下の微粒化シリカを 1 . 0重量部添加して粒径 1 0 O j" m以下で個数基準 5 0 %平均粒径が 3 0 mに粉砕した燃料成分と して 5 A T Z : 3 4 . 1重量部 (撒粒化シリカ : 0 . 3重量部を含む) と、 予め前記撒粒化シリカを 1 . 0重量部添加して、 粒径 1 0 0 ;" m以 下で個数基準 5 0%平均粒径が 2 5 mに粉砕した酸化剤として硝酸力 リウム (KN 03 ) : 5 6. 8重量部 (微粒化シリ力 : 0. 6重量部を 含む) と、 粒径 5 0 / m以下で個数基準 5 0%平均粒径が 1 0 i mに予 め粉砕した HT S : 4. 6重量部と、 粒径 3 0 以下で個数基準 5 0 %平均粒径が 2 mに予め粉砕した各種の燃焼調整剤: 4. 5重量部と を夫々 V型混合器にて充分混合した後、 滑剤としてステアリ ン酸マグネ シゥム (S t—Mg) を外割りで 0. 2重量部添加混合して所定の金型 に充塡し、 錠剤にプレス成形して直径 7 mm, 厚さ 4mm. 重量約 2 5 Omgのガス発生剤の錠剤を得た。 同様に、 予め粒径 1 / m以下の微粒 化シリカを 1. 0重量部添加して粒径 1 0 0 )«m以下で個数基準 5 0% 平均粒径が 3 0 ywmに粉砕した燃料成分としての 5—アミノテ トラゾー ルカ リ ウム塩 ( 5 AT Z—K) : 4 2. 0重量部 (微粒化シリカを 0. 4 2重量部含む) と、 同様に微粒化シリカを 1. 0重量部添加して粒径 1 0 0 m以下で個数基準 5 0%平均粒径が 2 5 mに粉砕した酸化剤 としての KN 03 : 4 8. 9重量部 (微粒化シリ カを 0. 4 8重量部含 む) と、 粒径 5 0 m以下で個数基準 5 0 %平均粒径が 1 0 mに予め 粉砕した HT S : 4. 6重量部と、 粒径 3 0 Atm以下で個数基準 5 0% 平均粒径が 2 mに予め粉砕した各種の燃焼調整剤: 4. 5重量部とを 夫々 V型混合器にて充分混合した後、 滑剤として S t一 Mgを外割りで 0. 2重量%添加混合して所定の金型に充塡し、 錠剤にプレス成形して 直径 7 mm, 厚さ 4 mm, 重量約 2 5 0 m gのガス発生剤の錠剤を得た 。 更に比較のために燃焼調整剤を含まない同様の錠剤も得た。 これらの 各種の錠剤をガスバーナーの火炎に曝して着火後直ちに火炎から離し、 燃焼継続性の試験を行った。 その結果を表 2に示す。
表 2から明らかな様に、 5 AT Zと KN 03 との単純な組み合わせ ( N o . 3 0) では燃焼が途中で中断し、 ガス発生剤としては使用困難な 事が分かる。 一方、 燃焼調整剤を使用した N 0 . 1〜 18のものは、 い ずれもガス発生剤が完全に燃焼し、 未燃焼残渣が生じない事が分かる。 尚、 N o. 31, 32に比較例として示した C u 0, T i 02 を用いた 場合には、 燃焼調整剤としての効果が少なく、 未添加の場合と同様に燃 焼が途中で中断し、 ガス発生剤としてはやや劣る事が分かる。
【表 2】 各種燃焼調整剤による燃焼継続性試験結果一覧表
試験 号 燃料成分 燃焼調整剤 着火後火炎から離した後の挙動
0 1 5 AT Z Z r 02 燃焼を継続し、完全に燃焼。
0 2 同 上 H f 02 同 上
0 3 同 上 M 003 同 上
0 4 同 上 M 0 S a 同 上
0 5 同 上 W 同 上
0 6 同 上 WOg 同 上
0 7 同 上 Mn 02 同 上
0 8 同 上 KMn 04 同 上
0 9 同 上 F e 同 上
1 0 同 上 F e 2 03 同 上
1 1 同 上 F e S 同 上
1 2 同 上 N i 0 同 上
1 3 同 上 黒 鉛 同 上
1 4 同 上 活性炭 同 上
1 5 同 上 赤リン 同 上
1 6 5 AT Z-K M 003 同 上
1 7 同 上 M 0 S 2 同 上
1 8 同 上 F e 2 03 同 上
比 3 0 5AT Z な し 燃焼が中断。 未燃焼残査あり。 較 3 1 同 上 C u 0 同 上
例 3 2 同 上 T i 02 同 上 〔実施例 5〕
次に、 本発明の火薬組成物の安全性試験についての実施例を、 比較例 と対比して説明する。 上記実施例 4で使用した本発明のガス発生剤 (N 0 . 1- 1 8) と、 燃焼調整剤を含まない N 0. 30のガス発生剤と、 従来のアジ化ソ一ダを主成分とするガス発生剤 (N 0. 33) と、 実施 例 4に記載した要領で新たに調製した過塩素酸力 リウム (K C £ 04 ) を酸化剤とするガス発生剤 (N o. 34) の 3種のガス発生剤を用いて 安全性の試験である落槌感度試験及び摩擦感度試験を J I S K 480 1の規定に従って実施した。 その結果を表 3に示す。
N o. 33 :従来のアジ化ソーダを燃料成分とするガス発生剤。
N o. 34 :燃料成分として 5 AT Z : 4 1. 2重量部, 酸化剤とし て KC £ 04 : 58. 8重量部とを混合したもので、 燃焼調整剤及びヒ ドロタルサイ ト類を含まない公知のテ トラゾール系ガス発生剤。
尚、 表 3において、 各試験結果の等級の欄の数値は高い等級程、 落槌 及び摩擦に対する感度が低く安全性が高い事を示している。
表 3から明らかな様に、 アジ化ソーダを主成分とするガス発生剤 (N 0. 3 3) の安全性に比較して、 5 AT Zと硝酸塩との組み合わせの場 合 (N o. 30) には、 その安全性は落槌試験, 摩擦試験共に高い値を 示している。 更にこれに燃焼調整剤を用いた場合 (N o. 1- 1 8) に も、 この高い安全性が維持される事が分かる。 一方、 テ トラゾール類と 硝酸塩との組み合わせのみでは燃焼性に問題がある事は前述の通りであ り、 この燃焼性を改善するために硝酸塩に代えて過塩素酸塩のみを用い たもの (N o. 34) の安全性は、 アジ化ソーダを主成分とするガス発 生剤と同等であって、 アジ化金属化合物に代えて安全性の高いテ トラゾ —ル類を使用する意味が無くなつている事が分かる。 【表 3】各種燃焼調整剤による落槌感度試験及び摩擦感度試験結果一覧表 試験 " 燃料成分 燃焼調整剤 落槌感度 摩擦感度
試験等級 試験等級
Q 1 5ATZ ム Γ U 2 7 級 7 級
02 同 上 n I U 2 同 上 同 上
03 同 上 Μ 0 L) 3 同 上 同 上 本 04 同 上 Μ 0 2 同 上 同 上
05 同 上 W 同 上 同 上
06 同 上 W03 同 上 同 上
07 同 上 Μ η 02 同 上 同 上 発 08 同 上 ΚΜη 04 同 上 同 上
09 同 上 F e 同 上 同 上
10 同 上 F e 2 03 同 上 同 上
1 1 同 上 F e S 同 上 同 上 明 12 同 上 N i 0 同 上 同 上
13 同 上 黒 鉛 同 上 同 上
14 同 上 活性炭 同 上 同 上
15 同 上 亦 11 、メ
リ ノ 同 上 同 上
16 5 AT Z- K M 003 同 上 同 上
17 同 上 M 0 S a 同 上 同 上
18 同 上 F e 2 03 同 上 同 上 比 30 5 AT Z な し 7 級 7 級 较 33 アジ化ソ一ダ な し 5 級 6 級 例 34 5 AT Z な し 5 級 6 級 〔実施例 6〕
次に、 テ トラゾール類を用いた本発明のガス発生剤の燃焼特性につい て、 比較例と対比して説明する。 実施例 4の N o . 3の燃焼調整剤とし て M o 0 3 を用いた本発明に係るガス発生剤と、 同 N 0 . 4の燃焼調整 剤として M 0 S 2 を用いた本発明に係るガス発生剤と、 同 N 0 . 3 0の 燃焼調整剤を添加していないガス発生剤 (比較例) とを、 夫々 3 O g用 いて第 1図に示したガス発生器 1に装塡し、 試験用ガス発生器を製作し た。 尚、 第 1図において、 ガス発生器 1は、 内側の 2つの仕切り壁 a , bと外壁 c とによって最内室の点火室 Aと中間の燃焼室 Bと最外室のフ ィルタ室 Cとに区画されており、 点火室 Aには、 外部からの通電によつ て点火される点火具 2と、 該点火具 2によつて着火するェンハンサ剤 3 とが配置されており、 ェンハンサ剤 3の燃焼により発生する高温のガス が、 内側の仕切り壁 aに設けられた伝火孔 4を通って燃焼室 B内の密閉 容器 (図示せず) に充塡されたガス発生剤 5を燃焼する。 該ガス発生剤 5の燃焼により発生するガスは、 仕切り壁 bに形成された第 1ガス出口 6を通ってフィルタ室 Cに入り、 該室内に配置されているフィルタ 7に よってガス中に含まれるスラグが除去されると共に冷却されて外壁 cに 形成されている第 2ガス出口 8から外部に噴出する構造となっている。 かかる構造のガス発生器において、 第 1ガス出口 6の開口面積の大小が 、 ガスの流出速度を規制する事になる。 即ち、 第 1ガス出口 6の開口面 積が小さく、 燃焼室 B内で発生するガス量よりも小さい場合には、 燃焼 室 B内の内圧は時間と共に上昇し、 前記 ( 5 ) 式で示した通り、 燃焼速 度は更に早くなり、 極端な場合にはガス発生器を爆裂する事になる。 逆 に第 1ガス出口 6の開口面積が大きく、 燃焼室 B内で発生するガス量よ りも大きい場合には、 燃焼室 B内の内圧は上昇せず、 燃焼速度は遅くな る。 そこで、 本実施例においては、 この第 1ガス出口 6の総開口面積を 2 0 0 mm 2 , 3 0 0 mm 2 , 4 0 0 m m 2 とした 3種類のガス発生器 を用いて 6 0 タンクテス トを行った。 この試験結果を表 4に示す。 尚、 6 0 £タンクテス トは、 6 0 £の密閉されたタンク内に前記ガス 発生器を装着してガス発生器を作動させ、 その時のタンク内圧力 Pの変 化を時間 t と共に測定する試験であり、 第 2図に示す如き P— t線図が 得られる。 第 2図において t 。 はガス発生器の作動を開始した時刻、 t
1 は圧力 Pが最高値 Pm に達した時刻, t m は最高圧力に達するまでの 時間 ( t i - t o ) を夫々示している。 この P— t線図において、 圧力
Pが急速に立ち上がるカーブを示す場合は、 燃焼速度が速い事を章眛し 、 P m が高過ぎるとガス発生器の爆裂のおそれがある。 又、 t m が長す ぎるとエアバッグの展開に長時間を要し、 瞬時に展開しなければならな いエアバッグ用ガス発生剤としては不適当な事を意味している。 従って 、 ?m , t m には、 バッグの大きさ, エアバッグ装置の取り付け位置, 用途 (運転者用, 助手席用, 側突用等) によって異なるが、 本実施例で は、 Pm は 1 5 0〜 2 5 0 k P aに、 t m は 1 5 O m s以下を好ましい 範囲とした。
表 4から明らかな様に、 いずれの場合でも第 1ガス出口の開口面積が 小さくなるに従って最高到達圧力 Pm は高くなっており、 且つ最高圧力 に至る時間 t m は短くなつて燃焼し易い傾向にある事が分かる。 特に燃 焼調整剤を用いない比較例 (N o . 3 0) の場合でも、 条件 Cでは本発 明と同等の燃焼状態を示しているが、 条件 A, Bでは、 未燃焼物が生じ 且つ t m も 2秒というエアバッグ用ガス発生剤としては長時間を示して いる。 一方、 本発明の火薬組成物では、 いずれも開口面積の変化に従つ て、 Pm , t m の値が連続して変化している事が分かる。 この事は、 火 薬組成物の安定して燃焼する範囲が極めて広い事を意眛し、 ガス発生器 の構造設計が極めて容易になる事が理解できる。 【表 4】 6 0 £タ ンクテス ト結果
試験番号 燃焼調整剤 条件 A 条件 B 条件 C
4 U L) mm ^ 300mm2 2 00mm2
03 Μ 0 U 3 Γ m 1 o U K r a o n
1 80 κ P a 200 k P a 本 t m 9 0ms 70ms 50ms 兀全燃焼 完全燃焼 発
04 Μ ο S 2 Pm 1 5 0 k P a 1 80 k P a 2 00 k P a 明 t m 9 0ms 70ms 50ms
備考 完全燃焼 完全燃焼 完全燃焼 比 30 なし P m 50 k P a 50 k P a 2 00 k P a 較 t m 2 秒 2 秒 50ms 例 備考 未燃物あり 未燃物あり 完全燃焼
〔実施例 7〕
次に、 従来燃焼制御が困難であったォ牛ソハ πゲン酸塩を用いた火薬 組成物であっても、 前述の燃焼調整剤と併用する事により、 その燃焼性 を制御可能にする事ができるので、 この試験例について説明する。 燃焼 制御の試験に用いた火薬組成物は次の通りである。
N o . 4 :実施例 4, 5で得られた本発明の火薬組成物であって、 酸化剤として KN 0 a を用い、 燃焼調整剤として M 0 S 2 を用いたもの
N o. 1 9 :燃料成分として 5 AT Z : 3 7. 5重量部. 酸化剤とし て強酸化性の K C ^ C : 5 3. 4重量部と燃焼調整剤として F e 2 0 3 : 4. 5重量部と HT S : 4. 6重量部とを配合した本発明の火薬組 成物。
N o . 3 0 :実施例 4, 5で用いた燃焼調整剤を添加していない比較 例としての火薬組成物。
N o . 3 3 :実施例 2で用いたアジ化ソーダを主成分とする火薬組成 物。
N o . 3 5 : N o . 1 9の燃焼調整剤としての F e 2 03 を添加して いない比較例としての火薬組成物。
上記 5種類の火薬組成物を夫々所定の金型に充塡し、 プレス成形して 縦 8mmX横 5mmX長さ 5 Omm, 重量約 3. 6 gの成形体を得た。 この側面にェポキシ樹脂を塗布した後、 長手方向に適当な間隔で直径 0 . 5 mmの 2つの穴を穿設し、 この穴の中にヒューズを 1本貫通させて 試験体を製作した。 この試験体を、 所定の容器内に入れて所定の圧力の 窒素ガスを充塡した後、 試験体の一端を二クロム線で加熱して点火して 燃焼面が通過する際にヒューズが断線する時間を測定し、 2本のヒユー ズの間隔を、 その断線する時間差で割る事により燃焼速度を求めた。 容 器内の圧力を 1〜 5 0気圧に変化させて前記燃焼速度を求め、 前記 ( 5 ) 式により圧力指数 nを算出した。 その結果を表 5に示す。
表 5から明らかな様に、 酸化剤として、 強力な酸化剤である過塩素酸 カ リ ウム (K C £ 04 ) を用いた場合において、 本発明の例 (N 0. 1 9) では、 圧力指数 nは 0. 4であり、 ガス発生器にとって好ましいと される 0. 3〜 0, 4 5の範囲にあるが、 燃焼調整剤を含まない比較例
(N o . 3 5) では、 圧力指数 nは 0. 6と高い値を示している。 又、 硝酸カ リウム (KN 03 ) を酸化剤として用いた場合でも、 本発明の例
(N o . 4) では、 その圧力指数 nは 0. 3と従来のアジ化ソーダを主 成分とする火薬組成物の場合 (N o . 3 3) と同等の燃焼特性を示して いるのに対し、 燃焼調整剤を添加していない場合 (N o . 3 0) の n値 は 0. 5と高い値を示している。 この事から、 本発明における燃焼調整 剤は、 圧力指数 nを下げる機能をも有する事が分かり、 この事は更に、 従来燃焼制御が困難であった強酸化性の過塩素酸力 リウムの如きォキソ ハロゲン酸塩とテ トラゾ一ル穎との組合せにおいても、 特定の燃焼調整 剤を添加する事により、 圧力指数 nを下げて、 その燃焼制御を容易なら しめる事を示している。
【表 5】 圧力指数測定試験結果
試験番号 燃料成分 燃焼調整剤 酸化剤 圧力指数
(n値) 本 04 5ATZ M 0 S 2 KN03 0. 3 明 19 同 上 F e 2 03 KC £04 0. 4 比 30 同 上 な し KN03 0. 5 較 33 アジ化ソーダ 0. 3 例 35 5 AT Z な し KC £04 0. 6
〔実施例 8〕
次に、 前記各種燃焼調整剤と各種バイ ンダとの組合せによる燃焼特性 とスラグ形成性との関係について、 本発明のものと比較例とを対比して 説明する。 燃料成分として、 予め粒径 1 m以下の微粒化シリカをし 0重量部添加して粒径 1 0 0 /«m以下で個数基準 5 0%平均粒径が 25 /mに粉砕した 5 AT Z : 34. 1重量部 (微粒化シリカ : 0. 3重量 部を含む) と、 酸化剤として、 予め前記微粒化シリカを 1. 0重量部添 加して粒径 1 0 0 m以下で個数基準 5 0 %平均粒径が 3 5 mに粉砕 した KN03 : 5 6. 8重量部 (撒粒化シリカ : 0. 6重量部を含む) と、 粒径 50 m以下で個数基準 5 0%平均粒径が 1 0 mに予め粉砕 した各種のパイ ンダ: 4. 6重量部と、 粒径 30 m以下で個数基準 5 0%平均粒径が 2 mに予め粉砕した各種の燃焼調整剤: 4. 5重量部 とを夫々 V型混合器にて充分混合した後、 滑剤として S t一 Mgを外割 りで 0. 1重量部を添加混合して所定の金型に充塡し、 錠剤にプレス成 形して直径 7 mm, 厚さ 4 mm, 重量約 25 0 m gのガス発生剤の錠剤 を得た。 同様に、 燃料成分として、 予め粒径 1 / m以下の微粒化シリカ を 1. 0重量部添加して粒径 1 00 /"m以下で個数基準 5 0%平均粒径 が 2 5 Aimに予め粉砕した 5—アミ ノテ トラゾールカ リ ウ厶塩 ( 5 AT Z -K) : 4 2. 0重量部 (撒粒化シリカ : 0. 42重量部を含む) と 、 酸化剤として、 予め前記微粒化シリカを 1. 0重量部添加して粒径 1 00 /in以下で個数基準 5 0%平均粒径が 35 mに予め粉砕した KN 03 : 48. 9重量部 (微粒化シリカ : 0. 48重量部を含む) と、 粒 径 5 0 m以下で個数基準 5 0%平均粒径が 1 0 mに予め粉砕した各 種のバイ ンダ: 4. 6重量部と、 粒径 30 /"m以下で個数基準 5 0%平 均粒径が 2 //mに予め粉砕した各種の燃焼調整剤: 4. 5重量部とを夫 々V型混合器にて充分混合した後、 滑剤として S t一 Mgを外割りで 0 . 1重量部を添加混合して所定の金型に充填し、 錠剤にプレス成形して 直径 7 mm, 厚さ 4 mm, 重置約 25 0 m gのガス発生剤の錠剤を得た 。 更に比較のためにバイ ンダを含まない同様の錠剤も得た。 これらの各 種の錠剤を用いて、 実施例 1の場合と同様に、 ガスバーナーの火炎に曝 して着火後直ちに火炎から離し、 燃焼継続性とスラグ形成性の試験を行 つた。 その結果を第 6表に示す。
表 6から明らかな様に、 テ トラゾール類と硝酸塩の組合せであっても 前述の燃焼調整剤を添加したものは全て完全燃焼している事が分かる ( N o. 1 0 1〜 1 1 6) 。 又、 テ トラゾール類, 硝酸塩と燃焼調製剤の 組合せであって且つ前記ヒ ド タルサイ ト類を含有しているもの (N 0 . 1 0 1〜 1 1 6) はスラグの形成が認められるが、 ヒ ド nタルサイ ト 類を含有していないもの (N o. 1 30~ 1 32) では、 完全燃焼して もスラグの生成が認められない。
【表 6】 各種燃焼調整剤と結合剤による燃焼継続性とスラグ形成性試験結果一覧表 試験番号 燃料成分 燃焼調整剤 結合剤の種類 着火後の スラグ形 挙 動 成の有無
101 5 ATZ Z r 02 HTS 完全燃焼 有り
102 同 上 H f 02 同 上 同 上 同上 本 103 同 上 M 003 同 上 同 上 同上
104 同 上 M 0 S 2 同 上 同 上 同上
105 同 上 W ピロウライ ト 完全燃焼 有り
106 同 上 W03 同 上 同 上 同上
107 同 上 Mn 02 同 上 同 上 同上 発
108 同 上 KMn 04 同 上 同 上 同上
109 5 ATZ-K F e HTS 完全燃焼 有り
1 10 同 上 F e 2 03 同 上 同 上 同上
11 1 同 上 F e S 同 上 同 上 同上 明 1 12 同 上 N i 0 同 上 同 上 同上
1 13 同 上 黒 鉛 同 上 同 上 同上
1 14 同 上 活性炭 ピロウライ ト 完全燃焼 有り
115 同 上 赤リン 同 上 同 上 同上
1 16 同 上 003 同 上 同 上 同上 比 130 5 AT Z Mo 03 な し 完全燃焼 無し 較 131 同 上 F e 2 Os な し 同 上 同上 例 132 5 AT Z-K Mo 03 な し 同 上 同上 〔実施例 9〕
次に、 各種バイ ンダと燃焼調整剤との組合せによる耐熱衝撃性能につ いて、 本発明のものと比較例とを対比して説明する。
前記実施例 8で用いた火薬組成物 (N o. 1 0 1- 1 1 6, 1 3 0~ 1 3 2) を用いて成形初期及び熱衝擊試験後の錠剤圧壊強度試験と 1 II 容器内での燃焼試験を行った。 その結果を表 7に示す。 尚、 この熱衝撃 試験は、 一 4 0 °CX 3 0分〜 + 9 0 °CX 3 0分の熱サイクルを 2 0 0回 繰り返す試験である。 又、 1 ^容器内での燃焼試験は、 密閉された 1 £ の容器内で薬剤 1 0 gを着火して着火後の容器内圧力が最高圧力に到達 するまでの時間 t — Pm a X (m s : ミ リ秒) を測定するものである。 表 7から明らかな様に、 本発明のヒ ド口タルサイ ト類をバイ ンダとし て用いたもの (N o. 1 0 1〜 1 1 6) は、 熱衝撃試験後の圧壊強度も 初期の圧壊強度と殆ど差がなく、 又 1 £容器内での燃焼試験においても 、 熱衝撃試験後の最高圧力に達するまでの時間 t - Pm a xも殆ど変化 がなく、 極めて安定している事が分かる。 一方、 ヒ ドロタルサイ ト類を 添加していないもの (N 0. 1 3 0〜 1 3 2) では、 熱衝擊試験によつ て粉化しており、 使用に耐えない事が分かる。
W
Figure imgf000041_0001
〔実施例 1 0〕
次に、 本発明の火薬組成物をェンハンサ剤として使用する場合の実施 例について説明する。 実施例 8で用いた本発明に係る火薬組成物 (N 0 . 1 0 3, 1 1 0) と比較例としての火薬組成物 (N o. 1 30) とを 用いて前記ガス発生剤と同様に各成分を粉砕混合した後、 造粒機で直径 0. 5 mmの顆粒状に造粒してェンハンサ剤を得た。 このェンハンサ剤 1 gと実施例 8で得た同一組成のガス発生剤 3 5 gとを用いて、 実施例 6で用いた第 1図に示す構造のガス発生器に夫々装塡して、 実施例 6と 同様に 6 0 £タンクテス トを行い、 P— t曲線と共に、 燃焼状態及びガ ス発生器からのスラグ放出量を測定した。 この試験結果を表 8に示す。 尚、 この試験においても実施例 6と同様に、 最高圧力 P m は 1 5 0~ 2 5 0 k P aを好ましい範囲とし、 最高圧力に達するまでの時間 t m は 1 5 0m s (ミ リ秒) 以下を好ましい値とし、 スラグ放出量は 2 g以下を 好ましい値とした。
表 8から明らかな様に、 実施例 6の場合と同様に、 いずれの場合でも 第 1ガス出口の開口面積が小さくなるに従って最高到達圧力 Pm は高く なっており且つそこに至る時間 t m は短くなり、 燃焼し易い傾向にある 事が分かる。 また、 ハイ ドロタルサイ ト類を用いていない比較例 (N o . 1 30) では、 圧力 Pm , 時間 t m 共に満足な値を示しているが、 放 出スラグ量が多く、 濾過し得るスラグが形成されなかった事を示してい る。 一方、 本発明のガス発生剤 (N o. 1 0 3, 1 1 0) では、 いずれ も開口面積の変化に拘らず、 Pm , t m の値が連続して変化し、 且つ放 出スラグ量も 1 g前後と、 低い値を示している。 この事は、 ガス発生剤 の安定して燃焼する範囲が極めて広い事と、 容易に濾過されるスラグが 形成されている事を意味しており、 ガス発生器の構造設計が極めて容易 になる事が理解できる。 又、 これらの結果から、 本発明に係る火薬組成 物が、 ェンハンサ剤としても充分に使用可能である事が確認された。
【表 8】 6 0 ^タ ンクテス ト結果
試験 %·号 燃焼調整剤 备件 A 冬Κ件 ΓΤ B i-> 5K Γ
(パインダ) 40 Omm2 30 Omm2 20 Omm2
1 U ύ Μ 003 Pm 1 53 k P a 1 88 k P a 220 k P a 十小 (HTS) t m 87ms 66ms 47ms 燃焼 完全燃焼 完全燃焼 完全燃焼 放出スラグ量 1. 2 1 g 1. 32 ε 0. 96 g 発
1 1 0 F e 2 03 Pm 1 50 k P a 1 73 k P a 1 88 k P a 明 (HTS) t m 1 2 0ms 99ms 86ms 燃焼 完全燃焼 完全燃焼 完全燃焼 放出スラグ量 0. 89 g 1. 1 5 g 1. 0 1 g
1 30 Mo 03 Pm 1 62 k P a 1 7 3k P a 225 k P a 比
(なし) t m 7 9ms 68ms 43ms 較
燃焼 完全燃焼 完全燃焼 完全燃焼 例
放出スラグ量 5. 6 1 g 7. 27 g 8. 1 0 g
〔実施例 1 1〕
前記実施例 Ίにおいて、 従来燃焼制御が困難であったォヰソハ nゲン 酸塩を用いた火薬組成物であっても前述の燃焼調整剤を用いれば、 その 燃焼性を制御可能にする事ができる事を説明したが、 本実施例において は、 更に前記バイ ンダと燃焼調整剤を併用した場合の試験例について説 明する。 尚、 試験に用いた火薬組成物は次の通りである。
N o. 1 0 3 :実施例 8, 9で得られた本発明の火薬組成物であって 、 酸化剤として KN03 を、 燃焼調整剤として Mo 03 を、 パイ ンダと して HT Sを夫々用いたもの。
o. 1 1 9 : 5AT Z : 3 7. 5重量部に、 酸化剤として強酸化性 の過塩素酸力 リウム : 53. 4重量部, 燃焼調整剤として F e 2 03 : 4. 5重量部及びバイ ンダとしての HT S : 4. 6重量部とを夫々配合 した本発明の火薬組成物。
N o. 1 30 :実施例 9, 1 1で用いた結合剤を添加していない火薬 組成物。
N o. 1 33 : N o. 1 1 9の燃焼調整剤としての F e 2 03 を添加 していない比較例としての火薬組成物。
上記 5種類の火薬組成物を用いて実施例 7と同様にプレス成形し、 縦 8mmX横 5mmX長さ 5 Omm, 重量約 3. 6 gの成形体を得た。 こ の成形体を用いて実施例 4の場合と同一の試験要領で燃焼速度を求めた 。 その結果を表 9に示す。 表 9から明らかな様に、 酸化剤として、 強力 な酸化剤である過塩素酸カ リウム (KC _g04 ) を用いた場合において も本発明の例 (N o. 1 1 9) では圧力指数 nは 0. 4であるが、 燃焼 調整剤を含まない比較例 (N 0. 1 33) では圧力指数 nは 0. 6と髙 い値を示している。 又、 硝酸カ リ ウム (KN03 ) を酸化剤として用い た場合でも、 燃焼調整剤を含有したもの (N 0. 1 0 3, 1 30) は、 その圧力指数 nは 0. 3となり、 ガス発生器にとって好ましいとされる 圧力指数 0. 3〜0. 4 5の範囲に入っている。 この事は、 本発明で使 用する結合剤は、 圧力指数には影響を与えない事が分かる。 従って、 圧 力指数の調整は、 燃焼調整剤によって行えばよい事が分かる。
【表 9】 圧力指数測定試験結果
試験番号 燃料成分 燃焼調整剤 結合剤 酸化剤 圧力指数
(n値) 本 103 5 AT Z M 003 HTS KNOs 0. 3 発
明 119 同 上 F e 2 03 同 上 KC 04 0. 4 比 130 5 ATZ M 003 な し KNOa 0. 3 較
例 133 同 上 な し HT S KC ^04 0. 6
〔実施例 1 2〕
次に、 本発明におけるバイ ンダによる耐熱老化特性の試験について説 明する。 前記実施例 8で得られた N 0. 1 0 3の錠剤を用いて、 これに 各種の温度 X時間の熱処理を施した試験錠剤 (N o . 1 4 0〜 1 4 5) を得た。 同様に実施例 5で得られた N 0. 1 1 0の錠剤を用いて、 同様 の熱処理を施して試験錠剤 (N o . 1 5 0〜 1 5 4) を得た。 これらの 錠剤各 3 0 gをアルミニウム製の容器内に充塡して密封し、 1 0 7°CX 4 0 0時間の耐熱老化試験を行い、 この耐熱老化試験後のアルミ ニゥム 容器の蓋材の膨れ具合或いは破断状況により熱処理の効果を試験した。 その結果を表 1 0に示す。 尚、 蓋材は内圧 0. 4 k g ί / c m2 で破断 する様に封じている。
表 1 0から明らかな様に、 熱処理を施していないもの (N o . 1 4 0 , 1 5 0) では、 耐熱老化試験後に蓋材が開いている。 一方、 熱処理温 度が 1 1 以上で、 その時間が 2〜 2 4時間のもの (N o . 1 4 2〜 1 4 5. 1 5 1〜 1 5 4) では、 耐熱老化試験後の容器形状に殆ど変化 がなく、 熱処理効果が顕著になっている事が分かる。 因みに 9 0 °Cで熱 処理したもの (N o . 1 4 1 ) は、 熱処理なしのものと同様に蓋材は開 いていた。 この事は、 熱処理により火薬組成物原料中の水分が除去され るので、 水分の存在による弊害が除去される事を意味している。 従って 本発明の熱処理を施した火薬組成物は、 経時変化に強く、 エアバッグ装 置として車両に搭載された後も、 長期間にわたって安定した性能を示す 事が分かる。 【表 1 0】 耐熱老化試験結果
Figure imgf000047_0001
* I) O:効果あり。 X:効果なし。
〔実施例 1 3〕
次に、 本発明における特異な火薬組成物について説明する。 上記の例 では、 燃料成分としてテ トラゾール類を用い、 酸化剤として硝酸塩を用 いた場合には、 燃焼調整剤の存在が好ましかったが、 酸化剤として硝酸 ス トロ ンチウム 〔S r (N 03 ) 2 〕 を用いた場合には、 必ずしも燃焼 調整剤の存在は必要でないので、 この例について説明する。
燃料成分として、 予め粒径 1 m以下の微粒化シリカをし 0重量部 添加して粒径 50 m以下で個数基準 5 0%平均粒径が 1 0 に粉砕 した 5 AT Z : 33. 0重量部 (微粒化シリ カ : 0. 33重量部を含む ) と、 酸化剤として、 予め前記微粒化シリカを 1. 0重量部添加して粒 径 5 0 / m以下で個数基準 5 0%平均粒径が 1 0 / mに粉砕した S r ( N 03 ) 2 : 62. 5重量部 (微粒化シリ カ : 0. 6 2重量部を含む) と、 粒径 5 0 /"m以下で個数基準 5 0%平均粒径が 1 0 mに予め粉砕 したバイ ンダとしての HT S [M g e A 2 (OH) ,6C 03 - 4H2 0〕 : 4. 5重量部とを V型混合機にて充分混合した後、 所定量の純水 に溶解させた成形性改良剤としてのポリ ビュルアルコール (PVA) を 外割で 0. 5重量部になる様に、 前記混合物粉末に噴霧滴下して混練し 、 顆粒状に造粒した。 この造粒後の、 顆粒を加熱処理した後、 更に滑剤 としてステアリ ン酸亜鉛 (S t— Z n) を外割りで 0. 2重量部添加混 合し、 回転式打錠機でプレス成形して直径 5. Omm , 厚さ 2. 0 m m, 重量 88 のガス発生剤錠剤を得、 1 1 0°Cで約 5時間熱処理を 施した。 比較のために、 前記 HT Sが含有されていないガス発生剤, 成 形性改良剤としての P V Aが添加されていないガス発生剤も上記と同様 の要領で成形し、 これらのガス発生剤を用いて、 錠剤圧壊強度, 磨損度 , 成形性を測定比較すると共に、 実施例 6と同様にして 6 0 ·βタ ンクテ ス トによる放出スラグ量の測定を行った。 この結果を表 1 1に示した。 尚、 錠剤磨損度の試験は、 秤量した錠剤 1 0 gを、 約 1 5 Ommの自由 落下距離を有する回転ドラム内に装塡し、 2 5 r pmで 25 0回 ( 1 0 分間) 回転させた後、 目開き 0. 5 mmの丸篩いを通過した量 (%) を 磨損度とする試験方法を採用した。
表 1 1から明らかな様に、 HTSをバイ ンダとし、 S r (N03 ) 2 を酸化剤とし、 PV Aを成形性改良剤とし、 固結防止機能を有する微粒 ィ匕シリカと S t— Z nとを滑剤として夫々含有する本発明のガス発生剤 1 6 1は、 圧壊強度, 磨損度, 成形性共に全て良好で、 燃焼状態も安定 しており且つ放出スラグ量も最も少なく最良のガス発生剤である事が分 かる。 又、 成形性改良剤を含有しない本発明のガス発生剤 1 62は、 若 干成形性に劣るが、 他の点は上記ガス発生剤 1 6 1と同程度であり、 使 用に全く問題はない。 一方、 バイ ンダを含有しない比較例 1 7 1のガス 発生剤の場合には、 圧壊強度, 放出スラグ量共に使用に耐えない水準で あった。 この事から、 本発明のガス発生剤 1 6 1、 1 6 2では、 HTS と硝酸ス トロンチウムの相互作用により、 捕集性の良好なスラグが形成 される事が分かる。 又、 バイ ンダと成形性改良剤を共に含有しない比較 例 1 7 2のガス発生剤の場合には、 圧壊強度は更に低く、 又、 成形が極 めて困難であり、 実用に耐えない事が分かる。
【表 1 1】 強度, 磨損度, 成形性, スラグ捕集性試験結果
Figure imgf000050_0001
a) モンサント硬度計で測定。
b) 杵への付着なし。 錠剤の欠け発生なし。
c) 杵への付着が僅かに確認。 錠剤の欠け発生なし。
d) 杵への付着が激しく、 且つ錠剤に欠け発生多数 c
以上詳述した如く、 本発明の火薬組成物は、 以下の如き顕著な効果が 期待できる。
( 1 ) ヒ ドロタルサイ ト類をバイ ンダとする事により、 窒素含有有機化 合物を燃料とするエアバッグ用ガス発生剤の耐熱衝撃性. 燃焼特性を改 善する事が可能となる。
( 2 ) 窒素含有有機化合物としてテ トラゾール類を選択した場合には、 従来のテ トラゾール類を主成分とする火薬組成物の有する安全性を生か しつつ、 その欠点である低燃焼性を特定の燃焼調整剤を添加する事によ り改善する事が可能となる。 又、 燃焼しても有害なガスを発生せず、 従 つて安全性の髙ぃエアバッグ装置を得る事ができる。
( 3 ) 又、 テ トラゾール類とォキソハロゲン酸塩の如き強力な酸化剤と の組み合わせにおいても、 特定の燃焼調整剤の存在により、 圧力指数 n の低い即ち燃焼制御の容易なガス発生剤を得る事ができ、 ガス発生器の 設計が容易となる。
( 4 ) テ トラゾール類とアルカ リ金属, アルカ リ土類金属又はアンモュ ゥムの硝酸塩, 亜硝酸塩の如き低燃焼性の酸化剤との組み合わせにおい ても、 特定の燃焼調整剤の存在により、 その燃焼性を向上させ且つ安定 させて、 火薬組成物を完全に燃焼させる事ができるので、 ガス発生器の 設計が容易となる。 又、 これらの酸化剤の有する燃焼温度の低下により 低 N 0 Xの発生ガスを得る事ができる。
( 5 ) テ トラゾール類とアル力 リ金属又はアル力 リ土類金属の硝酸塩, 亜硝酸塩の組合せにおいても、 本発明のバイ ンダの使用により、 その燃 焼スラグ生成が促進され、 容易に濾過可能なスラグを生成させる事が可 能となり、 この結果ガス発生器の設計においてフィルタ部の設計が容易 となるのみならず、 エアバッグ装置においてもク リーンなガスを得る事 ができる。 ( 6 ) 燃料成分としてのテ トラゾ一ル類, 酸化剤としての硝酸ス ト ϋ ン チウム, バイ ンダとしてのヒ ド タルサイ ト類の組合せの場合には、 前 述の燃焼調整剤の不存在下で燃焼も良好で且つスラグ捕集性の良好なガ ス発生剤を得る事ができる。
( 7 ) 本発明の火薬組成物は、 ガス発生剤としても使用でき且つェンハ ンサ剤としても使用できるので、 従来夫々別工程で生産されていたそれ ぞれの用途の 2種類の火薬組成物を 1種類の火薬組成物として製造すれ ばよいため、 生産工程の危険性が減少し、 危険作業を伴うかかる火ェ品 生産現場では大きな利点である。 更に、 ガス発生器の生産上も、 圧倒的 に量の多いガス発生剤と同一の組成物が、 ェンハンサ剤として使用でき るので、 少量生産のェンハンサ剤の生産が不要となり、 コス ト低減にも 寄与する。
( 8 ) 更に、 本発明の火薬組成物を成形後、 所定の熱処理を施す事によ り、 長期にわたって安定した性能を維持する事ができる。 産業上の利用可能性
以上の様に本発明の火薬組成物は、 エアバッグ用のガス発生剤として 、 又、 ェンハンサ剤として使用可能であり、 特に、 製造工程の安全なェ アバッグ用火薬組成物として有用である。

Claims

請 求 の 範 囲
1. 燃料成分と酸化剤とこれらを結合するバイ ンダとを含有するェアバ ッグ用火薬組成物であって、 前記バイ ンダが、 次の一般式 ( 1) で表さ れるヒ ドロタルサイ ト類であるエアバッグ用火薬組成物。
Figure imgf000053_0001
M3+„ (OH) 2 "+ 〔An- κ/η · mH 2 0〕 "~ …一 ( 1) ここで、
M2+: Mg 2^ M n F e , C o N i C u Z n 等の 2価金属。
M3+: A 1 3" , F e 3+, C , C o I n 3+等の 3価金属。 An -: OH- , F - , C I N 0 a C 03 2- , S 042' . F e (CN) s3- , C H a C OO 蓚酸イオン, サリチル酸イオン等の n価のァユオン。
xは、 0< x≤ 0. 33
2. 前記ヒ ドロタルサイ ト類が、 化学式 Ms s A £2 (OH) 16C 03
• 4 H 2 0で表されるヒ ド αタルサイ ト、 又は、 化学式 M g 6 F e 2 ( OH) ,6C 03 · 4 H 2 0で表されるピロウライ トである請求の範囲第 1項に記載のエアパッグ用火薬組成物。
3. 前記ヒ ドロタルサイ ト類の添加量が 2~ 30重量%である請求の範 囲第 2項に記載のエアバッグ用火薬組成物。
4. 前記ヒ ド タルサイ ト類の添加量が 3〜 1 0重量%である請求の範 囲第 3項に記載のエアバッグ用火薬組成物。
5. 前記ヒ ド タルサイ ト類の個数基準 5 0 %平均粒径が 30 m以下 である請求の範囲第 2項乃至第 4項のいずれか一項に記載のェァバッグ 用火薬組成物。
6. 前記燃料成分が、 窒素を構成原子とする含有する含窒素有機化合物 である請求の範囲第 1項乃至第 5項のいずれか一項に記載のエアパッグ 用火薬組成物。
7 . 前記含窒素有機化合物が、 次の①〜③のテ トラゾ一ル類から選択さ れた 1種以上である請求の範囲第 6項に記載のエアバッグ用火薬組成物
①: 水素原子を含むテ トラゾール類。
②: ①以外のァミノテ トラゾール類。
③:上記①又は②のテ トラゾール類のアル力 リ金属塩又はアル力 リ土 類金属塩若しくはァンモニゥム塩。
8 . 前記テ トラゾール類の個数基準 5 0 %平均粒径が 5〜 8 0 / inであ る請求の範囲第 7項に記載のエアバッグ用火薬組成物。
9 . 前記酸化剤が、 アルカ リ金属, アルカ リ土類金属又はアンモュゥム の硝酸塩又は亜硝酸塩の 1種以上である請求の範囲第 7項又は第 8項に 記載のエアバッグ用火薬組成物。
1 0 . 前記酸化剤が、 アル力 リ金属, アル力 リ土類金属又はアンモユウ ムの硝酸塩又は亜硝酸塩の 1種以上とォキソハロゲン酸塩との混合物で ある請求の範囲第 7項又は第 8項に記載のユアバッグ用火薬組成物。
1 1 . 前記酸化剤の個数基準 5 0 %平均粒径が 5 ~ 8 0 mである請求 の範囲第 9項又は第 1 0項に記載のエアバッグ用火薬組成物。
1 2 . 前記火薬組成物が、 次の④, ⑤の群から選択された一種以上の燃 焼調整剤を含有する請求の範囲第 9項に記載のエアパッグ用火薬組成物
④: ジルコニウム, ハフニウム, モリブデン, タ ングステン, マンガ ン, ュッケル, 鉄又はこれらの酸化物若しく は硫化物。
⑤:炭素, 硫黄. リ ン。
1 3 . 前記燃焼調整剤の含有量が 1 0重量%以下である請求の範囲第 1 2項に記載のエアバッグ用火薬組成物。
1 4. 前記燃焼調整剤の含有量が、 2〜 8重量%である請求の範囲第 1 3項に記載のエアパッグ用火薬組成物。
1 5. 前記燃焼調整剤の個数基準 5 0%平均粒径が 1 0 m以下である 請求の範囲第 1 2項乃至第 1 4項のいずれかに記載のエアバッグ用火薬 組成物。
1 6. 次の (a) , (b) , ( c ) を含有するエアバッグ用火薬組成物 ( a ) 次の①〜③のテ トラゾール類から選択された 1種以上の燃料成分
①:水素原子を含むテ トラゾール類。
②: ①以外のァミノテ トラゾール類。
③:上記①又は②のテ トラゾール類のアル力 リ金属塩又はアル力 リ土 類金属塩若しくはアンモユウム塩。
(b) 硝酸ス ト D ンチウム。
(c) 次の一般式で表されるヒ ドロタルサイ ト類。
ίΜ2+ ι-χ M3 (OH) 2 〕 x+ 〔An-x/n · mH2 0〕 "一 こ こで、
M2+: M g ■ M n F e , C o N i C u Z n 等の 2価金属。
M3+: A 1 ! , F e 3+, C , C o I n 3+等の 3価金属。 An- : OH , F - , C I N 03 C 0 a2" , S 04 2- , F e (C N) 6 3- , C H 3 C OO 蓚酸イオン, サリチル酸イオン等の n価のァ-ォン。
xは、 0< x≤ 0. 33
1 . 前記テ トラゾール類の個数基準 5 0%平均粒径が 5〜 80 i m, 前記硝酸ス ト nンチウムの個数基準 5 0%平均粒径が 5〜 8 0 m, 前 記バインダの個数平均 5 0 %平均粒径が 3 0 /" m以下である請求の範囲 第 1 6項に記載のエアバッグ用火薬組成物。
1 8 . 前記火薬組成物に成形性改良剤として水溶性高分子を添加してな る請求の範囲第 1項乃至第 1 7項のいずれか一項に記載のエアバッグ用 火薬組成物。
1 9 . 前記水溶性高分子が、 ポリ エチレングリ コール、 ポリプロ ビレン グリコール、 ポリビュルエーテル、 ポリマレイン酸共重合体、 ポリェチ レンィ ミ ド、 ポリ ビュルアルコール、 ポリ ビュルピロ リ ドン、 ポリ ァク リルァミ ド、 ポリァク リル酸ナ ト リ ウム、 ポリァク リル酸アンモニゥム の群から選択された 1種以上である請求の範囲第 1 8項に記載のェアバ ッグ用火薬組成物。
2 0 . 前記水溶性高分子が、 ポリビニルアルコ ールであり、 その含有量 が 0 . 0 1〜 0 . 5重量%である請求の範囲第 1 9項に記載のエアバッ グ用火薬組成物。
2 1 . 前記火薬組成物に滑剤を添加後、 成形してなる請求の範囲第 1項 乃至第 2 0項のいずれか一項に記載のエアバッグ用火薬組成物。
2 2 . 前記滑剤が、 ステァリン酸、 ステアリン酸亜鉛、 ステアリン酸マ グネ シゥム、 ステアリ ン酸カルシウム、 ステアリ ン酸アルミ ニウム、 二 硫化モリ ブデン、 グラフアイ ト、 微粒化シリカ、 窒化硼素の群から選択 された 1種以上である請求の範囲第 2 1項に記載のエアバッグ用火薬組 成物。
2 3 . 前記火薬組成物が、 錠剤又はディスク状に成形されてなるェアバ ッグ用ガス発生剤である請求の範囲第 1項乃至第 2 2項のいずれか一項 に記載のエアバッグ用火薬組成物。
2 4 . 前記火薬組成物がエアバッグ用ェンハンサ剤である請求の範囲第 1項乃至第 2 2項 のいずれか一項に記載のエアバッグ用火薬組成物。
2 5. 前記火薬組成物が直径 1. Omm以下の顆粒状に成形されている 請求の範囲第 2 4項に記載のエアパッグ用火薬組成物。
26. 次の (a) 〜 (c) の各群から選択された 1種以上の成分を混合 し、 これを所望形状に成形した後に、 1 0 0~ 1 2 0°Cで 2〜 24時間 、 熱処理するエアバッグ用火薬組成物の製造方法。
(a) 次の①〜③のテ トラゾール類の群から選択された 1種以上の燃料 成分。
①: 水素原子を含むテ トラゾール類。
②: ①以外のァミノテ トラゾール類。
③:上記①又は②のテ トラゾール類のアル力 リ金属塩又はアル力 リ土 類金属塩若しく はアンモニゥ厶塩。
(b) 酸化剤。
( c ) 次の一般式 ( 1) で表されるヒ ド口タルサイ ト類からなるパイ ン ダ。
[M2+,-„ M3 (OH) 〕 Μ+η-κ/η mH 2 0〕 "- ( 1) ここで、
M2+: Mg 2 M n F e , C o N i C u Z n 等の 2価金属。
M3+: A 1 3" F e , C 、 C o I n 3+等の 3価金属。 An": OH - F― C 1 N 03 C 0 a2" , S 0 2- , F e (C N) 63' , CH3 C 00- , 蓚酸イオン, サリチル酸イオン等の n価のァニオン。
xは、 0< x≤ 0. 33
27. 次の (a) 〜 (d) の各群から選択された夫々の成分を混合し、 これを所定形状に成形した後に、 1 0 0~ 1 2 O'Cで 2〜 24時間、 熱 処理するエアバッグ用火薬組成物の製造方法。 (a) 次の①〜③のテ トラゾール類から選択された 1種以上の燃料成分
①:水素原子を含むテ トラゾール類。
②: ①以外のァミ ノテ トラゾール類。
③: 上記①又は②のテ トラゾール類のアル力 リ金属塩又はアル力 リ土 類金属塩若しくはァンモユウム塩。
(b) 酸化剤。
( c ) 次の一般式 ( 1) で表されるヒ ドロタルサイ ト類からなるバイ ン ダ。
CM2+ i_„ M3 +„ (OH) 2K+ CAn-X/n mH 2 0〕 ( 1) ここで、
M2+: M g 2+, M n 2\ F e 2+, C o 2+. N i 2+, C u Z n 2 + 等の 2価金属。
M3+: A 1 8+. F e 3+, C r s+, C o 3+, I n 3+等の 3価金属。
A n- : 0 H - , F - , C 1 - , N 0 , C 03 2— , S 04 2— , F e (C N) e3- , CH3 C OO" , 蓚酸イオン, サリチル酸イオン等の n価のァニオン。
Xは、 0< x≤ 0. 33
(d) 次の④又は⑤から選択された 1種以上の燃焼調整剤。
④: ジルコニウム, ハフニウム, モリブデン, タ ングステン, マンガ ン, ニッケル, 鉄又はこれらの酸化物若しくは硫化物。
⑤:炭素, 硫黄, リン。
28. 前記ヒ ドロタルサイ ト類が化学式 Mg s A£2 (OH) 1GC 03 • 4 H 2 0で表されるヒ ドロタルサイ ト、 又は、 化学式 M g e F e 2 ( OH) ,6C 03 · 4 H2 0で表されるピロウライ トである請求の範囲第 2 6項又は第 27項に記載のエアバッグ用火薬組成物の製造方法。
2 9. 前記テ トラゾール類の個数基準 5 0%平均粒径が 5〜 8 Q u rn, 前記酸化剤の個数基準 5 0 %平均粒径が 5〜 8 Q μ τη, 前記パイ ンダの 個数基準 5 0%平均粒径が 3 0 // m以下である請求の範囲第 2 6項に記 載のエアバッグ用火薬組成物の製造方法。
3 0. 前記テ トラゾール類の個数基準 5 0%平均粒径が 5~ 8 0 ^m. 前記酸化剤の個数基準 5 0 %平均粒径が 5〜 8 0 m, 前記燃焼調整剤 の個数基準 5 0%平均粒径が 1 0 ;w m以下, 前記バイ ンダの 5 0%平均 粒径が 3 0 yum以下である請求の範囲第 2 7項に記載のエアバッグ用火 薬組成物の製造方法。
PCT/JP1996/002102 1995-07-27 1996-07-25 Composition explosive pour coussin gonflable de securite et son procede de production WO1997005087A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19681514T DE19681514B4 (de) 1995-07-27 1996-07-25 Sprengstoff-Zusammensetzung für einen Airbag und Verfahren zu ihrer Herstellung
US08/983,507 US6033500A (en) 1995-07-27 1996-07-25 Airbag explosive composition and process for producing said composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP7/212352 1995-07-27
JP21235295 1995-07-27
JP23906995 1995-08-25
JP7/239069 1995-08-25
JP7/337815 1995-11-30
JP33781595 1995-11-30

Publications (1)

Publication Number Publication Date
WO1997005087A1 true WO1997005087A1 (fr) 1997-02-13

Family

ID=27329351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002102 WO1997005087A1 (fr) 1995-07-27 1996-07-25 Composition explosive pour coussin gonflable de securite et son procede de production

Country Status (4)

Country Link
US (1) US6033500A (ja)
KR (1) KR100253750B1 (ja)
DE (1) DE19681514B4 (ja)
WO (1) WO1997005087A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043633A1 (fr) * 1998-02-25 1999-09-02 Nippon Kayaku Kabushiki-Kaisha Composition generatrice de gaz
EP0952131A1 (en) * 1996-12-28 1999-10-27 Nippon Kayaku Kabushiki Kaisha Gas-generating agent for air bag
JPH11310490A (ja) * 1998-02-25 1999-11-09 Nippon Kayaku Co Ltd ガス発生剤組成物
WO1999057083A1 (fr) * 1998-04-30 1999-11-11 Daicel Chemical Industries, Ltd. Composition ameliorante pour gonfleur
US6135496A (en) * 1997-05-09 2000-10-24 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
WO2000071491A1 (fr) * 1999-05-24 2000-11-30 Nippon Kayaku Kabushiki-Kaisha Composition generatrice de gaz
WO2001000544A1 (fr) * 1999-06-25 2001-01-04 Nippon Kayaku Kabushiki-Kaisha Composition d'agents gazogenes
US6183006B1 (en) 1997-05-09 2001-02-06 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6196581B1 (en) 1996-04-08 2001-03-06 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6406060B1 (en) 1997-05-09 2002-06-18 Daicel Chemical Industries, Ltd. Gas generator for airbag and airbag system
US6562161B1 (en) 1997-03-24 2003-05-13 Daicel Chemical Industries, Ltd. Gas generating compositions for air bag
JP2006076824A (ja) * 2004-09-09 2006-03-23 Daicel Chem Ind Ltd ガス発生剤組成物
WO2007129611A1 (ja) * 2006-05-02 2007-11-15 Nippon Kayaku Kabushiki Kaisha 安全部品を作動させるためのガスアクチュエータ用ガス発生剤組成物およびそれを用いたガスアクチュエータ用ガス発生器
US8002918B2 (en) 2006-08-29 2011-08-23 Daicel Chemical Industries, Ltd. Gas generating composition
US8137771B2 (en) 2004-09-09 2012-03-20 Daicel Chemical Industries, Ltd. Gas generating composition
JP2015218068A (ja) * 2014-05-14 2015-12-07 株式会社ダイセル ヨウ化カリウム発生剤組成物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2963086B1 (ja) 1997-12-26 1999-10-12 ダイセル化学工業株式会社 エアバッグ用ガス発生器及びエアバッグ装置
JP2000103691A (ja) * 1998-09-28 2000-04-11 Daicel Chem Ind Ltd ガス発生剤組成物
US7107129B2 (en) * 2002-02-28 2006-09-12 Oshkosh Truck Corporation Turret positioning system and method for a fire fighting vehicle
WO2001025169A1 (fr) * 1999-10-06 2001-04-12 Nof Corporation Composition generatrice de gaz
JP4641130B2 (ja) 2000-10-10 2011-03-02 日本化薬株式会社 ガス発生剤組成物およびそれを使用したガス発生器
US20030183111A1 (en) * 2002-04-02 2003-10-02 Tasson Brian B. Mechanically fuzed high explosive projectile using pryotechnic initiation delay
WO2005123631A1 (ja) * 2004-06-17 2005-12-29 Nof Corporation ガス発生装置用の着火剤
US20060219340A1 (en) * 2005-03-31 2006-10-05 Dunham Steven M Gas generating system
US20060220363A1 (en) * 2005-03-31 2006-10-05 Blackburn Jeffery S Gas generating system with autoignition device
JP5058540B2 (ja) * 2006-09-14 2012-10-24 株式会社ダイセル ガス発生剤組成物
US8273199B1 (en) 2008-11-28 2012-09-25 Tk Holdings, Inc. Gas generating compositions with auto-ignition function
US20120304620A1 (en) * 2011-06-01 2012-12-06 Aerojet-General Corporation Catalyst, gas generator, and thruster with improved thermal capability and corrosion resistance
FR3097546B1 (fr) * 2019-06-24 2021-09-24 Arianegroup Sas Composition pyrotechnique génératrice de gaz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225389A (ja) * 1989-02-28 1990-09-07 Daicel Chem Ind Ltd 清浄ガス発生剤
JPH02225159A (ja) * 1988-12-02 1990-09-07 Automot Syst Lab Inc 安全防護袋を膨らませる方法
JPH05879A (ja) * 1991-06-17 1993-01-08 Nippon Kayaku Co Ltd ガス発生剤錠剤
JPH05117070A (ja) * 1991-04-15 1993-05-14 Automot Syst Lab Inc ガス発生組成物
JPH06227884A (ja) * 1993-02-05 1994-08-16 Nippon Koki Kk エアバッグ用ガス発生剤
JPH07223890A (ja) * 1994-02-15 1995-08-22 Nippon Koki Kk ガス発生剤組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948439A (en) * 1988-12-02 1990-08-14 Automotive Systems Laboratory, Inc. Composition and process for inflating a safety crash bag
US4931112A (en) * 1989-11-20 1990-06-05 Morton International, Inc. Gas generating compositions containing nitrotriazalone
US5035757A (en) * 1990-10-25 1991-07-30 Automotive Systems Laboratory, Inc. Azide-free gas generant composition with easily filterable combustion products
US5386775A (en) * 1993-06-22 1995-02-07 Automotive Systems Laboratory, Inc. Azide-free gas generant compositions and processes
US5518054A (en) * 1993-12-10 1996-05-21 Morton International, Inc. Processing aids for gas generants
US5472535A (en) * 1995-04-06 1995-12-05 Morton International, Inc. Gas generant compositions containing stabilizer
US5514230A (en) * 1995-04-14 1996-05-07 Automotive Systems Laboratory, Inc. Nonazide gas generating compositions with a built-in catalyst
US5765866A (en) * 1997-02-19 1998-06-16 Breed Automotive Technology, Inc. Airbag inflator employing gas generating compositions containing mica

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225159A (ja) * 1988-12-02 1990-09-07 Automot Syst Lab Inc 安全防護袋を膨らませる方法
JPH02225389A (ja) * 1989-02-28 1990-09-07 Daicel Chem Ind Ltd 清浄ガス発生剤
JPH05117070A (ja) * 1991-04-15 1993-05-14 Automot Syst Lab Inc ガス発生組成物
JPH05879A (ja) * 1991-06-17 1993-01-08 Nippon Kayaku Co Ltd ガス発生剤錠剤
JPH06227884A (ja) * 1993-02-05 1994-08-16 Nippon Koki Kk エアバッグ用ガス発生剤
JPH07223890A (ja) * 1994-02-15 1995-08-22 Nippon Koki Kk ガス発生剤組成物

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234521B1 (en) 1996-04-08 2001-05-22 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6695345B2 (en) 1996-04-08 2004-02-24 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6409214B2 (en) 1996-04-08 2002-06-25 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6196581B1 (en) 1996-04-08 2001-03-06 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
EP0952131A4 (en) * 1996-12-28 1999-12-22 Nippon Kayaku Kk GAS GENERATING COMPOSITION FOR AIRBAG
US6416599B1 (en) 1996-12-28 2002-07-09 Nippon Kayaku Kabushiki-Kaisha Gas-generating agent for air bag
EP0952131A1 (en) * 1996-12-28 1999-10-27 Nippon Kayaku Kabushiki Kaisha Gas-generating agent for air bag
US6562161B1 (en) 1997-03-24 2003-05-13 Daicel Chemical Industries, Ltd. Gas generating compositions for air bag
US6135496A (en) * 1997-05-09 2000-10-24 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6224096B1 (en) 1997-05-09 2001-05-01 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6386582B2 (en) 1997-05-09 2002-05-14 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6406060B1 (en) 1997-05-09 2002-06-18 Daicel Chemical Industries, Ltd. Gas generator for airbag and airbag system
US6183006B1 (en) 1997-05-09 2001-02-06 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
JPH11310490A (ja) * 1998-02-25 1999-11-09 Nippon Kayaku Co Ltd ガス発生剤組成物
WO1999043633A1 (fr) * 1998-02-25 1999-09-02 Nippon Kayaku Kabushiki-Kaisha Composition generatrice de gaz
US6918976B2 (en) 1998-02-25 2005-07-19 Nippon Kayaku Kabushiki-Kaisha Gas generating composition
EP1061057A4 (en) * 1998-02-25 2009-10-21 Nippon Kayaku Kk GAS GENERATING COMPOSITION
EP1000916A4 (en) * 1998-04-30 2000-12-27 Daicel Chem IMPROVING COMPOSITION FOR INFLATOR
WO1999057083A1 (fr) * 1998-04-30 1999-11-11 Daicel Chemical Industries, Ltd. Composition ameliorante pour gonfleur
WO2000071491A1 (fr) * 1999-05-24 2000-11-30 Nippon Kayaku Kabushiki-Kaisha Composition generatrice de gaz
WO2001000544A1 (fr) * 1999-06-25 2001-01-04 Nippon Kayaku Kabushiki-Kaisha Composition d'agents gazogenes
JP2006076824A (ja) * 2004-09-09 2006-03-23 Daicel Chem Ind Ltd ガス発生剤組成物
JP4610266B2 (ja) * 2004-09-09 2011-01-12 ダイセル化学工業株式会社 ガス発生剤組成物
US8137771B2 (en) 2004-09-09 2012-03-20 Daicel Chemical Industries, Ltd. Gas generating composition
WO2007129611A1 (ja) * 2006-05-02 2007-11-15 Nippon Kayaku Kabushiki Kaisha 安全部品を作動させるためのガスアクチュエータ用ガス発生剤組成物およびそれを用いたガスアクチュエータ用ガス発生器
JP2007297252A (ja) * 2006-05-02 2007-11-15 Nippon Kayaku Co Ltd 安全部品を作動させるためのガスアクチュエータ用ガス発生剤組成物およびそれを用いたガスアクチュエータ用ガス発生器
US8002918B2 (en) 2006-08-29 2011-08-23 Daicel Chemical Industries, Ltd. Gas generating composition
JP2015218068A (ja) * 2014-05-14 2015-12-07 株式会社ダイセル ヨウ化カリウム発生剤組成物

Also Published As

Publication number Publication date
US6033500A (en) 2000-03-07
DE19681514T1 (de) 1998-12-03
KR100253750B1 (ko) 2000-04-15
KR19990035956A (ko) 1999-05-25
DE19681514B4 (de) 2006-04-27

Similar Documents

Publication Publication Date Title
WO1997005087A1 (fr) Composition explosive pour coussin gonflable de securite et son procede de production
JP3912689B2 (ja) 自己発火性火薬組成物、伝火薬、ガス発生剤及びガス発生器
JP4409632B2 (ja) エアバッグ用ガス発生剤
CA1146756A (en) Multi-ingredient gas generants
EP1061057B1 (en) Gas generator composition
JP2597066B2 (ja) ガス発生組成物
EP0012628A1 (en) Pelletizable, rapid and cool burning solid nitrogen gas generant suitable for automotive crash bag inflators and method for generation of nitrogen gas
WO1997012848A1 (fr) Agent generateur de gaz pour airbags
WO2010103811A1 (ja) ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
US20040108031A1 (en) Gas generator fuel composition
KR20020011447A (ko) 가스 발생제 조성물
JP3952424B2 (ja) ガス発生剤組成物
US6007647A (en) Autoignition compositions for inflator gas generators
JP2001192288A (ja) ガス発生剤組成物
JP4514024B2 (ja) 伝火薬成形体及びこれを有するガス発生器
JP2006076849A (ja) ガス発生剤組成物及びこれを有するガス発生器
JP6781654B2 (ja) ガス発生剤組成物
JP4318777B2 (ja) ガス発生剤組成物
EP0944562B1 (en) Autoignition compositions for inflator gas generators
WO2000071491A1 (fr) Composition generatrice de gaz
JPH07309194A (ja) エアバッグ用ガス発生剤
JPH08283090A (ja) ガス発生剤組成物
JPH09157080A (ja) エアバッグ用ガス発生剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980700617

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08983507

Country of ref document: US

122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 19681514

Country of ref document: DE

Date of ref document: 19981203

WWE Wipo information: entry into national phase

Ref document number: 19681514

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019980700617

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980700617

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607