WO1997003462A1 - Verfahren zur herstellung einer integrierten cmos-schaltung - Google Patents
Verfahren zur herstellung einer integrierten cmos-schaltung Download PDFInfo
- Publication number
- WO1997003462A1 WO1997003462A1 PCT/DE1996/001202 DE9601202W WO9703462A1 WO 1997003462 A1 WO1997003462 A1 WO 1997003462A1 DE 9601202 W DE9601202 W DE 9601202W WO 9703462 A1 WO9703462 A1 WO 9703462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel mos
- mos transistor
- doped
- gate
- polysilicon layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
Definitions
- CMOS logic circuits for example in inverters, both n-channel MOS transistors and p-channel MOS transistors are used. Electrical connections between gate electrodes of p-channel MOS transistors and n-channel MOS transistors are often realized in a gate plane which is formed by structuring a layer and which, in addition to the gate electrodes, comprises connecting elements between the gate electrodes. In many cases, the gate electrodes and the connecting elements between the gate electrodes are implemented as a continuous gate line. In CMOS circuits that are operated with a supply voltage of 5 volts, the gate level is usually made of n + -doped polysilicon or polycide.
- CMOS circuits for low-voltage / low-power applications which are operated with a supply voltage of ⁇ 3 volts
- the MOS transistors are optimized so that they use voltages of less than 0.5 volts at a low level Have leakage currents.
- the associated high demands on the short-channel behavior of the MOS transistors are met by using a dual work function gate technology with optimized gate work function.
- Dual work function gate technology is understood to mean the fact that the gate electrode of the n-channel MOS transistors is n + -doped and the gate electrode of the p-channel MOS transistors is p + -doped.
- the gate electrodes for the n-channel MOS transistors and the p-channel MOS transistors there is a risk of a lateral dopant diff in a gate level with a continuous gate line that connects differently doped gate electrodes ⁇ fusion (see for example LC Parrillo, IEDM '85, p 398).
- the electrical properties for example the threshold voltage V t h / of the MOS transistors, essentially depend on the gate doping. Lateral dopant diffusion leads to a change in gate doping and thus to undesired, uncontrollable parameter shifts. In extreme cases, the gate electrodes may be redoped and the components may fail completely.
- n + -doped regions and p + -doped regions have to adjoin one another directly in view of a low path resistance, since otherwise a space charge zone is formed.
- the invention is based on the problem of specifying an improved method for producing an integrated CMOS circuit using dual workfunction gate technology, in which the lateral dopant diffusion is suppressed and which can be carried out with a reduced process outlay compared to the known solutions.
- a polysilicon layer with a grain size is generated to form the gate plane such that the average grain diameter in the polysilicon layer is larger than the minimum extent in the gate plane.
- the invention makes use of the knowledge that the lateral dopant diffusion in the gate plane is mainly caused by grain boundary diffusion in the polycrystalline silicon. This grain boundary diffusion is extremely fast.
- the on-board diffusion in monocrystalline silicon is, for example, a factor of 100 to 1000 less than along the silicon limits in polycrystalline silicon.
- the grain boundary density in the area of the minimum dimensions in the polysilicon layer is drastically reduced in the method according to the invention.
- the diffusion takes place only in the silicon grains with a diffusion rate similar to that in monocrystalline silicon.
- the polysilicon layer is preferably produced by depositing an amorphous silicon layer and subsequent solid phase crystallization, as is known, for example, from S. Takenaka et al, SSDM '90, p 955.
- the minimum dimension can be, for example, the web width of the connection between two gate electrodes. Another improvement in terms of lateral suppression. Doping diffusion is achieved through a design measure in the gate level.
- a constriction is created in the connection between gate electrodes of n-channel or p-channel MOS transistors.
- the width of the connection in the area of the constriction is smaller than outside it and smaller than the average grain diameter of the polysilicon layer.
- the constriction is preferably in the area in which n + -doped polysilicon adjoins p + -doped polysilicon.
- the invention makes use of the fact that the diffusion in the silicon grains takes place corresponding to the diffusion in monocrystalline silicon and is therefore reduced by orders of magnitude in comparison to the diffusion across grain boundaries. Since the average grain size of the polysilicon layer is larger than the smallest dimension in the gate plane, the diffusion at this point of the smallest dimension can only take place in the silicon grains, since there is no grain boundary here.
- the integrated CMOS circuit is preferably implemented in a semiconductor substrate which comprises monocrystalline silicon at least in the region of the CMOS circuit.
- the semiconductor substrate can be both a monocrystalline silicon wafer and a monocrystalline silicon layer of an SOI substrate.
- Isolation structures for defining the active regions for the n-channel MOS transistor and the p-channel MOS transistor are formed in the semiconductor substrate. With respect to common logic processes, these isolation structures are formed in a LOCOS method. However, the insulation structures can also be formed in a different way, for example by means of a trench filled with insulating material.
- FIG. 1 shows a substrate with isolation structures for defining active regions for an n-channel MOS transistor and a p-channel MOS transistor after the formation of appropriately doped wells.
- FIG. 2 shows the substrate after formation of a gate oxide and deposition of an amorphous silicon layer.
- FIG. 3 shows the substrate after formation of a polysilicon layer by crystallization of the amorphous silicon layer.
- FIG. 4 shows a plan view of the substrate after the formation of a gate plane by structuring the polysilicon layer.
- V-V, VI-VI, VII-VII, IX-IX, XI-XI denotes the section through the semiconductor substrate shown in FIGS. 5, 6, 7, 9 and 11 respectively.
- VIII-VIII, X-X and XII-XII denote the section shown in FIGS. 8, 10 and 12, respectively.
- FIG. 5 shows a section through the semiconductor substrate after the structuring of the polysilicon layer and the gate oxide.
- FIG. 6 shows the section through the semiconductor substrate after the formation of spacers and reoxidation.
- FIG. 7 and FIG. 8 show mutually perpendicular sections through the semiconductor substrate after a p
- FIG. 9 and FIG. 10 show mutually perpendicular sections through the semiconductor substrate after an n-ion implantation.
- FIG. 11 and FIG. 12 show sections perpendicular to one another through the semiconductor substrate after the completion of an n-channel MOS transistor and a p-channel MOS transistor.
- field oxide regions 2 are generated, for example in a LOCOS process, which have an active region 4a for a p-channel MOS transistor and an active region 4b for an n-channel Define MOS transistor (see Figure 1).
- An n-doped well 3a is produced in the active region 4a for the p-channel MOS transistor.
- a p-doped well 3b is produced in the active region 4b for the n-channel MOS transistor.
- the field oxide regions 2 and the wells 3a, 3b are produced according to process steps customary in CMOS technology.
- a dopant concentration of, for example, 1 ⁇ IO 17 P / cm 3 is set in the n-doped well 3a, and a dopant concentration of, for example, 1 ⁇ 10 17 B / cm 3 is set in the p-doped well 3b.
- Gate oxide 5 grow to a thickness of, for example, 3 to 10 nm (see FIG. 2).
- An amorphous silicon layer 6a is then deposited over the entire surface.
- the amorphous silicon layer 6a is deposited, for example, in a low-temperature deposition at a temperature below 500 ° C., preferably in the range from 0.1 to 10 torr, with disilane (Si 2 H 5 ). In comparison to an SiH 4 process, this low-temperature deposition process has the advantage that the amorphous silicon layer 6a exhibits improved crystallization behavior.
- the amorphous silicon layer 6a is undoped or lightly doped with a dopant concentration below 5 ⁇ 10 19 cm 3 in a layer thickness of 50 to 500 nm.
- the amorphous silicon layer 6a is then converted into a polysilicon layer 6b by crystallization at low temperature, preferably between 600 and 800 ° C. (see FIG. 3).
- the polycrystalline silicon layer 6b consists of large-grain polysilicon with an average grain size ⁇ L>preferably> 200 nm.
- the average grain size ⁇ L> can be set via the tempering conditions, that is to say the temperature and duration of the crystallization. With the following annealing conditions 600 ° C, 8 hours, an average grain size of several ⁇ m can be achieved.
- the polysilicon layer 6b is structured using a photolithographically produced mask and an etching technique, for example by anisotropic etching with HBr / Cl 2 gas.
- a gate level 6c which, in addition to undoped gate electrodes 7 for the p-channel MOS transistor and the n-channel MOS transistor, comprises a connection 70 between the two gate electrodes 7.
- the connection 70 comprises a constriction 89 at which the width of the connection 70 is reduced.
- the width 8 is, for example, 250 nm, outside the constriction 89, the width of the connection 70 corresponds to the width 7a, 7b of the gate electrodes 7, which is equal to the gate length of the p-channel MOS transistor or of the n-channel MOS transistor (see FIG. 4).
- the width 8 of the constriction 89 is set to be smaller, preferably substantially smaller, than the average grain size ⁇ L>.
- the length 9 of the constriction 89 is set larger than the average grain size ⁇ L> of the polysilicon. In this way it is ensured that in the area of the constriction 89 a lateral dopant diffusion occurs practically only in the silicon grains.
- the width 8 and the length 9 of the constriction 89 are set depending on the polysilicon grain size, the thermal budget and on design and lithography boundary conditions. With an average grain size ⁇ L> of 400 nm, for example, the width is 8 play 250 nm, the length 9 800 nm and the gate length 7a, 7b for example 1 ⁇ m.
- a photoresist mask 12 which covers the active region 4b for the n-channel MOS transistor is then produced using photolithographic process steps (see FIG. 7).
- the photoresist mask 12 extends to the adjacent field oxide regions 2.
- the photoresist mask 12 extends to the area of the constriction 89 (see FIG. 8).
- an ion implantation 13 with boron or BF 2 with a dose of, for example, 5 ⁇ 10 15 at / cm 2 and an energy of, for example, 15 or 40 keV By means of an ion implantation 13 with boron or BF 2 with a dose of, for example, 5 ⁇ 10 15 at / cm 2 and an energy of, for example, 15 or 40 keV, a p + -doped gate electrode 14 and p-doped source / Drain regions 15a are generated for the p-channel MOS transistor.
- the part of the compound 70 uncovered by the photoresist mask 12 is p + doped.
- a photoresist mask 16 is produced which covers the area for the p-channel MOS transistor (see FIG. 9).
- the photoresist mask 16 extends in the area of the connection 70 to the narrow point 89 (see FIG. 10).
- An n + -doped gate electrode 18a and n-doped source / drain regions 19a are formed by an implantation 17 with arsenic or phosphorus with a dose of 5 x IO 15 at / cm 2 and an energy of 60 or 120 keV.
- the part of the connection 70 and the constriction 89, which is not covered by the photoresist mask 16 is n + doped.
- the photoresist mask 16 is then removed
- the implanted dopant is electrically activated by annealing the substrate 1.
- p-doped source / drain diffusion regions 15b and n-doped source / drain diffusion regions 19b are formed.
- a p-doped gate 14b for the p-channel MOS transistor and an n-doped gate 18b for the n-channel MOS transistor are formed (see FIG. 11 and FIG. 12).
- the thermal Si0 2 layer 11 is removed wet-chemically, for example with HF / HN0 3 .
- a metallic conductor 20 is then selectively applied to exposed silicon areas, that is to say to the surface of the n- or p-doped source / drain diffusion regions 15b, 19b and to the n- or p-doped gate 18b, 14b.
- the metallic conductor 20 can be
- Example are formed from TiSi 2 in a salicide process.
- the metallic conductor 20 can also be applied by selective deposition of tungsten in a CVD process.
- the metallic conductor 20 also extends over the connection 70 with the constriction 89. In the region of the constriction 89, n + -doped and p + -doped regions of the connection 70 adjoin one another.
- the metallic conductor 20 extends over this boundary and connects the n + -doped regions of the connection 70 with the p + -doped regions.
- the p + -doped gate 14b is connected to the n + -doped gate 18b.
- the structure represents an inverter.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59608080T DE59608080D1 (de) | 1995-07-10 | 1996-07-04 | Verfahren zur herstellung einer integrierten cmos-schaltung |
EP96921893A EP0838088B1 (de) | 1995-07-10 | 1996-07-04 | Verfahren zur herstellung einer integrierten cmos-schaltung |
JP50540597A JP3459262B2 (ja) | 1995-07-10 | 1996-07-04 | Cmos集積回路の製造方法 |
US08/983,263 US5882965A (en) | 1995-07-10 | 1996-07-04 | Process for manufacturing an integrated CMOS circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19525069A DE19525069C1 (de) | 1995-07-10 | 1995-07-10 | Verfahren zur Herstellung einer integrierten CMOS-Schaltung |
DE19525069.9 | 1995-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997003462A1 true WO1997003462A1 (de) | 1997-01-30 |
Family
ID=7766441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1996/001202 WO1997003462A1 (de) | 1995-07-10 | 1996-07-04 | Verfahren zur herstellung einer integrierten cmos-schaltung |
Country Status (6)
Country | Link |
---|---|
US (1) | US5882965A (de) |
EP (1) | EP0838088B1 (de) |
JP (1) | JP3459262B2 (de) |
KR (1) | KR100424744B1 (de) |
DE (2) | DE19525069C1 (de) |
WO (1) | WO1997003462A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0981155A2 (de) * | 1998-08-18 | 2000-02-23 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer Halbleiter-Isolationsschicht und eines diese Halbleiter-Isolationsschicht enthaltenden Halbleiterbauelements |
US6586808B1 (en) | 2002-06-06 | 2003-07-01 | Advanced Micro Devices, Inc. | Semiconductor device having multi-work function gate electrode and multi-segment gate dielectric |
US6630720B1 (en) | 2001-12-26 | 2003-10-07 | Advanced Micro Devices, Inc. | Asymmetric semiconductor device having dual work function gate and method of fabrication |
US6873010B2 (en) | 2002-05-31 | 2005-03-29 | International Business Machines Corporation | High performance logic and high density embedded dram with borderless contact and antispacer |
US6888198B1 (en) | 2001-06-04 | 2005-05-03 | Advanced Micro Devices, Inc. | Straddled gate FDSOI device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19521006C2 (de) * | 1994-06-08 | 2000-02-17 | Hyundai Electronics Ind | Halbleiterbauelement und Verfahren zu seiner Herstellung |
JP2001210726A (ja) * | 2000-01-24 | 2001-08-03 | Hitachi Ltd | 半導体装置及びその製造方法 |
JP2002217310A (ja) * | 2001-01-18 | 2002-08-02 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
US6544888B2 (en) * | 2001-06-28 | 2003-04-08 | Promos Technologies, Inc. | Advanced contact integration scheme for deep-sub-150 nm devices |
DE10137678A1 (de) * | 2001-08-01 | 2003-02-27 | Infineon Technologies Ag | Verfahren zur Herstellung eines Halbleiterprodukts mit einem Speicher- und einem Logikbereich |
DE10156489A1 (de) * | 2001-11-16 | 2003-05-28 | Promos Technologies Inc | In-situ leichtdotiertes amorphes Silizium, das in DRAM-Gates angewendet wird |
JP4227341B2 (ja) * | 2002-02-21 | 2009-02-18 | セイコーインスツル株式会社 | 半導体集積回路の構造及びその製造方法 |
US6686612B1 (en) | 2002-10-01 | 2004-02-03 | T-Ram, Inc. | Thyristor-based device adapted to inhibit parasitic current |
US6690039B1 (en) | 2002-10-01 | 2004-02-10 | T-Ram, Inc. | Thyristor-based device that inhibits undesirable conductive channel formation |
US6828181B2 (en) * | 2003-05-08 | 2004-12-07 | International Business Machines Corporation | Dual gate material process for CMOS technologies |
US6884672B1 (en) | 2003-11-04 | 2005-04-26 | International Business Machines Corporation | Method for forming an electronic device |
US7064050B2 (en) * | 2003-11-28 | 2006-06-20 | International Business Machines Corporation | Metal carbide gate structure and method of fabrication |
US7812400B2 (en) * | 2007-03-19 | 2010-10-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Gate strip with reduced thickness |
US9561867B2 (en) * | 2013-10-11 | 2017-02-07 | The Boeing Company | Modular equipment center lightning threat reduction architecture |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0337481A2 (de) * | 1988-04-15 | 1989-10-18 | Kabushiki Kaisha Toshiba | Halbleitervorrichtung |
EP0660394A1 (de) * | 1993-10-29 | 1995-06-28 | AT&T Corp. | Herstellung einer CMOS-integrierten Schaltung |
JPH07302844A (ja) * | 1994-04-28 | 1995-11-14 | Ricoh Co Ltd | デュアルゲート構造の相補形mis半導体装置 |
JPH0831947A (ja) * | 1994-07-11 | 1996-02-02 | Ricoh Co Ltd | Cmos半導体装置およびその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5652183A (en) * | 1994-01-18 | 1997-07-29 | Matsushita Electric Industrial Co., Ltd. | Method for fabricating semiconductor device containing excessive silicon in metal silicide film |
-
1995
- 1995-07-10 DE DE19525069A patent/DE19525069C1/de not_active Expired - Fee Related
-
1996
- 1996-07-04 DE DE59608080T patent/DE59608080D1/de not_active Expired - Lifetime
- 1996-07-04 KR KR10-1998-0700046A patent/KR100424744B1/ko not_active IP Right Cessation
- 1996-07-04 JP JP50540597A patent/JP3459262B2/ja not_active Expired - Lifetime
- 1996-07-04 WO PCT/DE1996/001202 patent/WO1997003462A1/de active IP Right Grant
- 1996-07-04 US US08/983,263 patent/US5882965A/en not_active Expired - Lifetime
- 1996-07-04 EP EP96921893A patent/EP0838088B1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0337481A2 (de) * | 1988-04-15 | 1989-10-18 | Kabushiki Kaisha Toshiba | Halbleitervorrichtung |
EP0660394A1 (de) * | 1993-10-29 | 1995-06-28 | AT&T Corp. | Herstellung einer CMOS-integrierten Schaltung |
JPH07302844A (ja) * | 1994-04-28 | 1995-11-14 | Ricoh Co Ltd | デュアルゲート構造の相補形mis半導体装置 |
JPH0831947A (ja) * | 1994-07-11 | 1996-02-02 | Ricoh Co Ltd | Cmos半導体装置およびその製造方法 |
Non-Patent Citations (4)
Title |
---|
C. Y WONG ET AL: "Doping of N(-) and P(+) polysilicon in a dual-gate CMOS process", IEDM 88, 1988, pages 238 - 241, XP000195608 * |
DATABASE WPI Derwent World Patents Index; AN 96-027838 * |
PATENT ABSTRACTS OF JAPAN vol. 96, no. 3 29 March 1996 (1996-03-29) * |
PATENT ABSTRACTS OF JAPAN vol. 96, no. 6 28 June 1996 (1996-06-28) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0981155A2 (de) * | 1998-08-18 | 2000-02-23 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer Halbleiter-Isolationsschicht und eines diese Halbleiter-Isolationsschicht enthaltenden Halbleiterbauelements |
EP0981155A3 (de) * | 1998-08-18 | 2000-03-22 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer Halbleiter-Isolationsschicht und eines diese Halbleiter-Isolationsschicht enthaltenden Halbleiterbauelements |
US6888198B1 (en) | 2001-06-04 | 2005-05-03 | Advanced Micro Devices, Inc. | Straddled gate FDSOI device |
US6630720B1 (en) | 2001-12-26 | 2003-10-07 | Advanced Micro Devices, Inc. | Asymmetric semiconductor device having dual work function gate and method of fabrication |
US6873010B2 (en) | 2002-05-31 | 2005-03-29 | International Business Machines Corporation | High performance logic and high density embedded dram with borderless contact and antispacer |
US6586808B1 (en) | 2002-06-06 | 2003-07-01 | Advanced Micro Devices, Inc. | Semiconductor device having multi-work function gate electrode and multi-segment gate dielectric |
Also Published As
Publication number | Publication date |
---|---|
EP0838088B1 (de) | 2001-10-31 |
US5882965A (en) | 1999-03-16 |
DE59608080D1 (de) | 2001-12-06 |
EP0838088A1 (de) | 1998-04-29 |
KR100424744B1 (ko) | 2004-05-17 |
JP3459262B2 (ja) | 2003-10-20 |
DE19525069C1 (de) | 1996-10-24 |
JPH11509045A (ja) | 1999-08-03 |
KR19990028748A (ko) | 1999-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69901657T2 (de) | Herstellungsverfahren für selbstjustierende lokale Zwischenverbindung | |
EP0118709B1 (de) | Verfahren zum Herstellen von MOS-Transistoren mit flachen Source/Drain-Gebieten, kurzen Kanallängen und einer selbstjustierten, aus einem Metallsilizid bestehenden Kontaktierungsebene | |
EP0227970B1 (de) | Verfahren zum gleichzeitigen Herstellen von selbstjustierten bipolaren Transistoren und komplementären MOS-Transistoren auf einem gemeinsamen Siliziumsubstrat | |
EP0838088B1 (de) | Verfahren zur herstellung einer integrierten cmos-schaltung | |
DE69111929T2 (de) | Halbleiteranordnung auf einem dielektrischen isolierten Substrat. | |
DE69521579T2 (de) | Herstellungsverfahren für MOS-Halbleiterbauelement | |
EP0244607B1 (de) | Verfahren zum Herstellen von optimierten komplementären MOS-Feldeffekttransistoren in VLSI-Technik | |
DE69710745T2 (de) | Verfahren zur Herstellung eines selbstjustierten kurzkanal- VMOS feldeffekttransistors | |
EP0219641B1 (de) | Integrierte Bipolar- und komplementäre MOS-Transistoren auf einem gemeinsamen Substrat enthaltende Schaltung und Verfahren zu ihrer Herstellung | |
DE69032917T2 (de) | Verfahren zur Herstellung einer Hochspannungs-MIS-integrierten Schaltung | |
DE69015666T2 (de) | MOSFET-Transistor mit nicht-gleichmässiger Schwellspannung im Kanalbereich. | |
US5414291A (en) | Semiconductor device and process for fabricating the same | |
EP0482232B1 (de) | Verfahren zur Herstellung einer dotierten Polyzidschicht auf einem Halbleitersubstrat | |
DE102005018346A1 (de) | Vollständig verarmte SOI-Mehrfachschwellenspannungs-Anwendung | |
DE69127837T2 (de) | Hochgeschwindigkeits-SOI-Bauelement und Herstellungsverfahren dafür | |
DE4300986C2 (de) | Halbleitervorrichtung zur Elementisolierung und Herstellungsverfahren derselben | |
DE2247975C3 (de) | Verfahren zur Herstellung von Dünnschicht-Schaltungen mit komplementären MOS-Transistoren | |
EP0764982B1 (de) | Verfahren zur Herstellung einer integrierten CMOS-Schaltung | |
DE69523292T2 (de) | Integrierte Halbleiterschaltung bestehend aus bipolaren Transistoren und MOS Transistoren und dazugehöriges Herstellungsverfahren | |
WO2001006542A2 (de) | Verfahren zur herstellung eines vertikal-halbleitertransistorbauelements und vertikal-halbleitertransistorbauelement | |
EP0864172B1 (de) | Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor | |
EP0800215A2 (de) | Schaltungsstruktur mit mindestens einem MOS-Transistor und Verfahren zu deren Betrieb | |
DE3751402T2 (de) | Verwendung einer selektiven Epitaxie für BiCMOS-Verfahren. | |
EP0396802B1 (de) | Verfahren zur Herstellung einer integrierten Schaltungsstruktur mit einem lateralen Bipolartransistor | |
DE19749378B4 (de) | MOS-Transistor und Verfahren zu dessen Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996921893 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019980700046 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 505405 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08983263 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1996921893 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019980700046 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996921893 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019980700046 Country of ref document: KR |