EP2216512A1 - Dreischalige Dampfturbine - Google Patents
Dreischalige Dampfturbine Download PDFInfo
- Publication number
- EP2216512A1 EP2216512A1 EP09001832A EP09001832A EP2216512A1 EP 2216512 A1 EP2216512 A1 EP 2216512A1 EP 09001832 A EP09001832 A EP 09001832A EP 09001832 A EP09001832 A EP 09001832A EP 2216512 A1 EP2216512 A1 EP 2216512A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- housing
- turbomachine
- space
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/06—Fluid supply conduits to nozzles or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/26—Double casings; Measures against temperature strain in casings
Definitions
- the invention relates to a turbomachine having a valve, wherein the turbomachine comprises an inner inner housing, an outer inner housing, an outer housing, wherein the valve comprises a valve diffuser, wherein the valve diffuser is disposed on the inner inner housing and a first between the valve diffuser and the inner inner housing Sealing element is arranged, wherein the valve diffuser has a flange, wherein the flange is connected to the outer housing.
- a steam turbine conventionally includes a rotatably mounted rotor and a housing disposed about the rotor. Between the rotor and the inner housing, a flow channel is formed.
- the housing in a steam turbine must be able to fulfill several functions.
- the guide vanes are arranged in the flow channel on the housing and, secondly, the inner housing must withstand the pressure and the temperatures of the flow medium for all load and special operating cases.
- the flow medium is steam.
- the housing must be designed such that inlets and outlets, which are also referred to as Zudampf ein or taps, are possible. Another function that a housing has to fulfill is the possibility of making a shaft end through the housing.
- nickel-base alloys are suitable because they withstand the stresses occurring at high temperatures.
- the use of such a nickel-based alloy is associated with new challenges.
- the cost of nickel-base alloys is comparatively high and, in addition, the manufacturability of nickel-base alloys, e.g. limited by limited casting possibilities.
- the use of nickel-based materials must be minimized.
- the nickel-based materials are poor heat conductors.
- the temperature gradients over the wall thickness are so strong that thermal stresses are comparatively high.
- the valve essentially comprises a valve housing and a valve diffuser arranged in the valve, as well as shut-off devices not described further here.
- the valve diffuser is usually designed for guiding the flow medium. If the valve diffuser and the inner housing were rigidly coupled together by means of frictional connections, this would lead to stresses and possibly to deformations that are undesirable. Therefore, so-called.
- Angular ring connections are used. In this case, the valve diffuser and the inner housing each have a groove in which an angle ring is arranged. This results in that a thermal movement can be compensated in both an axial and in a radial direction.
- a further inner housing is now additionally added between the inner inner housing and the outer housing, which can be referred to as the outer inner housing.
- the outer inner housing also performs as a result of thermal changes from a thermal movement, which may possibly interfere with the valve diffuser. Another requirement is that the space between the inner inner casing and the outer inner casing and the outer inner casing and the outer casing should be sealed. Nevertheless, mechanical stresses due to thermal movements should be avoided.
- the object of the invention is therefore to provide a turbomachine with a valve, wherein the valve is coupled to the three-shell turbomachine such that thermal limits are not reached.
- a turbomachine with a valve wherein the turbomachine comprises an inner inner housing, an outer inner housing and an outer housing, wherein the valve comprises a valve diffuser, wherein the valve diffuser is disposed on the inner inner housing and between the valve diffuser and the inner inner housing a first sealing element is arranged, wherein the valve diffuser has a flange, wherein the flange is connected to the outer housing, wherein an intermediate ring disposed on the outer inner housing and between the intermediate ring and the outer inner housing, a second sealing element is arranged, wherein the intermediate ring with the outer housing connected is.
- the intermediate ring is arranged in such a manner in the three-shell turbomachine that between the outer inner housing and the outer housing, a seal is possible, whereby a second vapor space, which is formed between the outer inner housing and the outer housing and the first vapor space, between the inner inner housing and the outer inner housing is arranged, is sealed.
- a vapor located in the first vapor space which can be referred to as warm vapor
- the valve diffuser cools this valve diffuser.
- the live steam which can also be called hot steam and has significantly higher temperature values than the warm steam.
- the intermediate ring is in this case flanged to the outer housing, whereby a screwing of the intermediate ring to the outer housing is possible.
- the intermediate ring is in this case additionally sealed with respect to the outer housing, wherein a second sealing element is taken into account.
- the production of the intermediate ring is relatively simple, since the intermediate ring is formed substantially as a rotationally symmetrical body.
- a first cooling space is formed between the valve housing and the valve diffuser.
- the valve basically has the task to lead a hot steam into the turbomachine. This hot steam thermally loads the valve diffuser so that it should be cooled to withstand the thermal stresses.
- a first cooling space is formed, which is arranged between the valve housing and the valve diffuser. For this purpose, outside the turbomachine after the flange, the valve housing after a certain length connected to the valve diffuser. As a result, a first cooling space is formed outside the turbomachine.
- valve housing and the valve diffuser is integrally formed.
- a first vapor space is formed between the inner inner housing and the outer inner housing, wherein a fluidic connection is formed between the first vapor space and the first cooling space.
- a warm vapor located in the first vapor space can thus reach the first cooling space, since there is a fluidic connection.
- This hot steam is lower in temperature and lower in pressure than the hot steam flowing inside the valve diffuser. This means that the valve diffuser undergoes cooling as a result of the warm steam over the length in which the first cooling space is formed.
- a radially and axially movable first sealing arrangement is arranged between the intermediate ring and the valve diffuser.
- a cooling medium supply and a cooling medium discharge is formed in the valve housing.
- This cooling medium supply and cooling medium discharge establishes a fluidic connection between the first cooling space and the atmosphere outside the turbomachine.
- an external cooling steam can reach the first cooling space and has the possibility of reaching the first sealing arrangement.
- the first cooling space is cooled as a result of the external cooling steam up to this area of the first sealing arrangement.
- the cooling medium supply and cooling medium discharge is arranged on a circumference of the valve housing. It has a number of at least sevendemediumzu exiten anddemediumab Entryen proven, that is, that flows through the cooling medium supply a cooling steam and is removed again on thedemediumab Entry the cooling steam.
- a conduit is arranged in the intermediate ring and designed such that there is a fluidic connection between the first cooling space and a second vapor space, wherein the second vapor space is arranged between the outer inner housing and the outer housing.
- the possibility of cooling is supplemented by the possibility of obtaining a cooling medium from the second vapor space and conveying it into the first cooling space.
- a fluidic connection is established between the second vapor space and the first cooling space with the line.
- a cold vapor having a lower temperature than the warm vapor is conveyed from the second vapor space via the conduit into the first cold room.
- the valve diffuser is cooled in the first cooling chamber accordingly.
- the cooling steam or warm steam present in this first cooling space is sucked off again via the cooling medium discharges.
- a flow direction reversal of the cooling medium is basically possible.
- an external cooling steam is fed into the first cooling space via the cooling medium supply and passed via the line in the intermediate ring in the second vapor space.
- FIG. 1 shows a three-bladed steam turbine as an embodiment of a turbomachine 1.
- the turbomachine 1 comprises a rotor, not shown, which is rotatably mounted about a rotation axis 2.
- the rotation axis 2 is perpendicular to the plane of the drawing.
- An inner inner housing 3 is arranged around the rotor. Between the inner inner casing 3 and the rotor, a flow channel is formed, in which a hot steam in a flow space 4 is located.
- the steam in the flow space 4 is a live steam, which may also be referred to as hot steam.
- an outer inner housing 5 is arranged around the inner inner housing 3. Between the outer inner housing 5 and the inner inner housing 3, a first vapor space 6 is formed. In this first vapor space 6, the exhaust steam is usually included, after the flow channel after the last stage flows out of the inner inner casing 3 and is distributed around the inner inner casing 3 and thereby the inner inner casing 3 cools.
- an outer housing 7 is arranged to the outer inner housing 5. Between the outer housing 7 and the outer inner housing 5, a second vapor space 8 is formed. Outside the outer housing 7, an atmosphere space 9 is formed in which atmospheric pressure and atmospheric temperature prevails.
- a valve 10 shown which is shown prior to connection to the three-shell turbomachine 1.
- the valve 10 has the task of directing a hot steam only in the flow space 4. The steam in the valve 10 should therefore not reach the first steam room and not the second steam room and certainly not the atmospheric room.
- FIG. 2 shows how the valve 10 and the three-shell turbomachine 1 can be formed so that no steam as possible from the valve 10 into the first vapor space 6 and the second vapor space 8 passes.
- the valve 10 in this case comprises a valve diffuser 11 which may be tubular and is arranged on the inner inner housing 3 via a first sealing element 12.
- the first sealing element 12 should be designed such that a hot steam in the valve flow channel 13 does not pass from the flow space 4 into the first vapor space 6.
- the first sealing element 12 can be an angular ring arrangement which has an angle ring with two legs, the one leg being arranged in a groove in the inner inner housing and the other leg in a groove in the valve diffuser 11, wherein the two angle legs are arranged at 90 ° relative to one another ,
- the valve 10 is in the in FIG. 2 illustrated embodiment already shown in the installed state.
- the valve 10 further comprises a valve housing 14, on which a flange 15 is arranged. About this flange 15, the valve housing 14 is disposed on the outer housing 7. Between the valve diffuser 11 and the valve housing 14, a first cooling space 16 is formed. This first cooling space 16 is formed substantially outside the turbomachine 1, wherein the first cooling space 16 extends substantially as far as a connecting area 17. The first cooling space 16 extends from the connection area 17, which connects the valve housing 14 with the valve diffuser 11, to the first vapor space 6. Thus, there is the possibility that a warm vapor in the first vapor space 6 enters the first cooling space 16 and thus the valve diffuser 11 cools. Therefore, a gap 19 is formed between the valve diffuser 11 and the outer inner housing 5 and between the valve diffuser 11 and an intermediate ring 18.
- the intermediate ring 19 is L-shaped in cross-section, wherein a leg of the intermediate ring 18 is sealed by a second sealing element 20 against the outer inner housing 5.
- the second leg of the intermediate ring 18 is frictionally arranged between the outer housing 7 and the flange 15. This can be done for example by a screw, which is represented symbolically by a Verschraubline 21.
- the Verschraubline 21 is to represent symbolically how the direction of a screw should be aligned.
- a further sealing element 22 may be formed between the outer housing 7 and the intermediate ring 18.
- a further sealing element 23 is arranged between the intermediate ring 18 and the flange 15.
- the valve 10 may be formed in the connection area 17 such that the flange 15, the valve housing 14 and the valve diffuser 11 are formed centrein Sharingig.
- FIG. 3 an alternative embodiment of the valve connection is shown.
- the main difference to the execution according to FIG. 2 is that in the valve housing 14th now at least twodemediumzu arrangementen anddemediumab Installationen 24 are formed.
- the valve housing 14, which is formed essentially around the axis of rotation 2, has at least one cooling medium discharge 24 and a cooling medium supply 24 distributed over the circumference.
- a radially and axially movable first sealing arrangement 25 is arranged between the valve diffuser 11 and the intermediate ring 18. This first sealing arrangement 25 does not allow steam to pass between the first vapor space 6 and the first cooling space 16.
- FIG. 4 a third embodiment of the valve connection is shown.
- lines 26 are provided in the intermediate ring 18, which produce a fluidic connection between the second steam chamber 8 and the first cooling chamber 16.
- an external cooling steam can also pass via the cooling medium supply 24 into the first cooling space 16 and via the lines 26 into the second vapor space 8.
- the parameters of the cooling steam such as, for example, pressure and temperature, must be suitably selected such that a flow direction in the direction of the second steam space 8 of the cooling medium can take place.
- the wires 26 are therefore as in FIG. 4 represented to the right of the first seal assembly 25.
- the first sealing arrangement 25 and the second sealing element 20 may be constructed like the first sealing element 12.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Housings (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Details Of Valves (AREA)
- Control Of Turbines (AREA)
Abstract
Die Erfindung betrifft eine dreischalige Strömungsmaschine (1) mit einem Ventil (10), wobei das Ventil (10) über zwei Dichtungsanordnungen (12, 20) und mit Hilfe eines Zwischenringes (18) dichtend an die dreischalige Strömungsmaschine (1) angekoppelt wird.
Description
- Die Erfindung betrifft eine Strömungsmaschine mit einem Ventil, wobei die Strömungsmaschine ein inneres Innengehäuse, ein äußeres Innengehäuse, ein Außengehäuse umfasst, wobei das Ventil einen Ventildiffusor umfasst, wobei der Ventildiffusor an das innere Innengehäuse angeordnet ist und zwischen dem Ventildiffusor und dem inneren Innengehäuse ein erstes Dichtelement angeordnet ist, wobei der Ventildiffusor einen Flansch aufweist, wobei der Flansch mit dem Außengehäuse verbunden ist.
- Unter einer Strömungsmaschine wird beispielsweise eine Dampfturbine verstanden. Eine Dampfturbine weist üblicher Weise einen drehbar gelagerten Rotor und ein Gehäuse, das um den Rotor angeordnet ist, auf. Zwischen dem Rotor und dem Innengehäuse ist ein Strömungskanal ausgebildet. Das Gehäuse in einer Dampfturbine muss mehrere Funktionen erfüllen können. Zum einen werden die Leitschaufeln im Strömungskanal am Gehäuse angeordnet und zum zweiten muss das Innengehäuse den Druck und den Temperaturen des Strömungsmediums für alle Last- und besondere Betriebsfälle standhalten. Bei einer Dampfturbine ist das Strömungsmedium Dampf. Des Weiteren muss das Gehäuse derart ausgebildet sein, dass Zu- und Abführungen, die auch als Zudampfleitungen oder Anzapfungen bezeichnet werden, möglich sind. Eine weitere Funktion, die ein Gehäuse erfüllen muss, ist die Möglichkeit, ein Wellenende durch das Gehäuse durchführen zu können.
- Bei den im Betrieb auftretenden hohen Spannungen, Drücken und Temperaturen ist es erforderlich, dass die Werkstoffe geeignet ausgewählt werden sowie die Konstruktion derart gewählt ist, dass die mechanische Integrität und Funktionalität ermöglicht wird. Dafür ist es erforderlich, dass hochwertige Werkstoffe zum Einsatz kommen, insbesondere im Bereich der Einströmung und der ersten Leitschaufelnuten.
- Für die Anwendungen bei Frischdampftemperaturen von über 650°C, wie z.B. 700°C, sind Nickel-Basis-Legierungen geeignet, da sie den bei hohen Temperaturen auftretenden Belastungen standhalten. Allerdings ist die Verwendung einer solchen Nickel-Basis-Legierung mit neuen Herausforderungen verbunden. So sind die Kosten für Nickel-Basis-Legierungen vergleichsweise hoch und außerdem ist die Fertigbarkeit von Nickel-Basis-Legierungen, z.B. durch beschränkte Gussmöglichkeit begrenzt. Dies führt dazu, dass die Verwendung von Nickel-Basis-Werkstoffen minimiert werden muss. Des Weiteren sind die Nickel-Basis-Werkstoffe schlechte Wärmeleiter. Dadurch sind die Temperaturgradienten über der Wandstärke so stark, dass Thermospannungen vergleichsweise hoch sind. Des Weiteren ist zu berücksichtigen, dass bei der Verwendung von Nickel-Basis-Werkstoffen die Temperaturdifferenz zwischen Ein- und Auslass der Dampfturbine steigt.
- Zweischalige Dampfturbinen sind bekannt. Bei einer zweischaligen Dampfturbine wird das Innengehäuse um den Rotor und das Außengehäuse um das Innengehäuse angeordnet. Infolge von Temperaturänderungen kann es zu Bewegungen des Innengehäuses relativ zum Ventil kommen. Das Ventil umfasst im Wesentlichen ein Ventilgehäuse und einen im Ventil angeordneten Ventildiffusor sowie hier nicht weiter beschriebene Absperreinrichtungen. Der Ventildiffusor ist üblicher Weise zur Führung des Strömungsmediums ausgebildet. Wenn der Ventildiffusor und das Innengehäuse starr mittels kraftschlüssiger Verbindungen miteinander gekoppelt wären, würde dies zu Spannungen und ggf. zu Verformungen führen, die unerwünscht sind. Daher werden sog. Winkelringverbindungen eingesetzt. Dabei weisen der Ventildiffusor und das Innengehäuse jeweils eine Nut auf, in die ein Winkelring angeordnet ist. Dies führt dazu, dass eine Wärmebewegung sowohl in einer axialen als auch in einer radialen Richtung ausgeglichen werden kann.
- Bei dreischaligen Dampfturbinen kommt nun zusätzlich zwischen dem inneren Innengehäuse und dem Außengehäuse ein weiteres Innengehäuse hinzu, das als äußeres Innengehäuse bezeichnet werden kann. Das äußere Innengehäuse führt ebenfalls in Folge von thermischen Veränderungen eine Wärmebewegung aus, die sich ggf. störend auf den Ventildiffusor auswirken kann. Eine weitere Anforderung besteht darin, dass der Raum zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse sowie dem äußeren Innengehäuse und dem Außengehäuse abgedichtet werden sollte. Dennoch sollten aber mechanische Spannungen in Folge von Wärmebewegungen vermieden werden.
- Wünschenswert wäre es, eine einfache Möglichkeit zu haben, ein Ventil an eine dreischalige Strömungsmaschine derart anzuordnen, dass das Ventil geeignet gekühlt werden kann.
- Aufgabe der Erfindung ist es daher, eine Strömungsmaschine mit einem Ventil anzugeben, wobei das Ventil derart an die dreischalige Strömungsmaschine angekoppelt wird, dass thermische Grenzwerte nicht erreicht werden.
- Gelöst wird diese Aufgabe durch eine Strömungsmaschine mit einem Ventil, wobei die Strömungsmaschine ein inneres Innengehäuse, ein äußeres Innengehäuse und ein Außengehäuse umfasst, wobei das Ventil einen Ventildiffusor umfasst, wobei der Ventildiffusor an das innere Innengehäuse angeordnet ist und zwischen dem Ventildiffusor und dem inneren Innengehäuse ein erstes Dichtelement angeordnet ist, wobei der Ventildiffusor einen Flansch aufweist, wobei der Flansch mit dem Außengehäuse verbunden ist, wobei ein Zwischenring an das äußere Innengehäuse angeordnet und zwischen dem Zwischenring und dem äußeren Innengehäuse ein zweites Dichtelement angeordnet ist, wobei der Zwischenring mit dem Außengehäuse verbunden ist.
- Mit der Erfindung wird somit der Weg eingeschlagen, einen Zwischenring vorzusehen, mit dem eine optimale Anbindung des Ventils an eine dreischalige Strömungsmaschine möglich ist. Dazu wird der Zwischenring derart in die dreischalige Strömungsmaschine angeordnet, dass zwischen dem äußeren Innengehäuse und dem Außengehäuse eine Abdichtung möglich ist, wodurch ein zweiter Dampfraum, der zwischen dem äußeren Innengehäuse und dem Außengehäuse ausgebildet ist und dem ersten Dampfraum, der zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse angeordnet ist, abgedichtet ist. Der Vorteil der Erfindung liegt unter anderem darin, dass ein im ersten Dampfraum befindlicher Dampf, der als warmer Dampf bezeichnet werden kann, einen Kontakt hat mit dem Ventildiffusor und daher diesen Ventildiffusor kühlt. Im Inneren des Ventildiffusors strömt der Frischdampf, der auch als heißer Dampf bezeichnet werden kann und deutlich höhere Temperaturwerte als der warme Dampf aufweist.
- Der Zwischenring ist hierbei an das Außengehäuse angeflanscht, wobei auch eine Verschraubung des Zwischenringes an das Außengehäuse möglich ist. Der Zwischenring wird hierbei zusätzlich gegenüber dem Außengehäuse abgedichtet, wobei ein zweites Dichtelement berücksichtigt ist. Die Fertigung des Zwischenringes ist vergleichsweise einfach, da der Zwischenring im Wesentlichen als ein rotationssymmetrischer Körper ausgebildet ist.
- Weitere vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
- In einer ersten vorteilhaften Weiterbildung ist zwischen dem Ventilgehäuse und dem Ventildiffusor ein erster Kühlraum ausgebildet. Das Ventil hat grundsätzlich die Aufgabe, einen heißen Dampf in die Strömungsmaschine zu führen. Dieser heiße Dampf belastet den Ventildiffusor thermisch, so dass dieser gekühlt werden sollte, um den thermischen Belastungen standzuhalten. Um den Diffusor auch außerhalb der Strömungsmaschine kühlen zu können, wird ein erster Kühlraum ausgebildet, der zwischen dem Ventilgehäuse und dem Ventildiffusor angeordnet ist. Dazu wird außerhalb der Strömungsmaschine nach dem Flansch das Ventilgehäuse nach einer gewissen Länge mit dem Ventildiffusor verbunden. Ein erster Kühlraum bildet sich dadurch außerhalb der Strömungsmaschine aus.
- In einer vorteilhaften Weiterbildung ist das Ventilgehäuse und der Ventildiffusor einstückig ausgebildet.
- In einer weiteren vorteilhaften Weiterbildung ist zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse ein erster Dampfraum ausgebildet, wobei zwischen dem ersten Dampfraum und dem ersten Kühlraum eine strömungstechnische Verbindung ausgebildet ist. Ein im ersten Dampfraum befindlicher warmer Dampf kann somit in den ersten Kühlraum gelangen, da eine strömungstechnische Verbindung besteht. Dieser warme Dampf hat eine geringere Temperatur und einen geringeren Druck als der heiße Dampf, der innerhalb des Ventildiffusors strömt. Das bedeutet, dass der Ventildiffusor in Folge des warmen Dampfes auf der Länge, in der der erste Kühlraum ausgebildet ist, eine Kühlung erfährt.
- In einer vorteilhaften Weiterbildung ist zwischen dem Zwischenring und dem Ventildiffusor eine radial und axial bewegliche erste Dichtungsanordnung angeordnet.
- In einer weiteren vorteilhaften Weiterbildung ist im Ventilgehäuse eine Kühlmediumzufuhr und eine Kühlmediumabfuhr ausgebildet. Diese Kühlmediumzufuhr und Kühlmediumabfuhr stellt eine strömungstechnische Verbindung zwischen dem ersten Kühlraum und der Atmosphäre außerhalb der Strömungsmaschine her. Durch diese Kühlmediumzuführung kann ein externer Kühldampf in den ersten Kühlraum gelangen und hat dabei die Möglichkeit bis zur ersten Dichtungsanordnung zu gelangen. Bis zu diesem Bereich der ersten Dichtungsanordnung wird demnach der erste Kühlraum infolge des externen Kühldampfes gekühlt. Dies hat den wesentlichen Vorteil, dass die Kühlparameter von außen einstellbar sind. Allerdings steht dem gegenüber ein gewisser apparativer Mehraufwand dagegen. Die Kühlmediumzuführung und Kühlmediumabführung wird auf einem Umfang des Ventilgehäuses angeordnet. Es hat sich dabei eine Zahl von mindestens sieben Kühlmediumzuführungen und Kühlmediumabführungen bewährt, das heißt dass durch die Kühlmediumzuführung ein Kühldampf strömt und über die Kühlmediumabführung der Kühldampf wieder abgetragen wird.
- In einer weiteren vorteilhaften Weiterbildung ist im Zwischenring eine Leitung angeordnet und derart ausgebildet, dass eine strömungstechnische Verbindung zwischen dem ersten Kühlraum und einem zweiten Dampfraum besteht, wobei der zweite Dampfraum zwischen dem äußeren Innengehäuse und dem Außengehäuse angeordnet ist. Dadurch wird die Kühlmöglichkeit noch ergänzt durch die Möglichkeit, ein Kühlmedium aus dem zweiten Dampfraum zu erhalten und diesen in den ersten Kühlraum zu fördern. Dazu wird mit der Leitung eine strömungstechnische Verbindung hergestellt zwischen dem zweiten Dampfraum und dem ersten Kühlraum. Im Grunde genommen sind nun zwei Varianten denkbar. Zum einen wird aus dem zweiten Dampfraum ein kalter Dampf, der eine niedrigere Temperatur aufweist als der warme Dampf, aus dem zweiten Dampfraum über die Leitung in den ersten Kühlraum befördert. Dadurch wird der Ventildiffusor im ersten Kühlraum entsprechend gekühlt. Der in diesem ersten Kühlraum befindliche Kühldampf bzw. warme Dampf wird über die Kühlmediumabführungen wieder abgesaugt.
- Gemäß der zweiten Variante ist im Grunde genommen eine Strömungsrichtungsumkehr des Kühlmediums möglich. Dazu wird über die Kühlmediumzufuhr ein externer Kühldampf in den ersten Kühlraum zugeführt und über die Leitung im Zwischenring in den zweiten Dampfraum geleitet.
- Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher beschrieben. Diese sollen das Ausführungsbeispiel nicht maßstäblich darstellen, vielmehr ist gezeigt, wozu Erläuterungen dienen, in schematischer und/oder leicht versetzter Form ausgeführt. Im Hinblick auf Ergänzungen der aus den Zeichnungen unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen.
- In den unterschiedlichen Figuren sind gleiche Teile stets mit demselben Bezugszeichen versehen, so dass diese in der Regel auch nur einmal beschrieben werden.
- Es zeigen:
- FIG 1
- eine Schnittansicht durch eine dreischalige Strö- mungsmaschine im Zuströmquerschnitt;
- FIG 2
- eine Querschnittsansicht eines Teils einer drei- schaligen Dampfturbine mit Ventil gemäß einer ers- ten Ausführungsform;
- FIG 3
- eine Querschnittsansicht eines Teils einer drei- schaligen Strömungsmaschine mit einem Ventil gemäß einer zweiten Ausführungsform und
- FIG 4
- eine Querschnittsansicht eines Teils einer Strö- mungsmaschine mit einem Ventil gemäß einer dritten Ausführungsform.
- Die
FIG 1 zeigt eine dreischalige Dampfturbine als Ausführungsform einer Strömungsmaschine 1. Die Strömungsmaschine 1 umfasst einen nicht näher dargestellten Rotor, der um eine Rotationsachse 2 drehbar gelagert ist. - Die Rotationsachse 2 steht hierbei senkrecht zur Zeichenebene. Um den Rotor ist ein inneres Innengehäuse 3 angeordnet. Zwischen dem inneren Innengehäuse 3 und dem Rotor ist ein Strömungskanal ausgebildet, in dem ein heißer Dampf in einem Strömungsraum 4 sich befindet. Der im Strömungsraum 4 befindliche Dampf ist ein Frischdampf, der auch als heißer Dampf bezeichnet werden kann. Um das innere Innengehäuse 3 ist ein äußeres Innengehäuse 5 angeordnet. Zwischen dem äußeren Innengehäuse 5 und dem inneren Innengehäuse 3 ist ein erster Dampfraum 6 ausgebildet. In diesem ersten Dampfraum 6 ist in der Regel der Abdampf enthalten, der nach dem Strömungskanal nach der letzten Stufe aus dem inneren Innengehäuse 3 strömt und sich um das innere Innengehäuse 3 verteilt und dadurch das innere Innengehäuse 3 kühlt.
- Um das äußere Innengehäuse 5 ist ein Außengehäuse 7 angeordnet. Zwischen dem Außengehäuse 7 und dem äußeren Innengehäuse 5 ist ein zweiter Dampfraum 8 ausgebildet. Außerhalb des Außengehäuses 7 ist ein Atmosphärenraum 9 ausgebildet, in dem Atmosphärendruck und Atmosphärentemperatur herrscht. In der
Figur 1 ist dazu noch ein Ventil 10 dargestellt, das vor der Verbindung mit der dreischaligen Strömungsmaschine 1 dargestellt ist. Das Ventil 10 hat die Aufgabe, einen heißen Dampf lediglich in den Strömungsraum 4 zu leiten. Der im Ventil 10 befindliche Dampf sollte demnach nicht in den ersten Dampfraum und nicht in den zweiten Dampfraum und schon gar nicht in den Atmosphärenraum gelangen. - Die
FIG 2 zeigt, wie das Ventil 10 und die dreischalige Strömungsmaschine 1 ausgebildet werden kann, damit möglichst kein Dampf aus dem Ventil 10 in den ersten Dampfraum 6 und in den zweiten Dampfraum 8 gelangt. Das Ventil 10 umfasst hierbei einen Ventildiffusor 11 der rohrartig ausgebildet sein kann und über ein erstes Dichtelement 12 an dem inneren Innengehäuse 3 angeordnet ist. Das erste Dichtelement 12 sollte derart ausgebildet sein, dass ein heißer Dampf im Ventilströmungskanal 13 nicht aus dem Strömungsraum 4 in den ersten Dampfraum 6 gelangt. Das erste Dichtelement 12 kann demnach eine Winkelringanordnung sein, das einen Winkelring mit zwei Schenkeln aufweist, wobei der eine Schenkel in eine Nut im inneren Innengehäuse und der andere Schenkel in eine Nut im Ventildiffusor 11 angeordnet sind, wobei die beiden Winkelschenkel 90° gegeneinander angeordnet sind. Das Ventil 10 ist in der inFIG 2 dargestellten Ausführungsform bereits im eingebauten Zustand dargestellt. - Das Ventil 10 umfasst ferner ein Ventilgehäuse 14, an dem ein Flansch 15 angeordnet ist. Über diesen Flansch 15 wird das Ventilgehäuse 14 an das Außengehäuse 7 angeordnet. Zwischen dem Ventildiffusor 11 und dem Ventilgehäuse 14 ist ein erster Kühlraum 16 ausgebildet. Dieser erste Kühlraum 16 ist im Wesentlichen außerhalb der Strömungsmaschine 1 ausgebildet, wobei der erste Kühlraum 16 im Wesentlichen bis zu einem Verbindungsbereich 17 reicht. Der erste Kühlraum 16 erstreckt sich von dem Verbindungsbereich 17, der das Ventilgehäuse 14 mit dem Ventildiffusor 11 verbindet, bis zum ersten Dampfraum 6. Somit besteht die Möglichkeit, dass ein warmer Dampf im ersten Dampfraum 6 in den ersten Kühlraum 16 gelangt und somit den Ventildiffusor 11 kühlt. Zwischen dem Ventildiffusor 11 und dem äußeren Innengehäuse 5 sowie zwischen dem Ventildiffusor 11 und einem Zwischenring 18 ist deswegen ein Spalt 19 ausgebildet.
- Der Zwischenring 19 ist im Querschnitt gesehen L-förmig ausgebildet, wobei ein Schenkel des Zwischenringes 18 über ein zweites Dichtelement 20 gegen das äußere Innengehäuse 5 gedichtet wird. Der zweite Schenkel des Zwischenringes 18 wird zwischen dem Außengehäuse 7 und dem Flansch 15 kraftschlüssig angeordnet. Dies kann beispielsweise durch eine Verschraubung erfolgen, die durch eine Verschraublinie 21 symbolisch dargestellt ist. Die Verschraublinie 21 soll symbolisch darstellen, wie die Richtung einer Schraube ausgerichtet sein soll.
- Zwischen dem Außengehäuse 7 und dem Zwischenring 18 kann ein weiteres Dichtelement 22 ausgebildet sein. Ebenso ist zwischen dem Zwischenring 18 und dem Flansch 15 ein weiteres Dichtelement 23 angeordnet. Somit wird verhindert, dass ein kalter Dampf, der sich im zweiten Dampfraum 8 befindet, in den ersten Kühlraum 16 oder in den Atmosphärenraum 9 gelangt.
- Das Ventil 10 kann im Verbindungsbereich 17 derart ausgebildet werden, dass der Flansch 15 das Ventilgehäuse 14 und der Ventildiffusor 11 materialeinstückig ausgebildet sind.
- In der
FIG 3 ist eine alternative Ausführungsform der Ventilanbindung dargestellt. Der wesentliche Unterschied zu der Ausführung gemäßFIG 2 liegt darin, dass im Ventilgehäuse 14 nunmehr zumindest zwei Kühlmediumzuführungen und Kühlmediumabführungen 24 ausgebildet sind. Das im Wesentlichen um die Rotationsachse 2 ausgebildete Ventilgehäuse 14 weist auf den Umfang verteilt zumindest eine Kühlmediumabführung 24 und eine Kühlmediumzuführung 24 auf. Des Weiteren ist zwischen dem Ventildiffusor 11 und dem Zwischenring 18 eine radial und axial bewegliche erste Dichtungsanordnung 25 angeordnet. Diese erste Dichtungsanordnung 25 lässt keinen Dampf zwischen dem ersten Dampfraum 6 und dem ersten Kühlraum 16 durch. Auch bei einer radialen und axialen Verschiebung des Ventildiffusors 11 gegenüber dem äußeren Innengehäuse, inneren Innengehäuse und Außengehäuse sowie dem Zwischenring 18 wird kein Dampf durchgelassen. Das bedeutet, dass der im ersten Dampfraum 6 befindliche warme Dampf sich nur bis zur ersten Dichtungsanordnung 25 ausbreitet. Um dennoch eine gute Kühlmöglichkeit im ersten Kühlraum 16 zu erreichen, wird über die Kühlmediumzuführung 24 ein externer Kühldampf in den ersten Kühlraum 16 gefördert. Der in diesen ersten Kühlraum 16 geförderte Kühldampf wird anschließend über Kühlmediumabführung 24 aus dem ersten Kühlraum 16 abgeführt. Die Dampfparameter des Kühldampfes im ersten Kühlraum 16 sollten dementsprechend gewählt sein. - In der
FIG 4 ist eine dritte Ausführungsform der Ventilanbindung dargestellt. Der wesentliche Unterschied zu der inFIG 3 dargestellten Ausführungsform ist, dass im Zwischenring 18 Leitungen 26 vorgesehen sind, die eine strömungstechnische Verbindung zwischen dem zweiten Dampfraum 8 und dem ersten Kühlraum 16 herstellen. Das bedeutet, dass ein im zweiten Dampfraum 8 befindlicher kühler Dampf in den ersten Kühlraum 16 strömen kann und dadurch eine geeignete Kühlmöglichkeit vorhanden ist. In einer alternativen Ausführungsform kann ebenso ein externer Kühldampf über die Kühlmediumzuführung 24 in den ersten Kühlraum 16 und über die Leitungen 26 in den zweiten Dampfraum 8 gelangen. Die Parameter des Kühldampfes, wie zum Beispiel Druck und Temperatur müssen dafür geeignet gewählt sein, dass eine Strömungsrichtung in Richtung des zweiten Dampfraumes 8 des Kühlmediums erfolgen kann. Die Leitungen 26 sind daher wie inFIG 4 dargestellt rechts von der ersten Dichtungsanordnung 25 angeordnet. Die erste Dichtungsanordnung 25 und das zweite Dichtelement 20 können wie das erste Dichtelement 12 aufgebaut sein.
Claims (11)
- Strömungsmaschine (1) mit einem Ventil (10),
wobei die Strömungsmaschine (1) ein
inneres Innengehäuse (3),
ein äußeres Innengehäuse (5),
ein Außengehäuse (7) umfasst,
wobei das Ventil (10) einen Ventildiffusor (11) umfasst, wobei der Ventildiffusor (11) an das innere Innengehäuse (3) angeordnet ist und
zwischen dem Ventildiffusor (11) und dem inneren Innengehäuse (3) ein erstes Dichtelement (12) angeordnet ist, wobei der Ventildiffusor (11) einen Flansch aufweist, wobei der Flansch mit dem Außengehäuse (7) verbunden ist, dadurch gekennzeichnet, dass
ein Zwischenring (18) an das äußere Innengehäuse (5) angeordnet und zwischen dem Zwischenring (18) und äußeren Innengehäuse (5) ein zweites Dichtelement (20) angeordnet ist,
wobei der Zwischenring (18) mit dem Außengehäuse (7) verbunden ist. - Strömungsmaschine (1) nach Anspruch 1,
wobei das äußere Innengehäuse (5) um das innere Innengehäuse (3) und das Außengehäuse (7) um das äußere Innengehäuse (5) angeordnet ist. - Strömungsmaschine (1) nach Anspruch 1 oder 2,
wobei das Ventil (10) ein Ventilgehäuse (14) umfasst, das um den Ventildiffusor (11) angeordnet ist,
wobei das Ventilgehäuse (14) den Flansch aufweist. - Strömungsmaschine (1) nach Anspruch 3,
wobei zwischen dem Ventilgehäuse (14) und dem Ventildiffusor (11) ein erster Kühlraum (16) ausgebildet ist. - Strömungsmaschine (1) nach Anspruch 4,
wobei der erste Kühlraum (16) einen Kühlraumbereich umfasst, der außerhalb der Strömungsmaschine (1) angeordnet ist. - Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
wobei das erste Dichtelement (12) und das zweite Dichtelement (20) als Winkelringdichtelement ausgebildet sind. - Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
wobei das Ventilgehäuse (14) und der Ventildiffusor (11) einstückig ausgebildet sind. - Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
wobei zwischen dem inneren Innengehäuse (3) und dam äußeren Innengehäuse (5) ein erster Dampfraum (6) ausgebildet ist, wobei zwischen dem ersten Dampfraum (6) und dem ersten Kühlraum (16) eine strömungstechnische Verbindung ausgebildet ist. - Strömungsmaschine (1) nach einem der Ansprüche 1 bis 7, wobei zwischen dem Zwischenring (18) und dem Ventildiffusor (11) eine radial und axial bewegliche erste Dichtungsanordnung (25) angeordnet ist.
- Strömungsmaschine (1) nach Anspruch 5,
wobei im Ventilgehäuse (14) eine Kühlmediumzuführung (24) und eine Kühlmediumabführung (24) ausgebildet ist. - Strömungsmaschine (1) nach Anspruch 10,
wobei im Zwischenring (18) eine Leitung (26) angeordnet und derart ausgebildet ist, dass eine strömungstechnische Verbindung zwischen dem ersten Kühlraum (16) und einem zweiten Dampfraum (8) besteht,
wobei der zweite Dampfraum (8) dem äußeren Innengehäuse (5) und dem Außengehäuse (7) angeordnet ist.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09001832A EP2216512A1 (de) | 2009-02-10 | 2009-02-10 | Dreischalige Dampfturbine |
EP10702850.8A EP2396517B1 (de) | 2009-02-10 | 2010-01-25 | Dreischalige dampfturbine |
PCT/EP2010/050799 WO2010091941A1 (de) | 2009-02-10 | 2010-01-25 | Dreischalige dampfturbine |
CN201080007378.4A CN102317580B (zh) | 2009-02-10 | 2010-01-25 | 三壳式蒸汽轮机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09001832A EP2216512A1 (de) | 2009-02-10 | 2009-02-10 | Dreischalige Dampfturbine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2216512A1 true EP2216512A1 (de) | 2010-08-11 |
Family
ID=40791477
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09001832A Withdrawn EP2216512A1 (de) | 2009-02-10 | 2009-02-10 | Dreischalige Dampfturbine |
EP10702850.8A Not-in-force EP2396517B1 (de) | 2009-02-10 | 2010-01-25 | Dreischalige dampfturbine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10702850.8A Not-in-force EP2396517B1 (de) | 2009-02-10 | 2010-01-25 | Dreischalige dampfturbine |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP2216512A1 (de) |
CN (1) | CN102317580B (de) |
WO (1) | WO2010091941A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2551463A1 (de) * | 2011-07-29 | 2013-01-30 | Siemens Aktiengesellschaft | Ventilanbindung an eine Strömungsmaschine |
EP3406951A1 (de) * | 2017-05-24 | 2018-11-28 | Siemens Aktiengesellschaft | Kühlungsanordnung zum kühlen einer überwurfmutter für ein ventil einer dampfturbine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104033190B (zh) * | 2014-06-26 | 2016-08-24 | 上海电气电站设备有限公司 | 一种三层壳汽轮机的进汽结构 |
DE102017203210A1 (de) * | 2017-02-28 | 2018-08-30 | Siemens Aktiengesellschaft | Turbinengehäuse und Verfahren zur Montage eines Turbinengehäuses |
EP3453848A1 (de) * | 2017-09-08 | 2019-03-13 | Siemens Aktiengesellschaft | Dampfturbine mit anzapfkammer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2925995A (en) * | 1956-08-16 | 1960-02-23 | Westinghouse Electric Corp | Turbine apparatus |
GB1010300A (en) * | 1962-01-25 | 1965-11-17 | Rateau Soc | Elastic-fluid turbines with multiple casings |
JPS59224404A (ja) * | 1983-06-01 | 1984-12-17 | Fuji Electric Co Ltd | 超高温蒸気タ−ビンの蒸気導入管 |
EP0128343A1 (de) * | 1983-06-09 | 1984-12-19 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Zweigehäuseturbine mit mindestens einem Ventil für horizontale Dampfzuführung |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4850794A (en) * | 1987-08-14 | 1989-07-25 | Westinghouse Electric Corp. | Hardfacing technique and improved construction for inlet steam sealing surfaces of steam turbines |
JP4523677B2 (ja) * | 1997-09-22 | 2010-08-11 | 三菱重工業株式会社 | 高中圧一体型タービンにおける一体形ノズル室 |
-
2009
- 2009-02-10 EP EP09001832A patent/EP2216512A1/de not_active Withdrawn
-
2010
- 2010-01-25 WO PCT/EP2010/050799 patent/WO2010091941A1/de active Application Filing
- 2010-01-25 CN CN201080007378.4A patent/CN102317580B/zh not_active Expired - Fee Related
- 2010-01-25 EP EP10702850.8A patent/EP2396517B1/de not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2925995A (en) * | 1956-08-16 | 1960-02-23 | Westinghouse Electric Corp | Turbine apparatus |
GB1010300A (en) * | 1962-01-25 | 1965-11-17 | Rateau Soc | Elastic-fluid turbines with multiple casings |
JPS59224404A (ja) * | 1983-06-01 | 1984-12-17 | Fuji Electric Co Ltd | 超高温蒸気タ−ビンの蒸気導入管 |
EP0128343A1 (de) * | 1983-06-09 | 1984-12-19 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Zweigehäuseturbine mit mindestens einem Ventil für horizontale Dampfzuführung |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2551463A1 (de) * | 2011-07-29 | 2013-01-30 | Siemens Aktiengesellschaft | Ventilanbindung an eine Strömungsmaschine |
EP3406951A1 (de) * | 2017-05-24 | 2018-11-28 | Siemens Aktiengesellschaft | Kühlungsanordnung zum kühlen einer überwurfmutter für ein ventil einer dampfturbine |
Also Published As
Publication number | Publication date |
---|---|
CN102317580B (zh) | 2014-08-27 |
WO2010091941A1 (de) | 2010-08-19 |
EP2396517A1 (de) | 2011-12-21 |
EP2396517B1 (de) | 2015-06-24 |
CN102317580A (zh) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1774140B1 (de) | Dampfturbine und verfahren zum betrieb einer dampfturbine | |
DE60203959T2 (de) | Luftgekühltes Abgasgehäuse für eine Gasturbine | |
EP2396517B1 (de) | Dreischalige dampfturbine | |
EP0991891B1 (de) | Vorrichtung zum verbinden von leitungsabschnitten | |
EP2396516B1 (de) | Ventilanbindung an eine dreischalige strömungsmaschine | |
EP2718545B1 (de) | Dampfturbine umfassend einen schubausgleichskolben | |
EP2344730B1 (de) | Innengehäuse für eine strömungsmaschine | |
EP1443182A2 (de) | Kühleinrichtung | |
EP2216515A1 (de) | Dreischalige Dampfturbine mit Ventil | |
EP2987952A1 (de) | Dampfturbine und Verfahren zum Betrieb einer Dampfturbine | |
EP2947282B1 (de) | Zwischengehäuse für eine Gasturbine sowie Gasturbine | |
EP2396518B1 (de) | Dreischalige dampfturbine mit ventil | |
EP2993306B1 (de) | Flugzeugtriebwerk mit luftleitvorrichtung | |
EP2980481A1 (de) | Fluggasturbine mit einer dichtung zur abdichtung einer zündkerze an der brennkammerwand einer gasturbine | |
EP1138881A2 (de) | Turbinengehäuse für eine axial durchströmte Gasturbine | |
EP2551463A1 (de) | Ventilanbindung an eine Strömungsmaschine | |
DE102016203731A1 (de) | Dampfturbine | |
EP2510195B1 (de) | Innengehäuse für eine Dampfturbine | |
EP2464830A1 (de) | Strömungsmaschine mit dampfentnahme | |
DE102009054006A1 (de) | Vorrichtung zur Abstandsverstellung zwischen einem Turbinenrad und einem Turbinengehäuse einer Gasturbine | |
EP2274504A1 (de) | Dampfturbine mit kühlvorrichtung | |
EP2487337A1 (de) | Dampfturbine in dreischaliger Bauweise | |
EP3406951A1 (de) | Kühlungsanordnung zum kühlen einer überwurfmutter für ein ventil einer dampfturbine | |
EP2513432B1 (de) | Dampfturbine in dreischaliger Bauweise | |
WO2009019151A1 (de) | Dampfzuführung für eine dampfturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
AKY | No designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110212 |