WO1997003169A1 - Concentrated, stable fabric softening composition - Google Patents

Concentrated, stable fabric softening composition Download PDF

Info

Publication number
WO1997003169A1
WO1997003169A1 PCT/US1996/011556 US9611556W WO9703169A1 WO 1997003169 A1 WO1997003169 A1 WO 1997003169A1 US 9611556 W US9611556 W US 9611556W WO 9703169 A1 WO9703169 A1 WO 9703169A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
dimethyl
pentanediol
hexanediol
diol
Prior art date
Application number
PCT/US1996/011556
Other languages
English (en)
French (fr)
Inventor
Toan Trinh
Helen Bernardo Tordil
Errol Hoffman Wahl
Jennifer Lea Rinker
Alice Marie Vogel
Hugo Jean Marie Demeyere
Marc Johan Declercq
Eugene Paul Gosselink
James Carey Letton
Deborah Jean Back
John Cort Severns
Mark Robert Sivik
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to KR1019997011199A priority Critical patent/KR100263216B1/ko
Priority to JP9505982A priority patent/JPH11506810A/ja
Priority to MX9800382A priority patent/MX9800382A/es
Priority to AU64889/96A priority patent/AU6488996A/en
Priority to US08/983,542 priority patent/US6323172B1/en
Priority to CA002226564A priority patent/CA2226564C/en
Priority to EP96924436A priority patent/EP0842250B1/en
Priority to DE69626521T priority patent/DE69626521T2/de
Priority to BR9609800A priority patent/BR9609800A/pt
Priority to AT96924436T priority patent/ATE233804T1/de
Priority to KR1019980700197A priority patent/KR100274684B1/ko
Publication of WO1997003169A1 publication Critical patent/WO1997003169A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/645Mixtures of compounds all of which are cationic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • C11D3/2044Dihydric alcohols linear
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • C11D3/2048Dihydric alcohols branched
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids

Definitions

  • the present invention relates to preferably translucent, or, more preferably, clear, aqueous, concentrated, liquid softening compositions useful for softening cloth. It especially relates to textile softening compositions for use in the rinse cycle of a textile laundering operation to provide excellent fabric-softening/static-control benefits, the compositions being characterized by, e.g., reduced staining of fabric, excellent water dispersibility, rewettability, and/or storage and viscosity stability at sub-normal temperatures, i.e., temperatures below normal room temperature, e.g., 25°C.
  • Fabric softening compositions containing high solvent levels are known in the art. However, softener agglomerates can form and can deposit on clothes which can result in staining and reduced softening performance. Also, compositions may thicken and/or precipitate at lower temperatures, i.e., at about 40°F (about 4°C) to about 65°F (about 18°C). These compositions can also be costly for the consumer due to the high solvent levels associated with making a concentrated, clear product.
  • the present invention provides concentrated aqueous liquid textile treatment compositions with low organic solvent level (i.e., below about 40%, by weight of the composition), that have improved stability (i.e., remain clear or translucent and do not precipitate, gel, thicken, or solidify) at normal, i.e., room temperatures and subnormal temperatures under prolonged storage conditions.
  • Said compositions also provide reduced staining of fabrics, good cold water dispersibility, together with excellent softening, anti-static and fabric rewettability characteristics, as well as reduced dispenser residue buildup and excellent freeze-thaw recovery.
  • the object of the present invention is to provide aqueous, concentrated, translucent, or, preferably, clear, rinse-added liquid fabric softening compositions which provide one, or more benefits such as reduced staining on fabrics, ready dispersibility in rinse water, phase stability at low temperatures, and/or, preferably acceptable viscosity and viscosity stability at low temperatures, and/or recovery from freezing.
  • compositions herein comprise:
  • biodegradable fabric softener active selected from the group consisting of:
  • each R substituent is H or a short chain C 1 -C 6 , preferably C 1 -C 3 alkyl or hydroxyalkyl group, e.g., methyl (most preferred), ethyl, propyl, hydroxyethyl, and the like, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4, preferably 2; each Y is O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, preferably -O-(O)C-; the sum of carbons in each R , plus one when Y is -O-(O)C- or -(R)N-(O)C- (hereinafter, R 1 and YR 1 , the "YR 1 sum" are used interchangeably to represent the hydrophobic chain, the R 1 chain lengths in general being even numbered for fatty alcohols and
  • -(O)CR 1 is derived from unsaturated fatty acid, e.g., oleic acid, and/or fatty acids and/or partially hydrogenated fatty acids, derived from vegetable oils and/or partially hydrogenated vegetable oils, such as: canola oil; safflower oil; peanut oil; sunflower oil; soybean oil; corn oil; tall oil; rice bran oil; etc.
  • -(O)CR 1 is a saturated, (the Iodine Value is preferably 10 or less, more preferably less than about 5), C 8- C 14 preferably a C 12-14 hydrocarbyl, or substituted hydrocarbyl substituent derived from, e.g., coconut oil.]
  • DEQA these biodegradable fabric softener actives containing ester linkages are referred to as "DEQA", which includes both diester, triester, and monoester compounds containing from one to three, preferably two, long chain hydrophobic groups.
  • the corresponding amide softener actives and the mixed ester-amide softener actives can also contain from one to three, preferably two, long chain hydrophobic groups.
  • Preferred fabric softener actives have the characteristic that they can be processed by conventional mixing means at ambient temperature, at least in the presence of about 15% of solvent C. as disclosed hereinafter.]
  • B less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, by weight of the composition of principal solvent having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said principal solvent containing insufficient amounts of solvents selected from the group consisting of: 2,2,4-trimethyl-1,3-pentanediol; the ethoxylate, diethoxylate, or triethoxylate derivatives of 2,2,4-trimethyl-1,3-pentanediol; and/or 2-ethyl-1,3-hexanediol, and/or mixtures thereof, when used by themselves, to provide a clear product, preferably insufficient to provide a stable product, more preferably insufficient to provide a detectable change in the physical characteristics of the composition, and especially completely free thereof, and the principal solvent preferably being selected from the group
  • the first type of DEQA preferably comprises, as the principal active, compounds of the formula
  • the more preferred DEQA's are those that are prepared as a single DEQA from blends of all the different fatty acids that are represented (total fatty acid blend), rather than from blends of mixtures of separate finished DEQA's that are prepared from different portions of the total fatty acid blend.
  • the present invention can contain medium-chain biodegradable quaternary ammonium fabric softening compound, DEQA as a preferred component, having the above formula (1) and/or formula (2), below, wherein:
  • each Y is -O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, preferably -O-(O)C-;
  • each n is 1 to 4, preferably 2;
  • Suitable fatty acid sources for said fatty acyl groups are coco, lauric, caprylic, and capric acids.
  • the groups are preferably saturated, e.g., the IV is preferably less than about 10, preferably less than about 5.
  • substituents R and R 1 can optionally be substituted with various groups such as alkoxyl or hydroxyl groups, and can be straight, or branched so long as the R 1 groups maintain their basically hydrophobic character.
  • the preferred compounds can be considered to be biodegradable diester variations of ditallow dimethyl ammonium chloride (hereinafter referred to as "DTDMAC”), which is a widely used fabric softener.
  • DTDMAC ditallow dimethyl ammonium chloride
  • a preferred long chain DEQA is the DEQA prepared from sources containing high levels of polyunsaturation, i.e., N,N-di(acyl-oxyethyl)-N,N-dimethyl ammonium chloride, where the acyl is derived from fatty acids containing sufficient polyunsaturation, e.g., mixtures of tallow fatty acids and soybean fatty acids.
  • Another preferred long chain DEQA is the dioleyl (nominally) DEQA, i.e., DEQA in which N,N-di(oleoyl-oxyethyl)-N,N-dimethyl ammonium chloride is the major ingredient.
  • Preferred sources of fatty acids for such DEQAs are vegetable oils, and/or partially hydrogenated vegetable oils, with high contents of unsaturated, e.g., oleoyl groups.
  • Preferred medium chain DEQAs are dicocoyl DEQA (derived from coconut fatty acids), i.e., N,N-di(coco-oyl-oxyethyl)-N,N-dimethyl ammonium chloride, exemplified hereinafter as DEQA 6 , and N,N-di(lauroyl-oxyethyl)-N,N-dimethyl ammonium chloride.
  • the diester when specified, it can include the monoester that is present.
  • the DEQA can be DEQA monoester, e.g., one YR 1 group is either OH, or -C(O)OH, and, for Formula 1., m is 2.
  • the corresponding diamide and/or mixed ester-amide can also include the active with one long chain hydrophobic group, e.g., one YR 1 group is either -N(R)H , or -C(O)OH.
  • any disclosure, e.g., levels, for the monoester actives is also applicable to the monoamide actives.
  • the percentage of monoester should be as low as possible, preferably no more than about 5%. However, under high, anionic detergent surfactant or detergent builder carry-over conditions, some monoester can be preferred.
  • the overall ratios of diester to monoester are from about 100:1 to about 2:1, preferably from about 50:1 to about 5:1, more preferably from about 13:1 to about 8:1. Under high detergent carry-over conditions, the di/monoester ratio is preferably about 11:1.
  • the level of monoester present can be controlled in manufacturing the DEQA
  • the above compounds, used as the biodegradable quaternized ester-amine softening material in the practice of this invention, can be prepared using standard reaction chemistry.
  • an amine of the formula RN(CH 2 CH 2 OH) 2 where R is e.g., alkyl is esterified at both hydroxyl groups with an acid chloride of the formula R 1 C(O)Cl, to form an amine which can be made cationic by acidification (one R is H) to be one type of softener, or then quaternized with an alkyl halide, RX, to yield the desired reaction product (wherein R and R 1 are as defined hereinbefore).
  • RX alkyl halide
  • each R is a methyl or ethyl group and preferably each R 1 is in the range of C 15 to C 19 . Degrees of branching and substitution can be present in the alkyl or alkenyl chains.
  • the anion ⁇ (-) in the molecule is the same as in DEQA (1) above. As used herein, when the diester is specified, it can include the monoester that is present. The amount of monoester that can be present is the same as in DEQA (1).
  • DEQA 9 An example of a preferred DEQA of formula (2) is the "propyl" ester quaternary ammonium fabric softener active having the formula 1,2-di(acyloxy)-3-trimethylammoniopropane chloride, wherein the acyl group is the same as that of DEQA 5 , exemplified hereinafter as DEQA 9 .
  • each R 1 is a hydrocarbyl, or substituted hydrocarbyl, group, preferably, alkyl, monounsaturated alkenyl, and polyunsaturated alkenyl groups, with the softener active containing polyunsaturated alkenyl groups being at least about 3%, preferably at least about 5%, more preferably at least about 10%, and even more preferably at least about 15%, by weight of the total softener active present; the actives preferably containing mixtures of R 1 groups, especially within the individual molecules, and also, optionally, but preferably, the saturated R 1 groups comprising branched chains, e.g., from isostearic acid, for at least part of the saturated R 1 groups, the total of active represented by the branched chain groups preferably being from about 1% to about 90%, preferably from about 10% to about 70%, more preferably from about 20% to about 50%.
  • the softener active containing polyunsaturated alkenyl groups being at least about 3%, preferably at least about 5%
  • DEQAs herein can contain a low level of fatty acid, which can be from unreacted starting material used to form the DEQA and/or as a by-product of any partial degradation (hydrolysis) of the softener active in the finished composition. It is preferred that the level of free fatty acid be low, preferably below about 10%, and more preferably below about 5%, by weight of the softener active,
  • the alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40°F (about 4.4°C) and are able to recover after storage down to about 20°F (about 6.7°C).
  • the logP of many ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California, contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the "CLOGP” program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database.
  • the "calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p.
  • the fragment approach is based on the chemical structure of each ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding.
  • the ClogP values which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of the principal solvent ingredients which are useful in the present invention.
  • Other methods that can be used to compute ClogP include, e.g., Crippen's fragmentation method as disclosed in J. Chem. Inf. Comput. Sci., 27, 21 (1987); Viswanadhan's fragmentation method as disclose in J. Chem. Inf. Comput. Sci., 29, 163 (1989); and Broto's method as disclosed in Eur. J. Med. Chem. - Chim. Theor., 19, 71 (1984).
  • the principal solvents herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said principal solvent preferably being asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes.
  • asymmetric solvents appear to be very desirable, whereas the highly symmetrical solvents, having a center of symmetry, such as 1,7-heptanediol, or 1,4-bis(hydroxymethyl)cyclohexane, appear to be unable to provide the essentially clear compositions when used alone, even though their ClogP values fall in the preferred range.
  • One can select the most suitable principal solvent by determining whether a composition containing about 27% di(oleyoyloxyethyl)dimethylammonium chloride, about 16-20% of principal solvent, and about 4-6% ethanol remains clear during storage at about 40°F (about 4.4°C) and recovers from being frozen at about 0°F (about -18°C).
  • the most preferred principal solvents can be identified by the appearance of the freeze-dried dilute treatment compositions used to treat fabrics. These dilute compositions appear to have dispersions of fabric softener that exhibit a more unilamellar appearance than conventional fabric softener compositions. The closer to uni-lamellar the appearance, the better the compositions seem to perform. These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active. The compositions also inherently provide improved perfume deposition as compared to conventional fabric softening compositions, especially when the perfume is added to the compositions at, or near, room temperature.
  • C 1-2 mono-ols that provide the clear concentrated fabric softener compositions of this invention.
  • Only one C 3 mono-ol, n-propanol provides acceptable performance (forms a clear product and either keeps it clear to a temperature of about 4°C, or allows it to recover upon rewarming to room temperature), although its boiling point (BP) is undesirably low.
  • BP boiling point
  • Of the C4 monools only 2-butanol and 2-methyl-2-propanol provide very good performance, but 2- methyl-2-propanol has a BP that is undesirably low.
  • principal solvents which have two hydroxyl groups in their chemical formulas are suitable for use in the formulation of the liquid concentrated, clear fabric softener compositions of this invention. It is discovered that the suitability of each principal solvent is surprisingly very selective, dependent on the number of carbon atoms, the isomeric configuration of the molecules having the same number of carbon atoms, the degree of unsaturation, etc. Principal solvents with similar solubility characteristics to the principal solvents above and possessing at least some asymmetry will provide the same benefit. It is discovered that the suitable principal solvents have a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60.
  • the 1,2-hexanediol is a good principal solvent, while many other isomers such as 1,3- hexanediol, 1,4-hexanediol, 1,5-hexanediol, 1,6-hexanediol, 2,4-hexanediol, and 2,5-hexanediol, having ClogP values outside the effective 0.15 - 0.64 range, are not.
  • Examples and Comparative Examples I-A and I-B vide infra).
  • C 8 diol isomers there are even more C 8 diol isomers, but only the listed ones provide clear products and the preferred ones are: 1,3-propanediol, 2 -(1,1-dimethylpropyl)-; 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3 -propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3-propanediol, 2-methyl-2-(2-methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2-methyl-; 1,3-butanediol, 2,2-diethyl; 1,
  • 1,4-pentanediol 3-isopropyl-; 2,4-pentanediol, 3-propyl- 1,3 -hexanediol, 2,2-dimethyl-; 1,3-hexanedioI, 2,3-dimethyl-; 1,3-hexanediol 2,4-dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4-dimethyl 1,3 -hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,4-dimethyl-; 1,3-hexanediol 4,5-dimethyl-; 1,4-hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-dimethyl 1,4-hexanediol, 2,4-dimethyl-; 1,4-hex
  • Preferred mixtures of eight-carbon-atom-1,3 diols can be formed by the condensation of mixtures of butyraldehyde, isobutyraldehyde and/or methyl ethyl ketone (2-butanone), so long as there are at least two of these reactants in the reaction mixture, in the presence of highly alkaline catalyst followed by conversion by hydrogenation to form a mixture of eight-carbon- 1,3-diols, i.e., a mixture of 8-carbon-1,3-diols primarily consisting of: 2,2,4-trimethyl- 1,3 -pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-hexanediol; 2-ethyl-4-methyl-1,3-pentanediol; 2-ethyl-3-methyl-1,3-pentanediol; 3,5-octanediol; 2,2-
  • EO means polyethoxylates
  • E n means -(CH 2 CH 2 O) n H
  • Me-E n means methyl-capped polyethoxylates -(CH 2 CH 2 O) n CH 3
  • 2(Me-En) means 2 Me-En groups needed
  • PO means polypropoxylates, -(CH(CH 3 )CH 2 O) n H
  • BO means polybutyleneoxy groups, (CH(CH 2 CH 3 )CH 2 O) n H
  • n-BO means poly(n-butyleneoxy) groups -(CH 2 CH 2 CH 2 CH 2 O) n H.
  • some specific diol ethers are also found to be suitable principal solvents for the formulation of liquid concentrated, clear fabric softener compositions of the present invention. Similar to the aliphatic diol principal solvents, it is discovered that the suitability of each principal solvent is very selective, depending, e.g., on the number of carbon atoms in the specific diol ether molecules.
  • di(hydroxyalkyl) ethers The same narrow selectivity is also found for the di(hydroxyalkyl) ethers. It is discovered that bis(2-hydroxybutyl) ether, but not bis(2-hydroxypentyl) ether, is suitable. For the di(cyclic hydroxyalkyl) analogs, the bis(2-hydroxycyclopentyl) ether is suitable, but not the bis(2-hydroxycyclohexyl) ether. Non-limiting examples of synthesis methods for the preparation of some preferred di(hydroxyalkyl) ethers are given hereinafter.
  • the butyl monoglycerol ether (also named 3-butyloxy-1,2-propanediol) is not well suited to form liquid concentrated, clear fabric softeners of the present invention.
  • its polyethoxylated derivatives preferably from about triethoxylated to about nonaethoxylated, more preferably from pentaethoxylated to octaethoxylated, are suitable principal solvents, as given in Table VI.
  • Preferred aromatic glyceryl ethers include: 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3-benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-; 1,2-propanediol, 1,3-propanediol, 2-(m-cresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, 2-benzyloxy-; 1,3-propanediol, 2-(2-phenylethyloxy)-; and mixtures thereof.
  • the more preferred aromatic glyceryl ethers include: 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3-benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-; 1,2-propanediol, 1,3-propanediol, 2-(m-cresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, 2-(2-phenylethyloxy)-; and mixtures thereof.
  • the most preferred di(hydroxyalkyl)ethers include: bis(2-hydroxybutyl)ether; and bis(2-hydroxycyclopentyl)ether;
  • the alicyclic diols and their derivatives that are preferred include: (1) the saturated diols and their derivatives including: 1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl- 1 ,2-cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2-dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 2,4,5-trimethyl-1,3-cyclopentanediol; 3,3-dimethyl-1,2-cyclopentanediol; 3,4-dimethyl- 1,2-cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 3-ethyl-1,2-cyclopentanedi
  • saturated alicyclic diols and their derivatives are: 1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2-cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2-dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 3,3-dimethyl-1,2-cyclopentanediol; 3,4-dimethyl-1,2-cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 3-ethyl-1,2-cyclopentanediol;
  • Preferred aromatic diols include: 1-phenyl-1,2-ethanediol; 1 -phenyl- 1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3- methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1 -phenyl- 1,3-butanediol; 3-phenyl-1,3-butanediol; and/or 1-phenyl-1,4-butanediol, of which, 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol
  • the specific preferred unsaturated diol principal solvents are: 1,3-butanediol, 2,2-diallyl-; 1,3-butanediol, 2- (1-ethyl-1-propenyl)-; 1,3-butanediol, 2-(2-butenyl)-2-methyl-; 1,3-butanediol, 2-(3-methyl-2-butenyl)-; 1,3-butanediol, 2-ethyl-2-(2-propenyl)-; 1,3-butanediol, 2-methyl-2-(1-methyl-2-propenyl)-; 1,4-butanediol, 2,3-bis(1-methylethylidene)-; 1,
  • Said principal alcohol solvent can also preferably be selected from the group consisting of: 2,5-dimethyl-2,5-hexanediol; 2-ethyl-1,3-hexanediol; 2-methyl-2-propyl-1,3-propanediol; 1,2-hexanediol; and mixtures thereof. More preferably said principal alcohol solvent is selected from the group consisting of 2-ethyl-1,3-hexanediol; 2-methyl-2-propyl-1,3-propanediol; 1,2-hexanediol; and mixtures thereof. Even more preferably, said principal alcohol solvent is selected from the groups consisting of 2-ethyl-1,3-hexanediol; 1,2-hexanediol; and mixtures thereof.
  • 2,2-Dimethyl-6-heptene-1,3-diol (CAS No. 140192-39-8) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH 2 group and a double bond to either of the following preferred C8-diol principal solvents: 2-methyl-1,3-heptanediol or 2,2-dimethyl-1,3-hexanediol.
  • 2,4-Dimethyl-5-heptene-1,3-diol (CAS No. 123363-69-9) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH 2 group and a double bond to either of the following preferred C8-diol principal solvents: 2-methyl- 1,3-heptanediol or 2,4-dimethyl-1,3-hexanediol.
  • 2-(1-Ethyl-1-propenyl)-1,3-butanediol (CAS No. 116103-35-6) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH 2 group and a double bond to either of the following preferred C8-diol principal solvents: 2-(1-ethylpropyl)-1,3-propanediol or 2-(1-methylpropyl)-1,3-butanediol.
  • 3,6-Dimethyl-5-heptene-1,4-diol (e.g., CAS No. 106777-99-5) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH 2 group and a double bond to any of the following preferred C8-diol principal solvents: 3-methyl- 1,4-heptanediol; 6-methyl- 1,4-heptanediol; or 3,5-dimethyl-1,4-hexanediol.
  • 149252-15-3 are two isomers of 3,7-dimethyl-2,6-octadiene-1,4-diol, and are preferred C10-diol principal solvents. They can be considered to be derived by appropriately adding two CH 2 groups and two double bonds to any of the following preferred C8-diol principal solvents: 2-methyl-1,3-heptanediol; 6-methyl- 1,3-heptanediol; 3-methyl-1,4-heptanediol; 6-methyl- 1,4-heptanediol; 2,5-dimethyl- 1,3-hexanediol; or 3,5-dimethyl-1,4-hexanediol.
  • 8-Hydroxylinalool (CAS No. 103619-06-3, 2,6-dimethyl-2,7-octadiene-1,6-diol) is a preferred C10-diol principal solvent and can be considered to be derived by appropriately adding two CH 2 groups and two double bonds to any of the following preferred C8-diol principal solvents: 2-methyl- 1,5-heptanediol; 5-methyl-1,5-heptanediol; 2-methyl-1,6-heptanediol; 6-methyl-1,6-heptanediol; or 2,4-dimethyl-1,4-hexanediol.
  • the R 14 moieties are essentially 1,4-phenylene moieties.
  • the term "the R 14 moieties are essentially 1,4-phenylene moieties” refers to compounds where the R 14 moieties consist entirely of 1,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkenyl moieties, alkenylene moieties, or mixtures thereof.
  • Arylene and alkarylene moieties which can be partially substituted for 1,4-phenylene include 1,3-phenylene, 1,2-phenylene, 1,8-naphthylene, 1,4-naphthylene, 2,2-biphenylene, 4,4-biphenylene, and mixtures thereof.
  • the degree of partial substitution with moieties other than 1,4-phenylene should be such that the soil release properties of the compound are not adversely affected to any great extent.
  • the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties.
  • compounds where the R 14 comprise from about 50% to about 100% 1,4-phenylene moieties (from 0% to about 50% moieties other than 1,4-phenylene) have adequate soil release activity.
  • 1,2-propylene moieties or a similar branched equivalent is desirable for incorporation of any substantial part of the soil release component in the liquid fabric softener compositions.
  • the preferred scum dispersants herein are formed by highly ethoxylating hydrophobic materials.
  • the hydrophobic material can be a fatty alcohol, fatty acid, fatty amine, fatty acid amide, amine oxide, quaternary ammonium compound, or the hydrophobic moieties used to form soil release polymers.
  • the preferred scum dispersants are highly ethoxylated, e.g., more than about 17, preferably more than about 25, more preferably more than about 40, moles of ethylene oxide per molecule on the average, with the polyethylene oxide portion being from about 76% to about 97%, preferably from about 81% to about 94%, of the total molecular weight.
  • the level of scum dispersant is sufficient to keep the scum at an acceptable, preferably unnoticeable to the consumer, level under the conditions of use, but not enough to adversely affect softening. For some purposes it is desirable that the scum is nonexistent.
  • the amount of anionic or nonionic detergent, etc., used in the wash cycle of a typical laundering process the efficiency of the rinsing steps prior to the introduction of the compositions herein, and the water hardness, the amount of anionic or nonionic detergent surfactant and detergency builder (especially phosphates and zeolites) entrapped in the fabric (laundry) will vary.
  • Preferred scum dispersants are: Brij 700 ® ; Varonic U-250 ® ; Genapol T-500 ® , Genapol T-800 ® ; Plurafac A-79 ® ; and Neodol 25-50 ® .
  • bactericides used in the compositions of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol ® , and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon about 1 to about 1,000 ppm by weight of the agent.
  • the present invention can contain any softener compatible perfume.
  • perfume ingredients useful in the perfumes of the present invention compositions include, but are not limited to, hexyl cinnamic aldehyde; amyl cinnamic aldehyde; amyl salicylate; hexyl salicylate; terpineol; 3,7-dimethyl-cis-2,6-octadien-1-ol; 2,6-dimethyl-2-octanol; 2,6-dimethyl-7-octen-2-ol; 3,7-dimethyl-3-octanol; 3,7-dimethyl-trans-2,6-octadien-1-ol; 3,7-dimethyl-6-octen-1-ol; 3,7-dimethyl- 1-octanol; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; 4-(4-hydroxy-4-methylpentyl)-3 -cyclohexene-1-carboxalde
  • fragrance materials include, but are not limited to, orange oil; lemon oil; grapefruit oil; bergamot oil; clove oil; dodecalactone gamma; methyl-2-(2-pentyl-3-oxo-cyclopentyl) acetate; beta-naphthol methylether; methyl-beta-naphthylketone; coumarin; decylaldehyde; benzaldehyde; 4-tert-butylcyclohexyl acetate; alpha,alpha-dimethylphenethyl acetate; methylphenylcarbinyl acetate; Schiffs base of 4-(4-hydroxy-4-methylpentyl)-3-cycIohexene-1-carboxaldehyde and methyl anthranilate; cyclic ethyleneglycol diester of tridecandioic acid; 3,7-dimethyl-2,6-octadiene-1- nitrile
  • Suitable solvents, diluents or carriers for perfumes ingredients mentioned above are for examples, ethanol, isopropanol, diethylene glycol, monoethyl ether, dipropylene glycol, diethyl phthalate, triethyl citrate, etc.
  • the amount of such solvents, diluents or carriers incorporated in the perfumes is preferably kept to the minimum needed to provide a homogeneous perfume solution.
  • Perfume can be present at a level of from 0% to about 10%, preferably from about 0.1% to about 5%, and more preferably from about 0.2% to about 3%, by weight of the finished composition.
  • Fabric softener compositions of the present invention provide improved fabric perfume deposition.
  • compositions and processes herein can optionally employ one or more copper and/or nickel chelating agents ("chelators").
  • chelators can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof all as hereinafter defined.
  • the whiteness and/or brightness of fabrics are substantially improved or restored by such chelating agents and the stability of the materials in the compositions are improved.
  • Amino carboxylates useful as chelating agents herein include ethylenediaminetetraacetates (EDTA), N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates (NTA), ethylenediamine tetraproprionates, ethylenediamine-N,N-diglutamates, 2-hyroxypropylenediamine-N,N-disuccinates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates (DETPA), and ethanoldiglycines, including their water-soluble salts such as the alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.
  • EDTA ethylenediaminetetraacetates
  • NDA nitrilotriacetates
  • ethylenediamine tetraproprionates ethylenediamine-N,N-diglutamates
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates), diethylenetriamine-N,N,N,N",N"-pentakis(methane phosphonate) (DETMP) and 1-hydroxyethane-1,1-diphosphonate (HEDP).
  • these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • the chelating agents are typically used in the present rinse process at levels from about 2 ppm to about 25 ppm, for periods from 1 minute up to several hours' soaking.
  • the preferred EDDS chelator used herein also known as ethylenediamine- N,N'-disuccinate
  • U.S. Patent 4,704,233 cited hereinabove, and has the formula (shown in free acid form):
  • EDDS can be prepared using maleic anhydride and ethylenediamine.
  • the preferred biodegradable [S,S] isomer of EDDS can be prepared by reacting L-aspartic acid with 1,2-dibromoethane.
  • the EDDS has advantages over other chelators in that it is effective for chelating both copper and nickel cations, is available in a biodegradable form, and does not contain phosphorus.
  • the EDDS employed herein as a chelator is typically in its salt form, i.e., wherein one or more of the four acidic hydrogens are replaced by a water-soluble cation M, such as sodium, potassium, ammonium, triethanolammonium, and the like.
  • the EDDS chelator is also typically used in the present rinse process at levels from about 2 ppm to about 25 ppm for periods from 1 minute up to several hours' soaking. At certain pH's the EDDS is preferably used in combination with zinc cations.
  • chelators can be used herein. Indeed, simple polycarboxylates such as citrate, oxydisuccinate, and the like, can also be used, although such chelators are not as effective as the amino carboxylates and phosphonates, on a weight basis. Accordingly, usage levels may be adjusted to take into account differing degrees of chelating effectiveness.
  • the chelators herein will preferably have a stability constant (of the fully ionized chelator) for copper ions of at least about 5, preferably at least about 7. Typically, the chelators will comprise from about 0.5% to about 10%, more preferably from about 0.75% to about 5%, by weight of the compositions herein, in addition to those that are stabilizers.
  • Preferred chelators include DETMP, DETPA, NTA, EDDS and mixtures thereof.
  • the present invention can include optional components conventionally used in textile treatment compositions, for example: colorants; preservatives; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, and the like.
  • Particularly preferred ingredients include water soluble calcium and/or magnesium compounds, which provide additional stability.
  • the chloride salts are preferred, but acetate, nitrate, etc. salts can be used.
  • the level of said calcium and/or magnesium salts is from 0% to about 2%, preferably from about 0.05% to about 0.5%, more preferably from about 0.1% to about 0.25%.
  • the present invention can also include other compatible ingredients, including those as disclosed in copending applications Serial Nos.: 08/372,068, filed January 12, 1995, Rusche, et al.; 08/372,490, filed January 12, 1995, Shaw, et al.; and 08/277,558, filed July 19, 1994, Hartman, et al., incorporated herein by reference.
  • This synthesis method is a general preparation of ⁇ , ⁇ -type diols derived from substituted cyclic alkenes.
  • cyclic alkenes are the alkylated isomers of cyclopentene, cyclohexene, and cycloheptene.
  • the general formula of useful alkylated cyclic alkenes is wherein each R is H, or C 1 -C 4 -alkyl, and where x is 3, 4, or 5.
  • Cyclic alkenes may be converted to the terminal diols by a three step reaction sequence.
  • Step 1 is the reaction of the cyclic alkene with ozone (O 3 ) in a solvent such as anhydrous ethyl acetate to form the intermediate ozonide.
  • Step 2 the ozonide is reduced by, e.g., palladium catalyst /H 2 to the dialdehyde which is then converted in Step 3 to the target diol by borohydride reduction.
  • the 1,2- diols are generally prepared by direct hydroxylation of the appropriate substituted olefins.
  • each R is H, alkyl, etc.
  • the alkene is reacted with hydrogen peroxide (30%) and a catalytic amount of osmium tetroxide in t-butyl alcohol or other suitable solvent.
  • the reaction is cooled to about 0°C and allowed to run overnight. Unreacted compounds and solvent are removed by distillation and the desired 1,2- diol isolated by distillation or crystallization.
  • Method 2 An alternate method is the conversion of the olefin to the epoxide by the reaction of m-chloroperbenzoic acid, or peracetic acid, in a solvent such as methylene chloride at temperatures below about 25°C.
  • the epoxide generated by this chemistry is then opened to the diol by, e.g., hydrolysis with dilute sulfuric acid.
  • Step 3 to the target diol by borohydride reduction Step 3 to the target diol by borohydride reduction.
  • This preparation is for the general type of 1,3-diols and accommodates a variety of structural features.
  • Enamines are formed from both ketones and aldehydes which react with acid chlorides to form the acylated product.
  • the acylated amine derivative is hydrolyzed back to its acylated carbonyl compound which is the 1,3-dicarbonyl precursor to the desired 1,3-diol.
  • the diol is generated by borohydride reduction of the 1,3-dicarbonyl compound.
  • acetaldehyde may be reacted with a secondary amine, preferably cyclic amines such as pyrrolidine or morpholine, by heating at reflux in a solvent such as toluene and with a catalytic amount of p-toluene sulfonic acid.
  • a secondary amine preferably cyclic amines such as pyrrolidine or morpholine
  • water is produced and is removed, e.g., by reflux through a water trap.
  • the reaction mixture is stripped, e.g., under vacuum, to remove the solvent, if desired (the acylation can be done in the same solvent systems in most cases).
  • the typical reactions involve one or more aldehydes, one or more ketones, and mixtures thereof, which have at least one alpha-hydrogen atom on the carbon atom next to the carbonyl group.
  • Typical examples of some reactants and some potential final products are as follows
  • the aldehyde, ketone, or mixture thereof which is to be condensed is placed in an autoclave under an inert atmosphere with a solvent such as butanol or with a phase transfer medium such as polyethylene glycol.
  • a mixed condensation such as with a ketone and an aldehyde is the target, typically the two reactants are used in about 1:1 mole ratio.
  • a catalytic amount of strongly alkaline catalyst such as sodium methoxide is added, typically about 0.5-10 mole% of the reactants.
  • the autoclave is sealed, and the mixture is heated at about 35-100°C until most of the original reactants have been converted, usually about 5 minutes to about 3 hours.
  • n-butanol about 148 g, about 2 mole, Aldrich
  • sodium metal about 2.3 g, about 0.1 mole, Aldrich
  • a mixture of butyraldehyde (about 72 g, about 1 mole, Aldrich) and isobutyraldehyde (about 72 g, about 1 mole, Aldrich) is added and the system is held at about 40°C until most of the original aldehydes have undergone reaction.
  • the base catalyst is neutralized by careful addition of sulfuric acid, any salts are removed by filtration, and the solution is hydrogenated over Raney Ni at about 100°C at about 50 atm of pressure for about 1 hour to yield a mixture of 8-carbon,1,3-diols.
  • the butanol solvent and any isobutanol formed during the hydrogenation are removed by distillation to yield the eight-carbon-1,3-diol mixture of: 2,2,4-trimethyl-1,3-pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-hexanediol; and 2-ethyl-4-methyl-1,3-pentanediol.
  • this mixture is further purified by vacuum distillation, or by decolorization with activated charcoal.
  • the recovered solvent is used for further batches of diol production.
  • Dimetallic acetylides Na + - :C ⁇ C:- Na + react with aldehydes or ketones to form unsaturated alcohols, e.g.,
  • the resulting acetylenic diol is then reduced to the alkene or completely reduced to the saturated diol.
  • the reaction can also be done by using an about 18% slurry of mono-sodium acetylide with the carbonyl compound to form the acetylenic alcohol which can be converted to the sodium salt and reacted with another mole of carbonyl compound to give the unsaturated 1,4- diol.
  • mono-sodium acetylide with the carbonyl compound to form the acetylenic alcohol which can be converted to the sodium salt and reacted with another mole of carbonyl compound to give the unsaturated 1,4- diol.
  • a sodium acetylide (about 18% in xylene) slurry is reacted with isobutryaldehyde to form the acetylenic alcohol
  • the acetylenic (ethynyl) alcohol is converted with base to the sodium acetylide R-CHOH-C ⁇ CNa which is then reacted with a mole of acetaldehyde to give the ethynyl diol R-CHOH-C ⁇ C-CHOH-R'.
  • This compound, (CH 3 ) 2 CH-CHOH-C ⁇ C-CHOH-CH3 can be isolated as the unsaturated diol, if desired, reduced by catalytic hydrogenation to the corresponding material containing a double bond in place of the acetylenic bond, or further reduced by catalytic hydrogenation to the saturated 1,4- diol.
  • This method of preparation is for the synthesis of diols, especially several 1,4-diols, which are derived from dicarboxylic acid anhydrides, diesters and lactones, but not limited to the 1,4-diols or four-carbon diacids.
  • diols are generally synthesized by the reduction of the parent anhydride, lactone or diester with sodium bis(2-methoxyethoxy)aluminum hydride (Red-A1) as the reducing agent.
  • This reducing agent is commercially available as a 3.1 molar solution in toluene and delivers one mole of hydrogen per mole of reagent.
  • Diesters and cyclic anhydrides require about 3 moles of Red-A1 per mole of substrate.
  • the typical reduction is carried out as follows.
  • the anhydride is first dissolved in anhydrous toluene and placed in a reaction vessel equipped with dropping funnel, mechanical stirrer, thermometer and a reflux condenser connected to calcium chloride and soda lime tubes to exclude moisture and carbon dioxide.
  • the reducing agent, in toluene is placed in the dropping funnel and is added slowly to the stirred anhydride solution.
  • the reaction is exothermic and the temperature is allowed to reach about 80°C. It is maintained at about 80°C during the remaining addition time and for about two hours following addition.
  • reaction mixture is then allowed to cool back to room temperature.
  • the mixture is added to a stirred aqueous HCl solution (about 20% concentration) which is cooled in an ice bath, and the temperature is maintained at about 20 to 30°C.
  • acidification the mixture is separated in a separatory funnel and the organic layer washed with a dilute salt solution until neutral to pH paper.
  • the neutral diol solution is dried over anhydrous magnesium sulfate, filtered, then stripped under vacuum to yield the desired 1,4-diol.
  • This method is a general preparation of some 1,3-, 1,4- and 1,5-diols which utilizes the chemistry outlined in Method A-1 and Method A-2.
  • the variation here is the use of a cyclic alkadienes in place of the cycloalkenes described in Methods A.
  • the general formula for the starting materials is
  • the reactions are those of Methods A with the variation of having one mole of ethylene glycol generated for each mole of the desired diol principal solvent formed, e.g., the following preparation of 2,2-dimethyl-1,4-haxanediol from 1-ethyl-5,5-dimethyl-1,3-cyclohexanediol (CAS No. 79419-18-4):
  • the polyethoxylated derivatives of diol principal solvents are typically prepared in a high-pressure reactor under a nitrogen atmosphere.
  • a suitable amount of ethylene oxide is added to a mixture of a diol solvent and potassium hydroxide at high temperature (from about 80°C to about 170°C).
  • the amount of ethylene oxide is calculated relative to the amount of the diol solvent in order to add the right number of ethylene oxide groups per molecule of diol.
  • Methyl-capped polyethoxylated derivatives of diols are typically prepared either by reacting a methoxypoly(ethoxy)ethyl chloride (i.e., CH 3 O-(CH 2 CH 2 O) n - CH 2 CH 2 -CI) of the desired chain length with the selected diol, or by reacting a methyl-capped polyethylene glycol (i.e., CH 3 O-(CH 2 CH 2 O) n -CH 2 CH 2 -OH) of the desired chain length with the epoxy precursor of the diol, or a combination of these methods.
  • a methoxypoly(ethoxy)ethyl chloride i.e., CH 3 O-(CH 2 CH 2 O) n - CH 2 CH 2 -CI
  • a methyl-capped polyethylene glycol i.e., CH 3 O-(CH 2 CH 2 O) n -CH 2 CH 2 -OH
  • reaction mixture is cooled, poured into an equal volume of water, neutralized with 6 N HCl, saturated with sodium chloride, and extracted twice with dichloromethane.
  • dichloromethane layers are dried over sodium sulfate and solvent is stripped to yield the desired polyether alcohol in crude form.
  • purification is accomplished by fractional vacuum distillation.
  • Saturated sodium chloride solution is slowly added to the material until the thionyl chloride is destroyed.
  • the material is taken up in about 300 ml of saturated sodium chloride solution and extracted with about 500 ml of methylene chloride.
  • the organic layer is dried and solvent is stripped on a rotary evaporator to yield crude methoxyethoxyethyl chloride.
  • purification is accomplished by fractional vacuum distillation.
  • Example IA All 1,2-alkanediols in Example IA, except 1,2-hexanediol, have ClogP values outside the effective 0.15 to 0.64 range. Only the composition of Example I-8, containing 1,2-hexanediol, is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples I-8A to I-8F are not clear and/or do not have acceptable viscosities.
  • Example IB All hexanediol isomers in Example IB, except 1,2-hexanediol, have ClogP values outside the effective 0.15 to 0.64 range. Only the composition of Example I-8, containing 1,2-hexanediol, is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples I-8G to I-8L are not clear and/or do not have acceptable viscosities.
  • compositions of Example 1-8, I-8M, and I-8N which contain effective levels of the preferred 1,2-hexanediol principal solvent are clear compositions with acceptable viscosities both at room temperature and at about 40oF (about 4°C).
  • the compositions of Example I-8O and I-8P which contain effective levels of the preferred 1,2-hexanediol principal solvent are clear compositions with acceptable viscosities at room temperature, and are clear at about 40°F (about 4°C) with a small layer which is separated on top, but recover and become clear when brought back to room temperature.
  • the compositions of Comparative Examples I-8Q which does not contain an effective amount of the preferred 1,2-hexanediol is not clear and/or does not have acceptable viscosities.
  • Cis-1,2-bis(hydroxymethyl)cyclohexane has a ClogP of 0.47, which is within the preferred range of 0.40 to 0.60.
  • 1,4-Bis(hydroxymethyl)cyclohexane also has a ClogP of 0.47, which is within the preferred range of 0.40 to 0.60, but has a center of symmetry, and does not form an acceptable composition (Composition XXXVA-5A).
  • 1,2-cyclohexanediol and 4,5-dimethyl- 1,2-cyclohexanediol have ClogP values which are outside the effective range of 0.15-0.64.
  • Example XXXV A-5 is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples XXXV A-5A to XXXV A-5C are not clear and/or do not have acceptable viscosities.
  • premixes can optionally be replaced by a mixture of an effective amount of principal solvents B. and some inoperable solvents, as disclosed hereinbefore.
  • These premixes contain the desired amount of fabric softening active A. and sufficient principal solvent B., and, optionally, solvent C., to give the premix the desired viscosity for the desired temperature range.
  • Typical viscosities suitable for processing are less than about 1000 cps, preferably less than about 500 cps, more preferably less than about 300 cps.
  • Use of low temperatures improves safety, by minimizing solvent vaporization, minimizes the degradation and/or loss of materials such as the biodegradable fabric softener active, perfumes, etc., and reduces the need for heating, thus saving on the expenses for processing.
  • Additional protection for the softener active can be provided by adding, e.g., chelant such as ethylenediaminepentaacetic acid, during preparation of the active. The result is improved environmental impact and safety from the manufacturing operation.
  • the fabric softening actives (DEQAs); the principal solvents B.; and, optionally, the water soluble solvents, can be formulated as premixes which can be used to prepare the following compositions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
PCT/US1996/011556 1995-07-11 1996-07-11 Concentrated, stable fabric softening composition WO1997003169A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1019997011199A KR100263216B1 (ko) 1995-07-11 1996-07-11 농축된, 안정한 직물 유연제 조성물
JP9505982A JPH11506810A (ja) 1995-07-11 1996-07-11 安定な濃縮布帛柔軟化組成物
MX9800382A MX9800382A (es) 1995-07-11 1996-07-11 Composicion concentrada suavizadora de tela, estable.
AU64889/96A AU6488996A (en) 1995-07-11 1996-07-11 Concentrated, stable fabric softening composition
US08/983,542 US6323172B1 (en) 1996-03-22 1996-07-11 Concentrated, stable fabric softening composition
CA002226564A CA2226564C (en) 1995-07-11 1996-07-11 Concentrated, stable fabric softening compositions with low organic solvent level
EP96924436A EP0842250B1 (en) 1995-07-11 1996-07-11 Concentrated, stable fabric softening composition
DE69626521T DE69626521T2 (de) 1995-07-11 1996-07-11 Konzentrierte, stabile textilweichmacherzusammensetzung
BR9609800A BR9609800A (pt) 1995-07-11 1996-07-11 Composição amaciante de tecido estável concentrada preferivelmente clara
AT96924436T ATE233804T1 (de) 1995-07-11 1996-07-11 Konzentrierte, stabile textilweichmacherzusammensetzung
KR1019980700197A KR100274684B1 (ko) 1995-07-11 1996-07-11 농축된, 안정한 직물 유연제 조성물을 형성할 수 있는 물질

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US105795P 1995-07-11 1995-07-11
US62101996A 1996-03-22 1996-03-22
US60/001,057 1996-04-26
US08/621,019 1996-04-26

Publications (1)

Publication Number Publication Date
WO1997003169A1 true WO1997003169A1 (en) 1997-01-30

Family

ID=26668492

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1996/011572 WO1997003172A1 (en) 1995-07-11 1996-07-11 Concentrated, stable fabric softening compositions including chelants
PCT/US1996/011556 WO1997003169A1 (en) 1995-07-11 1996-07-11 Concentrated, stable fabric softening composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1996/011572 WO1997003172A1 (en) 1995-07-11 1996-07-11 Concentrated, stable fabric softening compositions including chelants

Country Status (15)

Country Link
EP (2) EP0839180A1 (ko)
JP (2) JP3916666B2 (ko)
KR (3) KR100263216B1 (ko)
CN (3) CN1195369A (ko)
AR (1) AR002814A1 (ko)
AT (1) ATE233804T1 (ko)
AU (2) AU6488996A (ko)
BR (2) BR9609823A (ko)
CA (2) CA2226550C (ko)
CZ (2) CZ6298A3 (ko)
DE (1) DE69626521T2 (ko)
HU (2) HUP9802207A3 (ko)
MX (2) MX9800381A (ko)
TR (1) TR199800029T1 (ko)
WO (2) WO1997003172A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003619A1 (en) * 1996-07-19 1998-01-29 The Procter & Gamble Company Concentrated fabric softening composition and highly unsaturated fabric softener compound therefor
WO1999009122A1 (en) * 1997-08-18 1999-02-25 The Procter & Gamble Company Clear liquid fabric softening compositions
WO2001085892A1 (en) * 2000-05-11 2001-11-15 The Procter & Gamble Company Highly concentrated fabric softener compositions and articles containing such compositions
JP2002505391A (ja) * 1998-03-02 2002-02-19 ザ、プロクター、エンド、ギャンブル、カンパニー 濃縮された安定な半透明または透明の布帛柔軟化組成物
US6432911B1 (en) 1999-07-07 2002-08-13 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Fabric conditioning compositions
US6486121B2 (en) * 1998-04-15 2002-11-26 The Procter & Gamble Company Softener active derived from acylated triethanolamine
WO2003010265A1 (en) * 2000-05-24 2003-02-06 The Procter & Gamble Company A fabric softening composition comprising a malodor controlling agent
US6653275B1 (en) * 1999-01-07 2003-11-25 Goldschmidt Rewo Gmbh & Co. Kg Clear softening agent formulations
WO2004099354A1 (de) * 2003-05-08 2004-11-18 Henkel Kommanditgesellschaft Auf Aktien Frostresistente konditioniermittel
US6875735B1 (en) * 1997-11-24 2005-04-05 The Procter & Gamble Company Clear or translucent aqueous fabric softener compositions containing high electrolyte content and optional phase stabilizer
US6946501B2 (en) 2001-01-31 2005-09-20 The Procter & Gamble Company Rapidly dissolvable polymer films and articles made therefrom
US6995131B1 (en) 1999-05-10 2006-02-07 The Procter & Gamble Company Clear or translucent aqueous fabric softener compositions containing high electrolyte and optional phase stabilizer
CN106242954A (zh) * 2016-08-01 2016-12-21 山东诺威新材料有限公司 聚醚胺用低分子量聚醚多元醇的制备方法
WO2017132099A1 (en) 2016-01-25 2017-08-03 The Procter & Gamble Company Treatment compositions
WO2017132100A1 (en) 2016-01-25 2017-08-03 The Procter & Gamble Company Treatment compositions

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2264087A1 (en) * 1996-08-30 1998-03-05 Hugo Jean-Marie Demeyere Concentrated premix with reduced flammability for forming fabric softening composition
AU7578198A (en) * 1997-05-19 1998-12-11 Procter & Gamble Company, The Clear or translucent fabric softener compositions using mixture of solvents
CA2297032A1 (en) * 1997-07-29 1999-02-11 The Procter & Gamble Company Concentrated, stable, preferably clear, fabric softening composition containing amine fabric softener
US6916781B2 (en) 1999-03-02 2005-07-12 The Procter & Gamble Company Concentrated, stable, translucent or clear, fabric softening compositions
DE10046434A1 (de) * 2000-09-20 2002-04-04 Cognis Deutschland Gmbh Verfahren zur Herstellung von verzweigten Alkoholen und/oder Kohlenwasserstoffen
JP4633722B2 (ja) * 2003-10-16 2011-02-16 ザ プロクター アンド ギャンブル カンパニー 特定の小胞透過性を有する小胞を含む水性組成物
EP1879991A1 (en) * 2005-05-12 2008-01-23 The Procter and Gamble Company Fabric softening compositions stable under freeze-thaw conditions
JP4579055B2 (ja) * 2005-06-01 2010-11-10 花王株式会社 透明又は半透明の液体柔軟剤組成物
CN1940045B (zh) * 2005-09-27 2010-09-22 深圳市城洁宝环保科技有限公司 粘胶清除液
BRPI0711721A2 (pt) * 2006-05-31 2011-11-29 Akzo Nobel Nv composições detergentes aquosas para lavanderia tendo propriedades antiestáticas e amaciantes melhoradas
GB0714589D0 (en) * 2007-07-27 2007-09-05 Unilever Plc Fabric softening composition
EP2231531B1 (en) * 2007-12-14 2012-04-04 Unilever N.V. Builder system for a detergent composition
US8232239B2 (en) * 2010-03-09 2012-07-31 Ecolab Usa Inc. Liquid concentrated fabric softener composition
US9856440B2 (en) 2016-03-02 2018-01-02 The Procter & Gamble Company Compositions containing anionic surfactant and a solvent comprising butanediol
US9896648B2 (en) 2016-03-02 2018-02-20 The Procter & Gamble Company Ethoxylated diols and compositions containing ethoxylated diols
US9840684B2 (en) 2016-03-02 2017-12-12 The Procter & Gamble Company Compositions containing alkyl sulfates and/or alkoxylated alkyl sulfates and a solvent comprising a diol
US9790454B2 (en) 2016-03-02 2017-10-17 The Procter & Gamble Company Compositions containing alkyl sulfates and/or alkoxylated alkyl sulfates and a solvent comprising a diol
WO2020015827A1 (en) * 2018-07-18 2020-01-23 Symrise Ag A detergent composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644203A (en) * 1968-12-09 1972-02-22 Lever Brothers Ltd Fabric softener
US4547301A (en) * 1983-05-07 1985-10-15 The Procter & Gamble Company Surfactant compositions
EP0296995A1 (fr) * 1987-06-16 1988-12-28 Cotelle S.A. Compositions adoucissantes concentrées
DE4307186A1 (de) * 1993-03-08 1994-09-15 Henkel Kgaa Wäßrige Textilweichmacher-Zusammensetzung
US5490944A (en) * 1994-08-11 1996-02-13 Colgate-Palmolive Company Liquid fabric softener compositions
US5525245A (en) * 1994-12-21 1996-06-11 Colgate-Palmolive Company Clear, concentrated liquid fabric softener compositions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA913309A (en) * 1968-08-01 1972-10-31 A. Gluck Bruno Fabric softening compositions
US3756950A (en) * 1971-03-08 1973-09-04 Lever Brothers Ltd Fabric softening compositions
US3920564A (en) * 1972-09-20 1975-11-18 Colgate Palmolive Co Softener-detergent composition
US4298480A (en) * 1978-12-11 1981-11-03 Colgate Palmolive Co. Detergent softener compositions
GB8914054D0 (en) * 1989-06-19 1989-08-09 Unilever Plc Fabric softening composition
EP0534009B1 (en) * 1991-09-27 1995-12-06 The Procter & Gamble Company Concentrated fabric-softening compositions
ATE181956T1 (de) * 1992-05-12 1999-07-15 Procter & Gamble Konzentrierte flüssige gewebeweichmacherzusammensetzungen mit biologisch abbaubaren gewebeweichmachern
US5460736A (en) * 1994-10-07 1995-10-24 The Procter & Gamble Company Fabric softening composition containing chlorine scavengers
WO1996033800A1 (en) * 1995-04-27 1996-10-31 Witco Corporation Compositions containing diol and/or diol alkoxylate
DE69526439T2 (de) * 1995-09-18 2002-12-12 Procter & Gamble Stabilisierte Textilweichmacherzusammensetzungen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644203A (en) * 1968-12-09 1972-02-22 Lever Brothers Ltd Fabric softener
US4547301A (en) * 1983-05-07 1985-10-15 The Procter & Gamble Company Surfactant compositions
EP0296995A1 (fr) * 1987-06-16 1988-12-28 Cotelle S.A. Compositions adoucissantes concentrées
DE4307186A1 (de) * 1993-03-08 1994-09-15 Henkel Kgaa Wäßrige Textilweichmacher-Zusammensetzung
US5490944A (en) * 1994-08-11 1996-02-13 Colgate-Palmolive Company Liquid fabric softener compositions
US5525245A (en) * 1994-12-21 1996-06-11 Colgate-Palmolive Company Clear, concentrated liquid fabric softener compositions

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003619A1 (en) * 1996-07-19 1998-01-29 The Procter & Gamble Company Concentrated fabric softening composition and highly unsaturated fabric softener compound therefor
WO1999009122A1 (en) * 1997-08-18 1999-02-25 The Procter & Gamble Company Clear liquid fabric softening compositions
US6875735B1 (en) * 1997-11-24 2005-04-05 The Procter & Gamble Company Clear or translucent aqueous fabric softener compositions containing high electrolyte content and optional phase stabilizer
US7037887B2 (en) * 1997-11-24 2006-05-02 The Procter & Gamble Company Clear or translucent aqueous fabric softener compositions containing high electrolyte content and optional phase stabilizer
JP2002505391A (ja) * 1998-03-02 2002-02-19 ザ、プロクター、エンド、ギャンブル、カンパニー 濃縮された安定な半透明または透明の布帛柔軟化組成物
JP4781530B2 (ja) * 1998-03-02 2011-09-28 ザ プロクター アンド ギャンブル カンパニー 濃縮された安定な半透明または透明の布帛柔軟化組成物
US6486121B2 (en) * 1998-04-15 2002-11-26 The Procter & Gamble Company Softener active derived from acylated triethanolamine
US6653275B1 (en) * 1999-01-07 2003-11-25 Goldschmidt Rewo Gmbh & Co. Kg Clear softening agent formulations
US6995131B1 (en) 1999-05-10 2006-02-07 The Procter & Gamble Company Clear or translucent aqueous fabric softener compositions containing high electrolyte and optional phase stabilizer
US6432911B1 (en) 1999-07-07 2002-08-13 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Fabric conditioning compositions
WO2001085892A1 (en) * 2000-05-11 2001-11-15 The Procter & Gamble Company Highly concentrated fabric softener compositions and articles containing such compositions
US7108725B2 (en) 2000-05-11 2006-09-19 The Procter & Gamble Company Highly concentrated fabric softener compositions and articles containing such compositions
US7115173B2 (en) 2000-05-11 2006-10-03 The Procter & Gamble Company Highly concentrated fabric softener compositions and articles containing such compositions
US6958313B2 (en) 2000-05-11 2005-10-25 The Procter & Gamble Company Highly concentrated fabric softener compositions and articles containing such compositions
WO2003010265A1 (en) * 2000-05-24 2003-02-06 The Procter & Gamble Company A fabric softening composition comprising a malodor controlling agent
US6946501B2 (en) 2001-01-31 2005-09-20 The Procter & Gamble Company Rapidly dissolvable polymer films and articles made therefrom
US7547737B2 (en) 2001-01-31 2009-06-16 The Procter & Gamble Company Rapidly dissolvable polymer films and articles made therefrom
WO2004099354A1 (de) * 2003-05-08 2004-11-18 Henkel Kommanditgesellschaft Auf Aktien Frostresistente konditioniermittel
WO2017132099A1 (en) 2016-01-25 2017-08-03 The Procter & Gamble Company Treatment compositions
WO2017132100A1 (en) 2016-01-25 2017-08-03 The Procter & Gamble Company Treatment compositions
US10689600B2 (en) 2016-01-25 2020-06-23 The Procter & Gamble Company Treatment compositions
US11261402B2 (en) 2016-01-25 2022-03-01 The Procter & Gamble Company Treatment compositions
CN106242954A (zh) * 2016-08-01 2016-12-21 山东诺威新材料有限公司 聚醚胺用低分子量聚醚多元醇的制备方法
CN106242954B (zh) * 2016-08-01 2019-03-15 山东一诺威新材料有限公司 聚醚胺用低分子量聚醚多元醇的制备方法

Also Published As

Publication number Publication date
BR9609823A (pt) 1999-07-06
TR199800029T1 (xx) 1998-04-21
CN1232692C (zh) 2005-12-21
AU6488996A (en) 1997-02-10
KR19990028894A (ko) 1999-04-15
CA2226550A1 (en) 1997-01-30
CA2226550C (en) 2002-02-19
AR002814A1 (es) 1998-04-29
CN1195369A (zh) 1998-10-07
HUP9802207A2 (hu) 1999-01-28
AU6636596A (en) 1997-02-10
CA2226564C (en) 2003-10-28
KR100274684B1 (ko) 2001-01-15
EP0839180A1 (en) 1998-05-06
MX9800381A (es) 1998-04-30
KR100263216B1 (ko) 2000-07-15
BR9609800A (pt) 1999-07-06
CZ6298A3 (cs) 1998-06-17
JP3916666B2 (ja) 2007-05-16
DE69626521D1 (de) 2003-04-10
ATE233804T1 (de) 2003-03-15
HUP9802207A3 (en) 2000-11-28
HUP9802404A2 (hu) 1999-01-28
HUP9802404A3 (en) 2000-06-28
CA2226564A1 (en) 1997-01-30
JPH11506810A (ja) 1999-06-15
JPH11509277A (ja) 1999-08-17
CN1196082A (zh) 1998-10-14
KR100263870B1 (ko) 2000-09-01
EP0842250A1 (en) 1998-05-20
WO1997003172A1 (en) 1997-01-30
CZ3898A3 (cs) 1998-08-12
MX9800382A (es) 1998-04-30
DE69626521T2 (de) 2003-12-24
KR19990028895A (ko) 1999-04-15
CN1436890A (zh) 2003-08-20
CN1107716C (zh) 2003-05-07
EP0842250B1 (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US20060058215A1 (en) Concentrated, stable, preferably clear, fabric softening composition
US5747443A (en) Fabric softening compound/composition
CA2226564C (en) Concentrated, stable fabric softening compositions with low organic solvent level
US6335315B1 (en) Concentrated fabric softening composition
US6369025B1 (en) Concentrated, water dispersible, stable, fabric softening compositions
US5877145A (en) Concentrated fabric softening composition with good freeze/thaw recovery and highly unsaturated fabric softener compound therefor
US5759990A (en) Concentrated fabric softening composition with good freeze/thaw recovery and highly unsaturated fabric softener compound therefor
JP3102894B2 (ja) 布帛柔軟化化合物/組成物
EP1352948A1 (en) Concentrated, stable, fabric softening composition
US20040002436A1 (en) Concentrated, stable, preferably clear, fabric softening composition containing amine fabric softener
WO1998047991A1 (en) Softener active derived from acylated triethanolamine
CA2260920C (en) Concentrated fabric softening composition and highly unsaturated fabric softener compound therefor
US6486121B2 (en) Softener active derived from acylated triethanolamine
US20050202998A1 (en) Concentrated, stable, translucent or clear, fabric softening compositions including chelants
WO1998017750A1 (en) Concentrated, fabric softening composition
CA2290409C (en) Softener active derived from acylated triethanolamine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196787.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996924436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1199800032

Country of ref document: VN

ENP Entry into the national phase

Ref document number: 2226564

Country of ref document: CA

Ref document number: 2226564

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV1998-62

Country of ref document: CZ

Ref document number: PA/a/1998/000382

Country of ref document: MX

Ref document number: 1998/00029

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 1019980700197

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 505982

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996924436

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-62

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 08983542

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019980700197

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980700197

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996924436

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1998-62

Country of ref document: CZ