WO1997004218A1 - Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine - Google Patents

Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine Download PDF

Info

Publication number
WO1997004218A1
WO1997004218A1 PCT/DE1996/001231 DE9601231W WO9704218A1 WO 1997004218 A1 WO1997004218 A1 WO 1997004218A1 DE 9601231 W DE9601231 W DE 9601231W WO 9704218 A1 WO9704218 A1 WO 9704218A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
support arm
bearing
bearing part
pipe
Prior art date
Application number
PCT/DE1996/001231
Other languages
English (en)
French (fr)
Inventor
Heinrich Oeynhausen
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to UA98010279A priority Critical patent/UA39224C2/uk
Priority to EP96922755A priority patent/EP0839261B1/de
Priority to PL96324519A priority patent/PL181549B1/pl
Priority to JP50614397A priority patent/JP3869009B2/ja
Priority to DE59605966T priority patent/DE59605966D1/de
Publication of WO1997004218A1 publication Critical patent/WO1997004218A1/de
Priority to US09/009,560 priority patent/US6030176A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/11Iron
    • F05D2300/111Cast iron

Definitions

  • the invention relates to a component for an exhaust nozzle of a turbomachine and a bearing of the turbomachine arranged in the exhaust nozzle.
  • the invention relates in particular to an exhaust gas connector for connecting a steam turbine, which relaxes steam, which serves as the fluid, until condensation, with a condenser.
  • an exhaust pipe which leads the steam flowing out of the steam turbine to the condenser in a substantially straight line.
  • An arrangement with a steam turbine, an exhaust pipe and a condenser, which is designed in this way, is in particular carried out for a steam turbine with a mechanical output of up to approximately 300 MW, as is used in a combined cycle power plant.
  • a combined cycle power plant is understood to mean a power plant in which mechanical power is generated both by a gas turbine and by a steam turbine, exhaust gases from the gas turbine being used to provide steam for the steam turbine.
  • the exhaust gas from the gas turbine is the sole heat source for providing the steam.
  • An exhaust pipe of the type mentioned at the outset is preferably carried out as a welded construction, that is to say welded together from correspondingly shaped steel sheets.
  • a frame for a bearing of the steam turbine that may be required inside the exhaust connection is connected to the actual exhaust connection by welded-in supports.
  • Necessary supply lines and discharge lines for operating the bearing especially supply lines for lubricating oil, pressure oil, sealing steam and air as well as discharge lines for oil, oil vapor and Waste steam, along with any necessary cables for electrical and electronic components for monitoring and possibly controlling the bearing, must be conducted in separate pipe ducts from outside the exhaust pipe through the exhaust pipe to the bearing.
  • the invention is therefore based on the object of specifying a component for an exhaust pipe of a flow machine and a bearing of the flow machine which is arranged in the exhaust pipe and which can be manufactured with as little effort as possible. which, if possible, only requires cheap materials and which uses the available space as best as possible with regard to the supply and discharge lines necessary for supplying the bearing, in order to impair the flow of the fluid as little as possible.
  • a component is specified for an exhaust pipe of a turbomachine and a bearing of the turbomachine which is arranged in the exhaust pipe and which is cast in one piece, and a connecting piece and / or a bearing part for receiving the bearing and a support arrangement with at least one support arm , which supports the bearing part or the nozzle part and surrounds a pipeline which leads through the nozzle part or the bearing part and a support arm.
  • the component according to the invention is accordingly manufactured as a single piece, it includes a part of the exhaust connector and / or a part of a frame for the bearing, namely the bearing part, and at least one support arm which holds the bearing part
  • a pipeline which leads through the support arm and is therefore suitable as a feed line or discharge line for a fluid which must be supplied to the bearing or removed from the bearing during operation.
  • a fluid which must be supplied to the bearing or removed from the bearing during operation.
  • several pipes can be led through a single support arm.
  • the support arm arrangement preferably has at least two support arms in the component, which improves the stability of the component and of the exhaust gas nozzle to be formed with this component.
  • the pipeline can in particular be a simple pipeline made of a single pipe which is cast into the support arm.
  • a simple pipe The preferred method for transporting a fluid is that it has a temperature which corresponds approximately to the temperature of the fluid flowing around the support arm, so that significant stresses due to very different temperatures need not be expected.
  • an insulating pipeline consisting of an outer pipe cast into the support arm and an inner pipe which is laid in the outer pipe and insulated against it can also be provided.
  • Such an isolating pipeline is particularly suitable for transporting a fluid, the temperature of which substantially deviates from the temperature of the component and of the flow medium flowing around it.
  • An important application in this sense is the use of an insulating pipeline for supplying sealing steam to the shaft seal in front of the bearing in an exhaust pipe of a steam turbine.
  • the sealing steam is fed to an associated pipeline, which establishes the connection to the shaft seal in the exhaust connection.
  • the so-called waste steam extraction is led through an insulating pipe through a support arm and connected to the shaft seal with a pipe connection.
  • the temperature of the barrier steam or vapor steam is high in order to avoid undesired condensation. For this reason, it is sensible to thermally insulate the pipeline used for the supply of the sealing steam or vapor. This is preferably done by means of an insulating pipeline.
  • the sealing steam or vapor is passed through the inner tube, and a space between the inner tube and the outer tube can be evacuated or otherwise thermally insulated.
  • the exhaust pipe connects a steam turbine to a condenser, it has a very low pressure during regular operation; For the desired insulation, it can therefore be sufficient that the gap between the inner tube and the outer tube only with the interior of the To connect exhaust pipe.
  • a large number of spacers are available.
  • Spacers can be separate components, for example stars, which are pushed onto the inner tube before it is pushed into the outer tube; it is also conceivable to provide the inner tube with outer ribs and / or the outer tube with inner ribs, which keep the outer tube and the inner tube spaced apart.
  • the use of ceramic spacers is also possible; if necessary, the gap can also be filled with an insulating material.
  • the component has a nozzle part and a housing part connected to it for a housing of the turbomachine.
  • the component can also, if necessary in addition to one
  • Sparoguß is a cast iron material that is characterized in the solid state by approximately spherical graphite precipitates in a metallic
  • Matrix It differs from ordinary cast iron, which has flake-like precipitates of graphite. Sparoguß is a material known in the relevant field, which is characterized by good castability as well as good machinability. A component made of Spargo cast can be machined with little effort in order to have one on contact surfaces to which other components have to be connected to achieve predetermined dimensional accuracy, as cannot be guaranteed in the context of a conventional casting process.
  • the pipeline is preferably made of steel, which is particularly important in connection with the selection of Sparoguß as a material for the rest of the component.
  • the term "steel" at this point should be interpreted according to its most general meaning; Accordingly, steel is an iron material which is distinguished from a cast iron material by a significantly lower carbon content, associated with it a significantly higher ductility, and a significantly higher melting point. In general, a steel only melts at a temperature around 200 ° C higher than a cast iron material. This means that a
  • Steel pipe does not melt when it is poured into a component, i.e. is built into the mold provided for casting the component and cast with the liquid cast iron material. Any dimensional stability which may be impaired due to the quite high temperature to which the tube is exposed can be countered by filling the tube with sand or another suitable filler, in particular a filler which can later be melted out.
  • sand or another suitable filler in particular a filler which can later be melted out.
  • the cast iron material and the steel used contain certain alloyed elements - this can be decided in accordance with the intended purpose of the cast iron material and steel according to the relevant professional judgment.
  • the nozzle part preferably has a flat side on which it is to be joined together with a nozzle part of another component for producing the exhaust gas nozzle, the flat side lying in a plane which contains an axis of rotation of the turbomachine.
  • the component is thus a half-shell for the exhaust gas connector, which accordingly has to be formed with two components to be placed on one another on corresponding flat sides.
  • the invention also relates to a set with at least two components which meet the above-mentioned requirements and each of which has a nozzle part, the nozzle parts forming an exhaust nozzle.
  • a set of literallyinde ⁇ t two components for a Abga ⁇ tutzen a turbomachine and a valve disposed in the exhaust nozzle stock 'of the turbomachine wherein jede ⁇ component jeweil ⁇ i ⁇ t integrally molded and a neck part ⁇ owie a support arm assembly and a pipeline aufwei ⁇ t which by a connecting portion and a support arm passes through it, and the nozzle parts form an exhaust nozzle closed about an axis of rotation of the turbomachine.
  • the set preferably comprises a lower component with two support arms arranged symmetrically to one another and vertically inclined with respect to a vertically aligned vertical axis, and an upper component arranged vertically above the lower component with a vertically aligned support arm. Furthermore, the lower component can have a third vertically extending support arm. Such an arrangement with three or four support arms ensures a particularly good support of the bearing laterally and vertically to the axis of rotation of the turbomachine.
  • the third support arm supports the bearing and is particularly suitable for a cast-in pipeline, which can be a simple pipeline and through which lubricating oil can be removed or supplied from the bearing.
  • a cast-in pipeline which can be a simple pipeline and through which lubricating oil can be removed or supplied from the bearing.
  • a plain bearing is usually used, so that operation requires the supply of oil in a substantial amount. This oil emerges from the bearing along the supported shaft and must be removed quickly and without accumulation of dust; Otherwise there is a risk that pressure builds up in the bearing housing and the function will be impaired. Such rapid removal of the oil is supported if it is carried out through a vertical pipe and using gravity.
  • the lower component has a lower connecting part and a lower bearing part and the upper component has an upper connecting part, and a middle component is provided with an upper bearing part, the lower bearing part being connected to the upper bearing part and the middle component being attached a separation point in a support arm is connected to the upper component.
  • a frame for the bearing is formed only with the lower and the middle component, the upper component can be removed from the set - that is, the exhaust gas connection can be opened - without having to open the frame for the bearing.
  • the bearing is thus easily accessible without having to be dismantled for it, and opens up a simple possibility for function control and revision.
  • the set according to the invention with at least two components particularly preferably forms an exhaust pipe for a steam turbine, as already indicated several times above.
  • Such an exhaust nozzle is also characterized by a particularly good use of the available space, and it does not require any separate installations to supply the bearings in the exhaust nozzle with the necessary operating materials.
  • FIG. 1 shows a longitudinal section through a steam turbine along with the associated exhaust nozzle
  • Figure 2 shows the exhaust pipe including a part of the housing of the steam turbine alone, also in longitudinal section;
  • FIG. 3 shows a cross section through one of the support arms shown in FIG. 2, as indicated by the line III-III in FIG. 2;
  • FIG. 4 shows a cross section through the exhaust nozzle according to FIG. 3;
  • FIG. 5 shows a cross section, as indicated by the lines V-V, through one of the inclined support arms in FIG. 4;
  • FIG. 6 shows a cross section through an approximately modified exhaust nozzle with three components
  • FIG. 8 views of a central component of the exhaust connector according to FIG. 6.
  • FIGS. 1 to 5 and 6 to 8 of the drawing show different sections or partial views of exemplary embodiments, corresponding reference symbols appear in the figures. For this reason, the following explanations are always related to all the figures that belong together; With reference to each figure, particular reference is made to those features which are particularly clearly recognizable on the basis of this figure.
  • FIG. 1 shows a turbomachine 1, namely a steam turbine, with an associated exhaust pipe 2, through which the steam which has been expanded in the steam turbine 1 is one Condenser is supplied.
  • a bearing 3 for a rotor 4 of the steam turbine 1 Arranged in the exhaust pipe 2 is a bearing 3 for a rotor 4 of the steam turbine 1, which is rotatable about an axis of rotation 5 and rotates about this axis of rotation 5 during operation.
  • the exhaust pipe 2 has a lower component 6 and an upper one
  • Each component 6 or 7 has a nozzle part 8 or 9, which forms the actual exhaust nozzle 2 with the nozzle part 8, 9 of the respective other component 6, 7.
  • each component 6 or 7 has an associated bearing part 10 or 11, both bearing parts 10, 11 forming a frame for the actual bearing 3.
  • Certain details of the bearing 3 and the sealing arrangement associated with the bearing 3, which are known in the art, can be seen from FIG. 1; for the sake of clarity, they are not discussed in detail here.
  • Each component 6, 7 has a vertical support arm 12 which connects the respective connector part 8 or 9 to the respective bearing part 10 or 11.
  • the components 6, 7 are made in one piece, namely cast in each case from Sparoguuß.
  • the vertical support arm 12 of the upper component 7 has a simple pipeline 13, consisting of a single pipe 13 cast into the support arm 12.
  • the upper bearing part 11 is cast with the support arm 12 in one piece.
  • the simple pipe 13 located therein serves to supply air into an intermediate space 14 between the shaft seal 15 and the bearing parts 10 and 11.
  • the vertical support arm 12 of the lower component 6 has two simple pipes 16 and 17.
  • Each simple pipe 16, 17 in turn consists of a single pipe 16, 17 cast into the support arm 12.
  • a housing part 18, which encloses a part of the steam turbine 1 and one, is molded onto each nozzle part 8, 9
  • Figure 2 shows the components 6 and 7 without the front part of the steam turbine and its other components.
  • the nozzle parts 8 and 9, the vertical support arms 12 and the bearing parts 10 and 11 are clearly recognizable.
  • a nozzle part 8 or 9 and a housing part 18 form in each case a unit on which there is no sharp transition from the nozzle part 8, 9 to the housing part 15; this transition is essentially determined by the housing 19 of the steam turbine 1 to be installed or installed.
  • the longitudinal section shown in FIG. 2 is a section in a vertical plane, a vertical axis 20, which defines the direction of the vertical in FIG. 2, is shown.
  • FIG. 3 shows a section through the vertical support arm 12 of the lower component 6, as indicated by the line III-III in FIG. 2.
  • the pipes 16 and 17 cast into the support arm 12, which have a different cross-sectional area and in particular the oil drain, can be clearly seen - or serve feed.
  • FIG. 4 shows a cross section, in particular along the vertical axis 20, through the exhaust gas connector according to FIG. 2. Again clearly visible are the lower component 6 and the upper component 7 with their connecting piece parts 8 and 9, respectively
  • a simple pipe 22, which extends into the lower bearing part 10 is guided in support arms 21 inclined with respect to the vertical axis 20, as well as an insulating pipe 23, 24 which leads into a shaft seal 15 leading pipe 25 opens.
  • the insulating pipelines 23, 24 are used to guide sealing and / or waste steam.
  • the lower component 6 has two inclined support arms 21 arranged symmetrically with respect to the vertical axis 20.
  • the connecting piece parts 8, 9 of the components 6 and 7 are joined together on flat sides 26, which (this can be seen particularly in FIG. 1) define a plane in which is the axis of rotation 5 of the steam turbine 1 (this can be seen from FIG. 1).
  • the connector parts 8 and 9 are thus half-shells of the exhaust gas connector 2.
  • An insulating pipeline 23, 24 is designed with an outer tube 23 cast into the inclined support arm 21 and an inner tube 24 laid insulatively in the outer tube 23. For the sake of clarity, means to keep the inner tube 24 spaced from the outer tube 23 are not shown; Details can be seen in FIG. 5.
  • All tubes 13, 16, 17, 22, 23, 24 are made of steel. They are cast in by installing them in the associated mold before casting component 6 or 7 and by casting them in the molten cast iron material. Since the melting point of a steel is usually significantly above the melting point of a cast iron material, the tubes 13, 16, 17, 22, 23, 24 do not melt in this procedure.
  • a suitable filler in particular sand
  • All known molding and casting processes are available for casting the components 6, 7.
  • the most cost-effective, and therefore preferably, is cast in the sand casting process, ie the casting mold is shaped with sand and the casting material is poured into the casting mold thus formed.
  • FIG. 5 shows a cross section through one of the inclined support arms 21, as can be seen in FIG. 4.
  • the sectional plane is indicated in FIG. 4 by the lines V-V.
  • Each inclined support arm 21 has a cast-in simple pipe 22 and a cast-in insulating pipe 23, 24.
  • Distance holder 27 for spacing the inner tube 24 from the outer tube 23 can also be seen in FIG. 5.
  • All isolating pipelines 23, 24 are outstandingly suitable for supplying hot fluids to the shaft seal 15 or for removing hot fluids from the shaft seal 15.
  • hot fluids are, for example, steam which is supplied to the bearing for sealing purposes and waste steam, ie steam, which licked out of the bearing, possibly contaminated with air and / or oil vapor and must be removed.
  • the exhaust pipe 2 and its components 6 and 7 reach temperatures of around 50 ° C., in particular between 40 ° C. and 60 ° C.
  • Hot steam which flows towards the bearing 3 or away from the bearing 3, on the other hand, has a temperature of around 200 ° C., in particular between 150 ° C. and 250 ° C.
  • the temperature of the corresponding support arm 21 remains close to the temperature of the other components of the exhaust connector 2 and heats up in particular at all by 10 ° C. This reliably prevents the occurrence of mechanical stresses.
  • Air is preferably conducted through the pipeline 13 in the upper vertical support arm 12 into the intermediate space 14 between the shaft seal 15 and the bearing 3.
  • additional pipes inside the exhaust pipe 2 are no longer required.
  • all the pipes 13, 22, 23, 24, which connect the bearing 3 to devices outside the actual steam turbine 1 are completely cast in and are thus encased by the material of the components 6 and 7.
  • FIG. 6 shows, similar to FIG. 2, a cross section through an exhaust gas connector, which distinguishes itself from the exhaust gas connector recognizable from FIG. 5 in that it does not consist of two, but rather of three components 6, 7 and 29.
  • a middle component 29 occurs, which the upper bearing part 11 and most of the vertical support arm 12 between the has upper bearing part 11 and the upper neck part 9.
  • the upper component 7 and the central component 29 abut one another at a separation point 28 in the support arm 12 mentioned.
  • the upper component 7 comprises a support arm 12 - in any case, there is an attachment to this support arm 12.
  • the arrangement according to FIG. 6 has the advantage that the upper bearing part 11 does not necessarily have to be removed when dismantling;
  • the bearing 3 of the steam turbine 1 can remain unchanged and is accessible for simple inspection or revision after removal of the upper component 7.
  • the frame for the bearing 3 can also be put together much more easily without the upper socket part 9 having to be manipulated simultaneously with the upper bearing part 11.
  • FIGS. 7 and 8 show mutually orthogonal longitudinal sections through the central component 29.
  • the invention relates to a component for an exhaust pipe of a flow machine, in particular a steam turbine, which contains any necessary pipelines as integral components and can be cast integrally.
  • the invention also relates to a set of several such components, the exhaust connector being formed entirely from these components. The advantages mentioned open up in a special way for such an exhaust nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supercharger (AREA)
  • Exhaust Silencers (AREA)

Abstract

Die Erfindung betrifft ein Bauteil (6, 7, 29) für einen Abgasstutzen (2) einer Strömungsmaschine (1), insbesondere einer Dampfturbine (1), und ein in dem Abgasstutzen (2) angeordnetes Lager (3) der Strömungsmaschine (1). Das Bauteil (6, 7) ist einstückig gegossen und hat ein Stutzenteil (8, 9) und/oder ein Lagerteil (10, 11) zur Aufnahme des Lagers (3) sowie eine Tragarmanordnung (12, 21) mit zumindest einem Tragarm (12, 21). Außerdem gibt es eine Rohrleitung (13, 16, 17, 22, 23, 24) welche durch ein Stutzenteil (8, 9), einen Tragarm (12, 21) und ein Lagerteil (10, 11) hindurchführt und in das Bauteil (6, 7, 29) eingegossen ist. Die Erfindung betrifft auch einen Satz mit zumindest zwei solcher Bauteile (6, 7, 29), die einen Abgasstutzen (2) und ein Gestell für das Lager (3) der Strömungsmaschine (1) bilden.

Description

Beschreibung
GUSSGEHÄUSE FÜR EINEN ABGASSTUTZEN EINER STROMUNGSMACHINE, INSBESONDERE EINER DAMPFTURBINE
Die Erfindung betrifft ein Bauteil für einen Abgasstutzen ei¬ ner Strömungsmaschine und ein in dem Abgasstutzen angeordne¬ tes Lager der Strömungsmaschine.
Die Erfindung bezieht sich insbesondere auf einen Abgasstut¬ zen zur Verbindung einer Dampfturbine, die Dampf, welcher alε Strömungsmittel dient, bis zur Kondensation entspannt, mit einem Kondensator. Insbesondere wird Bezug genommen auf einen Abgasstutzen, der den der Dampfturbine entströmenden Dampf im wesentlichen geradlinig zu dem Kondensator führt. Eine Anord¬ nung mit einer Dampfturbine, einem Abgasstutzen und einem Kondensator, die derartig gestaltet ist, wird insbesondere ausgeführt für eine Dampfturbine mit einer mechanischen Lei¬ stung biε zu etwa 300 MW, wie sie in einem Kombikraftwerk zum Einsatz kommt. Unter einem Kombikraftwerk wird ein Kraftwerk verstanden, in dem mechanische Leistung εowohl von einer Gas¬ turbine als auch von einer Dampfturbine erzeugt wird, wobei Abgase der Gasturbine zur Bereitstellung von Dampf für die Dampfturbine herangezogen werden. Im Rahmen einer Auεfüh- rungsform, die derzeit besonderes Interesεe am Markt findet, ist das Abgas der Gasturbine die alleinige Wärmequelle zur Bereitstellung deε Dampfes.
Eine Abgasstutzen der eingangs erwähnten Art wird gemäß ge- läufiger Praxis vorzugsweiεe alε Schweißkonstruktion ausge¬ führt, d.h. auε entεprechend geformten Stahlblechen zusammen¬ geschweißt. Ein Gestell für ein im Inneren deε Abgasεtutzenε eventuell erforderlicheε Lager der Dampfturbine wird über eingeschweißte Stützen mit dem eigentlichen Abgaεstutzen ver- bunden. Notwendige Zuleitungen und Ableitungen zum Betrieb des Lagers, insbesondere Zuleitungen für Schmieröl, Drucköl, Sperrdampf und Luft sowie Ableitungen für Öl, Öldunst und Wraεendampf nebεt eventuell notwendigen Kabeln für elektri¬ sche und elektronische Bauelemente zur Überwachung und even¬ tuellen Steuerung deε Lagerε müεεen in εeparaten Rohrkanälen von außerhalb deε Abgaεstutzenε durch den Abgasstutzen hin- durch zum Lager geführt werden. Hierfür sind aufwendige Kon¬ struktionen erforderlich, da zwischen dem Innenraum des Ab¬ gasstutzens, durch den der kondensierende Dampf strömen muß, und dem Lager eine vollständige Dichtigkeit erforderlich ist, um einen Übertritt von Öl oder Luft auε dem Lager in den kon- denεierenden Dampf zu verhindern. Öl oder Luft würde nämlich den in der Dampfturbine ablaufenden thermodynamiεchen Prozeß erheblich beeinträchtigen. Die biεher auε dieεen Erwägungen reεultierenden, aufwendigen Konstruktionen haben einen weite¬ ren Nachteil unabhängig davon, ob die Anordnungen von Tragar- men, Stützen und Rohrleitungen nach Art eines Fachwerks oder jeweils radial gerichtet in den Abgasstutzen eingebaut sind. In jedem Fall behindern dieεe Einbauten die Strömung deε Dampfes in durchaus beträchtlichem Umfang und führen dazu, daß der Gegendruck am Auslaß der Dampfturbine, der unter an- derem die von der Dampfturbine abgegebene Leiεtung bestimmt, erhöht wird. Dieε bedeutet eine Beeinträchtigung ihrer Lei¬ εtung und ihres Wirkungεgradeε.
Abgaεεtutzen in geεchweißter und/oder geεchraubter oder anderweitig auε Einzelteilen zuεammengebauter Form gehen hervor aus der CH 570 549 A5, der CH 685 448 A5 und dem US- Patent 2,414,814.
Andere Nachteile der bisherigen Ausführungen für Abgasstutzer. sind begründet in dem hohen Aufwand, der zur Fertigung εolcher Abgaεεtutzen erforderlich iεt.
Auf der Grundlage der vorεtehenden Erwägungen liegt der Er¬ findung daher die Aufgabe zugrunde, ein Bauteil für einen Ab- gasεtutzen einer Strömungεmaεchine und ein in dem Abgaεεtut¬ zen angeordneteε Lager der Strömungεmaschine anzugeben, wel¬ ches mit möglichst geringem Aufwand gefertigt werden kann, welches nach Möglichkeit nur billige Materialien erfordert und welches hinsichtlich der zur Verεorgung des Lagers not¬ wendigen Zu- und Ableitungen den verfügbaren Raum so gut wie möglich auεnutzt, um die Strömung deε Strömungsmittels so we- nig wie möglich zu beeinträchtigen.
Zur Lösung dieser Aufgabe angegeben wird ein Bauteil für ei¬ nen Abgasstutzen einer Strömungsmaεchine und ein in dem Ab¬ gasstutzen angeordnetes Lager der Strömungsmaschine, welcheε einstückig gegosεen iεt und ein Stutzenteil und/oder ein Lagerteil zur Aufnahme deε Lagerε εowie eine Traganordnung mit zumindeεt einem Tragarm, die das Lagerteil bzw. das Stutzenteil abstützt und eine Rohrleitung umgibt, welche durch das Stutzenteil bzw. daε Lagerteil εowie einen Tragarm hindurchführt, aufweiεt.
Daε erfindungsgemäße Bauteil iεt demnach alε ein einziges Stück gefertigt, eε beinhaltet einen Teil deε Abgaεstutzens und/oder ein Teil eines Gestellε für daε Lager, nämlich das Lagerteil, und zumindeεt einen Tragarm, der das Lagerteil
(und εpäter daε geεamte Lager) gegen daε Stutzenteil bzw. den ganzen Abgaεεtutzen abεtützen kann. Ih den Tragarm eingeformt iεt eine Rohrleitung, die durch den Tragarm hindurchführt und εomit geeignet ist alε Zuleitung oder Ableitung für ein Fluid, welches während deε Betriebε dem Lager zugeführt oder von dem Lager abgeführt werden muß. Je nach Anforderung können durchauε mehrere Rohrleitungen durch einen einzigen Tragarm hindurchgeführt sein.
Vorzugεweiεe hat die Tragarmanordnung in dem Bauteil zumin¬ dest zwei Tragarme, was die Stabilität deε Bauteilε und des mit diesem Bauteil zu bildenden Abgasεtutzenε verbessert.
Zur Auεführung der Rohrleitung in einem Tragarm gibt eε meh- rere Möglichkeiten. Die Rohrleitung kann inεbesondere eine einfache Rohrleitung aus einem einzelnen Rohr sein, welches in den Tragarm eingegosεen ist. Eine solche einfache Rohrlei- tung iεt bevorzugt zum Tranεport eineε Fluideε, daε eine Tem¬ peratur hat, welche mit der Temperatur deε den Tragarm um¬ strömenden Strömungsmittels ungefähr übereinstimmt, so daß nicht mit wesentlichen Spannungen aufgrund allzu sehr ver- schiedener Temperaturen gerechnet werden muß.
Fallε eine einfache Rohrleitung nicht ausreicht, kann auch eine isolierende Rohrleitung aus einem in den Tragarm einge¬ gossenen Außenrohr und einem in dem Außenrohr verlegten und gegen dieseε iεolierten Innenrohr vorgeεehen werden. Eine εolche iεolierende Rohrleitung iεt besonders geeignet zum Transport eines Fluides, deεsen Temperatur von der Temperatur des Bauteils und des dieεeε umεtrömenden Strömungεmittelε we¬ sentlich abweicht.
Eine wichtige Anwendung in diesem Sinne ist die Benutzung ei¬ ner isolierenden Rohrleitung zur Zuleitung von Sperrdampf zu der Wellendichtung vor dem Lager in einem Abgasεtutzen einer Dampfturbine. Der Sperrdampf wird einer zugeordneten Rohrlei- tung zugeführt, die die Verbindung zur Wellendichtung im Ab¬ gaεεtutzen herεtellt. Auf dieεelbe Art wird auch die εoge- nannte Wraεendampfabεaugung durch eine iεolierende Rohrlei¬ tung durch einen Tragarm geführt und mit einer Rohrverbindung an die Wellendichtung angeεchloεεen. Generell iεt die Tempe- ratur deε Sperrdampfeε oder Wraεendampfeε hoch, um eine unerwünεchte Kondensation zu vermeiden. Auε dieεem Grunde ist eε sinnvoll, die zur Zuleitung des Sperrdampfs oder Wrasen- dampfε benutzte Rohrleitung thermiεch zu iεolieren. Dieε erfolgt vorzugsweise mittels einer isolierenden Rohrleitung. Der Sperrdampf oder Wrasendampf wird durch daε Innenrohr geführt, und ein Raum zwiεchen dem Innenrohr und dem Außen¬ rohr kann evakuiert oder anderweitig thermiεch iεoliert werden. Verbindet der Abgaεεtutzen eine Dampfturbine mit ei¬ nem Kondenεator, εo herrεcht in ihm während deε regulären Be- triebε ein εehr niedriger Druck; für die gewünεchte Isolie¬ rung kann eε daher auεreichend εein, den Spalt zwiεchen dem Innenrohr und dem Außenrohr lediglich mit dem Innenraum des Abgasεtutzenε zu verbinden. Um einen Spalt zwiεchen dem Innenrohr und dem Außenrohr in einer iεolierenden Rohrleitung zu gewährleiεten, steht eine Vielzahl von Abstandshaltern zur Verfügung. Abstandhalter können separate Bauteile sein, bei- spielsweise Sterne, die auf das Innenrohr aufgeschoben wer¬ den, bevor dieses in das Außenrohr geschoben wird; es ist auch denkbar, daε Innenrohr mit außenεeitigen Rippen und/oder daε Außenrohr mit innenεeitigen Rippen zu verεehen, die das Außenrohr und das Innenrohr voneinander beabεtändet halten. Die Verwendung keramiεcher Abεtandεhalter ist ebenfalls mög¬ lich; gegebenenfalls kann der Spalt auch mit einem isolieren¬ den Material ausgefüllt werden.
Weiterhin bevorzugt ist es, daß das Bauteil ein Stutzenteil und ein daran angeεchloεεeneε Gehäuseteil für ein Gehäuse der Strömungsmaschine aufweist. Hierdurch kann die Konεtruktion und der Aufbau der Strömungεmaεchine und ihreε Abgaεεtutzenε weεentlich vereinfacht werden.
Daε Bauteil kann auch, gegebenenfalls zusätzlich zu einem
Stutzenteil wie beschrieben, ein Lagerteil für das Lager der Strömungsmaεchine aufweiεen. Solcherart wäre auch die Geεtal- tung des Lagers in daε die Erfindung darstellende Konzept eingebunden, worauε εich zuεätzliche Vorteile ergeben.
Für daε Bauteil jedweder Auεgeεtaltung wird alε Werkεtoff ein Gußeiεenwerkstoff bevorzugt, wobei besonderer Vorzug dem sogenannten "Spharoguß" zukommt. Spharoguß iεt ein Gußeiεen- werkεtoff, der sich in festem Zustand auszeichnet durch etwa kugelförmige Graphitausεcheidungen in einer metallischen
Matrix. Er unterscheidet sich damit von gewöhnlichem Gußei- εen, welches flockenförmige Auεεcheidungen von Graphit auf¬ weist. Spharoguß ist ein einεchlägig bekannteε Material, daε εich auεzeichnet εowohl durch gute Gießbarkeit alε auch durch gute Spanbarkeit. Ein Bauteil auε Spharoguß kann mit geringem Aufwand εpanend bearbeitet werden, um an Kontaktflächen, an die andere Komponenten angeschloεεen werden müεεen, eine vorgegebene Maßhaltigkeit zu erreichen, wie εie im Rahmen eineε herkömmlichen Gießprozeεεeε nicht gewährleiεtet werden kann.
Die Rohrleitung wird vorzugsweise aus einem Stahl herge¬ εtellt, waε insbesondere in Verbindung mit der Auswahl von Spharoguß als Werkεtoff für daε übrige Bauteil von Bedeutung iεt. Der Begriff "Stahl" iεt an dieser Stelle entsprechend seiner allgemeinsten Bedeutung auszulegen; demnach ist Stahl ein Eisenwerkεtoff, der sich gegenüber einem Gußeisenwerk¬ stoff durch einen deutlich geringeren Gehalt an Kohlenstoff, damit verbunden eine deutlich höhere Duktilität, und einen wesentlich höheren Schmelzpunkt auszeichnet. Im allgemeinen schmilzt ein Stahl erst bei einer um etwa 200° C höheren Tem- peratur als ein Gußeisenwerkstoff. Dies bedeutet, daß ein
Stahlrohr nicht schmilzt, wenn eε in ein Bauteil eingegossen, d.h. in die zum Gießen des Bauteilε vorgeεehene Form einge¬ baut und mit dem flüεεigen Gußeisenwerkstoff umgössen, wird. Eine eventuell beeinträchtigte Formstabilität aufgrund der immerhin recht hohen Temperatur, der das Rohr ausgesetzt wird, kann begegnet werden dadurch, daß daε Rohr mit Sand oder einem anderen geeigneten Füllstoff, inεbeεondere einem εpäter auεschmelzbaren Füllstoff, gefüllt wird. In diesem Zu¬ sammenhang kommt es nicht an auf die Frage, ob der verwendete Gußeiεenwerkεtoff und der verwendete Stahl beεtimmte zule¬ gierte Elemente enthalten,- hierüber kann in Anεehung der Zweckbeεtimmung deε Gußeiεenwerkεtoffε und deε Stahls nach einschlägigem fachmännischem Ermessen entschieden werden.
Außerdem bevorzugt hat das Stutzenteil eine plane Seite, an der es mit einem Stutzenteil eines anderen Bauteils zur Her¬ stellung des Abgasεtutzenε zuεammenzufügen iεt, wobei die plane Seite in einer Ebene liegt, welche eine Rotationsachse der Strömungsmaschine enthält. Insbeεondere iεt das Bauteil also eine Halbschale für den Abgasstutzen, welcher entspre¬ chend mit zwei an entεprechenden planen Seiten aufeinander zu legenden Bauteilen zu bilden iεt. Die Erfindung bezieht εich auch auf einen Satz mit zumindeεt zwei Bauteilen, die den obengenannten Anforderungen entspre¬ chen und deren jedes ein Stutzenteil aufweist, wobei die Stutzenteile einen Abgasεtutzen bilden.
Demnach wird erfindungsgemäß angegeben ein Satz mit zumindeεt zwei Bauteilen für einen Abgaεεtutzen einer Strömungsmaschine und ein in dem Abgasstutzen angeordnetes Lager' der Strömungs- maschine, wobei jedeε Bauteil jeweilε einstückig gegossen iεt und ein Stutzenteil εowie eine Tragarmanordnung und eine Rohrleitung aufweiεt, welche durch ein Stutzenteil und einen Tragarm hindurchführt, und wobei die Stutzenteile einen um eine Rotationsachse der Strömungsmaεchine geεchlossenen Abgasstutzen bilden.
Alle Ausführungen bezüglich der Vorteile, die anhand eines einzelnen Bauteils zu erzielen εind, und alle Hinweiεe, die εich auf vorteilhafte Auεgeεtaltungen eines einzelnen Bau- teils beziehen, gelten sinngemäß auch für den erfindungsgemä¬ ßen Satz mit zumindeεt zwei Bauteilen.
Vorzugsweiεe umfaßt der Satz ein untereε Bauteil mit zwei be¬ züglich einer vertikal auεgerichteten Vertikalachse εymme- triεch zueinander angeordneten und vertikal geneigten Tragar¬ men, und ein vertikal über dem unteren Bauteil angeordnetes oberes Bauteil mit einem vertikal auεgerichteten Tragarm. Weiterhin kann daε untere Bauteil einen dritten vertikal ver¬ laufenden Tragarm aufweiεen. Eine εolche Anordnung mit drei oder vier Tragarmen gewährleiεtet eine beεonderε gute Abstüt¬ zung des Lagers lateral und vertikal zur Rotationsachεe der Strömungsmaschine.
Der dritte Tragarm trägt zur Abstützung des Lagers bei und ist besonders geeignet für eine eingegosεene Rohrleitung, die eine einfache Rohrleitung sein kann und durch die Schmieröl aus dem Lager abgeführt oder zugeführt werden kann. Im Zuεam- menhang mit einer Strömungεmaεchine wird üblicherweiεe ein Gleitlager verwendet, daε zu εeinem Betrieb einer Zufuhr von Öl in erheblicher Menge bedarf. Dieses Öl tritt entlang der gelagerten Welle aus dem Lager aus und muß zügig und ohne Staubildung abgeführt werden; eε besteht ansonεten die Ge¬ fahr, daß es zu einem Druckaufbau im Lagergehäuse kommt und die Funktion beeinträchtigt wird. Eine εolche zügige Abfuhr des Öls wird unterεtützt, wenn sie durch eine vertikale Rohr¬ leitung und unter Ausnutzung der Schwerkraft erfolgt.
Mit besonderem Vorzug hat daε untere Bauteil ein untereε Stutzenteil und ein untereε Lagerteil εowie daε obere Bauteil ein oberes Stutzenteil, und es ist ein mittleres Bauteil vorgesehen mit einem oberen Lagerteil, wobei das untere Lagerteil mit dem oberen Lagerteil verbunden iεt und wobei daε mittlere Bauteil an einer Trennεtelle in einem Tragarm mit dem oberen Bauteil verbunden ist.
Da im Rahmen dieεer Auεführungsform der Erfindung ein Gestell für das Lager nur mit dem unteren und dem mittleren Bauteil gebildet wird, kann daε obere Bauteil auε dem Satz entfernt - also der Abgasεtutzen geöffnet - werden, ohne dabei daε Gestell für daε Lager öffnen zu müεεen. Daε Lager iεt εomit leicht zugänglich, ohne daß eε dafür demontiert werden müßte, und eine einfache Möglichkeit zur Funktionεkontrolle und Reviεion iεt erεchloεεen.
Der erfindungεgemäße Satz mit zumindeεt zwei Bauteilen bildet besonders bevorzugt einen Abgasstutzen für eine Dampfturbine, wie vorεtehend bereitε mehrfach angedeutet. Ein εolcher Ab¬ gaεεtutzen zeichnet εich auε durch eine beεonderε gute Aus¬ nutzung deε zur Verfügung εtehenden Raumε, und er erfordert keine εeparaten Einbauten, um daε Lager in dem Abgaεstutzen mit den notwendigen Betriebεstoffen zu versorgen.
Ein Ausführungsbeiεpiel der Erfindung iεt in der Zeichnung dargestellt. Im einzelnen zeigen: Figur 1 einen Längεεchnitt durch eine Dampfturbine nebεt zugehörigem Abgaεεtutzen;
Figur 2 den Abgasstutzen unter Einbeziehung eines Teils des Gehäuses der Dampfturbine allein, ebenfalls im Längsεchnitt;
Figur 3 einen Querεchnitt durch einen der auε Figur 2 er- εichtlichen Tragarme, wie angedeutet durch die Li¬ nie III-III in Figur 2;
Figur 4 einen Querεchnitt durch den Abgasstutzen gemäß Fi¬ gur 3;
Figur 5 einen Querschnitt, wie angedeutet durch die Linien V-V, durch einen der geneigten Tragarme in Figur 4;
Figur 6 einen Querεchnitt durch einen etwaε veränderten Abgaεεtutzen mit drei Bauteilen,-
Figur 7 und
Figur 8 Ansichten eines mittleren Bauteilε deε Abgaε- stutzens nach Figur 6.
Da die Figuren 1 bis 5 bzw. 6 biε 8 der Zeichnung verεchie- dene Schnitte oder Teilanεichten von Auεführungεbeiεpielen darεteilen, erscheinen in den Figuren übereinstimmende Bezugszeichen. Aus dieεem Grunde εind die nachfolgenden Auεführungen stets auf alle zusammengehörigen Figuren gemeinsam bezogen; besonderε hingewiesen wird anhand jeder Figur auf diejenigen Merkmale, die anhand dieser Figur besonderε deutlich erkennbar εind.
Figur 1 zeigt eine Strömungsmaschine 1, nämlich eine Dampf¬ turbine, mit einem zugehörigen Abgasεtutzen 2, durch den Dampf, welcher in der Dampfturbine 1 entεpannt wurde, einem Kondenεator zugeführt wird. In dem Abgaεεtutzen 2 angeordnet ist ein Lager 3 für einen Läufer 4 der Dampfturbine 1, wel¬ cher um eine Rotationsachse 5 drehbar iεt und sich während des laufenden Betriebs um dieεe Rotationεachεe 5 dreht. Der Abgasstutzen 2 hat ein unteres Bauteil 6 und ein oberes
Bauteil 7. Jedes Bauteil 6 oder 7 hat ein Stutzenteil 8 bzw. 9, welcheε mit dem Stutzenteil 8, 9 deε jeweilε anderen Bauteilε 6, 7 den eigentlichen Abgasstutzen 2 bildet. Außer¬ dem hat jedes Bauteil 6 oder 7 ein zugehöriges Lagerteil 10 bzw. 11, wobei beide Lagerteile 10, 11 ein Geεtell für daε eigentliche Lager 3 bilden. Gewiεεe fachnotoriεch bekannte Einzelheiten deε Lagerε 3 und der dem Lager 3 zugehörigen Dichtungsanordnung sind aus Figur 1 erkennbar; sie werden der Übersicht halber an dieser Stelle nicht eingehend erörtert. Jedes Bauteil 6, 7 weist einen vertikalen Tragarm 12 auf, welcher daε jeweilige Stutzenteil 8 oder 9 mit dem jeweiligen Lagerteil 10 bzw. 11 verbindet. Die Bauteile 6, 7 sind ein¬ stückig ausgeführt, nämlich jeweils auε Spharoguß gegossen. Der vertikale Tragarm 12 des oberen Bauteils 7 weist eine einfache Rohrleitung 13 auf, beεtehend auε einem in den Trag¬ arm 12 eingegoεεenen einzelnen Rohr 13. Daε obere Lagerteil 11 iεt mit dem Tragarm 12 aus einem Stück gegossen. Das darin befindliche einfache Rohr 13 dient der Zuführung von Luft in einen Zwiεchenraum 14 zwischen der Wellendichtung 15 und den Lagerteilen 10 und 11. Der vertikale Tragarm 12 deε unteren Bauteilε 6 weiεt zwei einfache Rohrleitungen 16 und 17 auf. Jede einfache Rohrleitung 16, 17 besteht wiederum auε einem einzelnen, in den Tragarm 12 eingegoεεenen Rohr 16, 17. An jedeε Stutzenteil 8, 9 angeformt iεt ein Gehäuseteil 18, welcheε einen Teil der Dampfturbine 1 umεchließt und einen
Anschluß für daε übrige Gehäuεe 19 der Dampfturbine 1 bildet.
Figur 2 zeigt die Bauteile 6 und 7 ohne den Vorderteil der Dampfturbine und deren weitere Komponenten. Deutlich erkenn- bar εind die Stutzenteile 8 und 9, die vertikalen Tragarme 12 und die Lagerteile 10 und 11. Im vorliegenden Ausführungsbei¬ spiel bilden ein Stutzenteil 8 oder 9 und ein Gehäuseteil 18 jeweils eine Einheit, an der es keinen scharfen Übergang von dem Stutzenteil 8, 9 zum Gehäuεeteil 15 gibt; dieser Übergang wird im wesentlichen durch das Gehäuse 19 der an- oder einzubauenden Dampfturbine 1 beεtimmt. Zur Verdeutlichung, daß der auε Figur 2 erkennbare Längεschnitt ein Schnitt in einer vertikalen Ebene ist, ist eine Vertikalachse 20, die die Richtung der Vertikalen in der Figur 2 definiert, einge¬ zeichnet.
Figur 3 zeigt einen Schnitt durch den vertikalen Tragarm 12 des unteren Bauteils 6, wie angedeutet durch die Linie III- III in Figur 2. Deutlich erkennbar sind die in den Tragarm 12 eingegossenen Rohre 16 und 17, die eine unterschiedliche Querschnittsfläche haben und insbesondere der Ölab- bzw. Zu- fuhr dienen.
Figur 4 zeigt einen insbeεondere entlang der Vertikalachse 20 geführten Querschnitt durch den Abgasεtutzen gemäß Figur 2. Wiederum deutlich erkennbar εind daε untere Bauteil 6 und das obere Bauteil 7 mit ihren Stutzenteilen 8 bzw. 9, ihren
Lagerteilen 10 bzw. 11 und ihren vertikalen Tragarmen 12. In bezüglich der Vertikalachse 20 geneigten Tragarmen 21 εind jeweilε eine einfache Rohrleitung 22 geführt, die bis in das untere Lagerteil 10 hineinreicht, sowie eine isolierende Rohrleitung 23, 24, die in eine zur Wellendichtung 15 führen¬ de Rohrleitung 25 mündet. Die isolierenden Rohrleitungen 23, 24 dienen der Führung von Sperr- und/oder Wraεendampf. Das untere Bauteil 6 hat zwei bezüglich der Vertikalachεe 20 εymmetrisch angeordnete geneigte Tragarme 21. Aneinanderge- fügt sind die Stutzenteile 8, 9 der Bauteile 6 und 7 an planen Seiten 26, welche (dies iεt inεbeεondere auε Figur l erkennbar) eine Ebene definieren, in der die Rotationεachse 5 der Dampfturbine 1 liegt (dies erschließt εich aus Figur 1) . Die Stutzenteile 8 und 9 εind somit Halbschalen deε Abgas- stutzenε 2. Aneinandergefügt εind die Bauteile 6 und 7 vor¬ zugεweiεe mittelε Schrauben, um zur Inεpektion der Dampftur¬ bine 1 oder dergleichen voneinander gelöεt werden zu können. Eine iεolierende Rohrleitung 23, 24 iεt auεgeführt mit einem in den geneigten Tragarm 21 eingegossenen Außenrohr 23 und einem in dem Außenrohr 23 isolierend verlegten Innenrohr 24. Mittel, um das Innenrohr 24 von dem Außenrohr 23 beabstandet zu halten, sind der Übersicht halber nicht dargeεtellt; Einzelheiten εind auε Figur 5 erkennbar. Alle Rohre 13, 16, 17, 22, 23, 24 beεtehen aus Stahl. Sie werden eingegossen, indem sie vor dem Guß deε Bauteilε 6 oder 7 in die zugehörige Gußform eingebaut und bei dem Guß von dem geεchmolzenen Guß- eisenwerkstoff eingehüllt werden. Da der Schmelzpunkt eines Stahls üblicherweiεe deutlich über dem Schmelzpunkt eineε Gußeisenwerkstoffε liegt, εchmelzen die Rohre 13, 16, 17, 22, 23, 24 bei dieser Prozedur nicht. Um zu verhindern, daß sie εich verbiegen oder anderweitig verformen, werden εie vor dem Guß mit einem geeigneten Füllstoff, insbeεondere Sand, ge¬ füllt. Zum Gießen der Bauteile 6, 7 εtehen alle bekannten Form- und Gießverfahren zur Verfügung. Am koεtengünεtigεten, und daher vorzugεweiεe, wird im Sandgußverfahren gegoεεen, d.h. die Gußform wird mit Sand geformt und der Gußeiεenwerk¬ εtoff in die so gebildete Gußform abgegossen.
Figur 5 zeigt einen Querschnitt durch einen der geneigten Tragarme 21, wie sie aus Figur 4 erkennbar sind. Die Schnitt- ebene ist in Figur 4 angedeutet durch die Linien V-V. Jeder geneigte Tragarm 21 weist eine eingegosεene einfache Rohrlei¬ tung 22 und eine eingegoεεene iεolierende Rohrleitung 23, 24 auf. Auch Abεtandεhalter 27 zur Beabεtandung deε Innenrohrε 24 vom Außenrohr 23 εind auε Figur 5 erkennbar.
Alle iεolierenden Rohrleitungen 23, 24 εind hervorragend geeignet zur Zufuhr heißer Fluide zur Wellendichtung 15 oder zur Abfuhr heißer Fluide von der Wellendichtung 15. Solche heißen Fluide εind z.B. Dampf, der dem Lager zu Abdichtungs- zwecken zugeführt wird, und Wraεendampf, alεo Dampf, welcher auε dem Lager herauεleckt, gegebenenfallε mit Luft und/oder Öldunεt verunreinigt iεt und abgeführt werden muß. Im Betrieb erreichen der Abgaεεtutzen 2 und εeine Bauteile 6 und 7 Temperaturen um 50 °C, inεbeεondere zwiεchen 40 °C und 60 °C. Heißer Dampf, der zu dem Lager 3 hin oder von dem Lager 3 wegfließt, hat hingegen eine Temperatur um etwa 200 °C, inεbeεondere zwiεchen 150 °C und 250 °C. Dadurch, daß εolcher Dampf in einem Innenrohr 24 einer iεolierenden Rohrleitung 23, 24 geführt wird, bleibt die Temperatur deε entεprechenden Tragarmε 21 in der Nähe der Temperatur der anderen Komponen¬ ten deε Abgaεεtutzenε 2 und erwärmt εich inεbeεondere allen- fallε um 10 °C. Daε Auftreten mechaniεcher Spannungen wird dadurch zuverlässig verhindert.
Durch die Rohrleitung 13 im oberen vertikalen Tragarm 12 wird vorzugsweise Luft in den Zwischenraum 14 zwischen Wellendich- tung 15 und Lager 3 geführt. Durch das Vorsehen einer ent¬ εprechenden Anzahl von Rohrleitungen 13, 22, 23, 24 εind zu¬ εätzliche Rohre im Inneren deε Abgaεεtutzenε 2 nicht mehr er¬ forderlich. Dann εind εämtliche Rohre 13, 22, 23, 24, die das Lager 3 mit Einrichtungen außerhalb der eigentlichen Dampf- turbine 1 verbinden, vollεtändig eingegoεεen und εomit um¬ hüllt von dem Material der Bauteile 6 und 7. Eε gibt keine freiliegenden Verbindungsstellen wie Flansche oder Muffen. Leckagen aus einem Rohr 13, 22, 23, 24 mit Öl oder Öldunst sind εomit vollständig ausgeεchloεsen. Eventuelle Leckagen aus den Verbindungsstellen der isolierenden Rohre 23, 24 zu den Rohrleitungen 25 der Wellendichtungen 15 εind unproblema- tiεch, da nur Dampf oder Wraεen auεtreten kann. Durch die gerundete Auεführung der Tragarme 12 und 21 iεt auch der Strömungεwiderεtand, den der Abgaεstutzen 2 einem durchströ- menden Strömungsmittel entgegensetzt, gering; eine Beein¬ trächtigung deε Betriebε der Dampfturbine 1 iεt somit keines- falls anzunehmen.
Figur 6 zeigt ähnlich der Figur 2 einen Querschnitt durch einen Abgasεtutzen, der εich gegenüber dem auε Figur 5 er¬ kennbaren Abgasstutzen dadurch auszeichnet, daß er nicht aus zwei, sondern auε drei Bauteilen 6, 7 und 29 beεteht. Zu dem gegenüber Figur 5 unveränderten unteren Bauteil 5 und einem oberen Bauteil 7, welcheε lediglich das obere Stutzenteil 9 sowie einen Teil des entsprechenden vertikalen Tragarms 12 trägt, tritt ein mittleres Bauteil 29, welcheε das obere Lagerteil 11 und den größten Teil des vertikalen Tragarms 12 zwischen dem oberen Lagerteil 11 und dem oberen Stutzenteil 9 aufweist. An einer Trennstelle 28 in dem erwähnten Tragarm 12 stoßen daε obere Bauteil 7 und daε mittlere Bauteil 29 anein¬ ander. Im Grunde kann immer noch geεagt werden, daß daε obere Bauteil 7 einen Tragarm 12 umfaεεe,- auf alle Fälle hat eε einen Ansatz dieseε Tragarmε 12. Einzelheiten der Zuordnung deε Tragarmeε 12 zu dem oberen Bauteil 7 und dem mittleren Bauteil 29 εind nach den Erforderniεεen deε jeweiligen Einzelfalls festzulegen. In jedem Fall hat die Anordnung gemäß Figur 6 den Vorzug, daß bei einer Demontage nicht notwendigerweise das obere Lagerteil 11 mit entfernt werden muß; daε Lager 3 der Dampfturbine 1 kann unverändert beεtehen bleiben und iεt nach Entfernung des oberen Bauteils 7 einer einfachen Kontrolle oder Reviεion zugänglich. Auch kann daε Geεtell für daε Lager 3 weεentlich einfacher zuεammengeεetzt werden, ohne daß gleichzeitig mit dem oberen Lagerteil 11 das obere Stutzenteil 9 manipuliert werden müßte.
Die Figuren 7 und 8 zeigen zueinander orthogonale Längε- εchnitte durch daε mittlere Bauteil 29. Erkennbar sind das obere Lagerteil 11, der teilweise vorhandene vertikale Trag¬ arm 12 mit eingegossener einfacher Rohrleitung 13 sowie (in Figur 7) Halteeinrichtungen 30 und 31, die zur Manipulation des mittleren Bauteils 29 oder für Befestigungen nützlich sein können.
Die Erfindung betrifft ein Bauteil für einen Abgasεtutzen einer Strömungεmaεchine, insbeεondere einer Dampfturbine, welcheε allfällig notwendige Rohrleitungen alε integrale Beεtandteile beinhaltet und einεtückig gießbar iεt. Der
Herεtellungεaufwand für ein εolcheε Bauteil iεt gegenüber der herkömmlichen Schweißtechnik deutlich reduziert; auch kann durch entεprechende Anordnung der vorzuεehenden Rohrleitungen in bedeutendem Umfang Platz geεpart werden. Dieε kann von Bedeutung sein für den Betrieb der Strömungsmaschine, da freiwerdender Platz für das von der Strömungsmaschine abströ- mende Strömungsmittel zur Verfügung steht, wodurch sich ein über dem Abgaεεtutzen anstehender Druckverlust bei der Durch¬ strömung mit dem Strömungsmittel verringert. Hierauε ergibt sich unmittelbar ein thermodynamischer Vorteil. Die Erfindung betrifft auch einen Satz auε mehreren εolcher Bauteile, wobei der Abgaεεtutzen vollständig aus diesen Bauteilen gebildet ist. Für einen εolchen Abgaεεtutzen erschließen sich die erwähnten Vorteile in besonderer Weise.

Claims

Patentanεprüche
1. Bauteil (6, 7, 29) für einen Abgasεtutzen (2) einer Strö¬ mungsmaschine (1) und ein in dem Abgasstutzen (2) angeordne- tes Lager (3) der Strömungsmaεchine (1), welcheε einεtückig gegossen ist und ein Stutzenteil (8, 9) und/oder ein Lager¬ teil (10, 11) zur Aufnahme deε Lagerε (3) sowie eine Tragar¬ manordnung (12, 21) mit zumindest einem Tragarm (12, 21), die das Lagerteil (10, 11) bzw. das Stutzenteil (8, 9) abstützt und eine Rohrleitung (13, 16, 17, 22, 23, 24) umgibt, welche durch das Stutzenteil (8, 9) bzw. daε Lagerteil (10, 11) εowie einen Tragarm (12, 21) hindurchführt, aufweiεt.
2. Bauteil (6, 7, 29) nach Anspruch 1, bei dem die Tragarman- Ordnung (12, 21) zumindest zwei Tragarme (12, 21) aufweist.
3. Bauteil (6, 7, 29) nach Anspruch 1 oder 2, bei dem die Tragarmanordnung (12, 21) einen Tragarm (12, 21) aufweist, in den eine einfache Rohrleitung (13, 16, 17) auε einem einzel- nen Rohr (13, 16, 17) eingegoεεen iεt.
4. Bauteil (6, 7, 29) nach einem der vorhergehenden Ansprü¬ che, bei dem die Tragarmanordnung (12, 21) einen Tragarm (12, 21) mit einer isolierenden Rohrleitung (23, 24) aus einem in den Tragarm (12, 21) eingegosεenen Außenrohr (23) und einem in dem Außenrohr (23) verlegten und gegen dieεeε iεolierten Innenrohr (24) aufweiεt.
5. Bauteil (6, 7, 29) nach einem der vorhergehenden Anεprü- ehe, welcheε ein Stutzenteil (8, 9) und ein daran angeschlos- εeneε Gehäuεeteil (18) zum Anεchluß an ein Gehäuεe (19) der Strömungsmaschine (1) aufweist.
6. Bauteil (6, 7, 29) nach einem der vorhergehenden Ansprü- ehe, welches ein Lagerteil (10, 11) aufweist. 7. Bauteil (6,
7, 29) nach einem der vorhergehenden Anεprü¬ che, welches auε einem Gußeiεenwerkεtoff, vorzugεweiεe Spharoguß, beεteht.
8. Bauteil (6, 7, 29) nach einem der vorhergehenden Anεprü¬ che, bei dem die Rohrleitung (13, 16, 17, 22, 23, 24) auε einem Stahl gefertigt ist.
9. Bauteil (6, 7, 29) nach einem der vorhergehenden Anεprüche mit einem Stutzenteil (8, 9) , daε eine plane Seite (26) hat, an welcher es mit einem Stutzenteil (8) eines anderen Bau¬ teils (6, 7) zusammenzufügen ist, wobei die plane Seite (26) eine Ebene definiert, die eine Rotationsachεe (5) der Strö- mungεmaεchine (1) enthält.
10. Satz mit zumindeεt zwei Bauteilen (6, 7, 29) nach An¬ εpruch 1, welche miteinander verbunden εind und deren jedeε ein Stutzenteil (8, 9) aufweiεt, wobei die Stutzenteile (8, 9) einen um eine Rotationεachεe (5) der Strömungεmaεchine (1) geschlossenen Abgasstutzen (2) bilden.
11. Satz nach Anspruch 10, bei dem die Bauteile (6, 7, 29) ein unteres Bauteil (6) mit zwei bezüglich einer vertikal ausgerichteten Vertikalachεe (20) εymmetriεch zueinander angeordneten und vertikal geneigten Tragarmen (21) εowie ein vertikal über dem unteren Bauteil (6) angeordneteε oberen Bauteil (7) mit einem vertikal auεgerichteten Tragarm (12) umfaεεen.
12. Satz nach Anεpruch 11, bei dem daε untere Bauteil (6) zu¬ εätzlich einen vertikal auεgerichteten Tragarm (12) aufweiεt.
13. Satz nach Anεpruch 11 oder 12, bei dem daε untere Bauteil (6) ein untereε Stutzenteil (8) und ein untereε Lagerteil (10) sowie das obere Bauteil (7) ein oberes Stutzenteil (9) aufweist, und welcher Satz ein mittleres Bauteil (29) mit einem oberen Lagerteil (11) umfaßt, wobei daε untere Lager- teil (10) mit dem oberen Lagerteil (11) verbunden ist und wobei daε mittlere Bauteil (29) an einer Trennstelle (28) in einem Tragarm (12, 21) mit dem oberen Bauteil (7) verbunden ist.
14. Satz nach einem der Anεprüche 10 bis 13, welcher einen Abgasstutzen (2) für eine Dampfturbine (1) bildet.
PCT/DE1996/001231 1995-07-19 1996-07-08 Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine WO1997004218A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
UA98010279A UA39224C2 (uk) 1995-07-19 1996-07-08 Деталь для вихлопного патрубка лопатевої машини і комплект з такими деталями
EP96922755A EP0839261B1 (de) 1995-07-19 1996-07-08 Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine
PL96324519A PL181549B1 (pl) 1995-07-19 1996-07-08 Króciec odlotowy maszyny przeplywowej, zwlaszcza turbiny parowej PL PL PL PL PL PL
JP50614397A JP3869009B2 (ja) 1995-07-19 1996-07-08 流体機械の排気接続部に対する構造部材
DE59605966T DE59605966D1 (de) 1995-07-19 1996-07-08 Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine
US09/009,560 US6030176A (en) 1995-07-19 1998-01-20 Structural member for an exhaust-gas connection of a turbomachine, in particular a steam turbine, and set of at least two structural members

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19526392.8 1995-07-19
DE19526392 1995-07-19
DE19615011.6 1996-04-16
DE19615011A DE19615011A1 (de) 1995-07-19 1996-04-16 Bauteil für einen Abgasstutzen einer Strömungsmaschine, insbesondere einer Dampfturbine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/009,560 Continuation US6030176A (en) 1995-07-19 1998-01-20 Structural member for an exhaust-gas connection of a turbomachine, in particular a steam turbine, and set of at least two structural members

Publications (1)

Publication Number Publication Date
WO1997004218A1 true WO1997004218A1 (de) 1997-02-06

Family

ID=26016961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001231 WO1997004218A1 (de) 1995-07-19 1996-07-08 Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine

Country Status (11)

Country Link
EP (1) EP0839261B1 (de)
JP (1) JP3869009B2 (de)
KR (1) KR19990029031A (de)
CN (1) CN1092749C (de)
CZ (1) CZ290254B6 (de)
DE (2) DE19615011A1 (de)
ES (1) ES2152536T3 (de)
PL (1) PL181549B1 (de)
RU (1) RU2162948C2 (de)
UA (1) UA39224C2 (de)
WO (1) WO1997004218A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017000A1 (de) 1997-09-26 1999-04-08 Siemens Aktiengesellschaft Gehäuse für eine strömungsmaschine
EP3249182A1 (de) * 2016-04-28 2017-11-29 General Electric Company Radialer abgasdiffusor
US20210332775A1 (en) * 2020-04-24 2021-10-28 Raytheon Technologies Corporation Housing less front bearing compartment for gas turbine engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547518B1 (en) 2001-04-06 2003-04-15 General Electric Company Low hoop stress turbine frame support
EP1650408B1 (de) * 2004-10-22 2013-03-27 Siemens Aktiengesellschaft Dampfturbine mit einer Strebe zum Abstützen eines Bauelements
JP4541950B2 (ja) * 2005-03-31 2010-09-08 株式会社日立製作所 タービン排気装置及びその改造方法
EP1793091A1 (de) * 2005-12-01 2007-06-06 Siemens Aktiengesellschaft Dampfturbine mit Lagerstreben
US8388314B2 (en) * 2011-04-21 2013-03-05 General Electric Company Turbine inlet casing with integral bearing housing
DE102018212131A1 (de) * 2018-07-20 2020-01-23 Siemens Aktiengesellschaft Kondensationsabdampfgehäuse für eine Dampfturbine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859935A (en) * 1951-02-15 1958-11-11 Power Jets Res & Dev Ltd Cooling of turbines
GB940195A (en) * 1962-03-14 1963-10-23 Rolls Royce Gas turbine engine
FR2181283A5 (de) * 1972-04-21 1973-11-30 Siemens Ag
CH570549A5 (de) * 1974-04-09 1975-12-15 Bbc Sulzer Turbomaschinen
US4183207A (en) * 1978-03-07 1980-01-15 Avco Corporation Oil-conducting strut for turbine engines
EP0251125A1 (de) * 1986-06-24 1988-01-07 Klöckner-Humboldt-Deutz Aktiengesellschaft Gehäusezentrierung
GB2226086A (en) * 1988-12-14 1990-06-20 Gen Electric Gas turbine engine frame
GB2281592A (en) * 1993-09-02 1995-03-08 Abb Management Ag Exhaust gas diffuser for gas turbines
CH685448A5 (de) * 1991-03-28 1995-07-14 Asea Brown Boveri Ag Ansaldo C Dampfturbogruppe.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859935A (en) * 1951-02-15 1958-11-11 Power Jets Res & Dev Ltd Cooling of turbines
GB940195A (en) * 1962-03-14 1963-10-23 Rolls Royce Gas turbine engine
FR2181283A5 (de) * 1972-04-21 1973-11-30 Siemens Ag
CH570549A5 (de) * 1974-04-09 1975-12-15 Bbc Sulzer Turbomaschinen
US4183207A (en) * 1978-03-07 1980-01-15 Avco Corporation Oil-conducting strut for turbine engines
EP0251125A1 (de) * 1986-06-24 1988-01-07 Klöckner-Humboldt-Deutz Aktiengesellschaft Gehäusezentrierung
GB2226086A (en) * 1988-12-14 1990-06-20 Gen Electric Gas turbine engine frame
CH685448A5 (de) * 1991-03-28 1995-07-14 Asea Brown Boveri Ag Ansaldo C Dampfturbogruppe.
GB2281592A (en) * 1993-09-02 1995-03-08 Abb Management Ag Exhaust gas diffuser for gas turbines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017000A1 (de) 1997-09-26 1999-04-08 Siemens Aktiengesellschaft Gehäuse für eine strömungsmaschine
KR100536508B1 (ko) * 1997-09-26 2005-12-14 지멘스 악티엔게젤샤프트 유체 기계용 하우징
EP3249182A1 (de) * 2016-04-28 2017-11-29 General Electric Company Radialer abgasdiffusor
US20210332775A1 (en) * 2020-04-24 2021-10-28 Raytheon Technologies Corporation Housing less front bearing compartment for gas turbine engine
US11352979B2 (en) * 2020-04-24 2022-06-07 Raytheon Technologies Corporation Housing less front bearing compartment for gas turbine engine

Also Published As

Publication number Publication date
DE19615011A1 (de) 1997-01-23
ES2152536T3 (es) 2001-02-01
DE59605966D1 (de) 2000-11-09
CZ290254B6 (cs) 2002-06-12
EP0839261A1 (de) 1998-05-06
JPH11509291A (ja) 1999-08-17
RU2162948C2 (ru) 2001-02-10
KR19990029031A (ko) 1999-04-15
PL181549B1 (pl) 2001-08-31
CN1191006A (zh) 1998-08-19
UA39224C2 (uk) 2001-06-15
CZ9998A3 (cs) 1998-05-13
PL324519A1 (en) 1998-06-08
JP3869009B2 (ja) 2007-01-17
EP0839261B1 (de) 2000-10-04
CN1092749C (zh) 2002-10-16

Similar Documents

Publication Publication Date Title
EP1608865B1 (de) Abgasw rmetauscher und dichteinrichtung für abgaswärmetauscher
EP1426557A1 (de) Gehäuse für Turbolader
EP0991891B1 (de) Vorrichtung zum verbinden von leitungsabschnitten
WO1997004218A1 (de) Gussgehäuse für einen abgasstutzen einer strömungsmaschine, insbesondere einer dampfturbine
EP0116160B1 (de) Aussengelagerter Abgasturbolader mit ungekühltem Gaskanal
DE102006007763A1 (de) Gasturbinen-Abgasdiffusor
EP2326800B1 (de) Dampfkraftanlage zur erzeugung elektrischer energie
DE102014105650A1 (de) Gasturbinenfügeflächenverbunddichtung
EP2203682B1 (de) Gasturbine mit geschweissten brennkammerschalen
EP1724526A1 (de) Brennkammerschale, Gasturbinenanlage und Verfahren zum An- oder Abfahren einer Gasturbinenanlage
EP2344730B1 (de) Innengehäuse für eine strömungsmaschine
EP1744014A1 (de) Befestigungseinrichtung der Turbinenleitschaufeln einer Gasturbinenanlage
EP1002184B1 (de) Gehäuse für eine strömungsmaschine
EP1028228A1 (de) Kühlvorrichtung für Turbinenlaufschaufelplattform
EP2216512A1 (de) Dreischalige Dampfturbine
EP2112334A1 (de) Außengehäuse für eine Strömungsmaschine
WO2009127332A1 (de) Vorrichtung zur luftversorgung
EP3626364B1 (de) Leitungsabschnitt und kokilleneinrichtung mit dem leitungsabschnitt
DE19724460A1 (de) Gasentspannungsturbine für kleine Leistungen
EP2396518B1 (de) Dreischalige dampfturbine mit ventil
DE102019219579A1 (de) Systemkonfiguration und arbeitsweise zur verbesserung der effizienz der stromproduktion einer dampfturbine
DE19742621A1 (de) Bauteil, insbesondere für eine Wellendichtung einer Strömungsmaschine
DE102007017887A1 (de) Verfahren zum Umbauen eines Turbinengehäuses
EP2295725A1 (de) Ströhmungsmaschine mit Dampfentnahme
EP2513432B1 (de) Dampfturbine in dreischaliger Bauweise

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195565.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ JP KR PL RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996922755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV1998-99

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 1997 506143

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980700334

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09009560

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996922755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-99

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980700334

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996922755

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1998-99

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1019980700334

Country of ref document: KR