WO1997004906A1 - Method of producing metal quantum dots - Google Patents
Method of producing metal quantum dots Download PDFInfo
- Publication number
- WO1997004906A1 WO1997004906A1 PCT/GB1996/001853 GB9601853W WO9704906A1 WO 1997004906 A1 WO1997004906 A1 WO 1997004906A1 GB 9601853 W GB9601853 W GB 9601853W WO 9704906 A1 WO9704906 A1 WO 9704906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- metal
- droplets
- quantum dots
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4486—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/483—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/3556—Semiconductor materials, e.g. quantum wells
Definitions
- the present invention relates to a method of producing metal quantum dots.
- the method enables metal quantum dots of uniform size to be produced which can be used in providing very regular metal layers.
- Quantum dots are defined as small particles whose linear dimension in all three directions is less than the de Broglie wavelength of the electrons or holes. Such particles can have a greatly modified electronic structure from the corresponding bulk material.
- methods of producing quantum dots have focussed on semiconductor material for use in the field of optoelectronics.
- a paper describing semiconductor quantum dots and some of their properties has been published in Angewandte Chemie International Edition (English) 1993, 32, at pages 41- 53: "semiconductor q-particles: chemistry in the transition region between solid state and molecules" by Horst Weller.
- a number of methods of producing semiconductor quantum dots have also been tried and these have been centred on the generation of colloids or inverse micelles or on "smokes”.
- the present invention provides a method of producing metal quantum dots, which method comprises providing a solution in an evaporable solvent of the metal in chemically combined form, passing the solution through an electrostatic capillary nozzle to form droplets of the solution in a chamber, irradiation of the droplets within the chamber with photons and removing the evaporable solvent from the droplets to form metal particles.
- the method starts with a solution in an evaporable solvent of the chosen metal in chemically combined form.
- the evaporable solvent is volatile in the sense that the solvent is evaporable under the reaction conditions used and may be water or an organic solvent whose nature is not important.
- the metal is typically present in the form of a salt, preferably a salt with a volatile anion such as nitrate or chloride.
- a wide variety of metals may be used indeed almost any metal which produces positive ions in solution such as Ag, Ni, Fe or Co.
- the solution may contain polyphosphate as stabiliser, for example in the form of sodium polyphosphate which has an average chain length of about 15 PO " 3 units.
- Polyphosphate is well suited for the stabilisation of nanometre size particles, because the chain is strongly bound by metal ions on to the particle surface. It causes electrostatic repulsion between particles because of its charge, and also keeps them apart sterically because of its chain length.
- Other frequently used stabilisers are thiols.
- the starting solution may contain an organic polymer which encapsulates the metal particle.
- organic polymers in solution or dispersion in the volatile liquid, are suitable and known to those working in the field. Examples of suitable polymers include polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate and polycarbonate. With each of the above examples of stabilisers, particle aggregation whilst in solution is prevented.
- the polyphosphate or organic polymer binds the dried particles into a film.
- the solution is converted into droplets, and ideally the size of these droplets is made as nearly uniform as possible.
- an electrostatic capillary nozzle is used in which a jet of aerosol droplets can be formed by the electrostatic deformation of a meniscus of the starting solution.
- the droplet size can be controlled by varying the flow rate from a reservoir and the voltage applied to the nozzle.
- the droplets emerge from the nozzle into a chamber preferably under low-pressure conditions and are irradiated preferably using a laser.
- the volatile solvent is evaporated off to leave the desired particles of metal.
- the particles are encapsulated in the polymer.
- the size of the resulting particles or quantum dots depends on two factors: the concentration of the chemically combined metal in the starting solution; and the size of the formed droplets. Both these variables are readily controlled and pre- determined either experimentally or theoretically to provide quantum dots of desired size, which is typically less than 25 nm, and preferably in the range 1 to 20 nm.
- FIG. 1 An example of a spray nozzle assembly which may be used to generate the desired droplet size is shown in Figure 1.
- the assembly consists of a reaction chamber 7 which is an evacuable chamber having inlet and outlet ports for the introduction and circulation, if desired, of a gas, e.g. nitrogen or argon.
- a capillary nozzle member 3 which may be a conventional capillary tube, projects into an upper region of the reaction chamber 7 and is connected to a reservoir 2 of the solution to be issued as an aerosol.
- the capillary nozzle member 2 which is preferably a metal capillary of stainless steel or platinum for example, is also connected to a voltage supply 1 for raising the voltage potential of the nozzle member so that it is positive with respect to a substrate 5 Iocated along the base of the reaction chamber 7.
- a laser 8 is positioned outside of the chamber 7 so as to irradiate the aerosol 4 formed at the nozzle 2 or in the region of Rayleigh Taylor cone.
- the chamber 7 may be substantially transparent to the laser light or may have a window (not shown) which is transparent.
- the positive potential is applied to the nozzle member 3 and the solution delivered from the reservoir 2 to the nozzle member 3 at a minimum permissible pressure.
- the aerosol droplets 4 formed fall from the nozzle member 3 under the effect of gravity and the applied voltage potential to the substrate 5 beneath.
- the laser 8 having an energy density preferably greater than 10 3 Wm 2 at a wavelength less than 700 nm.
- the solvent is evaporated leaving quantum dots of the element metal on the substrate 5.
- the assembly may be used to coat a static substrate or altematively could be used in a continuous process for the coating of a moving liner substrate such as a tape. In these circumstances the rate of movement of the tape must be matched to the arrival rate of the particles.
- the assembly can also be used to "write" a structure with the particles, such as a wave guide. Since the droplets are highly charged, they can be focussed and deflected in any conventional manner to control the deposition site of the particles on the substrate.
- a single layer of quantum dots may be deposited on the substrate. Also, the layer(s) of quantum dots may coalesce on the substrate to form a continuous thin film.
- the resulting particles will have some forward momentum, and are deposited on the substrate placed under the nozzle.
- the particles also can be dispersed into a liquid carrier, e.g. a solution of the aforementioned polymers, which may then be coated onto a substrate, e.g. by spin coating and dried.
- Example 1 A starting solution was prepared consisting of 10 3 M silver nitrate which is diluted with methanol. The solution was supplied to the electrostatic spray nozzle assembly shown in Figure 1 , operated at 1-10 keV, so as to generate aerosol droplets of diameter 0.1 to 10 ⁇ m. The Rayleigh Taylor cone and the aerosol were illuminated using a He-Ne laser (633 nm) having 1mW output power with a beam having a cross-section at the nozzle of around 1mm 2 .
- a starting solution was prepared consisting of 10 "3 M silver nitrate, the solution also containing 1 M sodium hexametaphosphate and was diluted with methanol.
- the solution was supplied to the electrostatic spray nozzle assembly operated as 1-10 keV so as to generate aerosol droplets of diameter 0.1 to 10 ⁇ m.
- the aerosol was illuminated as described in Example 1.
- the methanol evaporated off to give particles of Ag with the hexametaphosphate forming an inorganic polymer which encapsulated the particles and formed a polyphosphate film containing the particles.
- Altemative stabilisers or polymers such as polyvinyl alcohol have been used, with similar results.
- Example 3 A starting solution was prepared consisting of 10 "1 M nickel chloride in water which was then diluted with methanol to provide a 10 '3 M solution. As described above the solution was supplied to the nozzle assembly which was held at a potential of 1-10 keV, preferably 4 keV, thereby generating aerosol droplets of the desired diameter and irradiated. The methanol evaporated off to give particles of nickel. The same method has also been employed with nickel nitrate.
- a starting solution was prepared consisting of 10 "1 M iron nitrate in water which was then diluted with methanol to provide a 10 3 M solution.
- the solution was supplied to the electrostatic capillary nozzle which was held at a positive potential >3 keV.
- the resultant aerosol was irradiated as described earlier using a He-Ne laser.
- the methanol evaporated off to give particles of iron which oxidised after exposure to air to form iron oxide particles.
- the same method has also been employed using cobalt nitrate to produce cobalt oxide quantum dots.
- Metal particles of the size described above have applications in many industries. For example, ferromagnetic material becomes superparamagnetic when made into fine particles. Such a material retains a high magnetic permeability but shows no hysteresis, remanence or coercivity and can be usefully employed in miniature inductors, and electric motors etc. as magnetic losses can be eliminated. Also fine metal particles can be used in dyes for plastics, glasses or ceramics for example. Moreover, very non-linear optical properties can be obtained with sub 10 nm metal particles for example. Other and further applications of metal particles manufactured by the method described herein are envisaged.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Chemically Coating (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP96925896A EP0871557B1 (en) | 1995-07-27 | 1996-07-29 | Method of producing metal quantum dots |
| US09/000,272 US5965212A (en) | 1995-07-27 | 1996-07-29 | Method of producing metal quantum dots |
| JP9507367A JPH11510314A (ja) | 1995-07-27 | 1996-07-29 | 金属量子ドットの製造法 |
| DE69604089T DE69604089T2 (de) | 1995-07-27 | 1996-07-29 | Verfahren zur herstellung von metallquanteninseln |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB9515439.9A GB9515439D0 (en) | 1995-07-27 | 1995-07-27 | Method of producing metal quantum dots |
| GB9515439.9 | 1995-07-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997004906A1 true WO1997004906A1 (en) | 1997-02-13 |
Family
ID=10778372
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1996/001853 Ceased WO1997004906A1 (en) | 1995-07-27 | 1996-07-29 | Method of producing metal quantum dots |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US5965212A (enExample) |
| EP (1) | EP0871557B1 (enExample) |
| JP (1) | JPH11510314A (enExample) |
| DE (1) | DE69604089T2 (enExample) |
| ES (1) | ES2137720T3 (enExample) |
| GB (1) | GB9515439D0 (enExample) |
| WO (1) | WO1997004906A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7829154B2 (en) | 2004-10-21 | 2010-11-09 | Hoya Corporation | Particle deposition apparatus, particle deposition method, and manufacturing method of light-emitting device |
Families Citing this family (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3012547B2 (ja) * | 1997-02-25 | 2000-02-21 | 日本ビクター株式会社 | 光記録媒体及びその製造方法 |
| US7294366B2 (en) * | 1998-09-30 | 2007-11-13 | Optomec Design Company | Laser processing for heat-sensitive mesoscale deposition |
| US7045015B2 (en) | 1998-09-30 | 2006-05-16 | Optomec Design Company | Apparatuses and method for maskless mesoscale material deposition |
| US8110247B2 (en) | 1998-09-30 | 2012-02-07 | Optomec Design Company | Laser processing for heat-sensitive mesoscale deposition of oxygen-sensitive materials |
| US20050156991A1 (en) * | 1998-09-30 | 2005-07-21 | Optomec Design Company | Maskless direct write of copper using an annular aerosol jet |
| US20040197493A1 (en) * | 1998-09-30 | 2004-10-07 | Optomec Design Company | Apparatus, methods and precision spray processes for direct write and maskless mesoscale material deposition |
| US7938079B2 (en) | 1998-09-30 | 2011-05-10 | Optomec Design Company | Annular aerosol jet deposition using an extended nozzle |
| US7108894B2 (en) * | 1998-09-30 | 2006-09-19 | Optomec Design Company | Direct Write™ System |
| US6179912B1 (en) | 1999-12-20 | 2001-01-30 | Biocrystal Ltd. | Continuous flow process for production of semiconductor nanocrystals |
| US20030106488A1 (en) * | 2001-12-10 | 2003-06-12 | Wen-Chiang Huang | Manufacturing method for semiconductor quantum particles |
| KR100682886B1 (ko) | 2003-12-18 | 2007-02-15 | 삼성전자주식회사 | 나노입자의 제조방법 |
| US7405002B2 (en) * | 2004-08-04 | 2008-07-29 | Agency For Science, Technology And Research | Coated water-soluble nanoparticles comprising semiconductor core and silica coating |
| US7534489B2 (en) * | 2004-09-24 | 2009-05-19 | Agency For Science, Technology And Research | Coated composites of magnetic material and quantum dots |
| US20060280866A1 (en) * | 2004-10-13 | 2006-12-14 | Optomec Design Company | Method and apparatus for mesoscale deposition of biological materials and biomaterials |
| US20060127931A1 (en) * | 2004-11-15 | 2006-06-15 | Bradley Schmidt | Particle detector with waveguide light confinement |
| US7938341B2 (en) | 2004-12-13 | 2011-05-10 | Optomec Design Company | Miniature aerosol jet and aerosol jet array |
| US7674671B2 (en) | 2004-12-13 | 2010-03-09 | Optomec Design Company | Aerodynamic jetting of aerosolized fluids for fabrication of passive structures |
| US7309642B2 (en) * | 2005-11-09 | 2007-12-18 | Hewlett-Packard Development Company, L.P. | Metallic quantum dots fabricated by a superlattice structure |
| US8167972B2 (en) | 2006-06-30 | 2012-05-01 | N.E. Chemcat Corporation | Process for producing metal nanoparticle and metal nanoparticle produced by the process |
| DE102006033037A1 (de) * | 2006-07-14 | 2008-01-24 | Universität Bielefeld | Einstufiges Verfahren zur Aufbringung einer Metallschicht auf ein Substrat |
| US7829162B2 (en) | 2006-08-29 | 2010-11-09 | international imagining materials, inc | Thermal transfer ribbon |
| WO2008063658A2 (en) | 2006-11-21 | 2008-05-29 | Qd Vision, Inc. | Semiconductor nanocrystals and compositions and devices including same |
| WO2008063652A1 (en) | 2006-11-21 | 2008-05-29 | Qd Vision, Inc. | Blue emitting semiconductor nanocrystals and compositions and devices including same |
| WO2008063653A1 (en) | 2006-11-21 | 2008-05-29 | Qd Vision, Inc. | Semiconductor nanocrystals and compositions and devices including same |
| DE102006060366B8 (de) * | 2006-12-16 | 2013-08-01 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Verfahren zur Herstellung von von einer Matrix abgedeckten Quantenpunkten |
| TWI482662B (zh) | 2007-08-30 | 2015-05-01 | Optomec Inc | 機械上一體式及緊密式耦合之列印頭以及噴霧源 |
| TWI538737B (zh) | 2007-08-31 | 2016-06-21 | 阿普托麥克股份有限公司 | 材料沉積總成 |
| US8887658B2 (en) | 2007-10-09 | 2014-11-18 | Optomec, Inc. | Multiple sheath multiple capillary aerosol jet |
| KR100981309B1 (ko) | 2007-12-06 | 2010-09-10 | 한국세라믹기술원 | 양자점 재료 증착박막 형성방법 및 그 생성물 |
| CN101279373B (zh) * | 2007-12-28 | 2010-05-19 | 天津大学 | 一种二次库仑分裂制备纳米颗粒的装置 |
| KR101995371B1 (ko) | 2008-04-03 | 2019-07-02 | 삼성 리서치 아메리카 인코포레이티드 | 양자점들을 포함하는 발광 소자 |
| US9525148B2 (en) | 2008-04-03 | 2016-12-20 | Qd Vision, Inc. | Device including quantum dots |
| US8816479B2 (en) | 2008-06-17 | 2014-08-26 | National Research Council Of Canada | Atomistic quantum dot |
| US8064059B2 (en) * | 2008-11-04 | 2011-11-22 | Alipasha Vaziri | Optical pulse duration measurement |
| US10994473B2 (en) | 2015-02-10 | 2021-05-04 | Optomec, Inc. | Fabrication of three dimensional structures by in-flight curing of aerosols |
| US10632746B2 (en) | 2017-11-13 | 2020-04-28 | Optomec, Inc. | Shuttering of aerosol streams |
| CN111826636B (zh) * | 2020-08-21 | 2022-12-13 | 南京工程学院 | 一种同腔制造氧化锌、氧化钛或氧化镍量子点的方法及设备 |
| TW202247905A (zh) | 2021-04-29 | 2022-12-16 | 美商阿普托麥克股份有限公司 | 用於氣溶膠噴射裝置之高可靠性鞘護輸送路徑 |
| WO2023228702A1 (ja) * | 2022-05-26 | 2023-11-30 | 克弥 西沢 | 導線、伝送装置、宇宙太陽光エネルギー輸送方法 |
| CN116510756B (zh) * | 2023-04-28 | 2023-10-03 | 广东工业大学 | 一种高熵氟化物量子点纳米酶、制备方法及其生化检测应用 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0266999A2 (en) * | 1986-11-04 | 1988-05-11 | Idemitsu Kosan Company Limited | A method for the preparation of finely divided metal particles |
| EP0328202A2 (en) * | 1988-02-12 | 1989-08-16 | Philips Electronics Uk Limited | Method of forming a quantum dot structure |
-
1995
- 1995-07-27 GB GBGB9515439.9A patent/GB9515439D0/en active Pending
-
1996
- 1996-07-29 WO PCT/GB1996/001853 patent/WO1997004906A1/en not_active Ceased
- 1996-07-29 JP JP9507367A patent/JPH11510314A/ja not_active Ceased
- 1996-07-29 US US09/000,272 patent/US5965212A/en not_active Expired - Fee Related
- 1996-07-29 EP EP96925896A patent/EP0871557B1/en not_active Expired - Lifetime
- 1996-07-29 DE DE69604089T patent/DE69604089T2/de not_active Expired - Fee Related
- 1996-07-29 ES ES96925896T patent/ES2137720T3/es not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0266999A2 (en) * | 1986-11-04 | 1988-05-11 | Idemitsu Kosan Company Limited | A method for the preparation of finely divided metal particles |
| EP0328202A2 (en) * | 1988-02-12 | 1989-08-16 | Philips Electronics Uk Limited | Method of forming a quantum dot structure |
Non-Patent Citations (2)
| Title |
|---|
| ZHU Y ET AL: "PREPARATION OF NANOCRYSTALLINE TIN POWDERS BY THE gamma-RADIATION METHOD", NANOSTRUCTURED MATERIALS, vol. 4, no. 8, 1 December 1994 (1994-12-01), pages 915 - 918, XP000478059 * |
| ZHU Y ET AL: "RADIATION-HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE COPPER POWDERS", MATERIALS SCIENCE AND ENGINEERING B, vol. B23, no. 2, 10 April 1994 (1994-04-10), pages 116 - 119, XP000483602 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7829154B2 (en) | 2004-10-21 | 2010-11-09 | Hoya Corporation | Particle deposition apparatus, particle deposition method, and manufacturing method of light-emitting device |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69604089D1 (de) | 1999-10-07 |
| DE69604089T2 (de) | 1999-12-23 |
| ES2137720T3 (es) | 1999-12-16 |
| EP0871557A1 (en) | 1998-10-21 |
| GB9515439D0 (en) | 1995-09-27 |
| EP0871557B1 (en) | 1999-09-01 |
| US5965212A (en) | 1999-10-12 |
| JPH11510314A (ja) | 1999-09-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0871557B1 (en) | Method of producing metal quantum dots | |
| Rubahn | Laser applications in surface science and technology | |
| JPH11514492A (ja) | 均一サイズの粒子の製造 | |
| Singh et al. | Nanomaterials: processing and characterization with lasers | |
| Park et al. | Crystallization of mesoscale particles over large areas | |
| Wegner et al. | Cluster beam deposition: a tool for nanoscale science and technology | |
| JP6364319B2 (ja) | 原子量子クラスター、その製造方法およびその使用方法 | |
| DE69924794T2 (de) | Magnetisches Speichermedium aus Nanopartikeln | |
| Kharisov et al. | Handbook of less-common nanostructures | |
| JP4467568B2 (ja) | 微粒子堆積装置及び微粒子堆積物製造方法 | |
| EP3197623B1 (en) | Method for making non-spherical nanoparticles and nanoparticle compositions made thereby | |
| WO2007090707A2 (de) | Thermisches spritzverfahren mit kolloidaler suspension | |
| US20080187683A1 (en) | Resonant infrared laser-assisted nanoparticle transfer and applications of same | |
| Zhang et al. | New insights into the multiexciton dynamics in phase-pure thick-Shell CdSe/CdS quantum dots | |
| Ebad-Sichani et al. | Nano-fabrication methods | |
| Salata et al. | Fabrication of PbS nanoparticles embedded in a polymer Film by a gas‐aerosol reactive electrostatic deposition technique | |
| Chantaramethakul et al. | Morphological evolution of gold nanoparticles synthesized via solution plasma sputtering: effect of sodium chloride concentration and storage time | |
| EP3094760B1 (en) | Laser direct synthesis and deposit of nanocomposite materials or nanostructures | |
| Laimer et al. | Size and velocity distribution of negatively charged helium nanodroplets | |
| Okuyama et al. | Nanoparticle preparation and its application-a nanotechnology particle project in Japan | |
| Xu et al. | Site-isolated upconversion nanoparticle arrays synthesized in polyol nanoreactors | |
| JP2011101941A (ja) | 中空微小体およびその作製方法 | |
| Bakhtiari et al. | The effect of applied electric field on the micromorphology of Pt nanoparticles synthesized by laser ablation | |
| USH872H (en) | Method of applying coatings to substrates | |
| Mao et al. | Coating carbon nanotubes with colloidal nanocrystals by combining an electrospraytechnique with directed assembly using an electrostatic field |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1996925896 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 507367 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09000272 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 1996925896 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1996925896 Country of ref document: EP |