WO1997004915A1 - Schweissverfahren mit mehreren hochenergie-schweissstrahlen - Google Patents

Schweissverfahren mit mehreren hochenergie-schweissstrahlen Download PDF

Info

Publication number
WO1997004915A1
WO1997004915A1 PCT/DE1996/000786 DE9600786W WO9704915A1 WO 1997004915 A1 WO1997004915 A1 WO 1997004915A1 DE 9600786 W DE9600786 W DE 9600786W WO 9704915 A1 WO9704915 A1 WO 9704915A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
frequency
beams
plasma
radiation
Prior art date
Application number
PCT/DE1996/000786
Other languages
English (en)
French (fr)
Inventor
Bernd Seidel
Christian Koerber
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1997004915A1 publication Critical patent/WO1997004915A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0619Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing

Definitions

  • the invention relates to a welding process with a plurality of high-energy welding beams, in particular laser beams, in which the welding beams simultaneously irradiate plasma on two workpiece outer surfaces lying opposite one another, and in which the two welding beams are dependent on the continuity of a steam capillary formed by both beams are controlled, the patency of the steam capillaries being monitored by measuring the plasma fluctuation.
  • a welding method with the aforementioned features is known from DE 42 16 643 AI.
  • high-energy radiation penetrating the steam capillary is measured by using the optical components of the processing optics to observe the penetrating radiation.
  • Coupling elements are installed in the beam path, which do not leave the high-energy radiation used for processing unaffected.
  • the measurement result can be falsified by reflected CO 2 laser radiation.
  • coupled-in radiation of a different wavelength falsified measurement results are possible due to plasma radiation components of the welding plasma.
  • there are special design features in the known welding process The known patency measurement leaves only a considerably restricted
  • REPLACEMENT BLA ⁇ (RULE 26) Riation range of angles of incidence of the two high energy beams. Their deviation from the vertical can therefore only be comparatively small in order to be able to carry out a reliable patency measurement. Furthermore, because of the hardware components required to carry out the welding process in the simultaneous welding system, there are accessibility problems during installation.
  • the invention has for its object to improve a method with the aforementioned method steps so that the accuracy of the measurements can be increased significantly and in particular the processing optics for high-energy welding radiation does not have to be used to determine the measurement result or Determine patency of the steam capillaries.
  • an indication frequency is modulated onto the high-energy radiation of at least one welding beam, and / or that the frequency spectrum of at least one welding beam has a frequency that characterizes it and differs from the other welding beam, and that the modulated and / or the indicated welding beam opposite the workpiece outer surface, the indication frequency and / or the characterizing frequency is determined.
  • the high-energy radiation itself is no longer used to determine the permeability of the steam capillary. Instead, a special indicator is used in the first case.
  • the high energy radiation is modulated. Since the indication frequency deviates, the determination of its occurrence gives a sure sign that the steam capillary is continuous.
  • the detection of the capillary patency can be improved to such an extent that qualitative and quantitative determinations of the patency of the steam capillaries are decisively improved in the process-accompanying analysis for controlling the two welding beams.
  • a comprehensive quality assurance system is made possible with the proof the indication frequency is possible in real time. You can
  • the use of a welding beam with a frequency that characterizes it is used for the detection of the capillary patency.
  • a modulated and / or characterized welding beam is used on the one outer surface of the workpiece, while the indication frequency and / or the characterizing frequency is detected on the other side, provided that it arises from one outer surface of the workpiece due to the continuity of the steam capillaries the other outer surface of the workpiece or the plasma present there was transferred.
  • the method can be carried out in such a way that the indication and / or characteristic frequencies selected are those which are above the frequencies of up to practically 10 kHz which typically occur in the case of welding plasma fluctuations.
  • the modulation is carried out in such a way that an indication frequency is used outside the frequency range in which the intensity fluctuations of the laser-induced welding plasma occur. These are primarily the plasma fluctuation frequencies that typically occur in the range of up to 10 kHz. The same applies to a characteristic frequency of a welding beam.
  • the welding process can be improved by using that frequency as the indication frequency which is used to set the average laser power of an RF-excited laser using a pulse-width modulation process.
  • the frequency for setting the mean laser power of an HF-excited laser that is to say a laser with high-frequency excitation, is readily available for carrying out the welding process. It modulates itself on the welding radiation without further ado and therefore does not require any special measures on the radiation side, because it is present anyway due to the pulse width modulation method. It is important that the laser power density spectra of the two 97/04915 PC ⁇ 7DE96 / 00786
  • 4 lasers are different and in particular the frequency used as an indication frequency or several such indication frequencies is or are only contained in the spectrum of a laser.
  • one of the two welding beams is generated by a DC-excited laser and the other of the two welding beams is generated by an HF-excited laser, or that the two welding beams are generated by two DC-excited ones Lasers with different frequency spectra are generated, or that the two welding beams are generated by two RF-excited lasers with different pulse-width modulation frequencies.
  • the frequency spectrum of the HF-excited laser is certainly not available from the outset, and in particular the modulation frequency of approximately 50 kHz contained in the frequency spectrum of the HF-excited laser is missing.
  • a radiation sensor is arranged outside the radiation range and / or an acoustic sensor is arranged outside the sound range of the plasma that is generated by the modulated and / or characterized welding beam, a disturbance in the measurement result is excluded, for example on the workpiece outer surface that is associated with the modulated and / or or characterized welding beam.
  • the welding process is carried out in such a way that the radiation sensor or an acoustic sensor is arranged in the vicinity of the plasma of the workpiece outer surface which is opposite the modulated and / or characterized welding beam.
  • the radiation sensor or an acoustic sensor is arranged in the vicinity of the plasma of the workpiece outer surface which is opposite the modulated and / or characterized welding beam.
  • REPLACEMENT BLA ⁇ (RULE 26) Workpiece side excluded. It is used that a
  • the indication frequency and / or the characterizing frequency When transmitting the indication frequency and / or the characterizing frequency, couplings of the plasmas present on both outer surfaces of the workpiece can also be considered.
  • the welding process can be carried out using simple structural means if a photodiode with a filter that limits the spectral sensitivity is used as the radiation sensor. With the filter limiting the spectral sensitivity, the load on the photodiode is reduced and its relative sensitivity with respect to the frequency range to be measured is increased, which benefits the measurement result of the continuity.
  • the welding method can be designed in such a way that signals indicating the continuity of the steam capillary are generated by sensor signals generated on the basis of indication frequency-modulated and / or frequency-characterized high-energy radiation in relation to the indication and / or characterization frequency be set.
  • signals indicating the continuity of the steam capillary are generated by sensor signals generated on the basis of indication frequency-modulated and / or frequency-characterized high-energy radiation in relation to the indication and / or characterization frequency be set.
  • the welding process is preferably carried out in such a way that the signals are compared using the lock-in process.
  • This method is particularly suitable for being able to carry out the real-time control of the two welding beams with the desired qualitative and quantitative accuracy.
  • the invention is explained on the basis of an exemplary embodiment shown in the drawing. It shows:
  • FIG. 1 shows a schematic representation of an arrangement for carrying out the welding process according to the invention
  • FIG. 2 shows a schematic representation of frequency-dependent power density spectra to explain the determination of the continuity of the steam capillary
  • FIG. 3 shows measurement results of the arrangement of FIG time.
  • FIG. 1 shows a workpiece with two workpiece outer surfaces 12, 13 facing away from one another, on which high-energy welding beams 10, 11 act. The action takes place simultaneously and leads to the formation of laser-induced plasmas 15, 22 to form a vapor capillary 14 which has been enlarged and shown continuously in the schematic representation.
  • the area of the workpiece 23 which is dashed in FIG. 1 is intended to symbolize the melting zone.
  • the simultaneous or simultaneous welding of the workpiece from both workpiece sides 18, 19 brings about a symmetrical introduction of heat and results in a symmetrical seam with such a residual stress field.
  • a steam capillary open on both sides enables almost complete outgassing. Due to the special boundary conditions of the heat conduction, the degree of overlap in the center of the joint or in the center of the workpiece can be produced with less energy expenditure than if welding is carried out successively from the two sides of the workpiece.
  • the process efficiency of the simultaneous welding on both sides therefore exceeds the process efficiency of the one-sided welding and the bilateral sequential welding.
  • REPLACEMENT BLA ⁇ (RULE 26) Welding jets 10, 11 can be controlled so that they are aligned.
  • a processing head containing the focusing optics 24 and 25 must be controlled accordingly for each of the welding devices which are not shown in detail.
  • the control can be carried out in a conventional manner by means not shown as a result.
  • the high-energy welding beams 10, 11 are provided by corresponding high-energy generators, for example lasers 1 and 2. From the lasers 1, 2, laser radiation is supplied to the respective focusing or processing optics 24 via deflection mirrors 16, 17 , in each of which a further deflecting mirror 24 'directs the beams 10, 11 to the actual focusing mirror 24' ', which focuses the radiation onto the processing point of the workpiece 23, that is to say the area in which the Steam capillary 14 is shown.
  • the laser 1 is RF excited. Its average power is set using a pulse-width modulation process that works at a frequency of approx. 50 kHz.
  • the laser 2 is DC-excited, that is to say continuous, and does not have the above-mentioned modulation spectrum, that is to say in particular does not have a dominant peak in the range of 50 kHz as the laser 1 has.
  • the frequency of approximately 50 kHz contained in the frequency spectrum of the HF-excited laser can be found in the power density spectrum of the radiation of the plasma 15 again.
  • the power density spectrum of the plasma 22 has no significant peaks in the corresponding frequency range, as long as both welding plasmas 15, 22 are decoupled to the left and right of the workpiece because the vapor capillary 14 is impervious.
  • the lasers 1, 2 are controlled in such a way that their power is sufficient to produce a continuous vapor capillary 14 and the high-energy welding beams 10, 11 are aligned, a plasma coupling takes place or a part of the modulated laser radiation of the HF-excited one penetrates Lasers 1 die
  • a radiation sensor 20 in the form of a photodiode, which is arranged next to the welding beam 10 in the vicinity of the plasma 22.
  • An optical filter 20 ' is arranged upstream of the photodiode in order to limit its spectral sensitivity.
  • the radiation sensor 20 emits sensor signals S2 which have the indication frequency when the vapor capillaries 14 pass through.
  • the radiation sensor 20 is positioned on the workpiece side 18 in such a way that it cannot be reached by radiation from the plasma 15.
  • the arrangement behind the workpiece 23 is generally sufficient, which acts as a screen and prevents radiation of the plasma 15 from reaching the sensor 20.
  • Signals S2 can be used to influence the welding process, in particular the two welding beams 10, 11.
  • the average power of the laser 1 can be reduced, for example, if this was previously increased in order to achieve continuity of the steam capillaries 14.
  • the welding beams 10, 11 can also be controlled in the sense that their position is changed so that the portions of the steam capillaries that are due to them are aligned in order to achieve an overlap of the root regions of the individual capillaries.
  • FIG. 1 shows that the laser 1 inputs a pulse-width modulation signal as a reference into a lock-in amplifier 26, which outputs an output signal S3 which characterizes the continuity of the capillaries.
  • FIG. 3 represents the intensity of the high-energy welding radiation as a function of the time of the welding process.
  • the signal S2 corresponds to the radiation intensities of the plasma 22 recorded with the radiation sensor 20, that is to say contains the indication frequency which originates from the laser 1.
  • the signal S1 corresponds to the radiation intensities of the plasma 15, which were recorded with the radiation sensor 21. Both signals are generated by means of the measuring amplifiers shown in Fig.l.
  • the signals S1 which contain the pulse-width modulation signal of the laser 1, that is to say have the indication frequency, show that the laser beam 11 was switched off during the time intervals from 3 to 4 s and from 6 to 7 s in order to during to obtain an impervious steam capillary during this time.
  • the signals S2 are present throughout the entire welding time of approx. 0.2 to 8.5 s. This results in the lock-in technique being used accordingly
  • the power density spectra mentioned in relation to FIG. 2 can be determined in a suitable manner.
  • FFT fast Fourier transformations
  • Spectrum analyzers such as the lock-in amplifier 26 shown schematically in FIG. 1, are suitable for real-time control of the two welding beams 10, 11.
  • the above-mentioned regulated welding process allows on-line quality assurance for simultaneous welding with high-energy welding beams.
  • the method can be used to optimize process parameters, for process data acquisition and for use in controlling the process.
  • the welding process is used in particular for welding with CO 2 laser radiation, namely in the manufacture of open beams and semi-finished products, as well as in section manufacture in steel and shipbuilding, in the offshore sector, in wagon and body construction as well as in lifting and conveying equipment.
  • the advantages due to the improvement of the patency measurement of the steam capillaries can be used with all mutually accessible, fully connected butt configurations. This also applies to configurations in which the high-energy welding beams have to be set at an angle of incidence of more than 10 ° to the surface normal of the workpiece surface exposed to the radiation, for example when welding T-joints in the heavy plate area.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Schweißverfahren mit mehreren Hochenergie-Schweißstrahlen, insbesondere Laserstrahlen, bei dem die Schweißstrahlen gleichzeitig auf zwei einander gegenüberliegende Werkstückaußenflächen plasmainduzierend einstrahlen, und bei dem die beiden Schweißstrahlen in Abhängigkeit von der Durchgängigkeit einer von beiden Strahlen gebildeten Dampfkapillaren gesteuert werden, wobei die Durchgängigkeit der Dampfkapillaren mittels Messung der Plasmafluktuation überwacht wird. Um die Durchgängigkeit der Dampfkapillaren besser zu erfassen, wird das Schweißverfahren so durchgeführt, daß der Hochenergiestrahlung mindestens eines Schweißstrahls eine Indikationsfrequenz aufmoduliert wird, und/oder daß das Frequenzspektrum mindestens eines Schweißstrahls eine ihn charakterisierende, vom anderen Schweißstrahl unterscheidende Frequenz aufweist, und daß aus dem Schweißplasma der dem modulierten und/oder charakterisierten Schweißstrahl gegenüberliegenden Werkstückaußenfläche die Indikationsfrequenz und/oder die charakterisierende Frequenz ermittelt wird.

Description

Schwei ßverfahren mit mehreren Hochenerαie- Schwei Estrahlpn
Die Erfindung bezieht sich auf ein Schweißverfahren mit mehreren Hochenergie-Schweißstrahlen, insbesondere Laser¬ strahlen, bei dem die Schweißstrahlen gleichzeitig auf zwei einander gegenüberliegende Werkstückaußenflächen plasmaindu¬ zierend einstrahlen, und bei dem die beiden Schweißstrahlen in Abhängigkeit von der Durchgängigkeit einer von beiden Strahlen gebildeten Dampfkapillaren gesteuert werden, wobei die Durchgängigkeit der Dampfkapillaren mittels Messung der Plasmafluktuation überwacht wird.
Ein Schweißverfahren mit den vorgenannten Merkmalen ist aus der DE 42 16 643 AI bekannt. Bei diesem Verfahren erfolgt eine Messung von die Dampfkapillare durchdringender Hochener¬ giestrahlung dadurch, daß die optischen Komponenten der Bear¬ beitungsoptik zum Beobachten der durchdringenden Strahlung herangezogen werden. In den Strahlengang sind auskoppelnde Elemente eingebaut, die die zur Bearbeitung eingesetzte Hoch¬ energiestrahlung nicht unbeeinträchtigt lassen. Bei der Nut¬ zung von Cθ2-Laserstrahlung kann das Meßergebnis durch re¬ flektierte Cθ2~Laserstrahlung verfälscht werden. Im Fall ein- gekoppelter Strahlung anderer Wellenlänge sind Meßergebnis- Verfälschungen durch Plasmastrahlungsanteile des Schweißplas¬ mas möglich. Ferner ergeben sich bei dem bekannten Schwei߬ verfahren konstruktive Besonderheiten. Die bekannte Durchgän- gigkeitsmessung läßt nur einen erheblich eingeschränkten Va-
ERSATZBLAπ(REGEL26) riationsbereich von Einstrahlungswinkeln der beiden Hochener¬ giestrahlen zu. Deren Abweichung von der Senkrechten kann al¬ so nur vergleichsweise klein sein, um eine verläßliche Durch- gängigkeitsmessung durchführen zu können. Des weiteren erge- ben sich wegen der für die Durchführung des Schweißverfahrens notwendigen Hardware-Komponenten in die Simultan-Schweißanla- ge Zugänglichkeitsprobleme beim Einbau.
Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren mit den eingangs genannten Verfahrensschritten so zu verbessern, daß die Genauigkeit der Messungen erheblich gesteigert werden kann und insbesondere die Bearbeitungsoptik für die Hochenergie-Schweißstrahlung nicht benutzt werden muß, um das Meßergebnis zu ermitteln bzw. die Durchgängigkeit der Dampfkapillaren festzustellen.
Diese Aufgabe wird dadurch gelöst, daß der Hochenergie¬ strahlung mindestens eines Schweißstrahls eine Indikations¬ frequenz aufmoduliert wird, und/oder daß das Frequenzspektrum mindestens eines SchweißStrahls eine ihn charakterisierende, vom anderen Schweißstrahl unterscheidende Frequenz aufweist, und daß aus dem Schweißplasma der dem modulierten und/oder charakterisierten Schweißstrahl gegenüberliegenden Werkstück¬ außenfläche die Indikationsfrequenz und/oder die charakteri- sierende Frequenz ermittelt wird.
Bei beiden vorbeschriebenen Verfahren wird nicht mehr die Hochenergiestrahlung selbst verwendet, um die Durchgän¬ gigkeit der Dampfkapillare zu ermitteln. Vielmehr wird im er- sten Fall ein besonderer Indikator eingesetzt. Die Hochener¬ giestrahlung wird moduliert. Da die Indikationsfrequenz ab¬ weicht, ist durch die Ermittlung ihres Auftretens ein siche¬ res Zeichen dafür gegeben, daß die Dampfkapillare durchgängig ist. Dabei kann der Nachweis der Kapillardurchgängigkeit soweit verbessert werden, daß qualitative und quantitative Bestimmungen der Durchgängigkeit der Dampfkapillaren bei der prozeßbegleitenden Analyse zur Steuerung der beiden Schwei߬ strahlen entschieden verbessert sind. Es wird ein umfassendes Qualitätssicherungssystem ermöglicht, bei dem der Nachweis der Indikationsfrequenz in Echtzeit möglich ist. Dabei können
Eingriffe in die Strahlengänge der Hochenergie-Schweißstrah¬ len vermieden werden.
Im zweiten Fall der Anwendung eines Schweißstrahls mit einer ihn charakterisierenden Frequenz wird diese für den Nachweis der Kapillardurchgängigkeit benutzt. In beiden Fäl¬ len wird also auf der einen Werkstückaußenfläche eine modu¬ lierter und/oder charakterisierter Schweißstrahl angewendet, während auf der anderen Seite die Indikationsfrequenz und/oder die charakterisierende Frequenz nachgewiesen wird, sofern sie von der einen Werkstückaußenfläche infolge der Durchgängigkeit der Dampfkapillaren auf die andere Werkstück¬ außenfläche bzw. das dort vorhandene Plasma übertragen wurde.
Das Verfahren kann so durchgeführt werden, daß als Indi- kations- und/oder charakteristische Frequenzen solche gewählt werden, die oberhalb der bei Schweißplasmafluktuationen typi¬ scherweise auftretenden Frequenzen von bis zu praktisch 10 kHz liegen. Die Modulation erfolgt derart, daß eine Indika¬ tionsfrequenz außerhalb desjenigen Frequenzbereichs einge¬ setzt wird, in dem die Intensitätsschwankungen des laserindu¬ zierten Schweißplasmas auftreten. Das sind in erster Linie die Plasmafluktuationsfrequenzen, die typischerweise im Be- reich von bis zu 10 kHz auftreten. Entsprechendes gilt für eine charakteristische Frequenz eines Schweißstrahls.
Das Schweißverfahren kann dadurch verbessert werden, daß als Indikationsfrequenz diejenige Frequenz verwendet wird, die zur Einstellung der mittleren Laserleistung eines HF-an- geregten Lasers mit einem Puls-Weiten-Modulationsverfahren dient. Die Frequenz zur Einstellung der mittleren Laserlei¬ stung eines HF-angeregten Lasers, also eines Lasers mit Hoch¬ frequenzanregung, steht für die Durchführung des Schweißver- fahrens ohne weiteres zur Verfügung. Sie moduliert sich der Schweißstrahlung ohne weiteres auf, bedarf also zustrahlungs- seitig keiner besonderen Maßnahmen, weil sie infolge des Puls-Weiten-Modulationsverfahrens ohnehin vorhanden ist. Wichtig ist, daß die Laserleistungsdichtespektren der beiden 97/04915 PCΪ7DE96/00786
4 Laser verschieden sind und insbesondere die als Indikations¬ frequenz genutzte Frequenz oder mehrere solcher Indikations¬ frequenzen nur im Spektrum eines Lasers enthalten ist bzw. sind.
Von Vorteil ist es, das Schweißverfahren so durchzufüh¬ ren, daß einer der beiden Schweißstrahlen von einem DC-ange¬ regten Laser und der andere der beiden Schweißstrahlen von einem HF-angeregten Laser erzeugt wird, oder daß die beiden Schweißstrahlen von zwei DC-angeregten Lasern mit voneinander unterschiedlichen Frequenzspektren erzeugt werden, oder daß die beiden Schweißstrahlen von zwei HF-angeregten Lasern mit unterschiedlichen Puls-Weiten-Modulationsfrequenzen erzeugt werden. Infolge der unterschiedlichen Anregung der die Schweißstrahlen erzeugenden Laser ergeben sich auf den beiden entsprechenden Werkstückseiten entsprechend unterschiedliche Frequenzspektren. Auf der Werkstückseite des DC-angeregten Lasers ist das FrequenzSpektrum des HF-angeregten Lasers von Hause aus mit Sicherheit nicht vorhanden und insbesondere fehlt die im Frequenzspektrum des HF-angeregten Lasers ent¬ haltene Modulationsfrequenz von ca. 50 kHz.
Wenn ein Strahlungssensor außerhalb des Strahlungsbe¬ reichs und/oder ein akustischer Sensor außerhalb des Schallbereichs desjenigen Plasmas angeordnet ist, das vom modulierten und/oder charakterisierten Schweißstrahl erzeugt wird, ist eine Störung des Meßergebnisses ausgeschlossen, beispielsweise auf derjenigen Werkstückaußenfläche, die dem modulierten und/oder charakterisierten Schweißstrahl gegen- überliegt.
Um die Genauigkeit des Meßergebnisses zu verbessern, wird das Schweißverfahren so durchgeführt, daß der Strah¬ lungssensor oder ein akustischer Sensor in der Nähe des Plasmas derjenigen Werkstückaußenfläche angeordnet wird, die modulierten und/oder charakterisierten Schweißstrahl gegen¬ überliegt. Bei dieser Anordnung des Strahlungssensors ist eine direkte Messung von Hochenergiestrahlung der einen Werk¬ stückseite durch die Dampfkapillare hindurch auf der anderen
ERSATZBLAπ(REGEL26) Werkstückseite ausgeschlossen. Es wird ausgenutzt, daß ein
Teil der von dem modulierten und/oder charakterisierten Schweißstrahl stammenden Laserstrahlung die Dampfkapillare durchdringt und im Plasma der letzterem gegenüberliegenden Werkstückaußenfläche Intensitätsschwankungen mit der Indika¬ tionsfrequenz oder mit der charakterisierenden Frequenz ver¬ ursacht, die von dem in der Nähe des betreffenden Plasmas an¬ geordneten Sensor zuverlässig erfaßt werden können. Bei der Übertragung der Indikationsfrequenz und/oder der charakteri- sierenden Frequenz können auch Kopplungen der auf beiden Werkstückaußenflächen vorhandenen Plasmen in Frage kommen.
Das Schweißverfahren kann mit einfachen baulichen Mit¬ teln durchgeführt werden, wenn als Strahlungssensor eine Fo- todiode mit einem die spektrale Empfindlichkeit begrenzenden Filter eingesetzt wird. Mit dem die spektrale Empfindlichkeit begrenzenden Filter wird die Belastung der Fotodiode redu¬ ziert und ihre relative Sensibilität bezüglich des zu messen¬ den Frequenzbereichs gesteigert, was dem Meßergebnis der Durchgängigkeit zugute kommt.
Das Schweißverfahren kann dahingehend ausgestaltet wer¬ den, daß die Durchgängigkeit der Dampfkapillare anzeigende Signale erzeugt werden, indem aufgrund von in die Dampfkapil- lare eindringender indikationsfrequenzmodulierter und/oder frequenzcharakterisierter Hochenergiestrahlung erzeugte Sen¬ sorsignale in Bezug zu der Indikations- und/oder Charakteri¬ sierungsfrequenz gesetzt werden. Infolge der Bezugnahme auf die Indikationsfrequenz ergeben sich klar auszuwertende Sig- nale, die in den Steuerverfahren für die beiden Schweißstrah¬ len mit größerer Genauigkeit eingesetzt werden können.
Zur on-line-Steuerung der beiden Schweißstrahlen wird das Schweißverfahren vorzugsweise so durchgeführt, daß das Inbezugsetzen der Signale nach dem Lock-in-Verfahren durchge¬ führt wird. Dieses Verfahren ist insbesondere geeignet, die in Echtzeit erfolgende Steuerung der beiden Schweißstrahlen mit der gewünschten qualitativen und quantitativen Genauig¬ keit durchführen zu können. Die Erfindung wird anhand eines in der Zeichnung darge¬ stellten Ausführungsbeispiels erläutert. Es zeigt:
Fig.l eine schematische Darstellung einer Anordnung zur Durchführung des erfindungsgemäßen Schweißverfah¬ rens, Fig.2 eine schematische Darstellung von frequenzabhängi¬ gen Leistungsdichtespektren zur Erläuterung der Ermittlung der Durchgängigkeit der Dampfkapillare, und Fig.3 Meßergebnisse der Anordnung der Fig.l in Abhängig¬ keit von der Zeit.
Fig.l zeigt ein Werkstück mit zwei voneinander abgewen¬ deten Werkstückaußenflächen 12,13, auf die Hochenergie- Schweißstrahlen 10,11 einwirken. Die Einwirkung erfolgt gleichzeitig und führt unter Bildung von laserinduzierten Plasmen 15,22 zu einer Dampfkapillaren 14, die in der schema- tischen Darstellung vergrößert und durchgängig dargestellt wurde. Der in Fig.l gestrichelte Bereich des Werkstücks 23 soll die Schmelzzone symbolisieren.
Das gleichzeitige bzw. simultane Schweißen des Werk- Stücks von beiden Werkstückseiten 18,19 bewirkt eine symme¬ trische Wärmeeinbringung und hat eine symmetrische Naht mit einem eben solchen Eigenspannungsfeld zur Folge. Eine beid¬ seitig geöffnete Dampfkapillare ermöglicht eine nahezu voll¬ ständige Ausgasung. Aufgrund der besonderen Randbedingungen der Wärmeführung kann der Überlappungsgrad in der Stoßmitte bzw. in der Werkstückmitte mit geringerem Energieaufwand her¬ gestellt werden, als wenn von den beiden Werkstückseiten her nacheinander geschweißt wird. Der Prozeßwirkungsgrad des beidseitig gleichzeitigen Schweißens übertrifft daher den Prozeßwirkungsgrad des einseitigen Schweißens und des beid¬ seitigen sequentiellen Schweißens.
Um die aus der Fig.l ersichtliche Durchgängigkeit der Dampfkapillaren 14 zu erreichen, müssen die Hochenergie-
ERSATZBLAπ(REGEL26) Schweißstrahlen 10,11 so gesteuert werden, daß sie fluchten.
Hierzu muß ein die Fokussieroptik 24 bzw. 25 enthaltender Be¬ arbeitungskopf jeder der im übrigen nicht detailliert darge¬ stellten Schweißvorrichtungen entsprechend gesteuert werden. Die Steuerung kann in herkömmlicher Weise mit infolgedessen nicht dargestellten Mitteln durchgeführt werden.
Die Hochenergie-Schweißstrahlen 10,11 werden von ent¬ sprechenden Hochenergie-Erzeugern bereitgestellt, beispiels- weise von Lasern 1 und 2. Von den Lasern 1,2 wird Laserstrah¬ lung über Umlenkspiegel 16,17 der jeweiligen Fokussier- bzw. Bearbeitungsoptik 24 zugeführt, in denen jeweils ein weiterer Umlenkspiegel 24' die Strahlen 10,11 dem eigentlichen Fokus- sierspiegel 24 ' ' zuleitet, der die Strahlung auf die Bearbei- tungsstelle des Werkstücks 23 fokussiert, also denjenigen Be¬ reich, in dem in Fig.l die Dampfkapillare 14 dargestellt ist.
Der Laser 1 ist HF-angeregt . Die Einstellung seiner mittleren Leistung erfolgt über ein Puls-Weiten-Modulations- verfahren, das mit einer Frequenz von ca. 50 kHz arbeitet. Der Laser 2 ist DC-angeregt, also kontinuierlich und weist das vorerwähnte Modulationsspektrum nicht auf, hat also ins¬ besondere keinen dominanten Peak im Bereich von 50 kHz, wie ihn der Laser 1 besitzt.
Wird mit den Lasern 1,2 ein Schweißprozeß unter Bildung laserinduzierter Plasmen 15,22 über dem Werkstück 23 einge¬ leitet, so findet sich die im Frequenzspektrum des HF-ange¬ regten Lasers enthaltene Frequenz von ca. 50 kHz im Lei- stungsdichtespektrum der Strahlung des Plasmas 15 wieder. Hingegen weist das Leistungsdichtespektrum des Plasmas 22 im entsprechenden Frequenzbereich keine signifikanten Peaks auf, solange beide Schweißplasmen 15,22 links und rechts des Werk¬ stücks entkoppelt sind, weil die Dampfkapillare 14 undurch- gängig ist. Werden die Laser 1,2 so gesteuert, daß ihre Lei¬ stung ausreicht, um eine durchgängige Dampfkapillare 14 zu erzeugen, und fluchten die Hochenergie-Schweißstrahlen 10,11, so erfolgt eine Plasmakopplung oder es durchdringt ein Teil der modulierten Laserstrahlung des HF-angeregten Lasers 1 die
ERSATZBLAπ(REGEL26) Dampfkapillare und verursacht Intensitätsschwankungen der
Strahlung des Plasmas 22 mit der Modulationsfrequenz auf der Werkstückseite 18 des unmodulierten Laserstrahls 10. Diese kann dann dort nachgewiesen werden und hat somit die Qualität einer Indikationsfrequenz, durch deren Ermittlung zuverlässig festgestellt werden kann, daß die Dampfkapillare 14 durchgän¬ gig ist.
Zur Ermittlung der Indikationsfrequenz auf der Werk- stückseite 18 ist ein Strahlungssensor 20 in Gestalt einer Fotodiode vorhanden, die neben dem Schweißstrahl 10 in Meßnä¬ he zum Plasma 22 angeordnet ist. Der Fotodiode ist ein opti¬ sches Filter 20' vorgeordnet, um deren spektrale Empfindlich¬ keit zu begrenzen. Der Strahlungssensor 20 gibt Sensorsignale S2 ab, die bei Durchgängigkeit der Dampfkapillaren 14 die In¬ dikationsfrequenz aufweisen.
Um Störungen der Meßgenauigkeit auszuschließen, ist der Strahlungssensor 20 auf der Werkstückseite 18 so positio- niert, daß er nicht von Strahlung des Plasmas 15 erreicht werden kann. Für diese Positionierung ist in der Regel die Anordnung hinter dem Werkstück 23 ausreichend, welches als Sichtsperre wirkt und Strahlung des Plasmas 15 nicht zum Sen¬ sor 20 gelangen läßt.
Signale S2 können dazu verwendet werden, das Schweißver¬ fahren zu beeinflussen, insbesondere die beiden Schweißstrah¬ len 10,11. Bei Vorliegen eines Signals S2 mit Indikationsfre¬ quenz kann beispielsweise die mittlere Leistung des Lasers 1 zurückgefahren werden, wenn diese zuvor gesteigert wurde, um eine Durchgängigkeit der Dampfkapillaren 14 zu erreichen. Eine Steuerung der Schweißstrahlen 10,11 kann auch in dem Sinn erfolgen, daß deren Position geändert wird, damit die auf sie zurückgehenden Anteile an der Dampfkapillaren ausge- richtet werden, um eine Überlappung der Wurzelbereiche der Einzelkapillaren zu erreichen.
Fig.2 zeigt zur Erläuterung diagrammatische Darstellun¬ gen des Leistungsdichtespektrums (L-Dichte) in Abhängigkeit von der Frequenz für die beiden Plasmen 15,22 bei durchgängi¬ ger und undurchgängiger Kapillare. In beiden Fällen ist auf der Werkstückseite 19, wo sich das durch den HF-angeregten Laser 1 induzierte Plasma 15 befindet, jeweils ein ausgepräg- ter 50 kHz Peak vorhanden. Auf der gegenüberliegenden Werk¬ stückseite 18 weist das von dem DC-angeregten Laser 2 indu¬ zierte Plasma 22 einen 50 kHz Peak jedoch nur dann auf, wenn die Kapillare durchgängig ist. Das Vorhandensein dieser Indi¬ kationsfrequenz auf der dem Laser 1 gegenüberliegenden Werk- stückseite 18 kann also bei Durchgängigkeit der Dampfkapilla¬ ren 14 mit Sicherheit meßtechnisch festgestellt werden.
Aufgrund von Signalen S2 kann die notwendige Steuerung der Laser 1,2 bzw. der Hochenergie-Schweißstrahlen 10,11 durchgeführt werden. Eine Steigerung der Meßsensibilität er¬ gibt sich jedoch, wenn das Sensorsignal S2 in Bezug zur Indi¬ kationsfrequenz gesetzt wird. Hierzu ist in Fig.l darge¬ stellt, daß der Laser 1 ein Puls-Weiten-Modulationssignal als Referenz in einen Lock-in-Verstärker 26 eingibt, der ein Aus- gangssignal S3 ausgibt, welches die Durchgängigkeit der Ka¬ pillaren kennzeichnet. Zur Bedeutung dieses Signals S3 wird auf die Fig.3 hingewiesen, welche die Intensität der Hoch¬ energie-Schweißstrahlung in Abhängigkeit von der Zeit des Schweißverfahrens darstellt. Das Signal S2 entspricht den mit dem Strahlungssensor 20 aufgenommenen Strahlungsintensitäten des Plasmas 22, enthält also die Indikationsfrequenz, die vom Laser 1 herrührt. Das Signal Sl entspricht den Strahlungsin¬ tensitäten des Plasmas 15, die mit dem Strahlungssensor 21 aufgenommen wurden. Beide Signale werden mittels den in Fig.l dargestellten Meßverstärkern erzeugt.
Die Signale Sl, die das Puls-Weiten-Modulationssignal des Lasers 1 enthalten, also die Indikationsfrequenz aufwei¬ sen, zeigen, daß der Laserstrahl 11 während der Zeitinterval- le von 3 bis 4 s und von 6 bis 7 s abgeschaltet wurde, um während dieser Zeit eine undurchgängige Dampfkapillare zu er¬ halten. Demgegenüber sind die Signale S2 während der gesamten Schweißzeit von ca. 0,2 bis 8,5 s durchweg vorhanden. Dadurch ergibt sich bei entsprechender Anwendung der Lock-in-Technik
ERSÄTZBLAπ(REGEL26) der Verlauf der Signale S3 für die Kapillardurchgängigkeit.
Es läßt sich deutlich erkennen, daß während der Zeiten des Hochpegels von ca. 02, bis 3 s, von ca. 4 bis 6 s und von ca. 7 bis 8,5 s Kapillardurchgängigkeit gegeben ist, im Gegensatz zu den Zeiten von ca. 3 bis 4 s und von ca. 6 bis 7 s, in denen ein Niedrigpegel gegeben und infolgedessen die Nicht- durchgängigkeit der Dampfkapillaren 14 angezeigt ist.
Die zu Fig.2 vorerwähnten Leistungsdichtespektren lassen sich in geeigneter Weise ermitteln. Bei rechnergestützten Analysen können beispielsweise schnelle Fouriertransformatio- nen (FFT) off-line durchgeführt werden. Für EchtzeitSteuerung der beiden Schweißstrahlen 10,11 sind Spektrum-Analysatoren geeignet, wie beispielsweise der in Fig.l schematisch darge- stellte Lock-in-Verstärker 26.
Das vorbeschriebene geregelte Schweißverfahren erlaubt eine on-line Qualitätssicherung beim simultanen Schweißen mit Hochenergie-Schweißstrahlen. Das Verfahren kann zur Optimie- rung von Verfahrensparametern, zur Prozeßdatenerfassung und zur Verwendung für eine Regelung des Prozesses genutzt wer¬ den. Das Schweißverfahren wird insbesondere beim Schweißen mit Cθ2-Laserstrahlung eingesetzt, nämlich bei der Fertigung offener Träger und Halbzeuge, sowie bei der Sektionsfertigung im Stahl- und Schiffbau, im Offshore-Bereich, im Waggon- und Karosseriebau sowie bei Hebe- und Fördereinrichtungen. Bei allen hierfür in Frage kommenden Schweißverfahren kann bei allen beidseitig zugänglichen, im Vollanschluß gefügten Stoß- Konfigurationen von den Vorteilen infolge der Verbesserung der Durchgängigkeitsmessung der Dampfkapillaren Gebrauch ge¬ macht werden. Das gilt auch für Konfigurationen, bei denen die Hochenergie-Schweißstrahlen verfahrensbedingt unter einem Einstrahlwinkel von mehr als 10° zur Flächennormalen der mit der Strahlung beaufschlagten Werkstückoberfläche angestellt werden müssen, z.B. beim Schweißen von T-Stößen im Grobblech¬ bereich.

Claims

Ansprüche;
1. Schweißverfahren mit mehreren Hochenergie-Schweißstrah¬ len (10,11), insbesondere Laserstrahlen, bei dem die Schweißstrahlen (10,11) gleichzeitig auf zwei einander gegenüberliegende Werkstückaußenflächen (12,13) plasma- induzierend einstrahlen, und bei dem die beiden Schwei߬ strahlen (10,11) in Abhängigkeit von der Durchgängigkeit einer von beiden Strahlen (10,11) gebildeten Dampfkapil¬ laren (14) gesteuert werden, wobei die Durchgängigkeit der Dampfkapillaren (14) mittels Messung der Plasmafluk- tuation überwacht wird, dadurch gekennzeichnet, daß der
Hochenergiestrahlung mindestens eines Schweißstrahls
(10,11) eine Indikationsfrequenz aufmoduliert wird, und/oder daß das Frequenzspektrum mindestens eines
Schweißstrahls (10,11) eine ihn charakterisierende, vom anderen Schweißstrahl (11,10) unterscheidende Frequenz aufweist, und daß aus dem Schweißplasma der dem modu¬ lierten und/oder charakterisierten Schweißstrahl (10,11) gegenüberliegenden Werkstückaußenfläche (12,13) die In¬ dikationsfrequenz und/oder die charakterisierende Fre- quenz ermittelt wird.
2. Schweißverfahren nach Anspruch 1, dadurch gekennzeich¬ net, daß als Indikations- und/oder charakteristische Frequenzen solche gewählt werden, die oberhalb der bei Schweißplasmafluktuationen typischerweise auftretenden Frequenzen von bis zu praktisch 10 kHz liegen.
3. Schweißverfahren nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß als Indikationsfrequenz diejenige Frequenz verwendet wird, die zur Einstellung der mittleren Laser¬ leistung eines HF-angeregten Lasers (1) mit einem Puls- Weiten-Modulationsverfahren dient.
4. Schweißverfahren nach einem der Ansprüche 1 bis 3, da- durch gekennzeichnet, daß einer der beiden Schweißstrah-
ERSATZBLAπ(REGEL26) len (10) von einem DC-angeregten Laser (2) und der an¬ dere der beiden Schweißstrahlen (11) von einem HF-ange¬ regten Laser (1) erzeugt wird, oder daß die beiden Schweißstrahlen (10,11) von zwei DC-angeregten Lasern mit voneinander unterschiedlichen FrequenzSpektren er¬ zeugt werden, oder daß die beiden Schweißstrahlen (10,11) von zwei HF-angeregten Lasern mit unterschiedli¬ chen Puls-Weiten-Modulationsfrequenzen erzeugt werden.
5. Schweißverfahren nach einem der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, daß ein Strahlungssensor (20) aus¬ serhalb des Strahlungsbereichs und/oder ein akustischer Sensor außerhalb des Schallbereichs desjenigen Plasmas (15) angeordnet ist, das vom modulierten und/oder charakterisierten Schweißstrahl erzeugt wird.
6. Schweißverfahren nach einem der Ansprüche 1 bis 5, da¬ durch gekennzeichnet, daß der Strahlungssensor (20) oder ein akustischer Sensor in der Nähe des Plasmas (22) der- jenigen Werkstückaußenfläche (12,13) angeordnet wird, die dem modulierten und/oder charakterisierten Schwei߬ strahl (10,11) gegenüberliegt.
7. Schweißverfahren nach einem der Ansprüche 1 bis 6, da- durch gekennzeichnet, daß als Strahlungssensor (20) eine
Fotodiode mit einem die spektrale Empfindlichkeit be¬ grenzenden Filter (20') eingesetzt wird.
8. Schweißverfahren nach einem der Ansprüche 1 bis 7, da- durch gekennzeichnet, daß die Durchgängigkeit der Dampf¬ kapillare (14) anzeigende Signale (S3) erzeugt werden, indem aufgrund von in die Dampfkapillare (14) eindrin¬ gender indikationsfrequenzmodulierter und/oder frequenz¬ charakterisierter Hochenergiestrahlung erzeugte Sensor- Signale (S2) in Bezug zu der Indikations- und/oder Cha¬ rakterisierungsfrequenz gesetzt werden.
9. Schweißverfahren nach Anspruch 8, dadurch gekennzeich¬ net, daß das Inbezugsetzen der Signale (S2,S3) nach dem Lock-in-Verfahren durchgeführt wird.
ERSATZBLAπ(REGEL26)
PCT/DE1996/000786 1995-07-25 1996-05-06 Schweissverfahren mit mehreren hochenergie-schweissstrahlen WO1997004915A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19527070A DE19527070C1 (de) 1995-07-25 1995-07-25 Schweißverfahren mit mehreren Hochenergie-Schweißstrahlen
DE19527070.3 1995-07-25

Publications (1)

Publication Number Publication Date
WO1997004915A1 true WO1997004915A1 (de) 1997-02-13

Family

ID=7767688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000786 WO1997004915A1 (de) 1995-07-25 1996-05-06 Schweissverfahren mit mehreren hochenergie-schweissstrahlen

Country Status (2)

Country Link
DE (1) DE19527070C1 (de)
WO (1) WO1997004915A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820937B2 (en) * 2004-10-27 2010-10-26 Boston Scientific Scimed, Inc. Method of applying one or more electromagnetic beams to form a fusion bond on a workpiece such as a medical device
WO2015037457A1 (ja) * 2013-09-12 2015-03-19 Jfeスチール株式会社 レーザ溶接良否判定装置及びレーザ溶接良否判定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831558C1 (de) * 1998-07-14 2000-03-30 Siemens Ag Vorrichtung zum Laserbearbeiten von flachen Werkstücken
FR2873606B1 (fr) * 2004-07-27 2008-10-10 Snecma Moteurs Sa Procede de soudage par laser d'au moins deux pieces metalliques et dispositifs associes pour la mise en oeuvre du procede
CH705510B1 (de) 2011-09-09 2015-08-28 Thomas Meister Fackel, Verfahren zur Herstellung einer Fackel und Haltevorrichtung für eine derartige Fackel.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014578A1 (de) * 1991-02-26 1992-09-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum bearbeiten von werkstücken mit laserstrahlung
DE4216643A1 (de) * 1992-05-20 1993-11-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Schweißen mit mehreren Hochenergie-Schweißstrahlen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014578A1 (de) * 1991-02-26 1992-09-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum bearbeiten von werkstücken mit laserstrahlung
DE4216643A1 (de) * 1992-05-20 1993-11-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Schweißen mit mehreren Hochenergie-Schweißstrahlen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820937B2 (en) * 2004-10-27 2010-10-26 Boston Scientific Scimed, Inc. Method of applying one or more electromagnetic beams to form a fusion bond on a workpiece such as a medical device
WO2015037457A1 (ja) * 2013-09-12 2015-03-19 Jfeスチール株式会社 レーザ溶接良否判定装置及びレーザ溶接良否判定方法
US10002418B2 (en) 2013-09-12 2018-06-19 Jfe Steel Corporation Laser beam welding diagnosis apparatus and laser beam welding diagnosis method

Also Published As

Publication number Publication date
DE19527070C1 (de) 1996-10-10

Similar Documents

Publication Publication Date Title
EP0573474B1 (de) Verfahren zum bearbeiten von werkstücken mit laserstrahlung
DE60106444T2 (de) Verfahren zur feststellung, lokalisierung und identifizierung von fehlerstellen in einer schweissnaht mit einem laserstrahl
DE10013892A1 (de) Verfahren und Vorrichtung zur Bestimmung der Schweissqualität an einer Schweissnaht zwischen Werkstücken
DE3738540C2 (de) Einrichtung und Verfahren zum Überwachen der Einbrandtiefe beim Lichtbogenschweißen
WO2000029166A1 (de) Verfahren und vorrichtung zum bearbeiten von werkstücken mit hochenergiestrahlung
DE4320408C2 (de) Verfahren zur Prozeßkontrolle und -regelung bei der Oberflächenbearbeitung von Werkstücken mit gepulster Laserstrahlung
EP2194368B1 (de) Sensorsystem zum Erfassen und Spezifizieren von einzelnen Partikeln in einem Fluid
EP2567773A1 (de) Verfahren zum Überprüfen der Nahtqualität während eines Laserschweißprozesses
EP1099506A1 (de) Verfahren und Vorrichtung zur Messung von Prozessparametern eines Materialbearbeitungsprozesses
WO1995030140A1 (de) Verfahren und vorrichtung zur bestimmung von elementzusammensetzungen und -konzentrationen
DE102008006625B4 (de) Verfahren und Vorrichtung zur Überwachung des Laserstrahlschweißens von beschichteten Platinen
DE102009059245A1 (de) Verfahren und Vorrichtung zur Erfassung und Justierung des Fokus eines Laserstrahls bei der Laserbearbeitung von Werkstücken
EP0484282B1 (de) Verfahren und Anordnung zur Thermowellenanalyse
DE102021100664A1 (de) Lichtschnitt-Verfahren zur Bewegungsführung eines Schweißroboters und/oder zur Überprüfung, insbesondere einer Schweißnaht sowie Profilsensor für die Durchführung des Verfahrens
DE2702332C3 (de) Verfahren zur chemischen und mineralogischen Analyse des Erdbodens
DE10160623B4 (de) Vorrichtung und Verfahren zum Überwachen eines Laserbearbeitungsvorgangs, insbesondere eines Laserschweißvorgangs
DE4313287A1 (de) Verfahren und Vorrichtung zur On-Line Kontrolle und -Regelung der Einschweißtiefe beim Laserstrahlschweißen
WO1997004915A1 (de) Schweissverfahren mit mehreren hochenergie-schweissstrahlen
DE19822924C2 (de) Verfahren und Vorrichtung zur Messung der Verteilung der Energiefeldichte eines Laserstrahls
DE60200532T2 (de) System zur Kontrolle der Qualität einer Laserschweissung
DE19822855C1 (de) Verfahren und Vorrichtung zur Überwachung und/oder Dokumentation eines mit einem Laser vorgenommenen Bearbeitungsvorgangs
DE4231777C2 (de) Verfahren zur spektralen Analyse einer eine Flackerfrequenz aufweisenden technischen Flamme durch optische Emissions- oder Absorptionsspektroskopie und Anordnung zur Durchführung des Verfahrens
DE19644101C1 (de) Verfahren zum Erkennen des Strahldurchtritts bei der Bearbeitung eines Werkstücks mittels eines Laserstrahls
DE4006622C2 (de) Vorrichtung zum Überwachen von mit Laserstrahlung bearbeiteten Werkstücken
DE4423409C2 (de) Verfahren zur Bearbeitung eines Werkstücks mittels eines Laserstrahls

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase