WO1996041599A1 - Process for controlling the knee brake of a knee prosthesis and thigh prosthesis - Google Patents

Process for controlling the knee brake of a knee prosthesis and thigh prosthesis Download PDF

Info

Publication number
WO1996041599A1
WO1996041599A1 PCT/DE1996/001041 DE9601041W WO9641599A1 WO 1996041599 A1 WO1996041599 A1 WO 1996041599A1 DE 9601041 W DE9601041 W DE 9601041W WO 9641599 A1 WO9641599 A1 WO 9641599A1
Authority
WO
WIPO (PCT)
Prior art keywords
knee
brake
prosthesis
emg
thigh
Prior art date
Application number
PCT/DE1996/001041
Other languages
German (de)
French (fr)
Inventor
Georges Van Der Perre
Louis Peeraer
Jos Vander Sloten
Bruno Aeyels
Original Assignee
Otto Bock Orthopädische Industrie Besitz- Und Verwaltungskommanditgesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otto Bock Orthopädische Industrie Besitz- Und Verwaltungskommanditgesellschaft filed Critical Otto Bock Orthopädische Industrie Besitz- Und Verwaltungskommanditgesellschaft
Publication of WO1996041599A1 publication Critical patent/WO1996041599A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectric control, e.g. myoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/78Means for protecting prostheses or for attaching them to the body, e.g. bandages, harnesses, straps, or stockings for the limb stump
    • A61F2/80Sockets, e.g. of suction type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5072Prostheses not implantable in the body having spring elements
    • A61F2002/5073Helical springs, e.g. having at least one helical spring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6635Metatarsals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6642Heels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2002/6818Operating or control means for braking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/704Operating or control means electrical computer-controlled, e.g. robotic control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7625Measuring means for measuring angular position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7635Measuring means for measuring force, pressure or mechanical tension

Definitions

  • the invention relates to a method for controlling the knee brake of a knee joint connecting a stump bed with a lower prosthesis part with a connected prosthetic foot, the computer-controlled braking torque being continuously variable between “free” and “blocked” depending on the walking movement of the prosthesis wearer, and the walking movement EMG values measured in the stump bed, pressure values measured in the foot area, are characterized by the respective knee angle and the respective angular velocity measured between the upper and lower leg of the prosthesis in the form of electrical signals (hereinafter “measurement data”).
  • the invention further relates to a thigh prosthesis with a stump bed which is designed for connection to a thigh stump of the prosthesis wearer; a lower leg of the prosthesis to which a prosthetic foot is connected; a knee joint, which connects an upper knee joint connection for the stump bed via a knee axis with a lower knee joint connection for the lower leg of the prosthesis; a computer-controlled brake which applies a braking torque which can be changed continuously between "free” and "blocked” on a brake shaft; a knee joint transmission for transmitting the braking torque from the brake shaft to the knee axis; - A control unit, which acts on the brake as a function of the walking movement of the prosthesis wearer via a control algorithm;
  • EMG sensors which are arranged in the stump bed for contact with certain thigh muscles and emit signals to the control unit;
  • Foot pressure sensors which are arranged in the tread of the prosthetic foot and transmit signals to the control unit. give; a coding device which measures the respective knee angle and the respective angular velocity between the upper and lower leg of the prosthesis and emits it to the control unit in the form of electrical signals.
  • EP 0 549 855 A2 discloses a knee brake control in which a hydraulic damper controls the angular velocity in the knee joint.
  • a microprocessor determines the usual gear pattern from a load measurement and a knee angle measurement and acts on a motor at various gear transition points, which in turn adjusts a valve device provided in the hydraulic damper. This embodiment enables the prosthesis wearer to use the prosthesis in different gaits including climbing stairs and sitting down.
  • DE 39 09 672 C2 discloses a swing phase-regulated thigh prosthesis with an upper shaft, which is articulated to a lower shaft via a knee joint shaft and is acted upon by a pressure cylinder.
  • the pressure cylinder is controlled via a valve, the degree of opening of which is set by a regulating device as a function of several walking speeds selected during walking tests.
  • An operating mode selector device is provided for selecting different degrees of opening for several different walking speeds in a teaching program input mode and for a playback mode.
  • a detection device which determines the degrees of opening
  • a device which stores the degrees of opening of the operating mode selector
  • a phase determination device which detects swing and stance phases
  • a walking speed determination device which determines the actual walking speed on the basis of the respective time periods the swing and stance phases ascertained by the phase determination device and one
  • Control device with the walking speed actually determined by the walking speed determination device compares the corresponding stored opening degrees of the operating mode selector and adjusts the opening degree of the valve. Only the oscillation phase is thus controlled.
  • a knee angle sensor and stretch limit switch are used as sensors.
  • the duration of the stance phase is used as a parameter for controlling the damping coefficient in the oscillation phase.
  • French patent application 89 194 844 also discloses a pneumatic knee actuation device. Either foot contact sensors or load measurements in combination with a stretch limit switch are used as sensors. The controller triggers an automatic knee lock during the stance phase and adjusts the damping coefficient of the gait cycle duration during the oscillation phase.
  • the object of the invention is to develop a knee brake control which is better adapted to the various natural gaits and a thigh prosthesis which is more suitable for this purpose.
  • a step period defined as a time period between two successive heel / floor contacts is divided into several phases, the end point of which is determined by measurement data transmitted for this phase; d) each phase is assigned certain braking values which may change during this phase and which are applied to the knee brake.
  • knee brake is applied at a constant frequency.
  • Different gaits can be defined or defined beforehand (e.g. walking on a level surface; climbing stairs; descending stairs; walking on a rising or sloping surface; movements when stationary, etc.).
  • step period which is defined as the time interval between two heel / floor contacts.
  • This step period is plotted on a time axis and then subdivided into a specific number of step phases, a transition, that is to say a change from one phase to the other, being provided between two phases.
  • a transition that is to say a change from one phase to the other, being provided between two phases.
  • Each phase thus represents a time segment of a step period, with a controlled knee movement taking place during the phase.
  • Each phase transition is based on measurement data.
  • the exercise carried out is determined Gait by comparing the transmitted actual measurement data with the reference measurement data specified for each gait. It is useful if the reference measurement data are determined from the EMG data measured for each individual gait.
  • a curve representing the muscle activity is created for each of the specified gaits for each scanned hip joint muscle over a step period.
  • this curve can e.g. B. created by thirty measurements.
  • the EMG measurement data defining this curve are then reduced by equidistant linear interpolation to a specific number of EMG reference values, which then define the EMG reference curve.
  • the first and the last EMG reference value correspond to the EMG measurement data for heel / ground contact.
  • the respective point in time within the step period is determined, namely by pre-calculating the Time of the end point of the respective phase.
  • the EMG reference values of the EMG reference curve that come closest to them in the course time are then selected for the actual measurement data. It has proven to be useful not to use all EMG data of the complete step period, but only EMG data from a certain section of the step period, depending on the gait.
  • the determination of the gait time is looking for an answer to the question!
  • heel / ground contact rising edge of the heel pressure, determined by means of a threshold value
  • Start of stance bending phase rising flank of the knee angle, determined by means of a threshold value
  • Diffraction swing phase rising flank of the knee angle, determined by means of a threshold value; maximum flexion swing phase: knee angle becomes maximum;
  • Extension swing phase falling flank of the knee angle, determined by means of a threshold value
  • the "on-line" gait time base determines the gait time of the current point in time before the current step period has ended. And this is done according to the invention by calculating in advance the time of the arrival of a future event with a known gear time.
  • the main advantage of the method according to the invention can be seen in the fact that when the gait is changed, the control of the knee brake is also changed, in each case by adapting a stored reference pattern.
  • At least two foot pressure sensors are arranged in downwardly open recesses in the sole of the foot, namely in the heel area and in the head area of an OS metatarsal;
  • the brake is a magnetic powder brake, which is controlled via pulsed control signals of a pulse width modulation circuit (PWM circuit), the pulse width determining the current flowing through the brake and thus the braking torque;
  • PWM circuit pulse width modulation circuit
  • At least two EMG sensors are preferably used.
  • sensors for measuring the knee moment and / or the hip moment can be provided.
  • the knee brake is preferably operated at a constant frequency, e.g. B. 100 Hz.
  • all measurement data can be completely processed at any time; in practice, however, only selected measurement data are used for the individual calculations. In any case, all measurement data are saved by a computer over a certain period of time (e.g. over 2.5 seconds), ie not immediately destroyed.
  • the EMG electrodes it is fundamentally possible to use the above-mentioned EMG electrodes to identify the gait, the gait phase within a step period and the transitions between gait and phases, even if only for checking the pressure values measured in the foot area and / or the knee angle Measurements.
  • a control method is preferred in which the EMG values measured in the stump in conjunction with the pressure values measured in the foot area and the respective knee angles are fed as information into the microprocessor in order to identify the gait and phases and the transitions between them.
  • the combination of the pressure values measured in the foot area with the measured knee angle is used as control parameters for the feedback control algorithm.
  • a closed knee impact device comprises a gear and a magnetic powder brake, which enable direct, continuous control of the knee braking torque both in the stance phase and in the swing phase.
  • the combination of these three feature complexes leads to a two-layer control system: the first layer includes the identification of the gait and phase as well as the selection of the gait-specific control algorithm, while the second layer is defined by the direct control of the knee braking torque using the appropriate algorithm .
  • the prosthesis automatically adapts to the gait and phase of the prosthesis wearer.
  • a major advantage of the thigh prosthesis designed in accordance with the invention is the fact that an adaptation to the respective prosthesis wearer must take place exclusively in the software, but not in the hardware. This considerably simplifies adaptation.
  • Figure 1 - a schematic representation of a thigh prosthesis
  • Figure 3 - a cross section along the line III-III in Figure 2;
  • Figure 4 - a prosthetic foot in side view
  • FIG. 7 - a side view of a knee joint in a first embodiment
  • Figure 8 the knee joint according to Figure 7 in a lateral front view
  • Figure 9 a vertical section in the front plane through the knee joint according to Figure 7;
  • Figure 10 - a vertical section in the sagittal plane through the joint according to Figure 7;
  • Figure 12 - a second embodiment of a knee joint in a representation according to Figure 9;
  • Figure 13 the knee joint according to Figure 12 in a presen- tation according to Figure 10;
  • FIG. 14 the knee joint according to FIG. 12 in a representation according to FIG. 11;
  • Figure 15 - a third embodiment in a diagram for a knee joint
  • Figure 17 - a schematic representation for the definition of the knee angle
  • Figure 18 - a schematic representation of a thigh prosthesis, the lower leg of the prosthesis is equipped with pairs of strain gauges;
  • FIG. 19 - a diagram in which the foot pressure and knee angle are plotted over a step period and a phase diagram illustrating these curves
  • Figure 20 a somewhat modified phase diagram in a representation according to Figure 19;
  • Figure 21 electronic hardware in a block diagram;
  • Figure 22 - a block diagram for a digital control unit
  • the thigh prosthesis shown in Figure 1 essentially consists of a stump bed 1, which is designed for connection to a thigh stump of the prosthesis wearer, a lower leg prosthesis 2, to which a prosthetic foot 3 is connected, and a knee joint 4, which has an upper one via a knee axis 5 Knee joint connection 6 for the stump bed 1 connects in an articulated manner to a lower knee joint connection 7 for the lower leg of the prosthesis 2.
  • EMG sensors 8 are indicated in the stump bed 1 and foot pressure sensors 9 are indicated in the underside of the prosthetic foot 3.
  • a knee angle sensor 10 and a brake 11 are shown schematically on the knee joint 4.
  • this brake 11 To control this brake 11 are also used a schematically shown microcomputer 12 and batteries 13 which the prosthesis wearer can wear on a belt, but which can also be integrated directly into the lower leg 2 of the prosthesis.
  • the knee brake 11 can be controlled by an external computer.
  • FIGS. 2 and 3 show that three EMG sensors 8 are provided, each of which is assigned to a muscle acting on the hip joint, namely the muscles rectus femoris, adductor longus and hamstrings.
  • the EMG sensors 8 are resiliently fixed in the inner wall of the stump bed 1 in order to ensure permanent, reliable contact with the assigned muscle.
  • the electrical connections of the EMG sensors 8 are laid on the outside of the stump bed 1.
  • the distance of the EMG sensors 8 from the edge la of the stump bed 1 is approximately 10 cm.
  • Figure 1 shows that four foot pressure sensors 9 are provided, of which Figure 4 shows only two.
  • the first foot pressure sensor lies in the heel area, the second in the area of an OS metatarsal area, the third in the head area of an OS metatarsal area and the fourth in the toe area.
  • Each foot pressure sensor 9 is supported against a metal insert 14 which is inserted into a recess 15 which is filled around the foot pressure sensor 9 with the material of the prosthetic foot tread.
  • FIGS. 7 to 11 show a first embodiment for a knee joint transmission 16.
  • the knee axis 5 sits together with a first transmission gear 17 firmly on the upper knee joint connection 6, while the lower knee joint connection 7 is designed as a transmission housing 18 which supports the knee axis 5 forms and includes the actual transmission, the brake 11 and a coding device which measures the respective knee angle and also the respective angular velocity between the upper and lower leg of the prosthesis via the knee angle sensor 10 and outputs it in the form of electrical signals to a control unit 19 (see Figure 21).
  • the brake 11 which is not shown in detail in the drawing, is a magnetic powder brake which is controlled via pulsed control signals of a pulse width modularization circuit (PWM circuit), the pulse width the current flowing through the brake and thus the braking torque certainly.
  • the first knee joint gear 16 is a two-stage reduction gear with a knee axis 5, intermediate shaft 20 and brake shaft 21 arranged parallel to one another, which are rotatably mounted in the gear housing 18 and are each equipped with a gear 17, 22, 23, the Intermediate shaft 20 also carries an intermediate gear 24 meshing with the gear 23 of the brake shaft 21.
  • FIGS. 7 and 8 show a stop 25 for the stretched position of the lower leg of the prosthesis 2.
  • FIG. 8 also shows a spring-elastic advancer 26, while in FIG. 9 one on the brake shaft 21 seated knee angle coding disk 27 is indicated, to which the above-mentioned coding device 28 indicated in FIG. 11 is assigned.
  • FIGS. 12 to 14 show a second embodiment for a knee joint transmission 29.
  • the knee axis 5 is at the same time designed as a brake shaft and rotatably mounted in both the upper and lower knee joint connections 6, 7.
  • a gearwheel 30 is seated in a rotationally fixed manner, which meshes with a gearwheel 31 of an intermediate shaft 32 which engages via a second gearwheel 33 with a gearwheel 34 fixedly connected to the upper knee joint connection 6.
  • FIGS. 15 and 16 show a third embodiment for a knee joint transmission 35.
  • This has a lever 36, which is firmly connected at one end to the upper knee joint connection 6 and which, with its free end, is guided on a spindle 37 and represents the rotary nut 38 representing its rotary drive supports.
  • the latter is displaceable against the action of a spring 39 on the spindle 37, which forms the brake shaft and is rotatably supported with its lower end on the lower knee joint connection 7.
  • FIG. 17 shows a relative pivoting between the stump bed 1 and the lower leg of the prosthesis 2 and the resulting knee angle ⁇ .
  • FIG. 18 shows in a schematic representation that the lower leg of the prosthesis 2 is equipped with two pairs of strain gauges 40, wherein - seen in the sagittal plane - one pair of strain gauges 40 in each case one strain gauge at the front and the other at the rear on the lower leg of the prosthesis 2 are arranged. It is a sensor for measuring the knee moment.
  • the same strain gauge pairs 40 or two additional strain gauge pairs also serve as a sensor for measuring the hip joint.
  • the lower arrow A symbolizes the ground reaction force;
  • the bending moment is plotted on axis B. Points B1 and B2 indicate the bending moments determined by the two pairs of strain gauges 40.
  • the respectively measured foot pressure in percent or the respectively measured knee angle in angular degrees are plotted on the vertical axis, while the horizontal axis indicates the time span of a complete step period.
  • the four foot pressure sensors 9 shown in FIG. 1 only one pressure curve D1 for the heel pressure sensor and one pressure curve D2 for a pressure sensor in the head region of the OS metatarsal I are shown.
  • the curve K ⁇ is also entered for the respective knee angle.
  • the step period shown in the diagram is the time period between two successive heel / floor contacts of the prosthetic foot 3.
  • This step period is divided according to the invention into several phases (eight phases in the example shown), the respective end point of which is determined by measurement data specified for this phase.
  • Each phase is assigned certain braking values, which may change during this phase and which are applied to the knee brake 11.
  • phase 1 to 3 to the right of the dashed line show the maintenance phase
  • phases 4 to 8 to the left of the dashed line the swing phase.
  • the possibilities are provided for transitioning directly from phase 1 to phase 4 and / or from phase 4 to phase 6.
  • FIG. 20 shows a somewhat simplified example of walking on flat ground for the phase diagram shown in FIG. 19.
  • the phases symbolized by a circle each mean a short period of a step period, with a controlled knee movement taking place during each phase.
  • the arrows between the phases indicate the respective phase transition.
  • These are predetermined threshold values or fixed points which define the end point of a phase and are each determined by measurement data transmitted by sensors.
  • FIG. 21 shows an example of the electronic hardware provided for controlling the knee brake 11.
  • This includes the control unit 19 already mentioned above, which has interfaces for the three EMG sensors 8, for two foot pressure sensors 9 and for the coding device 28.
  • the power supply for the control unit 19 is designated 42.
  • the control unit 19 is connected to an external computer 43 and has a control line 44 for controlling the brake 11.
  • the control unit 19 has a microcontroller structure, which comprises a microcontroller 45, at least one RAM and a serial interface for bidirectional data exchange with the external computer 43.
  • the microcontroller 45 comprises an internal 2 kB EEPROM for storing the operating and control software as well as the fixed data and is connected to an external 8 kB RAM for recording the volatile data during operation.
  • FIG. 23 shows an alternative embodiment with two controllers.
  • the control unit 19 has a microcontroller In a master-slave configuration, the master controller 46 is connected to the coding device 28 and the foot pressure sensors 9 and the slave controller 47 connected to the master controller 46 in direct data exchange with the EMG sensors 8. Both controllers 46, 47 each have their own peripheral circuit, RAM and a serial connection to the external computer 43.

Abstract

A process is disclosed for controlling the knee brake (11) of a knee joint (4) that joins a stump bed (1) to a prosthesis lower part (2) provided with a foot prosthesis (3). The computer-controlled braking moment is continuously variable between 'free' and 'blocked' depending on the walking movements of the prosthesis user. The walking movements are characterised by EMG values measured in the stump bed (1), by pressure values measured in the foot area, by the momentary knee angle and by the momentary angular speed between thigh prosthesis and lower leg prosthesis in the form of electric signals (hereafter 'measurement data '). Also disclosed is a thigh prosthesis. In order to better adapt the knee brake control to various natural walking types, the following steps are disclosed: (a) the momentary walking type among a plurality of predetermined walking types for each prosthesis user is determined by evaluating at least some of the measurement data; (b) the control programme associated with the detected walking type is selected; (c) for each control program, the period of a step defined as a time span between two successive contacts between heel and ground is subdivided into several phases whose respective end is determined by means of predetermined measurement data for each phase; (d) defined, possibly variable braking values for the knee brake are determined for each phase.

Description

Verfahren zur Steuerung der Kniebremse eines Prothesen-Kniege¬ lenkes sowie OberschenkelprotheseMethod for controlling the knee brake of a prosthetic knee joint and thigh prosthesis
Die Erfindung betrifft ein Verfahren zur Steuerung der Knie- bremse eines ein Stumpfbett mit einem Prothesenunterteil mit angeschlossenem Prothesenfuß verbindenden Kniegelenkes, wobei das computergesteuerte Bremsmoment in Abhängigkeit von der Gehbewegung des Prothesenträgers kontinuierlich zwischen "frei" und "blockiert" veränderbar ist, und die Gehbewegung durch im Stumpfbett gemessene EMG- erte, im Fußbereich gemes¬ sene Druckwerte, durch den jeweiligen Kniewinkel sowie die jeweilige, zwischen Prothesenober- und -Unterschenkel gemes¬ sene Winkelgeschwindigkeit in Form elektrischer Signale (nachfolgend "Meßdaten") charakterisiert wird.The invention relates to a method for controlling the knee brake of a knee joint connecting a stump bed with a lower prosthesis part with a connected prosthetic foot, the computer-controlled braking torque being continuously variable between "free" and "blocked" depending on the walking movement of the prosthesis wearer, and the walking movement EMG values measured in the stump bed, pressure values measured in the foot area, are characterized by the respective knee angle and the respective angular velocity measured between the upper and lower leg of the prosthesis in the form of electrical signals (hereinafter “measurement data”).
Die Erfindung betrifft ferner eine Oberschenkelprothese, mit einem Stumpfbett, das zur Verbindung mit einem Oberschen¬ kelstumpf des Prothesenträgers ausgebildet ist; einem Prothesenunterschenkel, an den ein Prothesenfuß angeschlossen ist; einem Kniegelenk, das über eine Knieachse einen oberen Kniegelenkanschluß für das Stumpfbett gelenkig verbindet mit einem unteren Kniegelenkanschluß für den Prothesen¬ unterschenkel; - einer computergesteuerten Bremse, die auf eine Bremswelle ein zwischen "frei" und "blockiert" kontinuierlich ver¬ änderbares Bremsmoment aufbringt; einem Kniegelenkgetriebe zur Übertragung des Bremsmomen¬ tes von der Bremswelle auf die Knieachse; - einer Steuereinheit, die über einen Steueralgorithmus die Bremse in Abhängigkeit von der Gehbewegung des Prothesen¬ trägers beaufschlagt;The invention further relates to a thigh prosthesis with a stump bed which is designed for connection to a thigh stump of the prosthesis wearer; a lower leg of the prosthesis to which a prosthetic foot is connected; a knee joint, which connects an upper knee joint connection for the stump bed via a knee axis with a lower knee joint connection for the lower leg of the prosthesis; a computer-controlled brake which applies a braking torque which can be changed continuously between "free" and "blocked" on a brake shaft; a knee joint transmission for transmitting the braking torque from the brake shaft to the knee axis; - A control unit, which acts on the brake as a function of the walking movement of the prosthesis wearer via a control algorithm;
EMG-Sensoren, die im Stumpfbett zur Anlage an bestimmten Oberschenkelmuskeln angeordnet sind und Signale an die Steuereinheit abgeben;EMG sensors, which are arranged in the stump bed for contact with certain thigh muscles and emit signals to the control unit;
Fußdrucksensoren, die in der Lauffläche des Prothesenfu¬ ßes angeordnet sind und Signale an die Steuereinheit ab- geben; einem Kodiergerät, das den jeweiligen Kniewinkel sowie die jeweilige Winkelgeschwindigkeit zwischen Prothesen¬ ober- und -Unterschenkel mißt und in Form elektrischer Signale an die Steuereinheit abgibt.Foot pressure sensors, which are arranged in the tread of the prosthetic foot and transmit signals to the control unit. give; a coding device which measures the respective knee angle and the respective angular velocity between the upper and lower leg of the prosthesis and emits it to the control unit in the form of electrical signals.
ie EP 0 549 855 A2 offenbart eine KniebremsSteuerung, bei der ein hydraulischer Dämpfer die Winkelgeschwindigkeit im Kniege¬ lenk steuert. Ein Mikroprozessor ermittelt aus einer Bela- stungs essung und einer Kniewinkelmessung das übliche Gangmu¬ ster und beaufschlagt an verschiedenen Gang-Übergangspunkten einen Motor, der seinerseits eine im Hydraulikdämpfer vorgese¬ hene Ventileinrichtung verstellt. Diese Ausführungsform ermög¬ licht dem Prothesenträger die Verwendung der Prothese in ver- schiedenen Gangarten einschließlich Treppensteigen und sich hinsetzen.EP 0 549 855 A2 discloses a knee brake control in which a hydraulic damper controls the angular velocity in the knee joint. A microprocessor determines the usual gear pattern from a load measurement and a knee angle measurement and acts on a motor at various gear transition points, which in turn adjusts a valve device provided in the hydraulic damper. This embodiment enables the prosthesis wearer to use the prosthesis in different gaits including climbing stairs and sitting down.
Die DE 39 09 672 C2 offenbart eine schwungphasengeregelte Oberschenkelprothese mit einem Oberschaft, der mit einem Un- terschaft gelenkig über eine Kniegelenkwelle verbunden und von einem Druckzylinder beaufschlagt ist. Der Druckzylinder wird über ein Ventil angesteuert, dessen Öffnungsgrad durch eine Reguliereinrichtung in Abhängigkeit von mehreren während Geh¬ versuchen ausgewählten Gehgeschwindigkeiten eingestellt wird. Vorgesehen ist eine Betriebsart-Wähleinrichtung zur Wahl ver¬ schiedener Öffnungsgrade für mehrere unterschiedliche Gehge¬ schwindigkeiten in einem Lehrprogrammeingabebetrieb sowie für einen Playbackbetrieb. Vorgesehen sind ferner eine die Öff- nungsgrade ermittelnde Erfassungseinrichtung, eine die Öff- nungsgrade der Betriebsart-Wähleinrichtung speichernde Ein¬ richtung, eine Schwung- und Standphasen erfassende Phasener¬ mittlungseinrichtung, eine Gehgeschwindigkeits-Ermittlungsein- richtung, die die tatsächliche Gehgeschwindigkeit aufgrund der jeweiligen Zeitspannen der durch die Phasener ittlungseinrich- tung erfaßten Schwung- und Standphasen ermittelt, sowie eineDE 39 09 672 C2 discloses a swing phase-regulated thigh prosthesis with an upper shaft, which is articulated to a lower shaft via a knee joint shaft and is acted upon by a pressure cylinder. The pressure cylinder is controlled via a valve, the degree of opening of which is set by a regulating device as a function of several walking speeds selected during walking tests. An operating mode selector device is provided for selecting different degrees of opening for several different walking speeds in a teaching program input mode and for a playback mode. Also provided are a detection device which determines the degrees of opening, a device which stores the degrees of opening of the operating mode selector, a phase determination device which detects swing and stance phases, a walking speed determination device which determines the actual walking speed on the basis of the respective time periods the swing and stance phases ascertained by the phase determination device and one
Steuereinrichtung, die die tatsächlich von der Gehgeschwindig¬ keit-Ermittlungseinrichtung ermittelte Gehgeschwindigkeit mit den entsprechenden gespeicherten Öffnungsgraden der Betriebs¬ art-Wähleinrichtung vergleicht und den Öffnungsgrad des Ven¬ tils einstellt. Gesteuert wird somit nur die Schwingphase. Als Sensoren werden verwendet ein Kniewinkelsensor und Streck-End- Schalter. Die Zeitdauer der Standphase wird als Parameter be¬ nutzt zur Steuerung des Dämpfungskoeffizienten in der Schwing¬ phase.Control device with the walking speed actually determined by the walking speed determination device compares the corresponding stored opening degrees of the operating mode selector and adjusts the opening degree of the valve. Only the oscillation phase is thus controlled. A knee angle sensor and stretch limit switch are used as sensors. The duration of the stance phase is used as a parameter for controlling the damping coefficient in the oscillation phase.
Auch die französische Patentanmeldung 89 194 844 offenbart eine pneumatische Kniebetätigungseinrichtung. Als Sensoren werden verwendet entweder Fußkontaktsensoren oder Belastungs¬ messungen in Kombination mit einem Streck-Endschalter. Die Steuerung löst während der Standphase eine automatische Knie¬ blockierung aus und paßt während der Schwingphase den Dämp- fungskoeffizienten der Gangzyklusdauer an.French patent application 89 194 844 also discloses a pneumatic knee actuation device. Either foot contact sensors or load measurements in combination with a stretch limit switch are used as sensors. The controller triggers an automatic knee lock during the stance phase and adjusts the damping coefficient of the gait cycle duration during the oscillation phase.
Der Erfindung liegt die Aufgabe zugrunde, eine den verschie¬ denen natürlichen Gangarten besser angepaßte Kniebremssteue¬ rung sowie eine hierfür besser geeignete Oberschenkelprothese zu entwickeln.The object of the invention is to develop a knee brake control which is better adapted to the various natural gaits and a thigh prosthesis which is more suitable for this purpose.
Ausgehend von dem eingangs beschriebenen Verfahren wird diese Aufgabe gemäß der Erfindung durch folgende Merkmale gelöst:Based on the method described in the introduction, this object is achieved according to the invention by the following features:
a) Ermittlung der jeweiligen Gangart aus einer Anzahl vor¬ gegebener, zuvor für diesen Prothesenträger ermittelten Gangarten durch Auswerten von zumindest einigen der je¬ weils übermittelten Meßdaten;a) determining the respective gait from a number of predetermined gaits previously determined for this prosthesis wearer by evaluating at least some of the measurement data transmitted in each case;
b) Auswahl des dieser ermittelten Gangart zugeordneten Steu¬ erprogramms;b) selection of the control program assigned to this determined gait;
c) für jedes Steuerprogramm wird eine als Zeitspanne defi¬ nierte Schrittperiode zwischen zwei aufeinanderfolgenden Fersen/Boden-Kontakten unterteilt in mehrere Phasen, de¬ ren jeweiliger Endpunkt durch für diese Phase vorgegebe¬ ne, jeweils übermittelte Meßdaten bestimmt wird; d) jeder Phase werden bestimmte, sich während dieser Phase gegebenenfalls ändernde Bremswerte zugeordnet, mit denen die Kniebremse beaufschlagt wird.c) for each control program, a step period defined as a time period between two successive heel / floor contacts is divided into several phases, the end point of which is determined by measurement data transmitted for this phase; d) each phase is assigned certain braking values which may change during this phase and which are applied to the knee brake.
Dabei ist es vorteilhaft, wenn die Beaufschlagung der Knie¬ bremse mit einer konstanten Frequenz erfolgt.It is advantageous if the knee brake is applied at a constant frequency.
Ferner kann es zweckmäßig sein, wenn zusätzliche Meßdaten er¬ mittelt werden aus den am Knie sowie an der Hüfte angreifenden Momenten.Furthermore, it can be expedient if additional measurement data are determined from the moments acting on the knee and on the hip.
Es können zuvor verschiedene Gangarten festgelegt bzw. defi¬ niert werden (z. B. Gehen auf einem ebenen Untergrund; Trep¬ pensteigen; Treppenabstieg; das Gehen auf einer ansteigenden oder abschüssigen Fläche; Bewegungen im Stillstand usw. ) .Different gaits can be defined or defined beforehand (e.g. walking on a level surface; climbing stairs; descending stairs; walking on a rising or sloping surface; movements when stationary, etc.).
Erfindungsgemäß geht man aus von einer Schrittperiode, die definiert ist als zeitlicher Abstand zwischen zwei Fersen/Bo¬ den-Kontakten. Diese Schrittperiode wird auf einer Zeitachse aufgetragen und dann in eine bestimmte Anzahl von Schrittpha¬ sen unterteilt, wobei jeweils zwischen zwei Phasen ein Über¬ gang, also ein Wechsel von der einen zur anderen Phase vorge¬ sehen ist. Jede Phase stellt somit einen zeitlichen Teilab¬ schnitt einer Schrittperiode dar, wobei während der Phase eine gesteuerte Kniebewegung stattfindet. Jeder Phasenübergang ba¬ siert auf Meßdaten.According to the invention, one proceeds from a step period which is defined as the time interval between two heel / floor contacts. This step period is plotted on a time axis and then subdivided into a specific number of step phases, a transition, that is to say a change from one phase to the other, being provided between two phases. Each phase thus represents a time segment of a step period, with a controlled knee movement taking place during the phase. Each phase transition is based on measurement data.
Bei dem erfindungsgemäßen Verfahren besteht grundsätzlich die Möglichkeit, jederzeit von einer Gangart auf eine andere Gang- art überzuwechseln, wobei jeder Gangart ein spezielles Steuer¬ programm zugeordnet ist. Es kann aber festgelegt werden, daß ein Wechsel von dem Steuerprogramm der gerade benutzten Gang¬ art zu dem Steuerprogramm einer anderen Gangart nur bei einer zuvor ausgewählten speziellen Phase der Schrittperiode der gerade benutzten oder aber der neuen Gangart vorgenommen wird.With the method according to the invention, there is basically the possibility of changing from one gait to another gait at any time, each gait being assigned a special control program. However, it can be stipulated that a change from the control program of the gait currently being used to the control program of another gait is only carried out at a previously selected special phase of the step period of the gait currently used or of the new gait.
Erfindungsgemäß erfolgt die Ermittlung der jeweils ausgeübten Gangart durch Vergleich der übermittelten Ist-Meßdaten mit den für jede Gangart vorgegebenen Referenz-Meßdaten. Dabei ist es zweckmäßig, wenn die Referenz-Meßdaten aus den für jede ein¬ zelne Gangart gemessenen EMG-Daten ermittelt werden.According to the invention, the exercise carried out is determined Gait by comparing the transmitted actual measurement data with the reference measurement data specified for each gait. It is useful if the reference measurement data are determined from the EMG data measured for each individual gait.
Erfindungsgemäß ist es vorteilhaft, wenn für jede der vorge¬ gebenen Gangarten für jeden abgetasteten Hüftgelenkmuskel über eine Schrittperiode eine die Muskelaktivität wiedergebende Kurve erstellt wird. Diese Kurve kann in der Praxis z. B. durch dreißig Meßwerte erstellt werden. Beim Vergleich derAccording to the invention, it is advantageous if a curve representing the muscle activity is created for each of the specified gaits for each scanned hip joint muscle over a step period. In practice, this curve can e.g. B. created by thirty measurements. When comparing the
Ist-Meßdaten mit den Referenzwerten ist jedoch nicht ohne wei¬ teres feststellbar, mit welchem der beispielsweise genannten dreißig Meßwerten einer Muskelaktivitätskurve der gerade er¬ mittelte Istwert verglichen werden muß. Es muß also eine Zu- Ordnung innerhalb der Schrittperiode erfolgen. Diese Schritt¬ periode ist jedoch für verschiedene Gangarten unterschiedlich und kann selbst innerhalb derselben Gangart variieren. Da aber die Ist-Meßdaten in realer Zeit, also über einen bestimmten Zeitablauf übermittelt werden, die Referenzdaten aber für ei- nen vorgegebenen Zeitablauf und damit üblicherweise in Pro¬ zentangaben bezogen auf die Schrittperiode vorliegen, ein Ver¬ gleich der Realzeit mit Prozentangaben aber nicht möglich ist, muß die tatsächliche Schrittperiode in ihrer "Zeitlänge" der Referenz-Schrittperiode angepaßt werden. Dies wird wie folgt vorgenommen:However, actual measurement data with the reference values cannot easily be determined with which of the thirty measurement values of a muscle activity curve mentioned, for example, the actual value just determined has to be compared. An assignment must therefore be made within the step period. However, this step period is different for different gaits and can vary even within the same gait. However, since the actual measurement data are transmitted in real time, that is to say over a specific time course, but the reference data are available for a predetermined time course and thus usually in percentages related to the step period, a comparison of the real time with percentages is not is possible, the actual step period must be adapted in its "time length" to the reference step period. This is done as follows:
Nachdem man für jede der vorgegebenen Gangarten für jeden ab¬ getasteten Hüftgelenkmuskel über eine Schrittperiode eine die Muskelaktivität wiedergebende Kurve erstellt hat, werden dann die diese Kurve definierenden EMG-Meßdaten durch equidistante lineare Interpolation auf eine bestimmte Anzahl EMG-Referenz- werte reduziert, die dann die EMG-Referenzkurve definieren. Der erste sowie der letzte EMG-Referenzwert entspricht dann den EMG-Meßdaten bei Fersen/Boden-Kontakt. Zum Vergleich einer bestimmten Anzahl Ist-EMG-Meßdaten mit übereinstimmenden Refe- renz-EMG-Meßdaten wird der jeweilige Zeitpunkt innerhalb der Schrittperiode ermittelt und zwar durch Vorausberechnung der Zeit des Endpunktes der jeweiligen Phase. Es werden dann zu den Ist-Meßdaten die ihnen in Gangzeit am nächsten kommenden EMG-Referenzwerte der EMG-Referenzkurve herausgesucht. Dabei hat es sich als zweckmäßig erwiesen, nicht alle EMG-Daten der kompletten Schrittperiode zu benutzen, sondern nur EMG-Daten aus einem bestimmten Abschnitt der Schrittperiode, abhängig von der Gangart.After a curve representing the muscle activity has been created for each of the given gaits for each scanned hip joint muscle over a step period, the EMG measurement data defining this curve are then reduced by equidistant linear interpolation to a specific number of EMG reference values, which then define the EMG reference curve. The first and the last EMG reference value then correspond to the EMG measurement data for heel / ground contact. In order to compare a certain number of actual EMG measurement data with matching reference EMG measurement data, the respective point in time within the step period is determined, namely by pre-calculating the Time of the end point of the respective phase. The EMG reference values of the EMG reference curve that come closest to them in the course time are then selected for the actual measurement data. It has proven to be useful not to use all EMG data of the complete step period, but only EMG data from a certain section of the step period, depending on the gait.
Die Ermittlung der Gangzeit sucht eine Antwort auf die Frage!The determination of the gait time is looking for an answer to the question!
An welcher Stelle befinden wir uns in der Schrittperiode?. Dabei hat es sich als zweckmäßig erwiesen, innerhalb einer Schrittperiode bestimmte Gang-Fixpunkte zu definieren. Zum Beispiel in folgender Reihenfolge:Where are we in the stride period ?. It has proven to be useful to define certain fixed gait points within a step period. For example in the following order:
1. Fersen/Boden-Kontakt: steigende Flanke des Fersendrucks, festge¬ stellt mittels eines Schwellwertes;1. heel / ground contact: rising edge of the heel pressure, determined by means of a threshold value;
Beginn Beugung Standphase: steigende Flanke des Kniewinkels, festge¬ stellt mittels eines Schwellwertes;Start of stance bending phase: rising flank of the knee angle, determined by means of a threshold value;
Fuß flach: Metatarsalkopf I - Druck wird größer als der Fersendruck;Flat foot: metatarsal head I - pressure becomes greater than the heel pressure;
Maximum am Metatarsalkopf I: Metatarsalkopf I -Maximum at metatarsal head I: metatarsal head I -
Druck wird maximal;Pressure becomes maximum;
Beugungsschwungphase: steigende Flanke des Kniewinkels, festge¬ stellt mittels eines Schwellwertes; maximale Beugungschwungphase: Kniewinkel wird maxi¬ mal;Diffraction swing phase: rising flank of the knee angle, determined by means of a threshold value; maximum flexion swing phase: knee angle becomes maximum;
Streckung Schwungphase: fallende Flanke des Kniewinkels, festge¬ stellt mittels eines Schwellwertes;Extension swing phase: falling flank of the knee angle, determined by means of a threshold value;
8. volle Streckung: Kniewinkel wird mini¬ mal oder negativ (Hy- perextension) . Diese Gang-Fixpunkte sind über eine Schrittperiode verteilt und unterteilen die Schrittperiode in die vorstehend erläuter¬ ten Phasen.8. Full extension: knee angle becomes minimal or negative (hyperextension). These fixed gait points are distributed over a step period and subdivide the step period into the phases explained above.
Die "on-line" Gang-Zeitbasis bestimmt die Gangzeit des momen¬ tanen Zeitpunktes, bevor die derzeitige Schrittperiode beendet ist. Und dies erfolgt erfindungsgemäß durch Vorausberechnen der Zeit des Eintreffens eines zukünftigen Ereignisses mit einer bekannten Gangzeit.The "on-line" gait time base determines the gait time of the current point in time before the current step period has ended. And this is done according to the invention by calculating in advance the time of the arrival of a future event with a known gear time.
Der wesentliche Vorteil des erfindungsgemäßen Verfahrens kann darin gesehen werden, daß bei einem Wechsel der Gangart auch die Steuerung der Kniebremse geändert wird und zwar jeweils unter Adaptierung eines gespeicherten Referenzmusters .The main advantage of the method according to the invention can be seen in the fact that when the gait is changed, the control of the knee brake is also changed, in each case by adapting a stored reference pattern.
Die der Erfindung zugrundeliegende Aufgabe wird ausgehend von der eingangs beschriebenen Oberschenkelprothese durch folgende Merkmale gelöst:The object on which the invention is based is achieved on the basis of the thigh prosthesis described at the outset by the following features:
a) zumindest zwei Fußdrucksensoren sin in nach unten offenen Ausnehmungen in der Fußsohle angeordnet und zwar im Fer¬ senbereich sowie im Kopfbereich eines OS metatarsale;a) at least two foot pressure sensors are arranged in downwardly open recesses in the sole of the foot, namely in the heel area and in the head area of an OS metatarsal;
b) die Bremse ist eine Magnetpulverbremse, die über gepulste Steuersignale einer Pulsweiten-Modulationsschaltung (PWM- Schaltung) angesteuert wird, wobei die Pulsweite den durch die Bremse fließenden Strom und somit das Bremsmo¬ ment bestimmt;b) the brake is a magnetic powder brake, which is controlled via pulsed control signals of a pulse width modulation circuit (PWM circuit), the pulse width determining the current flowing through the brake and thus the braking torque;
c) ein Einstell- und Kalibriersystem zur Anpassung des diec) an adjustment and calibration system to adapt the
Bremse beaufschlagenden Steueralgorithmus an den Gang des Prothesenträgers.Brake applying control algorithm to the gear of the prosthesis wearer.
Erfindungsgemäß werden vorzugsweise zumindest zwei EMG-Senso- ren verwendet. Außerdem können Sensoren zur Messung des Knie¬ momentes und/oder des Hüftmomentes vorgesehen werden. Die Kniebremse wird vorzugsweise mit einer konstanten Fre¬ quenz, z. B. 100 Hz beaufschlagt. Grundsätzlich lassen sich alle Meßdaten jederzeit vollständig verarbeiten; in der Praxis werden aber nur jeweils ausgewählte Meßdaten für die einzelnen Berechnungen herangezogen. In jedem Fall werden alle Meßdaten von einem Computer über eine bestimmte Zeit gespeichert (z. B. über 2,5 sek.), also nicht sofort vernichtet.According to the invention, at least two EMG sensors are preferably used. In addition, sensors for measuring the knee moment and / or the hip moment can be provided. The knee brake is preferably operated at a constant frequency, e.g. B. 100 Hz. Basically, all measurement data can be completely processed at any time; in practice, however, only selected measurement data are used for the individual calculations. In any case, all measurement data are saved by a computer over a certain period of time (e.g. over 2.5 seconds), ie not immediately destroyed.
Für das Kniegelenkgetriebe werden erfindungsgemäß drei Alter- nativen vorgeschlagen.According to the invention, three alternatives are proposed for the knee joint transmission.
Erfindungsgemäß ist es grundsätzlich möglich, die genannten EMG-Elektroden zur Identifizierung der Gangart, der Gangphase innerhalb einer Schrittperiode und der Übergänge zwischen Gangart und -phasen heranzuziehen und sei es auch nur zur Kon¬ trolle der im Fußbereich gemessenen Druckwerte und/oder der Kniewinkel-Messungen.According to the invention, it is fundamentally possible to use the above-mentioned EMG electrodes to identify the gait, the gait phase within a step period and the transitions between gait and phases, even if only for checking the pressure values measured in the foot area and / or the knee angle Measurements.
Erfindungsgemäß wird ein Steuerungsverfahren bevorzugt, bei dem die im Stumpf ett gemessenen EMG-Werte in Verbindung mit den im Fußbereich gemessenen Druckwerten und den jeweiligen Kniewinkeln als Information in den Mikroprozessor eingespeist werden zur Identifizierung der Gangart und -phasen und der Übergänge zwischen ihnen. In jeder der Gangphasen wird die Kombination der im Fußbereich gemessenen Druckwerte mit dem gemessenen Kniewinkel als Steuerparameter für den Feedback- Steueralgorithmus benutzt. Eine geschlossen ausgebildete Kniebeaufschlageinrichtung umfaßt ein Getriebe sowie eine Ma¬ gnetpulverbremse, die eine direkte, kontinuierliche Steuerung des Kniebremsmomentes sowohl in der Standphase als auch in der Schwungphase ermöglichen. Die Kombination dieser drei Merk¬ malskomplexe führt zu einem zweischichtigen Steuersystem: die erste Schicht beinhaltet die Identifizierung der Gangart und - phase sowie die Auswahl des gangartspezifischen Steueralgo- rithmus, während die zweite Schicht definiert ist durch die direkte Steuerung des Kniebremsmomentes unter Verwendung des geeigneten Algorithmus . Als Ergebnis hiervon paßt sich die Prothese automatisch an die Gangart und -phase des Prothesenträgers an. Ein wesentlicher Vorteil der erfindungsgemäß gestalteten Oberschenkelprothese ist darin zu sehen, daß eine Anpassung an den jeweiligen Pro- thesenträger ausschließlich in der Software, nicht aber in der Hardware erfolgen muß. Dies vereinfacht eine Anpassung be¬ trächtlich.According to the invention, a control method is preferred in which the EMG values measured in the stump in conjunction with the pressure values measured in the foot area and the respective knee angles are fed as information into the microprocessor in order to identify the gait and phases and the transitions between them. In each of the gait phases, the combination of the pressure values measured in the foot area with the measured knee angle is used as control parameters for the feedback control algorithm. A closed knee impact device comprises a gear and a magnetic powder brake, which enable direct, continuous control of the knee braking torque both in the stance phase and in the swing phase. The combination of these three feature complexes leads to a two-layer control system: the first layer includes the identification of the gait and phase as well as the selection of the gait-specific control algorithm, while the second layer is defined by the direct control of the knee braking torque using the appropriate algorithm . As a result, the prosthesis automatically adapts to the gait and phase of the prosthesis wearer. A major advantage of the thigh prosthesis designed in accordance with the invention is the fact that an adaptation to the respective prosthesis wearer must take place exclusively in the software, but not in the hardware. This considerably simplifies adaptation.
Weitere Merkmale der Erfindung sind Gegenstand der Unteran- sprüche und werden in Verbindung mit weiteren Vorteilen der Erfindung anhand mehrerer Ausführungsbeispiele erläutert.Further features of the invention are the subject of the subclaims and are explained in connection with further advantages of the invention using several exemplary embodiments.
In der Zeichnung sind einige als Beispiele dienende Ausfüh¬ rungsformen der Erfindung dargestellt. Es zeigen:The drawing shows some exemplary embodiments of the invention which serve as examples. Show it:
Figur 1 - in schematischer Darstellung eine Oberschenkel¬ prothese;Figure 1 - a schematic representation of a thigh prosthesis;
Figur 2 - in vergrößertem Maßstab das Stumpfbett gemäß Figur 1 in Vorderansicht;Figure 2 - on an enlarged scale the stump bed according to Figure 1 in front view;
Figur 3 - einen Querschnitt gemäß der Linie III-III in Figur 2;Figure 3 - a cross section along the line III-III in Figure 2;
Figur 4 - einen Prothesenfuß in Seitenansicht;Figure 4 - a prosthetic foot in side view;
Figur 5 - in vergrößertem Maßstab einen Fußdrucksensor im lotrechten Längsschnitt;Figure 5 - on an enlarged scale, a foot pressure sensor in a vertical longitudinal section;
Figur 6 - den Fußdrucksensor gemäß Figur 5 in Unteran¬ sicht;Figure 6 - the foot pressure sensor according to Figure 5 in Unteran¬ view;
Figur 7 - in seitlicher Rückansicht ein Kniegelenk in ei¬ ner ersten Ausführungsform;FIG. 7 - a side view of a knee joint in a first embodiment;
Figur 8 - das Kniegelenk gemäß Figur 7 in seitlicher Vor¬ deransicht; Figur 9 - einen lotrechten Schnitt in der Frontebene durch das Kniegelenk gemäß Figur 7;Figure 8 - the knee joint according to Figure 7 in a lateral front view; Figure 9 - a vertical section in the front plane through the knee joint according to Figure 7;
Figur 10 - einen lotrechten Schnitt in der Sagittalebene durch das Gelenk gemäß Figur 7;Figure 10 - a vertical section in the sagittal plane through the joint according to Figure 7;
Figur 11 - in Draufsicht einen Horizontalschnitt durch das Kniegelenk gemäß Figur 8;Figure 11 - in plan view a horizontal section through the knee joint according to Figure 8;
Figur 12 - eine zweite Ausführungsform eines Kniegelenk in einer Darstellung gemäß Figur 9;Figure 12 - a second embodiment of a knee joint in a representation according to Figure 9;
Figur 13 - das Kniegelenk gemäß Figur 12 in einer Darstel¬ lung gemäß Figur 10;Figure 13 - the knee joint according to Figure 12 in a presen- tation according to Figure 10;
Figur 14 - das Kniegelenk gemäß Figur 12 in einer Darstel¬ lung gemäß Figur 11;FIG. 14 - the knee joint according to FIG. 12 in a representation according to FIG. 11;
Figur 15 - in schaubildlicher Darstellung eine dritte Aus- führungsform für ein Kniegelenk;Figure 15 - a third embodiment in a diagram for a knee joint;
Figur 16 - das Kniegelenk gemäß Figur 15 im Längsschnitt;Figure 16 - the knee joint according to Figure 15 in longitudinal section;
Figur 17 - eine schematische Darstellung für die Definition des Kniewinkels;Figure 17 - a schematic representation for the definition of the knee angle;
Figur 18 - in schematischer Darstellung eine Oberschenkel¬ prothese, deren Prothesenunterschenkel mit Deh¬ nungsmeßstreifenpaaren bestückt ist;Figure 18 - a schematic representation of a thigh prosthesis, the lower leg of the prosthesis is equipped with pairs of strain gauges;
Figur 19 - ein Diagramm, in dem Fußdruck und Kniewinkel über eine Schrittperiode aufgetragen sind und ein diese Kurven verdeutlichendes Phasendia¬ gramm;FIG. 19 - a diagram in which the foot pressure and knee angle are plotted over a step period and a phase diagram illustrating these curves;
Figur 20 - ein etwas abgewandeltes Phasendiagramm in einer Darstellung gemäß Figur 19; Figur 21 - elektronische Hardware in einem Blockschaltbild;Figure 20 - a somewhat modified phase diagram in a representation according to Figure 19; Figure 21 - electronic hardware in a block diagram;
Figur 22 - ein Blockschaltbild für eine digitale Steuerein¬ heit undFigure 22 - a block diagram for a digital control unit and
Figur 23 - in einem Blockschaltbild eine Steuereinheit mit zwei Controllern.Figure 23 - in a block diagram a control unit with two controllers.
Die in Figur 1 dargestellte Oberschenkelprothese besteht im wesentlichen aus einem Stumpfbett 1, das zur Verbindung mit einem Oberschenkelstumpf des Prothesenträgers ausgebildet ist, aus einem Prothesenunterschenkel 2, an den ein Prothesenfuß 3 angeschlossen ist und aus einem Kniegelenk 4, das über eine Knieachse 5 einen oberen Kniegelenkanschluß 6 für das Stumpf- bett 1 gelenkig verbindet mit einem unteren Kniegelenkanschluß 7 für den Prothesenunterschenkel 2. Im Stumpfbett 1 sind EMG- Sensoren 8 und in der Unterseite des Prothesenfußes 3 sind Fußdrucksensoren 9 angedeutet. Am Kniegelenk 4 sind ein Knie¬ winkelsensor 10 sowie eine Bremse 11 schematisch eingezeich- net. Zur Steuerung dieser Bremse 11 dienen ein ebenfalls nur schematisch dargestellter Mikrocomputer 12 und Batterien 13, die der Prothesenträger an einem Gürtel tragen kann, die aber auch unmittelbar in den Prothesenunterschenkel 2 integriert sein können. In einer Alternativlösung ist die Steuerung der Kniebremse 11 durch einen externen Computer möglich.The thigh prosthesis shown in Figure 1 essentially consists of a stump bed 1, which is designed for connection to a thigh stump of the prosthesis wearer, a lower leg prosthesis 2, to which a prosthetic foot 3 is connected, and a knee joint 4, which has an upper one via a knee axis 5 Knee joint connection 6 for the stump bed 1 connects in an articulated manner to a lower knee joint connection 7 for the lower leg of the prosthesis 2. EMG sensors 8 are indicated in the stump bed 1 and foot pressure sensors 9 are indicated in the underside of the prosthetic foot 3. A knee angle sensor 10 and a brake 11 are shown schematically on the knee joint 4. To control this brake 11 are also used a schematically shown microcomputer 12 and batteries 13 which the prosthesis wearer can wear on a belt, but which can also be integrated directly into the lower leg 2 of the prosthesis. In an alternative solution, the knee brake 11 can be controlled by an external computer.
Die Figuren 2 und 3 lassen erkennen, daß drei EMG-Sensoren 8 vorgesehen sind, die jeweils einem das Hüftgelenk beaufschla¬ genden Muskel zugeordnet sind nämlich den Muskeln rectus fe- moris, adductor longus und hamstrings. Die EMG-Sensoren 8 sind in der Innenwandung des Stumpfbettes 1 federelastisch festge¬ legt, um so eine permanente zuverlässige Anlage an dem zuge¬ ordneten Muskel zu gewährleisten. Die elektrischen Anschlüsse der EMG-Sensoren 8 sind außen am Stumpfbett 1 verlegt. Der Abstand der EMG-Sensoren 8 vom Rand la des Stumpfbettes 1 be¬ trägt etwa 10 cm. Figur 1 läßt erkennen, daß vier Fußdrucksensoren 9 vorgesehen sind von denen Figur 4 nur zwei zeigt. Der erste Fußdrucksen¬ sor liegt im Fersenbereich, der zweite im Bereich eines OS metatarsale, der dritte im Kopfbereich eines OS metatarsale und der vierte im Zehenbereich. Jeder Fußdrucksensor 9 stützt sich gegen eine Metalleinlage 14 ab, die in eine Ausnehmung 15 eingelegt ist, die um den Fußdrucksensor 9 herum mit dem Mate¬ rial der Prothesenfuß-Lauffläche ausgefüllt ist.FIGS. 2 and 3 show that three EMG sensors 8 are provided, each of which is assigned to a muscle acting on the hip joint, namely the muscles rectus femoris, adductor longus and hamstrings. The EMG sensors 8 are resiliently fixed in the inner wall of the stump bed 1 in order to ensure permanent, reliable contact with the assigned muscle. The electrical connections of the EMG sensors 8 are laid on the outside of the stump bed 1. The distance of the EMG sensors 8 from the edge la of the stump bed 1 is approximately 10 cm. Figure 1 shows that four foot pressure sensors 9 are provided, of which Figure 4 shows only two. The first foot pressure sensor lies in the heel area, the second in the area of an OS metatarsal area, the third in the head area of an OS metatarsal area and the fourth in the toe area. Each foot pressure sensor 9 is supported against a metal insert 14 which is inserted into a recess 15 which is filled around the foot pressure sensor 9 with the material of the prosthetic foot tread.
Zur Verstärkung der das Kniegelenk beaufschlagenden Bremskraft ist ein Kniegelenkgetriebe vorgesehen. Die Figuren 7 bis 11 zeigen eine erste Ausführungsform für ein Kniegelenkgetriebe 16. Die Knieachse 5 sitzt zusammen mit einem ersten Getriebe¬ zahnrad 17 fest am oberen Kniegelenkanschluß 6, während der untere Kniegelenkanschluß 7 als Getriebegehäuse 18 ausgebildet ist, das die Lagerung für die Knieachse 5 bildet und das ei¬ gentliche Getriebe, die Bremse 11 und ein Codiergerät umfaßt, das über den Kniewinkelsensor 10 den jeweiligen Kniewinkel und außerdem die jeweilige Winkelgeschwindigkeit zwischen Prothe- senober- und -Unterschenkel mißt und in Form elektrischer Signale an eine Steuereinheit 19 abgibt (siehe Figur 21).A knee joint transmission is provided to amplify the braking force acting on the knee joint. FIGS. 7 to 11 show a first embodiment for a knee joint transmission 16. The knee axis 5 sits together with a first transmission gear 17 firmly on the upper knee joint connection 6, while the lower knee joint connection 7 is designed as a transmission housing 18 which supports the knee axis 5 forms and includes the actual transmission, the brake 11 and a coding device which measures the respective knee angle and also the respective angular velocity between the upper and lower leg of the prosthesis via the knee angle sensor 10 and outputs it in the form of electrical signals to a control unit 19 (see Figure 21).
Die in der Zeichnung im Detail nicht näher dargestellte Bremse 11 ist eine Magnetpulverbremse, die über gepulste Steuersigna- le einer Pulsweiten-Modulartionsschaltung (PWM-Schaltung) an¬ gesteuert wird, wobei die Pulsweite den durch die Bremse flie¬ ßenden Strom und somit das Bremsmoment bestimmt. Das erste Kniegelenkgetriebe 16 ist ein zweistufiges Untersetzungsge¬ triebe mit parallel zueinander angeordneter Knieachse 5, Zwi- schenwelle 20 und Bremswelle 21, die drehbar im Getriebegehäu¬ se 18 gelagert und jeweils mit einem Zahnrad 17, 22, 23 be¬ stückt sind, wobei die Zwischenwelle 20 noch ein mit dem Zahn¬ rad 23 der Bremswelle 21 kämmendes Zwischenrad 24 trägt.The brake 11, which is not shown in detail in the drawing, is a magnetic powder brake which is controlled via pulsed control signals of a pulse width modularization circuit (PWM circuit), the pulse width the current flowing through the brake and thus the braking torque certainly. The first knee joint gear 16 is a two-stage reduction gear with a knee axis 5, intermediate shaft 20 and brake shaft 21 arranged parallel to one another, which are rotatably mounted in the gear housing 18 and are each equipped with a gear 17, 22, 23, the Intermediate shaft 20 also carries an intermediate gear 24 meshing with the gear 23 of the brake shaft 21.
Die Figuren 7 und 8 zeigen einen Anschlag 25 für die Streck¬ lage des Prothesenunterschenkels 2. Figur 8 zeigt außerdem einen federelastischen Vorbringer 26, während in Figur 9 eine auf der Bremswelle 21 sitzende Kniewinkel-Codierscheibe 27 angedeutet ist, der das vorstehend erwähnte, in Figur 11 an¬ gedeutete Codiergerät 28 zugeordnet ist.FIGS. 7 and 8 show a stop 25 for the stretched position of the lower leg of the prosthesis 2. FIG. 8 also shows a spring-elastic advancer 26, while in FIG. 9 one on the brake shaft 21 seated knee angle coding disk 27 is indicated, to which the above-mentioned coding device 28 indicated in FIG. 11 is assigned.
Die Figuren 12 bis 14 zeigen eine zweite Ausführungsform für ein Kniegelenkgetriebe 29. Hier ist die Knieachse 5 zugleich als Bremswelle ausgebildet und sowohl im oberen als auch im unteren Kniegelenkanschluß 6, 7 drehbar gelagert. Auf dieser die Bremswelle bildenden Knieachse 5 sitzt drehfest ein Zahn- rad 30, das mit einem Zahnrad 31 einer Zwischenwelle 32 kämmt, die über ein zweites Zahnrad 33 im Eingriff steht mit einem fest mit dem oberen Kniegelenkanschluß 6 verbundenen Zahnrad 34.FIGS. 12 to 14 show a second embodiment for a knee joint transmission 29. Here, the knee axis 5 is at the same time designed as a brake shaft and rotatably mounted in both the upper and lower knee joint connections 6, 7. On this knee axis 5, which forms the brake shaft, a gearwheel 30 is seated in a rotationally fixed manner, which meshes with a gearwheel 31 of an intermediate shaft 32 which engages via a second gearwheel 33 with a gearwheel 34 fixedly connected to the upper knee joint connection 6.
Im übrigen wurden die mit dem ersten Kniegelenkgetriebe 16 übereinstimmenden Bauteile mit denselben Bezugszeichen verse¬ hen.Otherwise, the components that correspond to the first knee joint transmission 16 have been provided with the same reference numerals.
Die Figuren 15 und 16 zeigen eine dritte Ausführungsform für ein Kniegelenkgetriebe 35. Dieses weist einen an seinem einen Ende fest mit dem oberen Kniegelenkanschluß 6 verbundenen He¬ bel 36, der sich mit seinem freien Ende auf einer Spindel 37 geführten und deren Drehantrieb darstellenden Drehmutter 38 abstützt. Letztere ist gegen die Wirkung einer Feder 39 auf der Spindel 37 verschiebbar, die die Bremswelle bildet und mit ihrem unteren Ende am unteren Kniegelenkanschluß 7 drehbar gelagert ist.FIGS. 15 and 16 show a third embodiment for a knee joint transmission 35. This has a lever 36, which is firmly connected at one end to the upper knee joint connection 6 and which, with its free end, is guided on a spindle 37 and represents the rotary nut 38 representing its rotary drive supports. The latter is displaceable against the action of a spring 39 on the spindle 37, which forms the brake shaft and is rotatably supported with its lower end on the lower knee joint connection 7.
Figur 17 zeigt eine Relatiwerschwenkung zwischen dem Stumpf- bett 1 und dem Prothesenunterschenkel 2 und den sich hieraus ergebenden Kniewinkel α.FIG. 17 shows a relative pivoting between the stump bed 1 and the lower leg of the prosthesis 2 and the resulting knee angle α.
Figur 18 zeigt in schematischer Darstellung, daß der Prothe¬ senunterschenkel 2 mit zwei Dehnungsmeßstreifenpaaren 40 be- stückt ist, wobei - in der Sagittalebene gesehen - von jedem Dehnungsmeßstreifenpaar 40 jeweils ein Dehnungsmeßstreifen vorn und der jeweils andere hinten am Prothesenunterschenkel 2 angeordnet sind. Es handelt sich um einen Sensor zur Messung des Kniemomentes. Die gleichen Dehnungsmeßstreifenpaare 40 oder aber zwei zusätzliche Dehnungsmeßstreifenpaare dienen zudem als Sensor zur Messung des Hüftgelenkes. Der untere Pfeil A symbolisiert die Bodenreaktionskraft; über die Achse B ist das Biegemoment aufgetragen. Die Punkte Bl und B2 geben die von den beiden Dehnungsmeßstreifenpaaren 40 ermittelten Biegemomente an. Durch lineare Extrapolation dieser beiden Meßpunkte Bl, B2 erhält man in der "Höhe" der Knieachse 5 den Wert für das Kniemoment Bκ und bei weiterer linearer Extrapo¬ lation bis zur "Höhe" des Hüftgelenkes 41 den Wert für das Hüftmoment BH. Bei dieser Art der Messung des Hüftmomentes muß das Kniegelenk 4 in gestreckter Lage des Prothesenunterschen¬ kels 2 blockiert sein.FIG. 18 shows in a schematic representation that the lower leg of the prosthesis 2 is equipped with two pairs of strain gauges 40, wherein - seen in the sagittal plane - one pair of strain gauges 40 in each case one strain gauge at the front and the other at the rear on the lower leg of the prosthesis 2 are arranged. It is a sensor for measuring the knee moment. The same strain gauge pairs 40 or two additional strain gauge pairs also serve as a sensor for measuring the hip joint. The lower arrow A symbolizes the ground reaction force; The bending moment is plotted on axis B. Points B1 and B2 indicate the bending moments determined by the two pairs of strain gauges 40. By linear extrapolation of these two measuring points B1, B2, the value for the knee moment B κ is obtained in the "height" of the knee axis 5 and the value for the hip moment B H in the case of further linear extrapolation up to the "height" of the hip joint 41. With this type of measurement of the hip moment, the knee joint 4 must be blocked in the extended position of the lower leg 2 of the prosthesis.
In dem in Figur 19 gezeigten Diagramm sind auf der lotrechten Achse der jeweils gemessene Fußdruck in Prozent bzw. der je¬ weils gemessene Kniewinkel in Winkelgrad aufgetragen, wäh¬ rend die horizontale Achse die Zeitspanne einer kompletten Schrittperiode angibt. Von den vier in Figur 1 dargestellten Fußdrucksensoren 9 sind lediglich eine Druckkurve Dl für den Fersendrucksensor und eine Druckkurve D2 für einen Drucksensor im Kopfbereich des OS metatarsale I eingezeichnet. Eingetragen ist ferner die Kurve Kα für den jeweiligen Kniewinkel.In the diagram shown in FIG. 19, the respectively measured foot pressure in percent or the respectively measured knee angle in angular degrees are plotted on the vertical axis, while the horizontal axis indicates the time span of a complete step period. Of the four foot pressure sensors 9 shown in FIG. 1, only one pressure curve D1 for the heel pressure sensor and one pressure curve D2 for a pressure sensor in the head region of the OS metatarsal I are shown. The curve K α is also entered for the respective knee angle.
Die im Diagramm dargestellte Schrittperiode ist die Zeitspanne zwischen zwei aufeinanderfolgenden Fersen/Boden-Kontakten des Prothesenfußes 3. Diese Schrittperiode ist erfindungsgemäß unterteilt in mehrere Phasen (in dem dargestellten Beispiel in acht Phasen), deren jeweiliger Endpunkt durch für diese Phase vorgegebene Meßdaten bestimmt ist. Dabei werden jeder Phase bestimmte, sich während dieser Phase gegebenenfalls ändernde Bremswerte zugeordnet, mit denen die Kniebremse 11 beauf¬ schlagt wird.The step period shown in the diagram is the time period between two successive heel / floor contacts of the prosthetic foot 3. This step period is divided according to the invention into several phases (eight phases in the example shown), the respective end point of which is determined by measurement data specified for this phase. Each phase is assigned certain braking values, which may change during this phase and which are applied to the knee brake 11.
In der unteren Darstellung der Figur 19 zeigen die drei rechts von der gestrichelten Linie liegenden Phasen 1 bis 3 die Kör- perhaltungsphase, die links von der gestrichelten Linie einge¬ zeichneten Phasen 4 bis 8 die Schwungphase. Dabei sind bei¬ spielsweise die Möglichkeiten vorgesehen, aus der Phase 1 un¬ mittelbar in die Phase 4 und/oder aus der Phase 4 unmittelbar in die Phase 6 überzugehen.In the lower illustration in FIG. 19, the three phases 1 to 3 to the right of the dashed line show the maintenance phase, phases 4 to 8 to the left of the dashed line the swing phase. In this case, for example, the possibilities are provided for transitioning directly from phase 1 to phase 4 and / or from phase 4 to phase 6.
Figur 20 zeigt für das in der Figur 19 dargestellte Phasendia¬ gramm ein etwas vereinfachtes Beispiel für das Gehen auf ebe¬ nem Untergrund. Auch hier bedeuten die durch einen Kreis sy - bolisierten Phasen jeweils einen kurzen Zeitabschnitt von ei¬ ner Schrittperiode, wobei während jeder Phase eine gesteuerte Kniebewegung stattfindet. Die Pfeile zwischen den Phasen geben den jeweiligen Phasenübergang an. Es handelt sich hier um vor¬ gegebene Schwellwerte bzw. Fixpunkte, die den Endpunkt einer Phase definieren und jeweils von durch Sensoren übermittelte Meßdaten bestimmt werden.FIG. 20 shows a somewhat simplified example of walking on flat ground for the phase diagram shown in FIG. 19. Here, too, the phases symbolized by a circle each mean a short period of a step period, with a controlled knee movement taking place during each phase. The arrows between the phases indicate the respective phase transition. These are predetermined threshold values or fixed points which define the end point of a phase and are each determined by measurement data transmitted by sensors.
Figur 21 zeigt ein Beispiel für die zur Steuerung der Knie¬ bremse 11 vorgesehene elektronische Hardware. Diese umfaßt die bereits vorstehend erwähnte Steuereinheit 19, die Schnittstel¬ len für die drei EMG-Sensoren 8, für zwei Fußdrucksensoren 9 sowie für das Codiergerät 28 aufweist. Die Stromversorgung für die Steuereinheit 19 ist mit 42 bezeichnet. Die Steuereinheit 19 steht mit einem externen Computer 43 in Verbindung und weist eine Steuerleitung 44 zur Steuerung der Bremse 11 auf.FIG. 21 shows an example of the electronic hardware provided for controlling the knee brake 11. This includes the control unit 19 already mentioned above, which has interfaces for the three EMG sensors 8, for two foot pressure sensors 9 and for the coding device 28. The power supply for the control unit 19 is designated 42. The control unit 19 is connected to an external computer 43 and has a control line 44 for controlling the brake 11.
Gemäß Figur 22 weist die Steuereinheit 19 einen Mikrocontrol- leraufbau auf, der einen Mikrocontroller 45, zumindest einen RAM sowie eine serielle Schnittstelle zum bidirektionalen Da- tenaustausch mit dem externen Computer 43 umfaßt. Der Mikro¬ Controller 45 umfaßt zur Speicherung der Betriebs- und Steue¬ rungssoftware sowie der festen Daten einen internen 2 kB EEPROM und ist zur Aufnahme der flüchtigen Daten während des Betriebs mit einem externen 8 kB RAM verbunden.According to FIG. 22, the control unit 19 has a microcontroller structure, which comprises a microcontroller 45, at least one RAM and a serial interface for bidirectional data exchange with the external computer 43. The microcontroller 45 comprises an internal 2 kB EEPROM for storing the operating and control software as well as the fixed data and is connected to an external 8 kB RAM for recording the volatile data during operation.
Figur 23 zeigt eine alternative Ausführungsform mit zwei Con¬ trollern. Hier weist die Steuereinheit 19 einen Mikrocontrol- leraufbau in einer Master-Slave-Konfiguration auf, wobei der Mastercontroller 46 mit dem Codiergerät 28 und den Fußdruck¬ sensoren 9 und der mit dem Mastercontroller 46 im direkten Datenaustausch verbundenen Slavecontroller 47 mit den EMG-Sen¬ soren 8 verbunden ist. Beide Controller 46, 47 weisen jeweils eine eigene Peripherieschaltung, RAM und eine serielle Verbin¬ dung zu dem externen Computer 43 auf.FIG. 23 shows an alternative embodiment with two controllers. Here the control unit 19 has a microcontroller In a master-slave configuration, the master controller 46 is connected to the coding device 28 and the foot pressure sensors 9 and the slave controller 47 connected to the master controller 46 in direct data exchange with the EMG sensors 8. Both controllers 46, 47 each have their own peripheral circuit, RAM and a serial connection to the external computer 43.
Gr/is/af/bk Gr / is / af / bk

Claims

Patentansprüche: Patent claims:
1. Verfahren zur Steuerung der Kniebremse (11) eines ein1. Method for controlling the knee brake (11) of a
Stumpfbett (1) mit einem Prothesenunterteil Stump bed (1) with a lower part of the prosthesis
(2) mit ange- schlossenem Prothesenfuß (3) verbindenden Kniegelenkes (4), wobei das computergesteuerte Bremsmoment in Abhän¬ gigkeit von der Gehbewegung des Prothesenträgers kontinu¬ ierlich zwischen "frei" und "blockiert" veränderbar ist, und die Gehbewegung durch im Stumpfbett (1) gemessene EMG-Werte, im Fußbereich gemessene Druckwerte, durch den jeweiligen Kniewinkel sowie die jeweilige, zwischen Pro¬ thesenober- und -Unterschenkel gemessene Winkelgeschwin¬ digkeit in Form elektrischer Signale (nachfolgend "Me߬ daten") charakterisiert wird, gekennzeichnet durch fol- gende Merkmale:(2) with the connected prosthetic foot (3) connecting the knee joint (4), the computer-controlled braking torque being continuously variable between “free” and “blocked” depending on the walking movement of the prosthetic wearer, and the walking movement through the stump bed (1) measured EMG values, pressure values measured in the foot area, are characterized by the respective knee angle and the respective angular velocity measured between the upper and lower legs of the prosthesis in the form of electrical signals (hereinafter "measured data"), characterized by the following features:
a) Ermittlung der jeweiligen Gangart aus einer Anzahl vorgegebener, zuvor für diesen Prothesenträger er¬ mittelten Gangarten durch Auswerten von zumindest einigen der jeweils übermittelten Meßdaten;a) determining the respective gait from a number of predetermined gaits previously determined for this prosthesis wearer by evaluating at least some of the measurement data transmitted in each case;
b) Auswahl des dieser ermittelten Gangart zugeordneten Steuerprogramms;b) selection of the control program assigned to this determined gait;
c) für jedes Steuerprogramm wird eine als Zeitspanne definierte Schrittperiode zwischen zwei aufeinander¬ folgenden Fersen/Boden-Kontakten unterteilt in meh¬ rere Phasen, deren jeweiliger Endpunkt durch für diese Phase vorgegebene, jeweils übermittelte Meß- daten bestimmt wird;c) for each control program, a step period defined as a time period between two successive heel/ground contacts is divided into several phases, the respective end point of which is determined by measurement data transmitted for this phase;
d) jeder Phase werden bestimmte, sich während dieserd) each phase will be certain, during this
Phase gegebenenfalls ändernde Bremswerte zugeordnet, mit denen die Kniebremse beaufschlagt wird.If necessary, changing braking values are assigned to the phase, with which the knee brake is applied.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Beaufschlagung der Kniebremse mit einer konstanten Frequenz erfolgt.Method according to claim 1, characterized in that the application of the knee brake to a constant Frequency occurs.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zusätzliche Meßdaten ermittelt werden aus den am Kniw sowie an der Hüfte angreifenden Momenten.3. The method according to claim 1 or 2, characterized in that additional measurement data is determined from the moments acting on the knee and the hip.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die vorgegebenen Gangarten mit Hilfe der unterschiedli¬ chen, sich aus der Messung der am Knie und an der Hüfte angreifenden Momente ergebenden Meßdaten definiert wer¬ den.4. The method according to claim 3, characterized in that the predetermined gaits are defined with the help of the different measurement data resulting from the measurement of the moments acting on the knee and hip.
5. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß die Ermittlung der jeweiligen Gangart durch Vergleich der übermittelten Ist-Meßdaten mit den für jede Gangart vorgegebenen Referenz-Meßdaten erfolgt.5. Method according to one of the preceding claims, characterized in that the determination of the respective gait is carried out by comparing the transmitted actual measurement data with the reference measurement data specified for each gait.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Referenz-Meßdaten aus den für jede einzelne Gangart gemessenen EMG-Daten ermittelt werden.6. The method according to claim 5, characterized in that the reference measurement data is determined from the EMG data measured for each individual gait.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß für jede der vorgegebenen Gangarten für jeden abgetaste- ten Hüftgelenkmuskel über eine Schrittperiode eine die Muskelaktivität wiedergebende Kurve erstellt wird, daß dann die diese Kurve definierenden EMG-Meßdaten durcch equidistante lineare Interpolation auf eine bestimmte Anzahl EMG-Referenzwerte reduziert werden, die dann die EMG-Referenzkurve definieren, und daß zum Vergleich einer bestimmten Anzahl Ist-EMG-Meßdaten mit übereinstimmenden Referenz-EMG-Meßdaten der jeweilige Zeitpunkt innerhalb der Schrittperiode ermittelt wird durch Vorausberechnung der Zeit des Endpunktes der jeweiligen Phase, wobei dann zu den Ist-Meßdaten die ihnen in Gangzeit am nächsten kommenden EMG-Referenzwerte der EMG-Referenzkurve heraus¬ gesucht werden. 7. The method according to claim 6, characterized in that for each of the predetermined gaits, a curve representing the muscle activity is created for each hip joint muscle sampled over a step period, and then the EMG measurement data defining this curve are set to a certain number by equidistant linear interpolation EMG reference values are reduced, which then define the EMG reference curve, and that in order to compare a certain number of actual EMG measurement data with matching reference EMG measurement data, the respective point in time within the step period is determined by pre-calculating the time of the end point of the respective phase , whereby the EMG reference values of the EMG reference curve that come closest to them in terms of time are then searched for from the actual measurement data.
8. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß ein Wechsel von dem Steuerpro¬ gramm der gerade benutzten Gangart zu dem Steuerprogramm einer anderen Gangart nur bei einer zuvor ausgewählten speziellen Phase der Schrittperiode der gerade benutzten oder aber der neuen Gangart vorgenommen wird.8. The method according to one of the preceding claims, characterized in that a change from the control program of the gait currently being used to the control program of a different gait is only carried out in a previously selected special phase of the step period of the gait currently being used or of the new gait becomes.
9. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß alle Meßdaten kurzfristig ge- speichert werden.9. Method according to one of the preceding claims, characterized in that all measurement data are saved at short notice.
10. Oberschenkelprothese, mit10. Femoral prosthesis, with
- einem Stumpfbett (1), das zur Verbindung mit einem Oberschenkelstumpf des Prothesenträgers ausgebildet ist;- a stump bed (1), which is designed to be connected to a thigh stump of the prosthesis wearer;
- einem Prothesenunterschenkel (2) , an den ein Prothesen¬ fuß (3) angeschlossen ist;- a prosthetic lower leg (2) to which a prosthetic foot (3) is connected;
- einem Kniegelenk (4), das über eine Knieachse (5) einen oberen Kniegelenkanschluß (6) für das Stumpfbett (1) gelenkig verbindet mit einem unteren Kniegelenkanschluß- A knee joint (4), which connects an upper knee joint connection (6) for the stump bed (1) to a lower knee joint connection via a knee axis (5).
(7 ) für den Prothesenunterschenkel (2) ;(7) for the prosthetic lower leg (2);
- einer computergesteuerten Bremse (11), die auf eine Bremswelle (21;5;37) ein zwischen "frei" und "blok- kiert" kontinuierlich veränderbares Bremsmoment auf- bringt;- a computer-controlled brake (11), which applies a braking torque that can be continuously varied between “free” and “blocked” to a brake shaft (21; 5; 37);
- einem Kniegelenkgetriebe (16; 29; 35) zur Übertragung des Bremsmomentes von der Bremswelle (21; 5; 37) auf die Knieachse (5);- a knee joint gear (16; 29; 35) for transmitting the braking torque from the brake shaft (21; 5; 37) to the knee axis (5);
- einer Steuereinheit (19), die über einen Steueralgo- rithmus die Bremse (11) in Abhängigkeit von der Gehbe¬ wegung des Prothesenträgers beaufschlagt;- a control unit (19), which applies the brake (11) via a control algorithm depending on the walking movement of the prosthesis wearer;
- EMG-Sensoren (8) , die im Stumpfbett (1 ) zur Anlage an bestimmten Oberschenkelmuskeln angeordnet sind und Si¬ gnale an die Steuereinheit (19) abgeben; - Fußdrucksensoren (9), die in der Lauffläche des Prothe¬ senfußes (3) angeordnet sind und Signale an die Steu¬ ereinheit (19) abgeben; - einem Kodiergerät (28), das den jeweiligen Kniewinkel sowie die jeweilige Winkelgeschwindigkeit zwischen Pro¬ thesenober- und -Unterschenkel (2) mißt und in Form elektrischer Signale an die Steuereinheit (19) abgibt; insbesondere zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, gekennzeichnet durch fol¬ gende Merkmale:- EMG sensors (8), which are arranged in the stump bed (1) to rest on certain thigh muscles and send signals to the control unit (19); - Foot pressure sensors (9), which are arranged in the running surface of the prosthetic foot (3) and emit signals to the control unit (19); - a coding device (28) which measures the respective knee angle and the respective angular velocity between the upper and lower legs of the prosthesis (2) and sends them to the control unit (19) in the form of electrical signals; in particular for carrying out the method according to one of the preceding claims, characterized by the following features:
a) zumindest zwei Fußdrucksensoren (9) sind in nach unten offenen Ausnehmungen (15) in der Fußsohle an¬ geordnet und zwar im Fersenbereich sowie im Kopfbe¬ reich eines OS metatarsale;a) at least two foot pressure sensors (9) are arranged in downwardly open recesses (15) in the sole of the foot, namely in the heel area and in the head area of a metatarsal bone;
b) die Bremse (11) ist eine Magnetpulverbremse, die über gepulste Steuersignale einer Pulsweiten-Modula¬ tionsschaltung (PWM-Schaltung) angesteuert wird, wobei die Pulsweite den durch die Bremse fließenden Strom und somit das Bremsmoment bestimmt;b) the brake (11) is a magnetic powder brake which is controlled via pulsed control signals from a pulse width modulation circuit (PWM circuit), the pulse width determining the current flowing through the brake and thus the braking torque;
c) ein Einstell- und Kalibriersystem zur Anpassung des die Bremse (11) beaufschlagenden Steueralgorithmus an den Gang des Prothesenträgers.c) an adjustment and calibration system for adapting the control algorithm acting on the brake (11) to the gait of the prosthesis wearer.
11. Oberschenkelprothese nach Anspruch 10, gekennzeichnet durch einen dritten Fußdrucksensor (9) im Bereich eines11. Thigh prosthesis according to claim 10, characterized by a third foot pressure sensor (9) in the area of
OS metatarsale und einen vierten Fußdrucksensor (9) im Zehenbereich.OS metatarsal and a fourth foot pressure sensor (9) in the toe area.
12. Oberschenkelprothese nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß in der Innenwandung des Stumpfbettes12. Thigh prosthesis according to claim 10 or 11, characterized in that in the inner wall of the stump bed
(1) zumindest zwei EMG-Sensoren (8) festgelegt sind, de¬ ren elektrische Anschlüsse außen am Stumpfbett (1) ver¬ legt sind.(1) at least two EMG sensors (8) are fixed, the electrical connections of which are laid on the outside of the stump bed (1).
13. Oberschenkelprothese nach Anspruch 12, dadurch gekenn¬ zeichnet, daß die zwei EMG-Sensoren (8) den Muskeln rec- tus femoris und hamstrings zugeordnet sind. 13. Thigh prosthesis according to claim 12, characterized in that the two EMG sensors (8) are assigned to the rectus femoris and hamstrings muscles.
14. Oberschenkelprothese nach Anspruch 12 oder 13, gekenn¬ zeichnet durch einen dritten, dem adductor longus zuge¬ ordneten EMG-Sensor (8) .14. Thigh prosthesis according to claim 12 or 13, characterized by a third EMG sensor (8) assigned to the adductor longus.
15. Oberschenkelprothese nach Anspruch 12, 13 oder 14, da¬ durch gekennzeichnet, daß die EMG-Sensoren federelastisch festgelegt sind.15. Thigh prosthesis according to claim 12, 13 or 14, characterized in that the EMG sensors are fixed in a resilient manner.
16. Oberschenkelprothese nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß der Abstand der EMG-Sensoren16. Thigh prosthesis according to one of claims 10 to 15, characterized in that the distance between the EMG sensors
(8) vom Rand (la) des Stumpfbettes (1) etwa 10 cm be¬ trägt. (Figur 2)(8) is approximately 10 cm from the edge (la) of the stump bed (1). (Figure 2)
17. Oberschenkelprothese nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß sich jeder Fußdrucksensor (9) gegen eine Metalleinlage (14) abstützt, die in eine Aus¬ nehmung (15) eingelegt ist, die um den Fußdrucksensor (9) herum mit dem Material der Prothesenfuß-Lauffläche ausge¬ füllt ist. (Figuren 5 und 6)17. Thigh prosthesis according to one of claims 10 to 16, characterized in that each foot pressure sensor (9) is supported against a metal insert (14) which is inserted into a recess (15) which surrounds the foot pressure sensor (9). is filled with the material of the prosthetic foot tread. (Figures 5 and 6)
18. Oberschenkelprothese nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß jeder Fußdrucksensor (9) die Größe des von der Sensor-Kontaktfläche auf den Boden aus¬ geübten Drucks in Form elektrischer Signale abgibt.18. Thigh prosthesis according to one of claims 10 to 17, characterized in that each foot pressure sensor (9) emits the size of the pressure exerted by the sensor contact surface on the floor in the form of electrical signals.
19. Oberschenkelprothese nach einem der Ansprüche 10 bis 18, gekennzeichnet durch einen Sensor zur Messung des Kniemo¬ mentes.19. Thigh prosthesis according to one of claims 10 to 18, characterized by a sensor for measuring the knee moment.
20. Oberschenkelprothese nach Anspruch 15, dadurch gekenn¬ zeichnet, daß der Kniemoment-Sensor aus zumindest zwei Dehnungsmeßstreifenpaaren (40) besteht, die in der Sagit- talebene jeweils vorn und hinten am Prothesenunterschen¬ kel (2) angeordnet sind. (Fig. 18)20. Thigh prosthesis according to claim 15, characterized in that the knee moment sensor consists of at least two pairs of strain gauges (40), which are arranged in the sagittal plane at the front and rear of the prosthetic lower leg (2). (Fig. 18)
21. Oberschenkelprothese nach einem der Ansprüche 10 bis 20, gekennzeichnet durch einen Sensor zur Messung des Hüftmo- mentes .21. Thigh prosthesis according to one of claims 10 to 20, characterized by a sensor for measuring the hip movement mentes.
22. Oberschenkelprothese nach Anspruch 21, dadurch gekenn¬ zeichnet, daß der Hüftmoment-Sensor aus zumindest zwei Dehnungsmeßstreifenpaaren (40) besteht, die in der Sagit- talebene jeweils vorn und hinten am Prothesenunterschen¬ kel (2) angeordnet sind, und daß zur Messung das Kniege¬ lenk (4) blockiert ist. (Fig. 18)22. Thigh prosthesis according to claim 21, characterized in that the hip moment sensor consists of at least two pairs of strain gauges (40), which are arranged in the sagittal plane at the front and back of the prosthetic lower leg (2), and that for measurement the knee joint (4) is blocked. (Fig. 18)
23. Oberschenkelprothese nach einem der Ansprüche 10 bis 22, dadurch gekennzeichnet, daß die Knieachse (5) sowie ein erstes Getriebezahnrad (17) fest am oberen Kniegelenkan¬ schluß (6) sitzen, während der untere Kniegelenkanschluß (7) als Getriebegehäuse (18) ausgebildet ist, das die Lagerung für die Knieachse (5) bildet und Getriebe, Brem¬ se (11) und Kodiergerät (28) umfaßt.23. Thigh prosthesis according to one of claims 10 to 22, characterized in that the knee axis (5) and a first gear wheel (17) sit firmly on the upper knee joint connection (6), while the lower knee joint connection (7) acts as a gear housing (18). is designed, which forms the bearing for the knee axis (5) and includes gear, brake (11) and coding device (28).
24. Oberschenkelprothese nach Anspruch 23, gekennzeichnet durch ein zweistufiges Untersetzungsgetriebe (16) mit parallel zueinander angeordneter Knieachse (5), Zwischen¬ welle (20) und Bremswelle (21), die drehbar im Getriebe¬ gehäuse (18) gelagert und jeweils mit einem Zahnrad (17) bestückt sind, wobei die Zwischenwelle (20) noch ein mit dem Zahnrad (23) der Bremswelle (21) kämmendes Zwischen- rad (24) trägt. (Figuren 7 - 11)24. Thigh prosthesis according to claim 23, characterized by a two-stage reduction gear (16) with a knee axis (5) arranged parallel to one another, an intermediate shaft (20) and a brake shaft (21), which are rotatably mounted in the gear housing (18) and each with a Gear (17) are equipped, with the intermediate shaft (20) also carrying an intermediate gear (24) which meshes with the gear (23) of the brake shaft (21). (Figures 7 - 11)
25. Oberschenkelprothese nach Anspruch 23, dadurch gekenn¬ zeichnet, daß die Knieachse (5) zugleich als Bremswelle ausgebildet und sowohl im oberen als auch im unteren Kniegelenkanschluß (6,7) drehbar gelagert ist und dreh¬ fest ein Zahnrad (30) trägt, das mit einem Zahnrad (31) einer Zwischenwelle (32) kämmt, die über ein zweites Zahnrad (33) im Eingriff steht mit einem fest mit dem oberen Kniegelenkanschluß (6) verbundenen Zahnrad (34). (Figur 6)25. Thigh prosthesis according to claim 23, characterized in that the knee axis (5) is also designed as a brake shaft and is rotatably mounted in both the upper and lower knee joint connection (6, 7) and carries a gear (30) in a rotationally fixed manner, which meshes with a gear (31) of an intermediate shaft (32), which is in engagement via a second gear (33) with a gear (34) which is firmly connected to the upper knee joint connection (6). (Figure 6)
26. Oberschenkelprothese nach einem der Ansprüche 10 bis 25, dadurch gekennzeichnet, daß das Kniegelenkgetriebe (35) einen an seinem einen Ende fest mit dem oberen Kniege¬ lenkanschluß (6) verbundenen Hebel (36) aufweist, der sich mit seinem freien Ende auf einer auf einer Spindel (37) geführten und deren Drehantrieb darstellenden Dreh¬ mutter (38) abstützt, die auf der Spindel (37) verschieb¬ bar ist, die die Bremswelle bildet und mit ihrem unteren Ende am unteren Kniegelenkanschluß (7) drehbar gelagert ist. (Figuren 15 und 16)26. Thigh prosthesis according to one of claims 10 to 25, characterized in that the knee joint drive (35) has a lever (36) which is firmly connected at one end to the upper knee joint connection (6), the free end of which is guided on a spindle (37) and represents its rotary drive Rotary nut (38) is supported, which can be moved on the spindle (37), which forms the brake shaft and is rotatably mounted with its lower end on the lower knee joint connection (7). (Figures 15 and 16)
27. Oberschenkelprothese nach einem der Ansprüche 10 bis 26, dadurch gekennzeichnet, daß das Kodiergerät (28) einen optischen Encoder sowie eine auf einer Getriebewelle (21;32;37) sitzende Kodierscheibe (27) umfaßt. (Figuren 11 und 14)27. Thigh prosthesis according to one of claims 10 to 26, characterized in that the coding device (28) comprises an optical encoder and a coding disk (27) seated on a gear shaft (21; 32; 37). (Figures 11 and 14)
28. Oberschenkelprothese nach einem der Ansprüche 10 bis 27, dadurch gekennzeichnet, daß sich die elektronische Hard¬ ware zusammensetzt aus der digitalen Steuereinheit (19), ihrer Verkabelung mit einer Energiequelle (42), den EMG- und Fußdrucksensoren (8,9), dem Kodiergerät (28) und der Bremse (11 ), und aus einem externen, das Einstell- und Kalibriersystem bildenden Computer (43 ) zum zeitweiligen Datenaustausch, Anpassung und Eichung der Steuereinheit (19 ) . (Figur 21)28. Thigh prosthesis according to one of claims 10 to 27, characterized in that the electronic hardware is composed of the digital control unit (19), its cabling with an energy source (42), the EMG and foot pressure sensors (8, 9), the coding device (28) and the brake (11), and from an external computer (43), which forms the setting and calibration system, for temporary data exchange, adaptation and calibration of the control unit (19). (Figure 21)
29. Oberschenkelprothese nach einem der Ansprüche 10 bis 28, dadurch gekennzeichnet, daß die digitale Steuereinheit (19) in einem Gehäuse am Prothesenunterschenkel (2) ange- ordnet ist.29. Thigh prosthesis according to one of claims 10 to 28, characterized in that the digital control unit (19) is arranged in a housing on the prosthetic lower leg (2).
30. Oberschenkelprothese nach Anspruch 28 oder 29, dadurch gekennzeichnet, daß der externe Computer (43) eigene Schnittstellen für die Sensoren und Stellglieder auf- weist, mit denen er direkt über Parallelkabel verbindbar ist. Gr/is/af/bk 30. Thigh prosthesis according to claim 28 or 29, characterized in that the external computer (43) has its own interfaces for the sensors and actuators, with which it can be connected directly via parallel cables. Gr/is/af/bk
PCT/DE1996/001041 1995-06-13 1996-06-06 Process for controlling the knee brake of a knee prosthesis and thigh prosthesis WO1996041599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19521464A DE19521464C2 (en) 1995-06-13 1995-06-13 Procedure for controlling the knee brake of a prosthetic knee joint and thigh prosthesis
DE19521464.1 1995-06-13

Publications (1)

Publication Number Publication Date
WO1996041599A1 true WO1996041599A1 (en) 1996-12-27

Family

ID=7764260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001041 WO1996041599A1 (en) 1995-06-13 1996-06-06 Process for controlling the knee brake of a knee prosthesis and thigh prosthesis

Country Status (2)

Country Link
DE (1) DE19521464C2 (en)
WO (1) WO1996041599A1 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025552A1 (en) * 1996-12-10 1998-06-18 Novacare Orthotics And Prosthetics East, Inc. System and method for providing a sense of feel in a prosthetic or sensory impaired limb
WO1999029272A1 (en) * 1997-12-10 1999-06-17 Biedermann Motech Gmbh Leg prosthesis with an artificial knee joint provided with an adjustment device
WO1999044547A1 (en) * 1998-03-04 1999-09-10 Chas. A. Blatchford & Sons Limited Lower limb prosthesis and control unit
WO2001072245A2 (en) * 2000-03-29 2001-10-04 Massachusetts Institute Of Technology Speed-adaptive and patient-adaptive prosthetic knee
US6679920B2 (en) 2000-01-11 2004-01-20 Biedermann Motech Gmbh Device and method for remote maintenance of an electronically controllable prosthesis
WO2004017872A1 (en) * 2002-08-22 2004-03-04 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
US6764520B2 (en) * 2000-01-20 2004-07-20 Massachusetts Institute Of Technology Electronically controlled prosthetic knee
US7087090B2 (en) * 2003-11-19 2006-08-08 Bloorview Macmillan Centre Artificial knee joint
US7101487B2 (en) 2003-05-02 2006-09-05 Ossur Engineering, Inc. Magnetorheological fluid compositions and prosthetic knees utilizing same
US7137998B2 (en) 2002-08-22 2006-11-21 Victhom Human Bionics Inc Positioning of lower extremities artificial proprioceptors
WO2007027808A2 (en) 2005-09-01 2007-03-08 össur hf System and method for determining terrain transitions
USRE39961E1 (en) 1996-06-27 2007-12-25 össur hf Computer controlled hydraulic resistance device for a prosthesis and other apparatus
EP2015713A2 (en) * 2006-04-28 2009-01-21 College Park Industries, Inc. Prosthetic sensing systems and methods
US7691154B2 (en) 2004-05-07 2010-04-06 össur hf Systems and methods of controlling pressure within a prosthetic knee
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
WO2011057795A1 (en) * 2009-11-13 2011-05-19 Otto Bock Healthcare Products Gmbh Method for controlling an orthotic or prosthetic joint of a lower extremity
US7955398B2 (en) 2003-11-18 2011-06-07 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US8211042B2 (en) 2007-01-05 2012-07-03 Victom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
CN102885661A (en) * 2012-10-29 2013-01-23 河北工业大学 Dynamic prosthetic knee joint
US8403997B2 (en) 2006-03-24 2013-03-26 Blatchford Products Limited Lower limb prosthesis and control unit
WO2014016424A1 (en) 2012-07-27 2014-01-30 Proteor Hydraulic system for a knee-ankle assembly controlled by a microprocessor
US8858648B2 (en) 2005-02-02 2014-10-14 össur hf Rehabilitation using a prosthetic device
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9017419B1 (en) 2012-03-09 2015-04-28 össur hf Linear actuator
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
US9345591B2 (en) 2004-03-10 2016-05-24 össur hf Control system and method for a prosthetic knee
US9351854B2 (en) 2005-09-01 2016-05-31 össur hf Actuator assembly for prosthetic or orthotic joint
US9526635B2 (en) 2007-01-05 2016-12-27 Victhom Laboratory Inc. Actuated leg orthotics or prosthetics for amputees
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
US9913738B1 (en) * 2013-05-15 2018-03-13 Raymond Fikes Conditional braking knee
US9949850B2 (en) 2015-09-18 2018-04-24 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US10369025B2 (en) 2005-02-02 2019-08-06 Össur Iceland Ehf Sensing systems and methods for monitoring gait dynamics
CN110141239A (en) * 2019-05-30 2019-08-20 东北大学 A kind of motion intention identification and installation method for lower limb exoskeleton
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
US10575970B2 (en) 2011-11-11 2020-03-03 Össur Iceland Ehf Robotic device and method of using a parallel mechanism
CN111685918A (en) * 2020-05-25 2020-09-22 上海工程技术大学 Rigidity-adjustable foot artificial limb device
WO2021005006A3 (en) * 2019-07-08 2021-03-04 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Methods and systems for controlling active prostheses
CN112754468A (en) * 2021-01-07 2021-05-07 华南理工大学 Human body lower limb movement detection and identification method based on multi-source signals

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859931A1 (en) 1998-12-24 2000-07-06 Biedermann Motech Gmbh Prosthesis with an artificial knee joint and method for controlling a prosthetic leg
KR101007946B1 (en) 2003-11-18 2011-01-14 빅톰 휴먼 바이오닉스 인크. Instrumented prosthetic foot
WO2005079712A2 (en) 2004-02-12 2005-09-01 össur hf System and method for motion-controlled foot unit
GB0419480D0 (en) * 2004-09-02 2004-10-06 Univ Surrey Movement description and analysis
EP1848380B1 (en) 2004-12-22 2015-04-15 Össur hf Systems and methods for processing limb motion
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
DE102008036714A1 (en) * 2008-08-07 2010-02-11 Otto Bock Healthcare Products Gmbh Method for visualizing multichannel signals
DE102009052895A1 (en) 2009-11-13 2011-05-19 Otto Bock Healthcare Products Gmbh Method and device for controlling an artificial orthotic or prosthetic knee joint
DE102012107117A1 (en) 2012-08-02 2014-02-06 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Orthesensteuerung
DE102016107743A1 (en) * 2016-04-26 2017-10-26 Össur Iceland Ehf Method for controlling a drive and / or braking device of an orthotic or prosthetic, artificial joint
CN108994833B (en) * 2018-07-26 2020-08-28 北京机械设备研究所 Joint assistance control method based on myoelectric activity feedback
DE102019101143B4 (en) * 2019-01-17 2020-08-06 Otto Bock Healthcare Products Gmbh Method for controlling an orthotic or prosthetic device and orthetic or prosthetic device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866246A (en) * 1972-11-14 1975-02-18 Us Navy Shoulder disarticulation prosthetic system
US4087730A (en) * 1975-09-18 1978-05-02 Viennatone Gesellschaft M.B.H. Electric control circuit
US4209860A (en) * 1978-02-13 1980-07-01 The United States of America as represented by the Administrator of Veterans' Affairs System and method for multifunctional control of upper limb prosthesis via EMg signal identification
FR2623086A1 (en) * 1987-11-17 1989-05-19 Adcro Section Ceraval Microprocessor-controlled knee prosthesis
DE3909672A1 (en) * 1988-03-25 1989-10-19 Kobe Steel Ltd THIGH PROSTHESIS
FR2642302A1 (en) * 1989-01-31 1990-08-03 Basset Regis Device for generating a pulsed electrical control signal in response to a command by a living being
EP0549855A2 (en) * 1991-12-05 1993-07-07 Otto Bock Orthopädische Industrie Besitz- und Verwaltungs-Kommanditgesellschaft System for controlling artificial knee joint action in an above knee prosthesis
US5258037A (en) * 1990-07-13 1993-11-02 Caspers Carl A Prosthetic liner and method of making the liner with a prosthesis socket
US5413611A (en) * 1992-07-21 1995-05-09 Mcp Services, Inc. Computerized electronic prosthesis apparatus and method
EP0681818A2 (en) * 1994-05-10 1995-11-15 Otto Bock Orthopädische Industrie Besitz- und Verwaltungs-Kommanditgesellschaft Method to control an artifical limb by miopotentials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062857A (en) * 1990-06-05 1991-11-05 Advanced Prosthestetics Development Corporation Myoelectrically controlled knee joint locking device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866246A (en) * 1972-11-14 1975-02-18 Us Navy Shoulder disarticulation prosthetic system
US4087730A (en) * 1975-09-18 1978-05-02 Viennatone Gesellschaft M.B.H. Electric control circuit
US4209860A (en) * 1978-02-13 1980-07-01 The United States of America as represented by the Administrator of Veterans' Affairs System and method for multifunctional control of upper limb prosthesis via EMg signal identification
FR2623086A1 (en) * 1987-11-17 1989-05-19 Adcro Section Ceraval Microprocessor-controlled knee prosthesis
DE3909672A1 (en) * 1988-03-25 1989-10-19 Kobe Steel Ltd THIGH PROSTHESIS
FR2642302A1 (en) * 1989-01-31 1990-08-03 Basset Regis Device for generating a pulsed electrical control signal in response to a command by a living being
US5258037A (en) * 1990-07-13 1993-11-02 Caspers Carl A Prosthetic liner and method of making the liner with a prosthesis socket
EP0549855A2 (en) * 1991-12-05 1993-07-07 Otto Bock Orthopädische Industrie Besitz- und Verwaltungs-Kommanditgesellschaft System for controlling artificial knee joint action in an above knee prosthesis
US5413611A (en) * 1992-07-21 1995-05-09 Mcp Services, Inc. Computerized electronic prosthesis apparatus and method
EP0681818A2 (en) * 1994-05-10 1995-11-15 Otto Bock Orthopädische Industrie Besitz- und Verwaltungs-Kommanditgesellschaft Method to control an artifical limb by miopotentials

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39961E1 (en) 1996-06-27 2007-12-25 össur hf Computer controlled hydraulic resistance device for a prosthesis and other apparatus
WO1998025552A1 (en) * 1996-12-10 1998-06-18 Novacare Orthotics And Prosthetics East, Inc. System and method for providing a sense of feel in a prosthetic or sensory impaired limb
US6423098B1 (en) 1997-12-10 2002-07-23 Biedermann Motech Gmbh Leg prosthesis with an artificial knee joint provided with an adjustment device
JP2001511052A (en) * 1997-12-10 2001-08-07 ビーダーマン・モテーク・ゲゼルシャフト・ミット・ベシュレンクタ・ハフツング Leg prosthesis including knee prosthesis with control device
WO1999029272A1 (en) * 1997-12-10 1999-06-17 Biedermann Motech Gmbh Leg prosthesis with an artificial knee joint provided with an adjustment device
WO1999044547A1 (en) * 1998-03-04 1999-09-10 Chas. A. Blatchford & Sons Limited Lower limb prosthesis and control unit
US6719806B1 (en) 1998-03-04 2004-04-13 Chas. A. Blatchford & Sons Limited Lower limb prosthesis and control unit
US6679920B2 (en) 2000-01-11 2004-01-20 Biedermann Motech Gmbh Device and method for remote maintenance of an electronically controllable prosthesis
USRE42903E1 (en) 2000-01-20 2011-11-08 Massachusetts Institute Of Technology Electronically controlled prosthetic knee
US6764520B2 (en) * 2000-01-20 2004-07-20 Massachusetts Institute Of Technology Electronically controlled prosthetic knee
WO2001072245A2 (en) * 2000-03-29 2001-10-04 Massachusetts Institute Of Technology Speed-adaptive and patient-adaptive prosthetic knee
WO2001072245A3 (en) * 2000-03-29 2002-03-14 Massachusetts Inst Technology Speed-adaptive and patient-adaptive prosthetic knee
US6610101B2 (en) 2000-03-29 2003-08-26 Massachusetts Institute Of Technology Speed-adaptive and patient-adaptive prosthetic knee
US7279009B2 (en) 2000-03-29 2007-10-09 Massachusetts Institute Of Technology Speed-adaptive and patient-adaptive prosthetic knee
WO2004017871A3 (en) * 2002-08-22 2004-05-06 Victhom Human Bionics Inc Positioning of lower extremities artificial proprioceptors
US9649206B2 (en) 2002-08-22 2017-05-16 Victhom Laboratory Inc. Control device and system for controlling an actuated prosthesis
US7137998B2 (en) 2002-08-22 2006-11-21 Victhom Human Bionics Inc Positioning of lower extremities artificial proprioceptors
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
US8231687B2 (en) 2002-08-22 2012-07-31 Victhom Human Bionics, Inc. Actuated leg prosthesis for above-knee amputees
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
WO2004017871A2 (en) 2002-08-22 2004-03-04 Victhom Human Bionics Inc. Positioning of lower extremities artificial proprioceptors
US7314490B2 (en) 2002-08-22 2008-01-01 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
WO2004017872A1 (en) * 2002-08-22 2004-03-04 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
CN100384391C (en) * 2002-08-22 2008-04-30 维克多姆人体机械公司 Positioning of lower extremities artificial proprioceptors
US7867284B2 (en) 2002-08-22 2011-01-11 Victhom Human Bionics Inc. Control device and system for controlling an actuated prosthesis
CN100506189C (en) * 2002-08-22 2009-07-01 维克多姆人体机械公司 Actuated leg prosthesis for above-knee amputees
US7101487B2 (en) 2003-05-02 2006-09-05 Ossur Engineering, Inc. Magnetorheological fluid compositions and prosthetic knees utilizing same
US7335233B2 (en) 2003-05-02 2008-02-26 Ossur Hf Magnetorheological fluid compositions and prosthetic knees utilizing same
US8986397B2 (en) 2003-11-18 2015-03-24 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US7955398B2 (en) 2003-11-18 2011-06-07 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US7087090B2 (en) * 2003-11-19 2006-08-08 Bloorview Macmillan Centre Artificial knee joint
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US9345591B2 (en) 2004-03-10 2016-05-24 össur hf Control system and method for a prosthetic knee
US7691154B2 (en) 2004-05-07 2010-04-06 össur hf Systems and methods of controlling pressure within a prosthetic knee
US10290235B2 (en) 2005-02-02 2019-05-14 össur hf Rehabilitation using a prosthetic device
US10369025B2 (en) 2005-02-02 2019-08-06 Össur Iceland Ehf Sensing systems and methods for monitoring gait dynamics
US8858648B2 (en) 2005-02-02 2014-10-14 össur hf Rehabilitation using a prosthetic device
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9717606B2 (en) 2005-04-19 2017-08-01 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
WO2007027808A2 (en) 2005-09-01 2007-03-08 össur hf System and method for determining terrain transitions
US9351854B2 (en) 2005-09-01 2016-05-31 össur hf Actuator assembly for prosthetic or orthotic joint
WO2007027808A3 (en) * 2005-09-01 2007-06-28 Oessur Hf System and method for determining terrain transitions
US8403997B2 (en) 2006-03-24 2013-03-26 Blatchford Products Limited Lower limb prosthesis and control unit
US8298293B2 (en) 2006-04-28 2012-10-30 College Park Industries, Inc. Prosthetic sensing systems and methods
EP2015713A4 (en) * 2006-04-28 2012-02-01 College Park Ind Inc Prosthetic sensing systems and methods
EP2015713A2 (en) * 2006-04-28 2009-01-21 College Park Industries, Inc. Prosthetic sensing systems and methods
US8211042B2 (en) 2007-01-05 2012-07-03 Victom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US9066817B2 (en) 2007-01-05 2015-06-30 Victhom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US9730824B2 (en) 2007-01-05 2017-08-15 Victhom Laboratory Inc. High torque active mechanism for orthotic and/or prosthetic devices
US11007072B2 (en) 2007-01-05 2021-05-18 Victhom Laboratory Inc. Leg orthotic device
US9526635B2 (en) 2007-01-05 2016-12-27 Victhom Laboratory Inc. Actuated leg orthotics or prosthetics for amputees
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US10405996B2 (en) 2007-01-19 2019-09-10 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US11607326B2 (en) 2007-01-19 2023-03-21 Victhom Laboratory Inc. Reactive layer control system for prosthetic devices
US10299943B2 (en) 2008-03-24 2019-05-28 össur hf Transfemoral prosthetic systems and methods for operating the same
CN102740803A (en) * 2009-11-13 2012-10-17 奥托·博克保健产品有限公司 Method for controlling an orthotic or prosthetic joint of a lower extremity
RU2572741C2 (en) * 2009-11-13 2016-01-20 Отто Бок Хелткэр Продактс Гмбх Method and device for controlling orthosis or prosthesis of lower extremity joint
WO2011057795A1 (en) * 2009-11-13 2011-05-19 Otto Bock Healthcare Products Gmbh Method for controlling an orthotic or prosthetic joint of a lower extremity
CN104856787A (en) * 2009-11-13 2015-08-26 奥托·博克保健产品有限公司 Method for controlling an orthotic or prosthetic joint of a lower extremity
CN104856787B (en) * 2009-11-13 2017-04-12 奥托·博克保健产品有限公司 Method for controlling an orthotic or prosthetic joint of a lower extremity
EP2772232A3 (en) * 2009-11-13 2014-10-22 Otto Bock Healthcare Products GmbH Method of controlling an orthotic or prosthetic joint of a lower extremity
JP2013510605A (en) * 2009-11-13 2013-03-28 オットー・ボック・ヘルスケア・プロダクツ・ゲーエムベーハー Method for controlling joints for orthodontic or prosthetic lower limbs
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US11020250B2 (en) 2010-09-29 2021-06-01 Össur Iceland Ehf Prosthetic and orthotic devices and methods and systems for controlling the same
US9925071B2 (en) 2010-09-29 2018-03-27 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US11185429B2 (en) 2011-05-03 2021-11-30 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US10575970B2 (en) 2011-11-11 2020-03-03 Össur Iceland Ehf Robotic device and method of using a parallel mechanism
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
US9017419B1 (en) 2012-03-09 2015-04-28 össur hf Linear actuator
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
US10940027B2 (en) 2012-03-29 2021-03-09 Össur Iceland Ehf Powered prosthetic hip joint
US10335291B2 (en) 2012-07-27 2019-07-02 Proteor Hydraulic system for a knee-ankle assembly controlled by a microprocessor
WO2014016424A1 (en) 2012-07-27 2014-01-30 Proteor Hydraulic system for a knee-ankle assembly controlled by a microprocessor
CN102885661A (en) * 2012-10-29 2013-01-23 河北工业大学 Dynamic prosthetic knee joint
US10369019B2 (en) 2013-02-26 2019-08-06 Ossur Hf Prosthetic foot with enhanced stability and elastic energy return
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US11285024B2 (en) 2013-02-26 2022-03-29 Össur Iceland Ehf Prosthetic foot with enhanced stability and elastic energy return
US10695197B2 (en) 2013-03-14 2020-06-30 Össur Iceland Ehf Prosthetic ankle and method of controlling same based on weight-shifting
US11576795B2 (en) 2013-03-14 2023-02-14 össur hf Prosthetic ankle and method of controlling same based on decreased loads
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US9913738B1 (en) * 2013-05-15 2018-03-13 Raymond Fikes Conditional braking knee
US11446166B2 (en) 2014-04-11 2022-09-20 Össur Iceland Ehf Prosthetic foot with removable flexible members
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US11707365B2 (en) 2015-09-18 2023-07-25 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US10722386B2 (en) 2015-09-18 2020-07-28 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US9949850B2 (en) 2015-09-18 2018-04-24 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
CN110141239A (en) * 2019-05-30 2019-08-20 东北大学 A kind of motion intention identification and installation method for lower limb exoskeleton
CN110141239B (en) * 2019-05-30 2020-08-04 东北大学 Movement intention recognition and device method for lower limb exoskeleton
WO2021005006A3 (en) * 2019-07-08 2021-03-04 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Methods and systems for controlling active prostheses
CN111685918A (en) * 2020-05-25 2020-09-22 上海工程技术大学 Rigidity-adjustable foot artificial limb device
CN112754468B (en) * 2021-01-07 2022-08-05 华南理工大学 Human body lower limb movement detection and identification method based on multi-source signals
CN112754468A (en) * 2021-01-07 2021-05-07 华南理工大学 Human body lower limb movement detection and identification method based on multi-source signals

Also Published As

Publication number Publication date
DE19521464A1 (en) 1997-03-20
DE19521464C2 (en) 1999-08-19

Similar Documents

Publication Publication Date Title
WO1996041599A1 (en) Process for controlling the knee brake of a knee prosthesis and thigh prosthesis
EP1058524A1 (en) Leg prosthesis with an artificial knee joint and method for controlling a leg prosthesis
DE69918273T2 (en) LEG INSPECTION AND CONTROL THEREFOR
DE69726799T2 (en) System and method for controlling the gait of a two-legged, moving robot
EP2160168A1 (en) Apparatus and method for exercise and/or analysis of the locomotor system of a user
DE60131377T2 (en) SPEED ADAPTED AND PATIENT ATTACHED KNEE PROSTHESIS
DE69814871T2 (en) LEG PROSTHESIS
DE69534074T2 (en) Frequency-adaptive pacemaker with two sensors
DE3909672C2 (en)
EP0359760B1 (en) Device for monitoring loads exerted on parts of the body
EP2879622B1 (en) Control for orthotic devices
EP0793976B1 (en) Rate adaptive pacemaker
DE102015211261B4 (en) STEP COUNTER, STEP SUPPORT DEVICE AND COMPUTER-READABLE MEDIUM WITH A STEP COUNTER PROGRAM STORED ON IT
DE112005002207B4 (en) Running robot using passive changes in joint angles and control methods thereof
DE602005001082T2 (en) vehicle steering
DE19914245B4 (en) Robot controller
EP1793739A1 (en) Method for determining the set relative position of a patient in a dental panorama x-ray apparatus or the set path on which this apparatus is moved with regard to a patient, and a device suited therefor
EP0205723A1 (en) Mobile track-working machine and method for bending the ends of laid rails in the joint zone
DE10392608T5 (en) Method and device for walking control of a robot with legs
EP2616033B1 (en) Patella gripper and device for moving a patella comprising such a patella gripper
DE102019112465A1 (en) POWERFUL AND ADAPTIVE STEERING BEHAVIOR AND REAL-TIME FEELING FOR STEER-BY-WIRE VEHICLES
EP0418420B1 (en) Process for the production of an above-knee prosthesis
DE19622564C2 (en) Method for controlling a stretching bed with feedback of muscle activity
DE19758699C2 (en) Folding method in die stamping and bending machine
DE10312042B4 (en) Training device with continuously rotatably movable, interconnected actuators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase