WO1996038999A1 - Procede et systeme de communication mobile a acces multiple par code de repartition (cdma) et equipement de station mobile - Google Patents

Procede et systeme de communication mobile a acces multiple par code de repartition (cdma) et equipement de station mobile Download PDF

Info

Publication number
WO1996038999A1
WO1996038999A1 PCT/JP1996/001460 JP9601460W WO9638999A1 WO 1996038999 A1 WO1996038999 A1 WO 1996038999A1 JP 9601460 W JP9601460 W JP 9601460W WO 9638999 A1 WO9638999 A1 WO 9638999A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user data
time
error correction
frequency
Prior art date
Application number
PCT/JP1996/001460
Other languages
English (en)
French (fr)
Inventor
Fumiyuki Adachi
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to US08/776,554 priority Critical patent/US5953324A/en
Priority to KR1019970700760A priority patent/KR100220139B1/ko
Priority to DE69629266T priority patent/DE69629266T2/de
Priority to EP96920003A priority patent/EP0773695B1/en
Priority to CA002195981A priority patent/CA2195981C/en
Priority to JP8536371A priority patent/JP2883965B2/ja
Publication of WO1996038999A1 publication Critical patent/WO1996038999A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to reception level monitoring and handoff in cellular mobile communication.
  • BACKGROUND ART In cellular mobile communication, a large number of base stations are arranged in a wide service area. Then, as the mobile station moves, the connected base stations are switched one after another so that the mobile station can communicate with the base station having the best communication quality, and the communication is continued. In this case, in order to search for the next base station to connect to, the mobile station receives radio waves from base stations in the vicinity of the communicating base station and measures the reception level. From the measurement result, the mobile station determines that the neighboring base station with the highest level is the new base station to be connected next, and notifies the communicating base station. In this way, when the base station needs to be switched (handoff), the upper station of the communicating base station instructs the communicating base station and the new base station to start handoff.
  • the same transmission data is transmitted from the communicating base station and the new base station, and the mobile station alternately switches the transmitting and receiving frequency from the communicating base station to the new base station or vice versa.
  • This is the method of monitoring and handing off peripheral base stations in cellular mobile communications.
  • TDMA time division multiple access system
  • the transmission time is divided into short time slots, and many mobile stations are assigned different slots, and transmission and reception are performed periodically. For this reason, the time other than the transmission and reception slots of the mobile station is idle time. Using this idle time, the mobile station monitors the surrounding base stations and can easily select the base station having the maximum reception level.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • each base station spreads transmission data into a wideband signal using a different spreading code sequence at the same frequency, so that the receiving side receives the spread code sequence of a neighboring base station. It is sufficient to have another correlator for despreading the signal, for monitoring surrounding base stations and for handoff.
  • base stations may not be able to use the same radio frequency.
  • This is, for example, the case of microcell
  • microcell This is a case of a macrocell base station having a wide communication range overlaid on a ground station. Since the transmission power of the microcell base station is smaller than the transmission power of the macrocell base station, if the same radio frequency is used, the transmission signal of the macrocell base station is received by the mobile station communicating with the microcell base station. Doing so will cause significant interference with the signal. Also, the transmission power of the mobile station in the macrocell may be higher than the transmission power of the mobile station communicating with the microcell base station, and this may cause a large interference with the reception signal of the microcell base station.
  • the peripheral base station receives the transmission signal of the mobile station, detects the reception level, and There is a method to make the base station of the level a new base station.
  • each base station requires a receiver for level measurement.
  • control processing such as level measurement and comparison becomes enormous.
  • the radio frequency is switched, and communication is momentarily interrupted.
  • an object of the present invention is to provide a transmission / reception method during a handoff that can make an idle time during communication in order to perform a handoff between base stations using different radio frequencies in a CDMA mobile communication without a momentary interruption.
  • the first base station converts the user data and the error correction check bit into a first narrow-band modulated signal obtained by performing first-order modulation on the user data after performing error correction coding on the user data.
  • the mobile station converts the wideband signal into a narrowband modulation signal, demodulates the error signal, and performs error correction decoding processing to reproduce the user data.
  • the mobile station includes:
  • CDMA mobile communication method comprising:
  • the first base station transmits the user data at the first time, and suspends transmission at the second time;
  • the mobile station receives and demodulates a signal from the first base station at the first time, switches the frequency of a receiver to the frequency of the second base station at the second time, Receiving and demodulating signals from the second base station, combining the signal from the first base station and the signal from the second base station, and reproducing user data.
  • the mobile station transmits user data to the first base station at a first radio frequency at a third time at which user data is to be transmitted.
  • the user data is transmitted to the second base station for a second time.
  • the first base station demodulates the user data received at the third time
  • the second base station demodulates the user data received at the fourth time
  • the first base station transmits the user data at the first time, and suspends transmission at the second time;
  • the second base station transmits the error correction check bit at the second time, and suspends transmission at the first time
  • the mobile station receives a signal from the first base station at the first time Demodulating, switching the frequency of the receiver to the radio frequency of the second base station at the second time, receiving and demodulating a signal from the second base station, and demodulating the signal from the first base station. Reproducing the user data using the user data and the error correction check bit from the second base station;
  • the mobile station transmits user data to the first base station at a first radio frequency at a third time at which user data is to be transmitted, and a fourth time at which an error correction check bit is to be transmitted. Transmitting an error correction check bit to the second base station on a second radio frequency;
  • the first base station demodulates the user data received at the third time
  • the second base station demodulating the error correction check bit received at the fourth time
  • the upper station of the first base station and the second base station performs error correction decoding using the demodulated signals to reproduce the user data.
  • the first base station obtains the error correction encoded user data, and then performs primary modulation by multi-level modulation on the user data and the error correction check bit.
  • the mobile station converts the narrow-band modulated signal to a wide-band signal with a spreading code and transmits the narrow-band modulated signal to a narrow-band modulated signal, demodulates the error, performs error correction decoding, and reproduces the user data.
  • the first base station transmits the user data and the error correction check bit at a first time while increasing the multi-level number of the multi-level modulation, and thereby suspends the transmission.
  • the mobile station increases the multi-level number of the multi-level modulation during the first time, demodulates a received signal, performs error correction decoding processing, reproduces the user data, and performs the second time Switching the reception frequency to the radio frequency of the second base station, and monitoring the reception level of the second base station.
  • the first base station transmitting the user data and the error correction check bit thereof at the first time;
  • the second base station transmitting the user data and the error correction check bit thereof at the second time
  • the mobile station receives the user data and the error correction check bit from the first base station at the first time, and changes a reception frequency of the second base station to a radio frequency of the second base station. Switching to a frequency, receiving the user data and the error correction check bit, and combining the signal from the first base station and the signal from the second base station to reproduce the user data.
  • the narrow-band modulation signal obtained by primary-modulating the user data and the error-correction check bit is converted to a wideband signal by a spreading code.
  • a first base station for transmitting the next modulated signal, and converting the wideband signal to a narrowband modulated signal, demodulating, and error correcting decoding A CDMA mobile communication system comprising: a mobile station that processes and reproduces the user data;
  • a demodulation unit that demodulates the user data
  • An error correction decoding unit that suspends the error correction decoding process and outputs the user data that is not subjected to error correction decoding at a second time during reception of the error correction check bit;
  • Frequency switching means for switching the reception frequency to a radio frequency of a second base station having a different operating frequency from the first base station at the second time;
  • a reception level measuring unit that monitors a reception level of a signal from the second base station
  • a CDMA mobile communication system comprising: In the CDMA mobile communication system, comprising a higher-level station for instructing a handoff between the first base station and the second base station,
  • the first base station transmits the user data at the first time based on a handoff command from the upper station, and suspends transmission at the second time.
  • the second base station based on the handoff command, transmits the user data at the second time, and includes second control means for suspending transmission at the first time.
  • a receiving frequency switching unit that adjusts a frequency of a receiver to one of a transmission frequency of the first base station and the second transmission frequency; and While receiving and demodulating the signal, receiving and demodulating the signal from the second base station at the second time, combining the signal from the first base station and the signal from the second base station. And play user data And a demodulation unit that performs the demodulation.
  • a transmission frequency switching means for switching a transmission frequency of a transmitter to one of a reception frequency of the first base station and a reception frequency of the second base station; and transmitting user data during a handoff period.
  • user data is transmitted at the reception frequency of the first base station, and at a fourth time when an error correction check bit should be transmitted, the user data is transmitted to the second base station.
  • a transmitting means for transmitting at the receiving frequency of the station,
  • the first base station includes a first demodulation unit that demodulates the user data received at the third time,
  • the second base station includes a second demodulation unit that demodulates the user data received at the fourth time,
  • the upper station may include means for reproducing the user data by combining demodulated signals demodulated by the demodulators.
  • the CDMA mobile communication system further comprising: an upper station for instructing a handoff between the first base station and the second base station, wherein the first base station is based on a handoff instruction from the upper station. And transmitting the user data at the first time, and suspending the transmission at the second time.
  • the second base station includes a second control unit that transmits the error correction check bit at the second time based on the handoff command, and suspends transmission at the first time.
  • a receiving frequency switching unit that adjusts a frequency of a receiver to one of a transmission frequency of the first base station and the second transmission frequency; and Receiving and demodulating the signal, Receiving and demodulating a signal from the second base station at a time, and using the user data from the first base station and the error correction check bit from the second base station to decode the user data.
  • a demodulation unit for reproducing the data.
  • a transmitting frequency switching means for switching a transmitting frequency of a transmitter to one of a receiving frequency of the first base station and a receiving frequency of the second base station; and At a third time to transmit the user data, the user data is transmitted at the reception frequency of the first base station, and at a fourth time to transmit an error correction check bit, the error correction check bit is transmitted to the second base station.
  • Transmitting means for transmitting at the receiving frequency of the base station,
  • the first base station includes a demodulation unit that demodulates the user data received at the third time,
  • the second base station further includes a demodulation unit that demodulates the error correction check bit received at the fourth time,
  • the upper station may include means for reproducing the user data by performing error correction decoding using a demodulated signal output from each of the demodulators.
  • a narrow band modulation signal obtained by performing primary modulation by multi-level modulation on the user data and the error correction check bits is spread code.
  • a CDMA mobile communication system In a CDMA mobile communication system,
  • the first base station is configured to transmit the user data and an error correction check bit.
  • a first multi-level control unit for changing a multi-level number of the multi-level modulation, and the mobile station monitors a reception level of a signal from a second base station different from the first base station. Means for creating a second time during which transmission is suspended by increasing the multi-level number and transmitting at a first time during the reception level monitoring period.
  • a receiving frequency switching unit that adjusts a frequency of a receiver to one of a transmission frequency of the first base station and the second transmission frequency; and a second unit that changes a multi-level number of the multi-level modulation.
  • a multi-level number control unit, a demodulation unit that demodulates a received signal by increasing the multi-level number at the first time, performs error correction decoding processing, and reproduces the user data, and the second time A CDMA mobile communication system comprising: a reception level measuring unit that switches a reception frequency to the transmission frequency of the second base station and monitors a reception level of the second base station. Is done.
  • the CDMA mobile communication system further comprising: an upper station for instructing a handoff between the first base station and the second base station, wherein the first base station is based on a handoff instruction from the upper station. And first transmission means for transmitting the user data and the error correction check bit thereof at the first time,
  • the second base station further includes a second transmitting unit that transmits the user data and its error correction check bit at the second time based on the handoff command,
  • the mobile station receives the user data and the error correction check bit from the first base station at the first time, and changes a reception frequency of the second base station at the second time. Switching to a transmission frequency, receiving the user data and the error correction check bit, and transmitting a signal from the first base station. And means for combining the signal from the second base station and reproducing the user data.
  • a first base station that performs second-order modulation on a narrowband modulated signal obtained by performing primary correction after error correction coding of user data into a wideband signal with a spreading code and transmits the same
  • a mobile station in a CDMA mobile communication system comprising: a mobile station that converts the wideband signal into a narrowband modulation signal, performs demodulation, performs error correction decoding, and reproduces the user data.
  • the mobile station receiver comprises:
  • a first time during reception of the user data transmitted from the first base station a demodulation unit for demodulating the user data
  • An error correction decoding unit that suspends the error correction decoding process and outputs the user data that is not subjected to error correction decoding at a second time during reception of the error correction check bit;
  • a frequency switching unit that switches a reception frequency to a radio frequency of a second base station having a different use frequency from the first base station
  • a mobile station comprising: a reception level measuring unit that monitors a reception level of the second base station.
  • the mobile station receiver comprises:
  • a reception frequency switching unit that adjusts a reception frequency to one of the transmission frequency of the first base station and the transmission frequency of the second base station;
  • a signal from the first base station is received and demodulated at the first time, and at the second time.
  • the signal from the second base station is received and demodulated, and the signal from the first base station and the signal from the second base station are combined to generate user data.
  • a demodulator that reproduces
  • the mobile station transmitter comprises:
  • a transmission frequency switching unit for adjusting a transmission frequency to a reception frequency of the first base station and a reception frequency of the second base station;
  • the user data is transmitted at the reception frequency of the first base station and the fourth error correction check bit is to be transmitted.
  • the first base station demodulates the user data received at the third time
  • the second base station demodulating the user data received at the fourth time
  • a narrow band modulation signal obtained by performing primary modulation by multi-level modulation on the user data and the error correction check bit is spread code.
  • the first base station transmits the user data and the error correction check bit at a first time after increasing the multi-level number of the multi-level modulation, and thereby suspends the transmission.
  • the multi-level number of the multi-level modulation is used at the first time.
  • a reception frequency switching unit that adjusts a reception frequency of the receiver to one of a transmission frequency of the first base station and a transmission frequency of the second base station;
  • a reception level measurement unit that monitors a reception level of the second base station at the second time
  • a mobile station comprising:
  • a reception frequency switching unit of a receiver of the mobile station sets a reception frequency to the first time.
  • Switching to the transmission frequency of the first base station during the second time, switching to the transmission frequency of the second base station during the second time, and the means for reproducing includes a signal from the first base station.
  • the signal from the second base station may be combined to reproduce the user data.
  • a mobile station in CDMA mobile communication, can create an idle time for measuring a signal level from a base station using a different radio frequency, and the mobile station monitors the base station at that time. be able to.
  • FIG. 2 is a timing chart of the reception level measurement at the mobile station in the first embodiment.
  • FIGS. 3A and 3B are block diagrams respectively showing a transmitter of a base station and a receiver of a mobile station of a second embodiment of the CDMA mobile communication system according to the present invention.
  • FIG. 4 is a timing chart of the reception level measurement at the mobile station in the second embodiment.
  • FIG. 5 is a block diagram illustrating a system configuration when performing hand-off in the third to fifth embodiments of the CDMA mobile communication system according to the present invention.
  • FIG. 6 is a block diagram showing a transmitter of a mobile station in a third embodiment of the CDMA mobile communication system according to the present invention.
  • FIG. 7 is a timing chart showing the operation of the base station during handoff in the third embodiment.
  • FIG. 8 is a timing chart showing the operation of the mobile station during handoff in the third embodiment.
  • FIG. 9 is a block diagram showing a transmitter of a mobile station according to a fourth embodiment of the CDMA mobile communication system according to the present invention.
  • FIG. 10 is a timing chart showing the operation of the base station during handoff in the fourth embodiment. It is a mining chart.
  • FIG. 11 is a timing chart showing the operation of the base station during handoff in the fifth embodiment of the CDMA mobile communication system according to the present invention.
  • FIG. 12 is a timing chart showing the operation of the mobile station during handoff in the sixth embodiment of the CDMA mobile communication system according to the present invention.
  • FIG. 1A and 1B are block diagrams showing a configuration of a first embodiment of a CDMA mobile communication system according to the present invention.
  • FIG. 1A shows the configuration of the transmitter of the base station
  • FIG. 1B shows the configuration of the receiver of the mobile station.
  • FIG. 2 shows a frame configuration and reception timing used in the present invention.
  • 101 is a frame configuration unit that frames input data
  • 102 is an error correction coding unit that performs error correction coding on framed data
  • 103 is error correction.
  • This is a primary modulation unit that performs phase modulation on the output of the encoding unit 102.
  • Reference numeral 105 denotes a secondary modulation unit that spreads the primary modulated signal with the spreading code generated by the spreading sequence generator 104.
  • Reference numeral 106 denotes a frequency conversion unit that converts the spread signal into a transmission frequency.
  • Reference numeral 107 denotes a transmission power amplifier that performs power amplification.
  • Reference numeral 109 denotes a main control unit that controls the above-described units.
  • reference numeral 151 denotes a frequency conversion unit for converting a received signal into a baseband. Correlator. The despread signal is sent to the demodulator The signal is demodulated in 154, and returns to the original signal in the code discriminating section 157. 158 is an error correction decoding unit, and the returned signal is error-corrected. 159 is a rate conversion unit, which converts the code rate back to the original code rate and returns to the original signal completely.
  • Reference numeral 155 denotes a reception level measurement unit
  • reference numeral 156 denotes a main control unit
  • reference numeral 160 denotes a sub control unit.
  • the main control section 156 controls the above-described sections of the receiver.
  • the control information extracted from the frame data supplied from the error correction decoding unit 158 is input to the main control unit 156.
  • the sub control unit 160 is controlled by the main control unit 156.
  • the sub control unit 160 has a frequency switching unit 16 2, a spreading code switching unit 16 4, an enable signal generation unit 16 6 and a level measurement control unit 16 8, and the main control unit 15 6 It controls the switching of the reception frequency, the switching of the spreading code, the suspension of the execution of error correction decoding, and the timing of the reception level measurement based on the control information from.
  • the user data sequence in the base station is compiled into data for each one frame time (T f) predetermined by the frame configuration unit 101.
  • One frame of transmission data is subjected to error correction coding in error correction coding section 102, and a transmission data sequence and an error correction check bit sequence are arranged as shown in FIG.
  • the primary modulation section 103 performs, for example, four-level phase modulation on this signal.
  • the quadrature phase modulation signal is subjected to band spreading (secondary modulation) by the secondary modulation section 105 into a wideband signal by the spreading code sequence from the spreading sequence generation section 104.
  • the wideband signal is frequency-converted to a radio frequency band by a frequency converter 106, power-amplified by a transmission power amplifier 107, and then transmitted.
  • the frequency conversion section 151 converts the received signal into a baseband signal.
  • the correlation (despreading) between the spread code sequence and the received signal is performed by the correlator 152 to obtain a four-level phase modulated signal.
  • This Are the same codes as those used for transmission at the base station, and are generated by the spreading sequence generator 153.
  • demodulation is performed by demodulation section 154, and code determination is performed by code determination section 157.
  • the judgment data is error-corrected by the error correction decoding unit 158, the speed is converted by the speed conversion unit 159, and the data transmitted from the base station is reproduced.
  • the mobile station uses the sub-control unit 160 to receive only the user data sequence portion of the frame as shown in FIG. 2 (A).
  • This control is performed as follows. First, the main control unit 156 detects the data length of the user data from the control data at the head of each frame of the received signal, and supplies this information to the sub control unit 160. Based on this information, the enable signal generator 166 of the sub-controller 160 suspends the error correction by the error correction decoder 158 during the error correction check bit period. Also, during this period, the level measurement control section 1668 of the sub-control section 160 sends a signal to the reception level measurement section 155 to instruct the reception level measurement. Further, frequency switching section 162 sends a signal to frequency conversion section 151, and switches the frequency of the receiver to the frequency of the peripheral base station.
  • FIG. 2 (B) shows the timing of switching the reception frequency at this time.
  • An error correction code with a coding rate of about 1/2 is used to enhance the correction capability (therefore, the user data length and the check bit length are almost the same).
  • f o is the radio frequency of the base station during communication
  • f k is the radio frequency of the base station with which the reception level is to be measured.
  • the reception frequency is switched during the error correction check bit period, and the reception level of the peripheral base station at the frequency ik is measured. In this way, it is possible to monitor peripheral base stations without interrupting communication.
  • the base station can relieve the reliability degradation to some extent by increasing the base station transmission power in the transmission data sequence portion.
  • FIG. 3 shows another embodiment of the present invention.
  • FIGS. 3A and 3B are block diagrams showing the configuration of the second embodiment of the CDMA mobile communication system according to the present invention.
  • FIG. 3A shows the configuration of the transmitter of the base station
  • FIG. 3B shows the configuration of the receiver of the mobile station.
  • FIG. 4 shows a frame configuration and reception timing used in the present invention.
  • the difference between the transmitter of the base station shown in FIG. 3A and the transmitter of the base station shown in FIG. 1A is that the base station has a multilevel level control section 304 and that the primary modulation section 303 It is possible to switch the multi-level number of multi-level modulation from 4-level phase modulation to 16-level phase modulation, for example.
  • the base station modulates a transmission signal to be transmitted by quaternary phase modulation.
  • 16-level phase modulation is performed in the former. In the former, two bits represent one of four modulation states, while in the latter, four bits represent one of sixteen modulation states. Therefore, as shown in Fig. 4 (A), the 16-level modulated signal transmitted when measuring the level of the received signal at the mobile station exists only for half the time of the frame, and the rest is the idle time without the modulated signal. Become. That is, idle time occurs in transmission. By doing so, the mobile station can switch the frequency of the receiver during idle time and measure the reception level of the surrounding base station at the frequency fk, as shown in Fig. 4 (B), without interrupting the communication. it can.
  • the base station transmission power can be increased to relieve the deterioration of reliability due to the increase in the number of values.
  • Figure 5 shows the system configuration for handoff.
  • the mobile station 504 is communicating with the communicating base station 502.
  • the new base station 503 has a better measurement result, and it is necessary to perform handoff to the new base station 503.
  • handoff is performed under the control of the higher-level station 501 of the communicating base station 502 and the new base station 503.
  • FIG. 6 is a block diagram showing the configuration of the transmitting unit of mobile station 504.
  • This transmitting unit differs from the transmitting unit of the base station shown in FIG. 1A in that it has a sub-control unit 620.
  • the sub control unit 620 has a transmission data control unit 622, a spreading code switching unit 624, and a frequency switching unit 626, and these units are controlled by the main control unit 609. Information is provided.
  • the transmission data control section 62 2 sends a signal to the error correction coding section 60 2 so that the user data is repeatedly output twice during one frame period as shown in FIG. 8 (A). To control. Of these two repetitions, the first data is transmitted to the communicating base station 502, and the next data is transmitted to the new base station 503.
  • spreading code switching section 624 sends a signal to spreading sequence generator 604 to control to switch the spreading code
  • frequency switching section 626 performs frequency conversion section 606. Control to switch the output frequency.
  • the transmitting section of the base station and the receiving section of the mobile station have the same configuration as the transmitting section and the receiving section shown in FIGS. 1A and 1B.
  • the receiving section of the base station has the same configuration as that of the receiving section of the mobile station shown in FIG. 1B except that frequency switching section 162 and spreading code switching section 164 are removed.
  • FIG. 7 shows transmission signals of the communicating base station 502 and the new base station 503 during the handoff period.
  • the two base stations 502 and 503 that perform handoff do not generate error correction codes, but modulate only the user data sequence part.
  • the transmission is performed from both the communicating base station 502 and the new base station 503.
  • the main control unit 109 of each base station (see FIG. 1A) enables or disables the error correction coding unit 102 based on a command from the upper station 501.
  • the user data is transmitted at the timing shown in FIG.
  • the mobile station 504 switches the reception frequency in the middle of the frame, and receives and demodulates the transmission signals from the communicating base station 502 and the new base station 503. Then, the two signals received at the time of switching are stored in a memory (not shown), read out, combined, and code-determined. This makes it possible to reproduce highly reliable user data even when switching.
  • Figure 8 shows the timing of transmission from the mobile station when performing a handoff.
  • the mobile station transmits user data with primary and secondary modulation.
  • When handoff is performed during the handoff period, no error correction code is generated, and only user data is transmitted twice by switching the frequency in the middle of the frame.
  • the transmission signal is shown in FIG. 8 (A).
  • FIG. 8 (B) the same user data is transmitted to the communicating base station 502 and the new base station 503 by switching the transmission frequency.
  • the communicating base station 502 and the new base station 503 receive and demodulate the transmission signal, judge the code, and transmit the data to the upper station 501.
  • the reproducing unit 5110 of the upper station 501 selects one of the two demodulated signals and reproduces highly reliable user data.
  • the demodulated signal from the communicating base station 502 and the demodulated signal from the new base station 503 may be combined to reproduce the user data from the mobile station.
  • FIGS. 5, 9, and 10 shows the configuration of the transmitter of the mobile station
  • FIG. 10 shows the timing of handoff.
  • FIG. 9 is a block diagram showing the configuration of the transmitting unit of mobile station 504.
  • This transmitting section differs from the transmitting section of the base station shown in FIG. 3A in that it has a sub-control section 920.
  • the sub-control unit 920 includes a multi-value number switching unit 922, a spreading code switching unit 924, and a frequency switching unit 926. Control information is provided.
  • the multi-value number switching section 9222 sends a signal to the multi-value level control section 904 to control the multi-value number. In other words, in normal mode, user data and error correction check are performed during one frame period. In the node-off mode, as shown in FIG. 10, a multi-valued number is controlled so as to output user data and an error correction check bit in a 1/2 frame period.
  • spreading code switching section 9 24 sends a signal to spreading sequence generator 9 06 to control the spreading code to be switched, and frequency switching section 9 26 Send a signal to 8 to control the output frequency.
  • the transmitting section of the base station and the receiving section of the mobile station have the same configurations as the transmitting section and the receiving section shown in FIGS. 3A and 3B.
  • the receiving section of the base station has the same configuration as that of the receiving section of the mobile station shown in FIG. 3B except that frequency switching section 362 and spreading code switching section 364 are removed.
  • the handoff in the present embodiment is performed by changing the multi-level number of the primary modulation.
  • both the communicating base station 502 and the new base station 503 operate under the control of the upper-level station 501, as shown in FIG. Change the number to create free time.
  • the mobile station 504 switches the receiving station during the above handoff period.
  • handoff is performed by switching the receiving frequency in the middle of one frame.
  • the signals of the two switched base stations 502 and 503 are received and demodulated, and the demodulated signals are stored in a memory (not shown), read, and combined.
  • error correction decoding can be performed, and the transmitted data can be reproduced.
  • the mobile station 504 when handing off the transmitting side of the mobile station 504, the mobile station 504 modulates the transmission data by changing the multi-level number of modulation, and switches the transmission frequency in the middle of one frame, twice. Send.
  • Both base stations to be handed off 5 At 0 2 and 5 0 3 the received signal is subjected to error correction decoding, the transmission data is reproduced, and transferred to the upper station 5 0 1.
  • the upper station 501 selects either the base station in communication or the data received and reproduced by the new base station. At this time, for example, one having a higher reception level may be selected.
  • FIG. 11 shows the transmission timing of the base station when performing handoff.
  • the transmitter of the base station and the receiver of the mobile station are the same as those shown in FIGS. 1A and 1B. Also, the transmitter of the mobile station and the receiver of the base station are the same as those shown in FIGS. 1A and 1B.
  • the communicating base station 502 does not generate an error correction code under the control of the upper station 501 during the handoff period, and modulates and transmits only the user data sequence portion. From the new base station 503, only the error correction coding check bit is modulated and transmitted.
  • the mobile station 504 switches the reception frequency in the middle of the frame and receives the user data from the communicating base station 502 and the error-correction coded check bit from the new base station 503. Then, the data from both base stations is stored in memory, read out and combined, and the original data is reproduced. Since the error correction coding check bit is received from the new base station 503, error correction decoding of the combined 1-frame data can be performed, and more reliable transmission data can be reproduced.
  • FIG. 12 shows the transmission timing of the mobile station when performing a handoff.
  • the transmitter of the base station and the receiver of the mobile station are the same as those shown in FIGS. 1A and 1B.
  • the transmitter of the mobile station and the receiver of the base station are the same as the transmitter shown in FIG. 6 and the receiver shown in FIG. 1B.
  • the mobile station 504 modulates the user data and the error correction check bit and transmits them alternately during the handoff period. That is, in the first half of the frame, user data is transmitted at the reception frequency ⁇ of the communicating base station 502, and in the second half of the frame, an error correction check bit is transmitted at the reception frequency fk of the new base station 503. .
  • the communicating base station 502 receives the user data in the first half of the frame, and the new base station 503 receives the error correction coded check bit in the second half of the frame. Then, the reproduction unit 5110 of the upper station 501 stores the data from both base stations in the memory, reads and combines the data, and reproduces the original data. In this case, since the upper-level station 501 receives the error-correction-encoding ticks from the new base station 503, the upper-level station 501 can correct and decode the error in the combined 1-frame data. Reliable transmission data can be reproduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

明細書 発明の名称
C D M A移動通信方法、 システムおよび移動局装置 技術分野 本発明は、 セルラ移動通信における受信レベル監視およびハンドオフに 関するものである。
背景技術 セルラ移動通信では、 広いサービスエリアに多数の基地局を配置してい る。 そして、 移動局が最も通信品質のよい基地局と通信を行うことができ るように、 移動局の移動につれて接続する基地局を次々と切り替えて、 通 信を継続する。 この場合、 次に接続する基地局を探索するために、 移動局 において、 通信中基地局の周辺基地局の電波を受信し受信レベルを測定し ている。 その測定結果から、 移動局は、 最も高いレベルの周辺基地局を次 に接続すべき新基地局と判定し、 通信中の基地局に通知する。 このように すれば、 基地局の切り替え (ハンドオフ) が必要になったときには、 通信 中の基地局の上位局は、 通信中基地局および新基地局に対してハンドオフ の開始を指示する。 ハンドオフ中には、 通信中基地局および新基地局から 同一送信データを送信し、 移動局は、 送受信周波数を通信中基地局から新 基地局へ、 あるいはその逆に、 交互に切り替える。 これが、 セルラ移動通 信における周辺基地局監視およびハンドオフの方法である。 ところで、 時分割多元接続方式 (TDMA) では、 送信時間をスロッ ト という短い時間に区切り、 多数の移動局が異なるスロッ トを割り当てられ、 送信および受信を周期的に行っている。 このため、 移動局の送信および受 信スロッ ト以外の時間は空き時間である。 この空き時間を用いて、 移動局 は周辺基地局監視を行い、 最大受信レベルとなる基地局を容易に選択する ことができる。 このようにして選択した新基地局にハンドオフする ( "デ ジタル方式自動車電話システム" 標準規格、 RC R S TD— 2 7 B、 財 団法人電波システム開発センター、 または " P e r s 0 n a 1 d i g i t a 1 c e l l u l a r t e l e c ommu n i c a t i o n s y s t em RCR s t a n d a r d, RCR STD— 2 7" , R e s e a r c h & D e v e l o pme n t C e n t e r f o r R a d i o S y s t e mを参照) 。
一方、 符号分割多元接続方式 (CDMA) では、 TDMAのような空き 時間がないが、 全ての基地局で同一の無線周波数を用いることができるた め、 通信中に周辺基地局監視やハンドオフ時に送受信周波数を切り替える 必要がない (R. P a d o v a n i , "R e v e r s e l i n k p e r f o r m a n c e o f I S— 9 5 b a s e d c e l l u l a r s y s t e m s , I EEE P e r s o n a l C ommu n i c a t i o n s , v o l . 1, p p. 2 8— 34, 3 r d Q u a r t e r 1 9 94 参照) 。 すなわち、 CDMAでは、 各基地局は同じ周波数で、 異なる拡散符号系列を用いて送信データを広帯域信号へと拡散している。 このため、 受信側では、 周辺基地局の拡散符号系列で受信信号を逆拡散す る相関器をもう一個、 周辺基地局監視用とハンドオフ用に持てばよい。
しかし、 CDMAにおいても、 基地局同士が同一無線周波数を用いるこ とができない場合もある。 これは例えば、 通信範囲が狭いマイクロセル基 地局にオーバレイされた通信範囲が広いマクロセル基地局の場合である。 マイクロセル基地局の送信電力はマクロセル基地局の送信電力より小さい ために、 もし、 同一の無線周波数を用いると、 マクロセル基地局の送信信 号はマイクロセル基地局と通信している移動局の受信信号に大きな干渉を 与えてしまう。 また、 マクロセルの移動局の送信電力は、 マイクロセル基 地局と通信している移動局の送信電力より大きくなることがあるために、 マイクロセル基地局の受信信号に大きな干渉を与えてしまう。 このような 干渉を回避するため、 マイクロセルとマクロセル基地局とでは異なる無線 周波数を用いる必要がある。 このときには、 マイクロセル基地局からマク ロセル基地局への切り替えに際して、 周辺基地局監視やハンドオフ時に周 波数を切り替える必要がある。
C D M Aでは T D MAのような空き時間がないため、 移動局において周 辺基地局監視を行う代わりに、 周辺基地局において、 その移動局の送信信 号を受信して受信レベルを検出し、 最大のレベルの基地局を新基地局とす る方法がある。 このときには、 各基地局にはレベル測定用の受信機が必要 で、 通信中の移動局が多くなるに連れて基地局側のレベル測定用受信機数 が多く必要になる。 さらに、 レベル測定と比較などの制御処理が膨大にな る。 また、 ハンドオフ時には、 無線周波数を切り替えることになるため通 信が瞬断してしまうことになる。 発明の開示 本発明の目的は、 以上の課題を解決するために、 C D M A移動通信にお いて、 異なる無線周波数を用いる基地局からの受信信号を測定する空き時 間を有し、 その時間に周辺基地局からの信号レベルを監視することができ る送受信方法を提供することにある。
また、 本発明の目的は、 C D M A移動通信において、 異なる無線周波数 を用いる基地局間のハンドオフを瞬断のないように行うため、 通信中に空 き時間を作ることのできるハンドオフ中の送受信方法を提供することにあ o
第 1 に、 本発明によれば、 第 1の基地局は、 ユーザデータを誤り訂正符 号化したのち、 前記ユーザデータおよび誤り訂正チェックビッ トを 1次変 調して得られる狭帯域変調信号を拡散符号で広帯域信号へ 2次変調して送 信し、 移動局は、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤 り訂正復号処理して前記ユーザデータを再生する C D M A移動通信方法に おいて、 前記移動局は、
前記第 1の基地局から送信された前記ユーザデータ受信中の第 1の時間 に、 前記ユーザデータを復調する過程と、
前記誤り訂正チェックビッ ト受信中の第 2の時間に、 前記誤り訂正復号 処理を休止し、 誤り訂正復号化しない前記ユーザデータを出力する過程と、 前記第 2の時間に、 受信周波数を、 前記第 1の基地局とは使用周波数の 異なる第 2の基地局の無線周波数に切り替えて、 前記第 2の基地局の受信 レベルを監視する過程と
を具備することを特徴とする C D M A移動通信方法が提供される。
上記 C D M A移動通信方法において、 前記第 1の基地局と前記第 2の基 地局との間のハンドオフ期間中、
前記第 1の基地局では、 前記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間には送信を休止する過程と、
前記第 2の基地局では、 前記第 2の時間に前記ユーザデ一タを送信し、 前記第 1の時間には送信を休止する過程と、 前記移動局では、 前記第 1の時間に前記第 1の基地局からの信号を受信 復調し、 前記第 2の時間に前記第 2の基地局の周波数に受信機の周波数を 切り替えて、 該第 2の基地局からの信号を受信復調し、 前記第 1の基地局 からの信号と前記第 2の基地局からの信号とを合成してユーザデータを再 生する過程と
を具備するようにしてもよい。
上記 C D M A移動通信方法において、 前記ハンドオフ期間中、 前記移動局では、 ユーザデータを送信すべき第 3の時間に、 ユーザデー タを前記第 1の基地局に第 1の無線周波数で送信し、 誤り訂正チェックビッ トを送信すべき第 4の時間に、 前記ユーザデータを前記第 2の基地局に第
2の無線周波数で送信する過程と、
前記第 1の基地局では、 前記第 3の時間に受信した前記ユーザデータを 復調する過程と、
前記第 2の基地局では、 前記第 4の時間に受信した前記ユーザデータを 復調する過程と、
前記第 1の基地局および前記第 2の基地局の上位局では、 それらの復調 信号を合成することにより前記ユーザデータを再生する過程と
を具備するようにしてもよい。
上記 C D M A移動通信方法において、 前記第 1の基地局と前記第 2の基 地局との間のハンドオフ期間中、
前記第 1の基地局では、 前記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間には送信を休止する過程と、
前記第 2の基地局では、 前記第 2の時間に前記誤り訂正チェックビッ ト を送信し、 前記第 1の時間には送信を休止する過程と、
前記移動局では、 前記第 1の時間に前記第 1の基地局からの信号を受信 復調し、 前記第 2の時間に前記第 2の基地局の無線周波数に受信機の周波 数を切り替えて該第 2の基地局からの信号を受信復調し、 前記第 1の基地 局からの前記ユーザデータと前記第 2の基地局からの前記誤り訂正チエツ クビッ トとを用いて前記ユーザデータを再生する過程と
を具備するようにしてもよい。
上記 C D M A移動通信方法において、 前記ハンドオフ期間中、
前記移動局では、 ユーザデータを送信すべき第 3の時間に、 ユーザデ一 タを前記第 1の基地局に第 1の無線周波数で送信し、 誤り訂正チェックビッ トを送信すべき第 4の時間に、 誤り訂正チェックビッ トを前記第 2の基地 局に第 2の無線周波数で送信する過程と、
前記第 1の基地局では、 前記第 3の時間に受信した前記ユーザデータを 復調する過程と、
前記第 2の基地局では、 前記第 4の時間に受信した前記誤り訂正チェッ クビッ トを復調する過程と、
前記第 1の基地局および前記第 2の基地局の上位局では、 それらの復調 信号を用いて誤り訂正復号を行うことによって、 前記ユーザデータを再生 する過程と '
を具備するようにしてもよい。
第 2に、 本発明によれば、 第 1の基地局は、 ユーザデータを誤り訂正符 号化したのち、 前記ユーザデータおよび誤り訂正チヱックビッ トに多値変 調による 1次変調を行って得た狭帯域変調信号を拡散符号で広帯域信号へ 2次変調して送信し、 移動局は、 前記広帯域信号を狭帯域変調信号へ変換 し、 復調し、 誤り訂正復号処理して前記ユーザデータを再生する C D M A 移動通信方法において、 前記移動局が、 前記第 1の基地局とは異なる第 2 の基地局からの信号の受信レベルを監視する受信レベル監視期間中は、 前記第 1の基地局では、 前記ユーザデータおよび誤り訂正チヱックビッ トを、 前記多値変調の多値数を大きく して第 1の時間に送信することによつ て、 送信を休止する第 2の時間を作る過程と、
前記移動局では、 前記第 1の時間に前記多値変調の多値数を大き く して 受信信号を復調し、 誤り訂正復号処理して、 前記ユーザデータを再生する とともに、 前記第 2の時間において、 受信周波数を前記第 2の基地局の無 線周波数に切り替えて、 該第 2の基地局の受信レベルを監視する過程と を具備することを特徴とする C D MA移動通信方法が提供される。
上記 C D M A移動通信方法において、 前記第 1の基地局と、 前記第 2の 基地局との間のハンドオフ期間中は、
前記第 1の基地局では、 前記第 1の時間に前記ユーザデータおよびその 誤り訂正チエツクビッ トを送信する過程と、
前記第 2の基地局では、 前記第 2の時間に前記ユーザデータおよびその 誤り訂正チェックビッ トを送信する過程と、
前記移動局では、 前記第 1の時間に前記第 1の基地局からの前記ユーザ データおよび誤り訂正チヱックビッ トを受信するとともに、 前記第 2の時 間に受信周波数を前記第 2の基地局の無線周波数に切り替えて前記ユーザ データおよび誤り訂正チェックビッ トを受信し、 前記第 1の基地局からの 信号と前記第 2の基地局からの信号とを合成して前記ュ一ザデータを再生 する過程と
を具備するようにしてもよい。
第 3に、 本発明によれば、 ユーザデータを誤り訂正符号化したのち、 前 記ユーザデータおよび誤り訂正チェックビッ トを 1次変調して得られる狭 帯域変調信号を拡散符号で広帯域信号へ 2次変調して送信する第 1の基地 局と、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号 処理して前記ユーザデータを再生する移動局とを備えた C D M A移動通信 システムにおいて、 前記移動局は、
前記第 1の基地局から送信された前記ュ一ザデータ受信中の第 1の時間 に、 前記ユーザデータを復調する復調部と、
前記誤り訂正チェックビッ ト受信中の第 2の時間に、 前記誤り訂正復号 処理を休止し、 誤り訂正復号化しない前記ユーザデータを出力する誤り訂 正復号部と、
前記第 2の時間に、 受信周波数を、 前記第 1の基地局とは使用周波数の 異なる第 2の基地局の無線周波数に切り替える周波数切換手段と、
前記第 2の基地局からの信号の受信レベルを監視する受信レベル測定部 と
を具備することを特徴とする C D M A移動通信システムが提供される。 上記 C D M A移動通信システムにおいて、 前記第 1の基地局と前記第 2 の基地局との間のハンドオフを指令する上位局を備え、
前記第 1の基地局は、 前記上位局からのハンドオフ指令に基づいて、 前 記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間には送信を休 止させる第 1の制御手段を具備し、
前記第 2の基地局は、 前記ハンドオフ指令に基づいて、 前記第 2の時間 に前記ユーザデータを送信し、 前記第 1の時間には送信を休止させる第 2 の制御手段を具備し、
前記移動局は、 受信機の周波数を前記第 1の基地局の送信周波数および 前記第 2の送信周波数の一方に合わせる受信周波数切換手段と、 前記第 1 の時間に前記第 1の基地局からの信号を受信復調するとともに、 前記第 2 の時間に前記第 2の基地局からの信号を受信復調し、 前記第 1の基地局か らの信号と前記第 2の基地局からの信号とを合成してユーザデータを再生 する復調部とを具備するようにしてもよい。
上記 C D M A移動通信システムにおいて、
前記移動局は、 送信機の送信周波数を前記第 1の基地局の受信周波数お よび前記第 2の基地局の受信周波数の一方に切り換える送信周波数切換手 段と、 ハンドオフ期間中、 ユーザデータを送信すべき第 3の時間に、 ユー ザデ一タを前記第 1の基地局の受信周波数で送信し、 誤り訂正チエックビッ トを送信すベき第 4の時間に、 前記ユーザデータを前記第 2の基地局の受 信周波数で送信する送信手段を具備し、
前記第 1の基地局は、 前記第 3の時間に受信した前記ユーザデータを復 調する第 1の復調部を具備し、
前記第 2の基地局は、 前記第 4の時間に受信した前記ユーザデータを復 調する第 2の復調部を具備し、
前記上位局では、 前記各復調部で復調した復調信号を合成することによ り前記ユーザデータを再生する手段を具備するようにしてもよい。
上記 C D M A移動通信システムにおいて、 前記第 1の基地局と前記第 2 の基地局との間のハンドオフを指令する上位局を備え、 前記第 1の基地 局は、 前記上位局からのハンドオフ指令に基づいて、 前記第 1の時間に前 記ユーザデ一タを送信し、 前記第 2の時間には送信を休止させる第 1の制 御手段を具備し、
前記第 2の基地局は、 前記ハンドオフ指令に基づいて、 前記第 2の時間 に前記誤り訂正チェックビッ トを送信し、 前記第 1の時間には送信を休止 させる第 2の制御手段を具備し、
前記移動局は、 受信機の周波数を前記第 1の基地局の送信周波数および 前記第 2の送信周波数の一方に合わせる受信周波数切換手段と、 前記第 1 の時間に前記第 1の基地局からの信号を受信復調するとともに、 前記第 2 の時間に前記第 2の基地局からの信号を受信復調し、 前記第 1の基地局か らの前記ユーザデータと前記第 2の基地局からの前記誤り訂正チヱックビッ トとを用いて前記ユーザデ一タを再生する復調部とを具備するようにして もよい。
上記 C D M A移動通信システムにおいて、
前記移動局は、 送信機の送信周波数を前記第 1の基地局の受信周波数お よび前記第 2の基地局の受信周波数の一方に切り換える送信周波数切換手 段と、 前記ハン ドオフ期間中、 ユーザデータを送信すべき第 3の時間に、 ユーザデータを前記第 1の基地局の受信周波数で送信し、 誤り訂正チェッ クビッ トを送信すべき第 4の時間に、 誤り訂正チェックビッ トを前記第 2 の基地局の受信周波数で送信する送信手段とを具備し、
前記第 1の基地局は、 前記第 3の時間に受信した前記ユーザデータを復 調する復調部を具備し、
前記第 2の基地局は、 前記第 4の時間に受信した前記誤り訂正チュック ビッ トを復調する復調部を具備し、
前記上位局は、 前記各復調部から出力された復調信号を用いて誤り訂正 復号を行うことによって、 前記ユーザデータを再生する手段を具備するよ うにしてもよい。
第 4に、 本発明によれば、 ユーザデータを誤り訂正符号化したのち、 前 記ユーザデータおよび誤り訂正チヱックビッ トに多値変調による 1次変調 を行って得た狭帯域変調信号を拡散符号で広帯域信号へ 2次変調して送信 する第 1 の基地局と、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号処理して前記ユーザデータを再生する移動局とを備えた C D M A移動通信システムにおいて、
前記第 1 の基地局は、 前記ユーザデータおよび誤り訂正チェックビッ ト の、 前記多値変調の多値数を変化させる第 1の多値数制御部と、 前記移動 局が、 前記第 1の基地局とは異なる第 2の基地局からの信号の受信レベル を監視する受信レベル監視期間中は、 前記多値数を大き く して第 1の時間 に送信することによって、 送信を休止する第 2の時間を作る手段とを具備 し、
前記移動局は、 受信機の周波数を前記第 1の基地局の送信周波数および 前記第 2の送信周波数の一方に合わせる受信周波数切換手段と、 前記多値 変調の多値数を変化させる第 2の多値数制御部と、 前記第 1の時間に前記 多値数を大きく して受信信号を復調し、 誤り訂正復号処理して、 前記ュ一 ザデータを再生する復調部と、 前記第 2の時間において、 受信周波数を前 記第 2の基地局の送信周波数に切り換えて、 該第 2の基地局の受信レベル を監視する受信レベル測定部とを具備することを特徴とする C D M A移動 通信システムが提供される。
上記 C D M A移動通信システムにおいて、 前記第 1の基地局と前記第 2 の基地局との間のハンドオフを指令する上位局を備え、 前記第 1の基地 局は、 前記上位局からのハンドオフ指令に基づいて、 前記第 1の時間に前 記ユーザデータおよびその誤り訂正チヱックビッ トを送信する第 1の送信 手段を具備し、
前記第 2の基地局は、 前記ハンドオフ指令に基づいて、 前記第 2の時間 に前記ユーザデータおょぴその誤り訂正チェックビッ トを送信する第 2の 送信手段を具備し、
前記移動局は、 前記第 1の時間に前記第 1の基地局からの前記ユーザデ —タおよび誤り訂正チェックビッ トを受信するとともに、 前記第 2の時間 に受信周波数を前記第 2の基地局の送信周波数に切り替えて前記ユーザデ —タおよび誤り訂正チェックビッ トを受信し、 前記第 1の基地局からの信 号と前記第 2の基地局からの信号とを合成して前記ユーザデータを再生す る手段を具備するようにしてもよい。
第 5に、 本発明によれば、 ユーザデータを誤り訂正符号化したのち 1次 変調して得られる狭帯域変調信号を拡散符号で広帯域信号へ 2次変調して 送信する第 1の基地局と、 前記広帯域信号を狭帯域変調信号へ変換し、 復 調し、 誤り訂正復号して前記ユーザデ一タを再生する移動局とを備えた C D M A移動通信システムにおける移動局であって、
前記移動局の受信機は、
前記第 1の基地局から送信された前記ユーザデータ受信中の第 1の時 間に、 前記ユーザデータを復調する復調部と、
前記誤り訂正チェックビッ ト受信中の第 2の時間に、 前記誤り訂正復号 処理を休止し、 誤り訂正復号化しない前記ユーザデータを出力する誤り訂 正復号部と、
前記第 2の時間に、 受信周波数を、 前記第 1の基地局とは使用周波数の 異なる第 2の基地局の無線周波数に切り替える周波数切換部と、
前記第 2の基地局の受信レベルを監視する受信レベル測定部と を具備することを特徴とする移動局が提供される。
上記移動局において、
前記移動局の受信機は、
受信周波数を、 前記第 1の基地局の送信周波数および前記第 2の基地 局の送信周波数の一方に合わせる受信周波数切換部と、
前記第 1の基地局と前記第 2の基地局との間のハンドオフ期間中、 前 記第 1の時間に前記第 1の基地局からの信号を受信復調するとともに、 前 記第 2の時間に前記第 2の基地局からの信号を受信復調し、 前記第 1の基 地局からの信号と前記第 2の基地局からの信号とを合成してユーザデータ を再生する復調部と
を具備し、
前記移動局の送信機は、
送信周波数を、 前記第 1の基地局の受信周波数および前記第 2の基地 局の受信周波数に合わせる送信周波数切換部と
前記ハンドオフ中には、 ユーザデータを送信すべき第 3の時間に、 ュ 一ザデ一タを前記第 1の基地局の受信周波数で送信するとともに、 誤り訂 正チヱックビッ トを送信すべき第 4の時間に、 前記ユーザデータを前記第 2の基地局の受信周波数で送信する送信手段と、
前記第 1の基地局では、 前記第 3の時間に受信した前記ユーザデータを 復調する過程と、
前記第 2の基地局では、 前記第 4の時間に受信した前記ユーザデー夕を 復調する過程と、
前記第 1の基地局および前記第 2の基地局の上位局では、 それらの復調 信号を合成することによ り前記ユーザデータを再生する過程と
を具備するようにしてもよい。
第 6に、 本発明によれば、 ユーザデータを誤り訂正符号化したのち、 前 記ユーザデ一タおよび誤り訂正チヱックビッ トに多値変調による 1次変調 を行って得た狭帯域変調信号を拡散符号で広帯域信号へ 2次変調して送信 する第 1の基地局と、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号処理して前記ユーザデータを再生する移動局とを備え、 前記 第 1の基地局は、 前記ユーザデータおよび誤り訂正チヱックビッ トを、 前 記多値変調の多値数を大きく して第 1の時間に送信することによって、 送 信を休止する第 2の時間を作る、 C D M A移動システムにおける移動局で あって、 前記移動局の受信機は、
前記移動局が、 前記第 1の基地局とは異なる第 2の基地局からの信号 の受信レベルを監視する受信レベル監視期間中は、 前記第 1の時間に前記 多値変調の多値数を大きくする多値数切換部と、
前記第 1の時間において、 前記ユーザデータおよび誤り訂正チェック ビッ トを復調し、 誤り訂正復号処理して、 前記ユーザデータを再生する手 段と、
前記受信機の受信周波数を、 前記第 1の基地局の送信周波数および前 記第 2の基地局の送信周波数の一方に合わせる受信周波数切換部と、
前記第 2の時間において、 前記第 2の基地局の受信レベルを監視する 受信レベル測定部と
を具備することを特徴とする移動局が提供される。
上記移動局において、 前記移動局の受信機の受信周波数切換部は、 前記 第 1の基地局と前記第 2の基地局との間のハンドオフ期間中は、 受信周波 数を、 前記第 1の時間には前記第 1の基地局の送信周波数に切り換え、 前 記第 2の時間には前記第 2の基地局の送信周波数に切り換え、 前記再生す る手段は、 前記第 1の基地局からの信号と前記第 2の基地局からの信号と を合成して前記ユーザデータを再生するようにしてもよい。
本発明によれば、 C D M A移動通信において、 移動局は異なる無線周波 数を用いる基地局からの信号レベルを測定する空き時間を作ることができ るので、 移動局はその時間に基地局を監視することができる。
また、 C D M A移動通信において、 異なる無線周波数を用いる基地局間 のハンドオフにおいて、 基地局と移動局のハンドオフ期間に、 両基地局の 信号を受信でき、 かつ両基地局に同一送信データを送信することができる ので、 ハンドオフ中の通信に瞬断のないようにできる。 図面の簡単な説明 図 1 Aおよび 1 Bは、 それぞれ、 本発明による CDMA移動通信システ ムの第 1実施例の基地局の送信機および移動局の受信機を示すプロック図 め 0
図 2は、 第 1実施例における、 移動局での受信レベル測定のタイ ミング チャー トである。
図 3 Aおよび 3 Bは、 それぞれ、 本発明による CDMA移動通信システ ムの第 2実施例の基地局の送信機およぴ移動局の受信機を示すプロック図 である。
図 4は、 第 2実施例における、 移動局での受信レベル測定のタイミング チャートである。
図 5は、 本発明による CDMA移動通信システムの第 3—第 5実施例に おいて、 ハン ドオフを行う ときのシステム構成を説明するプロック図であ o
図 6は、 本発明による CDMA移動通信システムの第 3実施例の移動局 の送信機を示すプロック図である。
図 7は、 第 3実施例におけるハンドオフ中の基地局の動作を示すタイミ ングチャートである。
図 8は、 第 3実施例におけるハンドオフ中の移動局の動作を示すタイミ ングチャー トである。
図 9は、 本発明による C DMA移動通信システムの第 4実施例の移動局 の送信機を示すプロック図である。
図 1 0は、 第 4実施例におけるハンドオフ中の基地局の動作を示すタイ ミングチャートである。
図 1 1は、 本発明による C D M A移動通信システムの第 5実施例におけ るハンドオフ中の基地局の動作を示すタイミングチャートである。
図 1 2は、 本発明による C D M A移動通信システムの第 6実施例におけ るハンドオフ中の移動局の動作を示すタイミングチヤ一トである。 発明を実施するための最良の形態 以下、 図面を参照して、 本発明の実施例を説明する。
第 1実施例
図 1 Aおよび 1 Bは、 本発明による C D M A移動通信システムの第 1実 施例の構成を示すブロック図である。 図 1 Aは基地局の送信機の構成、 図 1 Bは移動局の受信機の構成を示す。 図 2は、 本発明に使用されるフレー ム構成および受信タイミングを示す。
図 1 Aにおいて、 1 0 1は、 入力されたデータをフレーム化するフレー ム構成部、 1 0 2はフレーム構成されたデータを誤り訂正符号化する誤り 訂正符号化部、 1 0 3は誤り訂正符号化部 1 0 2の出力を位相変調する 1 次変調部である。 1 0 5は、 1次変調された信号に対して、 拡散系列発生 器 1 0 4で生成した拡散符号で拡散する 2次変調部である。 1 0 6は拡散 された信号を送信周波数に変換する周波数変換部である。 1 0 7は電力増 幅を行う送信電力増幅部である。 1 0 9は、 上述した各部を制御する主制 御部である。
図 1 Bにおいて、 1 5 1は受信信号をベースバンドに変換する周波数変 換部であり、 1 5 2はこのベ一スパンド信号を拡散系列発生器 1 5 3の発 生した拡散符号で逆拡散する相関器である。 逆拡散された信号は、 復調部 1 5 4で復調され、 符号判別部 1 5 7でもとの信号に戻る。 1 5 8は誤り 訂正復号部で、 戻された信号は誤り訂正される。 1 5 9は速度変換部で、 元の符号速度に変換されて完全にもとの信号にもどる。 1 5 5は受信レべ ル測定部、 1 5 6は主制御部、 1 6 0は副制御部である。 主制御部 1 5 6 は上述した受信機各部を制御する。 主制御部 1 5 6には、 誤り訂正復号部 1 5 8から供給されたフレームデータから抽出された制御情報が入力され る。 副制御部 1 6 0は、 主制御部 1 5 6によって制御される。
副制御部 1 6 0は、 周波数切換部 1 6 2、 拡散符号切換部 1 6 4、 イネ 一ブル信号発生部 1 6 6およびレベル測定制御部 1 6 8を有し、 主制御部 1 5 6からの制御情報に基づいて、 受信周波数の切り換え、 拡散符号の切 り換え、 誤り訂正復号の実行 休止および受信レベル測定のタイミ ングを 制御する。
図 1 Aに示す基地局の送信部の動作を説明する。 基地局におけるユーザ データ系列は、 まず、 フレーム構成部 1 0 1であらかじめ定めた 1 フレー ム時間 (T f ) 毎のデータにまとめられる。 1フレーム分の送信データは、 誤り訂正符号化部 1 0 2で誤り訂正符号化され、 送信データ系列と誤り訂 正チェックビッ ト系列が図 2に示すように配置される。 この信号に対して、 一次変調部 1 0 3で例えば 4値位相変調を行う。 4値位相変調信号はこの あと、 拡散系列発生部 1 0 4からの拡散符号系列により広帯域信号へと 2 次変調部 1 0 5で帯域拡散 (2次変調) される。 広帯域信号は、 周波数変 換部 1 0 6で無線周波数帯へ周波数変換され、 送信電力増幅部 1 0 7で電 力増幅されたのち、 送信される。
図 1 Bに示す移動局の受信機では、 まず、 周波数変換部 1 5 1力 受信 信号をベースバン ド信号に変換する。 つぎに、 相関器 1 5 2で、 拡散符号 系列と受信信号との相関 (逆拡散) をとり、 4値位相変調信号を得る。 こ の拡散符号系列は、 基地局での送信に用いたものと同じ符号であり、 拡散 系列発生器 1 5 3で発生される。 その後、 復調部 1 5 4で復調し、 符号判 定部 1 5 7で符号判定する。 通常の通信時 (通常モード) においては、 判 定データを誤り訂正復号部 1 5 8で誤り訂正し、 速度変換部 1 5 9で速度 変換して基地局から送信されたデータを再生する。
一方、 周辺基地局監視モードのときには、 移動局は、 副制御部 1 6 0に より、 図 2 ( A ) に示すように、 フレームのユーザデータ系列部分のみを 受信するようにする。 この制御は、 次のように行われる。 まず、 主制御部 1 5 6は、 受信信号の各フレーム先頭部の制御データからユーザデータの データ長を検出し、 この情報を副制御部 1 6 0に供給する。 この情報に基 づいて、 副制御部 1 6 0のィネーブル信号発生部 1 6 6は、 誤り訂正チェッ クビッ ト期間中の、 誤り訂正復号部 1 5 8による誤り訂正を休止させる。 また、 この期間中、 副制御部 1 6 0のレベル測定制御部 1 6 8は、 受信レ ベル測定部 1 5 5に信号を送り、 受信レベルの測定を指示する。 また、 周 波数切換部 1 6 2は、 周波数変換部 1 5 1 に信号を送り、 受信機の周波数 を周辺基地局の周波数へ切り替えさせる。
図 2 ( B ) は、 このときの受信周波数の切り替えのタイミングを示す。 訂正能力を高めるために符号化率 1 / 2程度の誤り訂正符号を用いている (したがって、 ユーザデータ長とチェックビッ ト長は同程度になる) 。 図 2 ( A ) において、 f oは通信中基地局の無線周波数、 f kは受信レベル測 定をする相手の基地局の無線周波数である。 誤り訂正チェックビッ ト期間 中に、 受信周波数を切換えて、 周波数 i kの周辺基地局の受信レベルを測 定している様子を示している。 こうすれば、 通信を断することなく、 周辺 基地局監視ができる。
このように、 本発明におけるレベル監視期間中においては、 誤り訂正復 号しないことになる。 このため、 基地局では送信データ系列部分の基地局 送信パワーを増加することにより、 信頼性の劣化をある程度救済すること もできる。 第 2実施例
図 3は本癸明の他の実施例を示す。
図 3 Aおよび 3 Bは、 本発明による C D M A移動通信システムの第 2実 施例の構成を示すブロック図である。 図 3 Aは基地局の送信機の構成、 図 3 Bは移動局の受信機の構成を示す。 図 4は、 本発明に使用されるフレー ム構成および受信タイミングを示す。
図 3 Aの基地局の送信機が、 図 1 Aに示す基地局の送信機と異なる点は、 多値レベル制御部 3 0 4を有する点と、 それによつて 1次変調部 3 0 3を 制御し、 例えば 4値位相変調から 1 6値位相変調へと、 多値変調の多値数 を切換可能とした点である。
また、 図 3 Bの移動局の受信機が、 図 1 Bに示す基地局の受信機と異な る点は、 多値レベル制御部 3 5 5を有する点と、 それによつて復調部 3 5 7を制御する点である。
このような構成において、 通常モードにおいては、 基地局は送信する送 信信号を 4値位相変調する。 しかし、 周辺基地局監視モー ドのときには、 例えば 1 6値位相変調する。 前者では 2ビッ トで 4つの変調状態の中のひ とつの変調状態を表すが、 後者では 4ビッ トで 1 6の変調状態の中のひと つを表すことができる。 したがって、 移動局における受信信号のレベル測 定時に送信される 1 6値変調信号は、 図 4 ( A ) に示すように、 フレーム の半分の時間だけ存在し、 残りは変調信号のない空き時間となる。 すなわ ち、 送信に空き時間が発生する。 こうすれば、 移動局では通信を断することなく、 図 4 ( B ) に示すよう に、 空き時間中に受信機の周波数を切り替えて、 周波数 f kの周辺基地局 の受信レベルを測定することができる。
なお、 監視モード期間中は、 多値数を増加することにともなう信頼性の 劣化を救済するために、 基地局送信パワーを増加させることもできる。 第 3実施例
図 1 Aおよび 1 B、 および図 2で説明したレベル監視を行う場合におい て、 同様の装置を用いて通信中に基地局を切り替えるハンドオフを図 5 一図 8を用いて説明する。
ハンドオフを行う場合のシステム構成を図 5に示す。 いま、 移動局 5 0 4は通信中基地局 5 0 2 と通信している。 そして、 測定の結果、 新基地局 5 0 3のほうが計測結果がよく、 新基地局 5 0 3にハンドオフする必要が 生じている。 この場合、 通信中基地局 5 0 2 と新基地局 5 0 3の上位局 5 0 1 によ り制御されて、 ハンドオフを行う。
図 6は、 移動局 5 0 4の送信部の構成を示すブロック図である。 この図 において、 符号 6 0 X ( X = 1 - 8 ) は、 図 1 Aの符号 1 0 Xに対応する。
この送信部が、 図 1 Aに示す基地局の送信部と異なる点は、 副制御部 6 2 0を有している点である。 副制御部 6 2 0は、 送信データ制御部 6 2 2 と、 拡散符号切換部 6 2 4 と、 周波数切換部 6 2 6 とを有しおり、 これら 各部には、 主制御部 6 0 9から制御情報が供給されている。 送信データ制 御部 6 2 2は、 誤り訂正符号化部 6 0 2に信号を送り、 図 8 ( A ) に示す ように、 1 フレーム期間の間に、 ユーザデータを 2回繰り返して出力する ように制御する。 これら 2回の繰り返しデータのうち、 初めのデータは通 信中基地局 5 0 2に送信され、 次のデータは新基地局 5 0 3に送信される。 これに応じて、 拡散符号切換部 6 2 4は、 拡散系列発生器 6 0 4に信号を 送り、 拡散符号を切り換えるように制御するとともに、 周波数切換部 6 2 6は、 周波数変換部 6 0 6に信号を送り、 その出力周波数を切り換えるよ うに制御する。
なお、 基地局の送信部および移動局の受信部は、 図 1 Aおよび 1 Bに示 す送信部および受信部の構成と同様である。 また、 基地局の受信部は、 図 1 Bに示す移動局の受信部から、 周波数切換部 1 6 2 と拡散符号切換部 1 6 4を除いた構成と同様である。
図 7は、 ハンドオフ期間中の、 通信中基地局 5 0 2 と新基地局 5 0 3の 送信信号を示す。 ハンドオフ期間中は、 上位局 5 0 1の制御の下に、 ハン ドオフを行う 2つの基地局 5 0 2および 5 0 3において、 誤り訂正符号は 生成せず、 ユーザデータ系列部分のみを変調して、 通信中の基地局 5 0 2 と新基地局 5 0 3の両方から送信するようにする。 具体的には、 各基地局 の主制御部 1 0 9 (図 1 A参照) は、 上位局 5 0 1からの指令に基づいて、 誤り訂正符号化部 1 0 2をイネ一ブルまたはディスエーブルして、 図 7の タイミングでユーザデータを送信する。
一方、 移動局 5 0 4では、 フレームの途中で受信周波数を切り替えて、 通信中基地局 5 0 2 と新基地局 5 0 3からの送信信号を受信し復調する。 そして、 切換えたとき受信した 2つの信号は図示しないメモリに蓄積し、 読み出して合成して符号判定する。 このことにより、 切換えたときにおい ても信頼性の高いユーザデ一タを再生することができる。
ハンドオフを行う場合の、 移動局からの送信のタイミングを図 8に示す。 移動局において、 ユーザデータを 1次変調、 2次変調して送信している。 ハンドオフをする場合、 ハンドオフ期間は、 誤り訂正符号は生成せず、 ュ 一ザデータのみをフレームの途中で周波数を切換えて 2回送信している。 その送信信号を図 8 ( A ) に示している。 この場合、 図 8 ( B ) に示すよ うに、 同じユーザデータを送信周波数を切り替えて通信中基地局 5 0 2 と 新基地局 5 0 3へ送信している。 通信中基地局 5 0 2および新基地局 5 0 3では送信信号をそれぞれ受信、 復調し、 符号判定してそのデータを上位 局 5 0 1 に伝送する。 上位局 5 0 1の再生部 5 1 0は、 2つの復調信号の うちのどちらかを選択して、 信頼性の高いユーザデータを再生する。 この とき、 受信レベルの大きい方を選択する方法を用いることができる。 こう することにより、 受信品質を損なうことなく、 瞬断のないハンドオフが可 能となる。 あるいは、 通信中基地局 5 0 2からの復調信号と、 新基地局 5 0 3からの復調信号とを合成して、 移動局からのユーザデータを再生して もよい。 第 4実施例
図 3 A、 3 B、 4 Aおよび 4 Bで説明したレベル監視を行った場合にお いて、 同様の装置を用いて通信中に基地局を切り替えるハンドオフを、 図 5、 図 9および図 1 0を用いて説明する。 図 9は移動局の送信機の構成を 示し、 図 1 0はハンドオフのタイミングを示している。
図 9は、 移動局 5 0 4の送信部の構成を示すプロック図である。 この図 において、 符号 9 0 X ( X = 1一 9 ) は、 図 3 Aの符号 3 0 Xに対応する。
この送信部が、 図 3 Aに示す基地局の送信部と異なる点は、 副制御部 9 2 0を有している点である。 副制御部 9 2 0は、 多値数切換部 9 2 2 と、 拡散符号切換部 9 2 4 と、 周波数切換部 9 2 6 とを有しおり、 これら各部 には、 フレーム構成部 9 0 1から制御情報が供給されている。 多値数切換 部 9 2 2は、 多値レベル制御部 9 0 4に信号を送り、 多値数を制御する。 すなわち、 通常モードでは、 1 フレーム期間にユーザデータと誤り訂正チェッ クビッ トとを出力し、 ノヽンドオフモードでは、 図 1 0に示すように、 1 / 2フレーム期間に、 ユーザデータと誤り訂正チヱックビッ トとを出力する ように、 多値数を制御する。 これに応じて、 拡散符号切換部 9 2 4は、 拡 散系列発生器 9 0 6に信号を送り、 拡散符号を切り換えるように制御する とともに、 周波数切換部 9 2 6は、 周波数変換部 9 0 8に信号を送り、 そ の出力周波数を切り換えるように制御する。
なお、 基地局の送信部および移動局の受信部は、 図 3 Aおよび 3 Bに示 す送信部および受信部の構成と同様である。 また、 基地局の受信部は、 図 3 Bに示す移動局の受信部から、 周波数切換部 3 6 2 と拡散符号切換部 3 6 4を除いた構成と同様である。
さて、 本実施例におけるハンドオフは、 1次変調の多値数を変えて行う。 通信中基地局 5 0 2及び新基地局 5 0 3の双方は、 ハンドオフを行う期間 中、 上位局 5 0 1の制御の下に、 図 1 0に示したように、 1次変調の多値 数を変えて空き時間を作り出す。 ここで、 第 3実施例の場合のハンドオフ とは異なり、 誤り訂正符号を除く必要はなく、 ユーザデータ +誤り訂正チェッ クビッ トを送信する。
移動局 5 0 4では、 上記のハンドオフ期間に受信する局を切換える。 受 信側では、 1フレームの途中で受信周波数を切り替えてハンドオフを行う。 そして、 切換えた 2つの基地局 5 0 2 , 5 0 3の信号を受信復調し、 復調 した信号を図示しないメモリに蓄積し、.読み出して合成する。 そして、 1 フレームの信号として、 誤り訂正復号し、 送信データを再生することがで さ o
一方、 移動局 5 0 4における送信側のハンドオフするとき、 移動局 5 0 4は変調の多値数を変更して送信データを変調し、 送信する周波数を 1フ レームの途中で切換え、 2回送信する。 ハンドオフ対象の双方の基地局 5 0 2, 5 0 3では、 受信した信号を誤り訂正復号し、 送信データを再生し て上位局 5 0 1 に転送する。 上位局 5 0 1では、 通信中の基地局と新基地 局で受信再生したデータのどちらかを選択する。 このとき、 例えば受信レ ベルの大きい方を選択すればよい。 第 5実施例
図 1 A、 1 B、 および 2で説明した測定を用いた場合において、 同様の 装置を用いて通信中に基地局を切り替えるハンドオフの他の方式を図 5お よび図 1 1を用いて説明する。 図 1 1は、 ハンドオフを行うときの基地局 の送信のタイミングを示す。
この場合の、 基地局の送信機おょぴ移動局の受信機は、 図 1 Aおよび 1 Bに示すものと同様である。 また、 移動局の送信機および基地局の受信機 も、 図 1 Aおよび 1 Bに示すものと同様である。
通信中の基地局 5 0 2は、 図 1 1に示すように、 ハンドオフ期間中上位 局 5 0 1の制御により誤り訂正符号は生成せず、 ユーザデータ系列部分の みを変調して送信する。 新基地局 5 0 3からは、 誤り訂正符号化チェック ビッ トのみを変調して送信をする。
移動局 5 0 4では、 フレームの途中で受信周波数を切り替えて、 通信中 の基地局 5 0 2からのユーザデータと新基地局 5 0 3からの誤り訂正符号 化チエツクビッ トを受信する。 そして、 双方の基地局からのデータをメモ リに記憶し、 読み出して合成して、 もとのデータを再生する。 新基地局 5 0 3から誤り訂正符号化チエツクビッ トを受信しているので、 合成した 1 フレームのデータに対して誤りの訂正復号ができ、 より信頼性の高い送信 データを再生することができる。 第 6実施例
図 1 A、 1 B、 および 2で説明した測定を用いた場合において、 同様の 装置を用いて通信中に基地局を切り替えるハンドオフのさらに他の方式を 図 5および図 1 2を用いて説明する。 図 1 2は、 ハンドオフを行うときの 移動局の送信のタイミングを示す。
この場合の、 基地局の送信機および移動局の受信機は、 図 1 Aおよび 1 Bに示すものと同様である。 また、 移動局の送信機および基地局の受信機 は、 図 6に示す送信機および図 1 Bに示す受信機と同様である。
移動局 5 0 4は、 図 1 2に示すように、 ハンドオフ期間中には、 ユーザ データと誤り訂正チヱックビッ 卜とを変調して交互に送信する。 すなわち、 フレーム前半部では、 通信中基地局 5 0 2の受信周波数 ί οでユーザデータ を送信し、 フレーム後半部では、 新基地局 5 0 3の受信周波数 f kで誤り訂 正チヱックビッ トを送信する。
通信中基地局 5 0 2は、 フレーム前半部のユーザデータを受信し、 新基 地局 5 0 3は、 フレーム後半部の誤り訂正符号化チエツクビッ トを受信す る。 そして、 上位局 5 0 1の再生部 5 1 0は、 双方の基地局からのデ一タ をメモリに記憶し、 読み出して合成して、 もとのデータを再生する。 この 場合、 上位局 5 0 1は、 新基地局 5 0 3からの誤り訂正符号化チ ックビッ トを受信しているので、 合成した 1 フレームのデータに対して誤りの訂正 復号ができ、 よ り信頼性の高い送信データを再生することができる。

Claims

請求の範囲
1 . 第 1の基地局は、 ユーザデータを誤り訂正符号化したのち、 前記 ユーザデータおよび誤り訂正チェックビッ トを 1次変調して得られる狭帯 域変調信号を拡散符号で広帯域信号へ 2次変調して送信し、 移動局は、 前 記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号処理して 前記ユーザデータを再生する C D M A移動通信方法において、 前記移動局 は、
前記第 1の基地局から送信された前記ユーザデータ受信中の第 1の時間 に、 前記ユーザデータを復調する過程と、
前記誤り訂正チェックビッ ト受信中の第 2の時間に、 前記誤り訂正復号 処理を休止し、 誤り訂正復号化しない前記ュ一ザデータを出力する過程と、 前記第 2の時間に、 受信周波数を、 前記第 1の基地局とは使用周波数の 異なる第 2の基地局の無線周波数に切り替えて、 前記第 2の基地局の受信 レベルを監視する過程と
を具備することを特徴とする C D M A移動通信方法。
2 . 請求の範囲第 1項に記載の C D M A移動通信方法において、 前記 第 1の基地局と前記第 2の基地局との間のハンドオフ期間中、
前記第 1の基地局では、 前記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間には送信を休止する過程と、
前記第 2の基地局では、 前記第 2の時間に前記ユーザデータを送信し、 前記第 1の時間には送信を休止する過程と、
前記移動局では、 前記第 1の時間に前記第 1の基地局からの信号を受信 復調し、 前記第 2の時間に前記第 2の基地局の周波数に受信機の周波数を 切り替えて、 該第 2の基地局からの信号を受信復調し、 前記第 1の基地局 からの信号と前記第 2の基地局からの信号とを合成してユーザデータを再 生する過程と
を具備することを特徴とする C D M A移動通信方法。
3 . 請求の範囲第 2項に記載の C D M A移動通信方法において、 前記 ハンドオフ期間中、
前記移動局では、 ユーザデータを送信すべき第 3の時間に、 ユーザデー タを前記第 1の基地局に第 1の無線周波数で送信し、 誤り訂正チェックビッ トを送信すべき第 4の時間に、 前記ユーザデータを前記第 2の基地局に第 2の無線周波数で送信する過程と、
前記第 1の基地局では、 前記第 3の時間に受信した前記ユーザデータを 復調する過程と、
前記第 2の基地局では、 前記第 4の時間に受信した前記ユーザデータを 復調する過程と、
前記第 1の基地局および前記第 2の基地局の上位局では、 それらの復調 信号を合成することにより前記ユーザデ一タを再生する過程と
を具備することを特徴とする C D M A移動通信方法。
4 . 請求の範囲第 1項に記載の C D M A移動通信方法において、 前記 第 1の基地局と前記第 2の基地局との間のハンドオフ期間中、
前記第 1の基地局では、 前記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間には送信を休止する過程と、
前記第 2の基地局では、 前記第 2の時間に前記誤り訂正チュックビッ ト を送信し、 前記第 1の時間には送信を休止する過程と、
前記移動局では、 前記第 1の時間に前記第 1の基地局からの信号を受信 復調し、 前記第 2の時間に前記第 2の基地局の無線周波数に受信機の周波 数を切り替えて該第 2の基地局からの信号を受信復調し、 前記第 1の基地 局からの前記ユーザデータと前記第 2の基地局からの前記誤り訂正チヱッ クビッ トとを用いて前記ユーザデータを再生する過程と
を具備することを特徴とする C D M A移動通信方法。
5 . 請求の範囲第 4項に記載の C D M A移動通信方法において、 前記 ハンドオフ期間中、
前記移動局では、 ユーザデータを送信すべき第 3の時間に、 ユーザデ一 タを前記第 1の基地局に第 1の無線周波数で送信し、 誤り訂正チェックビッ トを送信すべき第 4の時間に、 誤り訂正チェックビッ トを前記第 2の基地 局に第 2の無線周波数で送信する過程と、
前記第 1の基地局では、 前記第 3の時間に受信した前記ユーザデータを 復調する過程と、
前記第 2の基地局では、 前記第 4の時間に受信した前記誤り訂正チ ッ クビッ トを復調する過程と、
前記第 1の基地局および前記第 2の基地局の上位局では、 それらの復調 信号を用いて誤り訂正復号を行うことによって、 前記ユーザデータを再生 する過程と
を具備することを特徴とする C D M A移動通信方法。
6 . 第 1の基地局は、 ユーザデータを誤り訂正符号化したのち、 前記 ユーザデータおよび誤り訂正チヱックビッ トに多値変調による 1次変調を 行つて得た狭帯域変調信号を拡散符号で広帯域信号へ 2次変調して送信し、 移動局は、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正 復号処理して前記ユーザデータを再生する C D MA移動通信方法において、 前記移動局が、 前記第 1の基地局とは異なる第 2の基地局からの信号の受 信レベルを監視する受信レベル監視期間中は、
前記第 1の基地局では、 前記ユーザデータおよび誤り訂正チヱックビッ トを、 前記多値変調の多値数を大きく して第 1の時間に送信することによつ て、 送信を休止する第 2の時間を作る過程と、
前記移動局では、 前記第 1の時間に前記多値変調の多値数を大き く して 受信信号を復調し、 誤り訂正復号処理して、 前記ユーザデータを再生する とともに、 前記第 2の時間において、 受信周波数を前記第 2の基地局の無 線周波数に切り替えて、 該第 2の基地局の受信レベルを監視する過程と を具備することを特徴とする C D M A移動通信方法。
7 . 請求の範囲第 6項に記載の C D M A移動通信方法において、 前記 第 1の基地局と、 前記第 2の基地局との間のハンドオフ期間中は、
前記第 1の基地局では、 前記第 1の時間に前記ユーザデータおよびその 誤り訂正チェックビッ トを送信する過程と、
前記第 2の基地局では、 前記第 2の時間に前記ユーザデータおよぴその 誤り訂正チ ックビッ トを送信する過程と、
前記移動局では、 前記第 1の時間に前記第 1の基地局からの前記ユーザ データおよび誤り訂正チェックビッ トを受信するとともに、 前記第 2の時 間に受信周波数を前記第 2の基地局の無線周波数に切り替えて前記ユーザ データおよび誤り訂正チェックビッ トを受信し、 前記第 1の基地局からの 信号と前記第 2の基地局からの信号とを合成して前記ユーザデータを再生 する過程と
を具備することを特徴とする C D M A移動通信方法。
8 . ユーザデータを誤り訂正符号化したのち、 前記ユーザデータおよ び誤り訂正チェックビッ トを 1次変調して得られる狭帯域変調信号を拡散 符号で広帯域信号へ 2次変調して送信する第 1の基地局と、 前記広帯域信 号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号処理して前記ユーザ データを再生する移動局とを備えた C D M A移動通信システムにおいて、 前記移動局は、
前記第 1の基地局から送信された前記ユーザデータ受信中の第 1の時間 に、 前記ユーザデータを復調する復調部と、
前記誤り訂正チェックビッ ト受信中の第 2の時間に、 前記誤り訂正復号 処理を休止し、 誤り訂正復号化しない前記ユーザデータを出力する誤り訂 正復号部と、
前記第 2の時間に、 受信周波数を、 前記第 1の基地局とは使用周波数の 異なる第 2の基地局の無線周波数に切り替える周波数切換手段と、
前記第 2の基地局からの信号の受信レベルを監視する受信レベル測定部 と
を具備することを特徴とする C D MA移動通信システム。
9 . 請求の範囲第 8項に記載の C D M A移動通信システムにおいて、 前記第 1の基地局と前記第 2の基地局との間のハンドオフを指令する上位 を備; L、
前記第 1の基地局は、 前記上位局からのハン ドオフ指令に基づいて、 前 記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間には送信を休 止させる第 1の制御手段を具備し、
前記第 2の基地局は、 前記ハンドオフ指令に基づいて、 前記第 2の時間 に前記ユーザデータを送信し、 前記第 1の時間には送信を休止させる第 2 の制御手段を具備し、
前記移動局は、 受信機の周波数を前記第 1の基地局の送信周波数および 前記第 2の送信周波数の一方に合わせる受信周波数切換手段と、 前記第 1 の時間に前記第 1の基地局からの信号を受信復調するとともに、 前記第 2 の時間に前記第 2の基地局からの信号を受信復調し、 前記第 1の基地局か らの信号と前記第 2の基地局からの信号とを合成してユーザデータを再生 する復調部とを具備することを特徴とする C D M A移動通信システム。
1 0 . 請求の範囲第 9項に記載の C D M A移動通信システムにおいて、 前記移動局は、 送信機の送信周波数を前記第 1の基地局の受信周波数お よび前記第 2の基地局の受信周波数の一方に切り換える送信周波数切換手 段と、 ハンドオフ期間中、 ユーザデータを送信すべき第 3の時間に、 ユー ザデータを前記第 1の基地局の受信周波数で送信し、 誤り訂正チェックビッ トを送信すべき第 4の時間に、 前記ユーザデータを前記第 2の基地局の受 信周波数で送信する送信手段を具備し、
前記第 1の基地局は、 前記第 3の時間に受信した前記ユーザデータを復 調する第 1の復調部を具備し、
前記第 2の基地局は、 前記第 4の時間に受信した前記ユーザデータを復 調する第 2の復調部を具備し、
前記上位局では、 前記各復調部で復調した復調信号を合成することによ り前記ユーザデ一タを再生する手段を具備することを特徴とする C D M A 移動通信システム。
1 1 . 請求の範囲第 8項に記載の C D M A移動通信システムにおいて、 前記第 1の基地局と前記第 2の基地局との間のハンドオフを指令する上位 局を備え、 前記第 1の基地局は、 前記上位局からのハンドオフ指令に基 づいて、 前記第 1の時間に前記ユーザデータを送信し、 前記第 2の時間に は送信を休止させる第 1 の制御手段を具備し、
前記第 2の基地局は、 前記ハン ドオフ指令に基づいて、 前記第 2の時間 に前記誤り訂正チェックビッ トを送信し、 前記第 1の時間には送信を休止 させる第 2の制御手段を具備し、
前記移動局は、 受信機の周波数を前記第 1の基地局の送信周波数および 前記第 2の送信周波数の一方に合わせる受信周波数切換手段と、 前記第 1 の時間に前記第 1の基地局からの信号を受信復調するとともに、 前記第 2 の時間に前記第 2の基地局からの信号を受信復調し、 前記第 1の基地局か らの前記ユーザデータと前記第 2の基地局からの前記誤り訂正チヱックビッ トとを用いて前記ユーザデータを再生する復調部とを具備することを特徴 とする C D M A移動通信システム。
1 2 . 請求の範囲第 1 1項に記載の C D M A移動通信システムにおい て、
前記移動局は、 送信機の送信周波数を前記第 1の基地局の受信周波数お よび前記第 2の基地局の受信周波数の一方に切り換える送信周波数切換手 段と、 前記ハン ドオフ期間中、 ユーザデータを送信すべき第 3の時間に、 ユーザデータを前記第 1の基地局の受信周波数で送信し、 誤り訂正チェッ クビッ トを送信すべき第 4の時間に、 誤り訂正チェックビッ トを前記第 2 の基地局の受信周波数で送信する送信手段とを具備し、 前記第 1の基地局は、 前記第 3の時間に受信した前記ユーザデータを復 調する復調部を具備し、
前記第 2の基地局は、 前記第 4の時間に受信した前記誤り訂正チェック ビッ トを復調する復調部を具備し、
前記上位局は、 前記各復調部から出力された復調信号を用いて誤り訂正 復号を行うことによって、 前記ユーザデータを再生する手段を具備するこ とを特徴とする C D M A移動通信システム。
1 3 . ユーザデータを誤り訂正符号化したのち、 前記ユーザデータお よび誤り訂正チェックビッ トに多値変調による 1次変調を行って得た狭帯 域変調信号を拡散符号で広帯域信号へ 2次変調して送信する第 1の基地局 と、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号処 理して前記ユーザデータを再生する移動局とを備えた C D M A移動通信シ ステムにおいて、
前記第 1の基地局は、 前記ユーザデータおよび誤り訂正チェックビッ ト の、 前記多値変調の多値数を変化させる第 1の多値数制御部と、 前記移動 局が、 前記第 1の基地局とは異なる第 2の基地局からの信号の受信レベル を監視する受信レベル監視期間中は、 前記多値数を大き く して第 1の時間 に送信することによって、 送信を休止する第 2の時間を作る手段とを具備 し、
前記移動局は、 受信機の周波数を前記第 1の基地局の送信周波数および 前記第 2の送信周波数の一方に合わせる受信周波数切換手段と、 前記多値 変調の多値数を変化させる第 2の多値数制御部と、 前記第 1の時間に前記 多値数を大きく して受信信号を復調し、 誤り訂正復号処理して、 前記ユー ザデータを再生する復調部と、 前記第 2の時間において、 受信周波数を前 記第 2の基地局の送信周波数に切り換えて、 該第 2の基地局の受信レベル を監視する受信レベル測定部とを具備することを特徴とする C D M A移動 通 1目システム。
1 4 . 請求の範囲第 1 3項に記載の C D M A移動通信システムにおい て、 前記第 1の基地局と前記第 2の基地局との間のハン ドオフを指令する 上位局を備え、 前記第 1の基地局は、 前記上位局からのハン ドオフ指令 に基づいて、 前記第 1の時間に前記ユーザデータおよびその誤り訂正チェッ クビッ トを送信する第 1の送信手段を具備し、
前記第 2の基地局は、 前記ハン ドオフ指令に基づいて、 前記第 2の時間 に前記ユーザデータおよびその誤り訂正チェックビッ トを送信する第 2の 送信手段を具備し、
前記移動局は、 前記第 1の時間に前記第 1の基地局からの前記ユーザデ —夕および誤り訂正チェックビッ トを受信するとともに、 前記第 2の時間 に受信周波数を前記第 2の基地局の送信周波数に切り替えて前記ユーザデ ータおよび誤り訂正チェックビッ トを受信し、 前記第 1の基地局からの信 号と前記第 2の基地局からの信号とを合成して前記ユーザデータを再生す る手段を具備することを特徴とする C D M A移動通信システム。
1 5 . ユーザデータを誤り訂正符号化したのち 1次変調して得られる狭 帯域変調信号を拡散符号で広帯域信号へ 2次変調して送信する第 1の基地 局と、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号 して前記ユーザデータを再生する移動局とを備えた C D M A移動通信シス テムにおける移動局であって、
前記移動局の受信機は、 前記第 1の基地局から送信された前記ユーザデータ受信中の第 1の時 間に、 前記ユーザデータを復調する復調部と、
前記誤り訂正チェックビッ ト受信中の第 2の時間に、 前記誤り訂正復号 処理を休止し、 誤り訂正復号化しない前記ユーザデータを出力する誤り訂 正復号部と、
前記第 2の時間に、 受信周波数を、 前記第 1の基地局とは使用周波数の 異なる第 2の基地局の無線周波数に切り替える周波数切換部と、
前記第 2の基地局の受信レベルを監視する受信レベル測定部と を具備することを特徴とする移動局。
1 6 . 請求の範囲第 1 5項に記載の移動局において、
前記移動局の受信機は、
受信周波数を、 前記第 1の基地局の送信周波数および前記第 2の基地 局の送信周波数の一方に合わせる受信周波数切換部と、
前記第 1の基地局と前記第 2の基地局との間のハンドオフ期間中、 前 記第 1の時間に前記第 1の基地局からの信号を受信復調するとともに、 前 記第 2の時間に前記第 2の基地局からの信号を受信復調し、 前記第 1 の基 地局からの信号と前記第 2の基地局からの信号とを合成してユーザデータ を再生する復調部と
を具備し、
前記移動局の送信機は、
送信周波数を、 前記第 1の基地局の受信周波数および前記第 2の基地 局の受信周波数に合わせる送信周波数切換部と
前記ハン ドオフ中には、 ユーザデータを送信すべき第 3の時間に、 ュ —ザデータを前記第 1の基地局の受信周波数で送信するとともに、 誤り訂 O 96/38999
正チェックビッ トを送信すべき第 4の時間に、 前記ユーザデータを前記第 2の基地局の受信周波数で送信する送信手段と、
前記第 1の基地局では、 前記第 3の時間に受信した前記ユーザデータを 復調する過程と、
前記第 2の基地局では、 前記第 4の時間に受信した前記ュ一ザデータを 復調する過程と、
前記第 1の基地局および前記第 2の基地局の上位局では、 それらの復調 信号を合成することにより前記ユーザデータを再生する過程と
を具備することを特徴とする移動局。
1 7 . ユーザデータを誤り訂正符号化したのち、 前記ユーザデータお よび誤り訂正チヱックビッ トに多値変調による 1次変調を行って得た狭帯 域変調信号を拡散符号で広帯域信号へ 2次変調して送信する第 1 の基地局 と、 前記広帯域信号を狭帯域変調信号へ変換し、 復調し、 誤り訂正復号処 理して前記ユーザデータを再生する移動局とを備え、 前記第 1 の基地局は、 前記ユーザデータおよび誤り訂正チェックビッ トを、 前記多値変調の多値 数を大き く して第 1の時間に送信することによって、 送信を休止する第 2 の時間を作る、 C D M A移動システムにおける移動局であって、
前記移動局の受信機は、
前記移動局が、 前記第 1の基地局とは異なる第 2の基地局からの信号 の受信レベルを監視する受信レベル監視期間中は、 前記第 1の時間に前記 多値変調の多値数を大きくする多値数切換部と、
前記第 1の時間において、 前記ユーザデータおよび誤り訂正チヱック ビッ トを復調し、 誤り訂正復号処理して、 前記ユーザデータを再生する手 段と、 前記受信機の受信周波数を、 前記第 1の基地局の送信周波数および前 記第 2の基地局の送信周波数の一方に合わせる受信周波数切換部と、
前記第 2の時間において、 前記第 2の基地局の受信レベルを監視する 受信レベル測定部と
を具備することを特徴とする移動局。
1 8 . 請求の範囲第 1 7項に記載の移動局において、 前記移動局の受 信機の受信周波数切換部は、 前記第 1の基地局と前記第 2の基地局との間 のハンドオフ期間中は、 受信周波数を、 前記第 1の時間には前記第 1の基 地局の送信周波数に切り換え、 前記第 2の時間には前記第 2の基地局の送 信周波数に切り換え、 前記再生する手段は、 前記第 1の基地局からの信号 と前記第 2の基地局からの信号とを合成して前記ユーザデータを再生する ことを特徴とする移動局。
PCT/JP1996/001460 1995-05-31 1996-05-30 Procede et systeme de communication mobile a acces multiple par code de repartition (cdma) et equipement de station mobile WO1996038999A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08/776,554 US5953324A (en) 1995-05-31 1996-05-30 CDMA mobile communication method, system and mobile station apparatus
KR1019970700760A KR100220139B1 (ko) 1995-05-31 1996-05-30 코드분할다중접속(cdma) 이동 통신 방법, 시스템 및 이동국장치
DE69629266T DE69629266T2 (de) 1995-05-31 1996-05-30 Verfahren, system und mobilstation zur cdma-mobilkommunikation
EP96920003A EP0773695B1 (en) 1995-05-31 1996-05-30 Cdma mobile communication method, system, and mobile station equipment
CA002195981A CA2195981C (en) 1995-05-31 1996-05-30 Cdma mobile communication method, system and mobile station apparatus
JP8536371A JP2883965B2 (ja) 1995-05-31 1996-05-30 Cdma移動通信方法、システムおよび移動局装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/134437 1995-05-31
JP13443795 1995-05-31

Publications (1)

Publication Number Publication Date
WO1996038999A1 true WO1996038999A1 (fr) 1996-12-05

Family

ID=15128348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001460 WO1996038999A1 (fr) 1995-05-31 1996-05-30 Procede et systeme de communication mobile a acces multiple par code de repartition (cdma) et equipement de station mobile

Country Status (7)

Country Link
US (1) US5953324A (ja)
EP (2) EP1229752B1 (ja)
KR (1) KR100220139B1 (ja)
CN (2) CN1105475C (ja)
CA (1) CA2195981C (ja)
DE (1) DE69629266T2 (ja)
WO (1) WO1996038999A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323403A (ja) * 2005-07-19 2005-11-17 Sony Corp 通信方法
JP2006121450A (ja) * 2004-10-22 2006-05-11 Nec Corp ディジタル信号送受信システム、並びにそれに用いるディジタル信号送信装置及びディジタル信号受信装置
JP2011142656A (ja) * 1998-05-07 2011-07-21 Qualcomm Inc 無線通信システムのハード・ハンドオフサーチと短いメッセージ送信を調整するための方法と装置
US8170558B2 (en) 1998-02-13 2012-05-01 Qualcomm Incorporated Method and system for performing a handoff in a wireless communication system, such as a hard handoff
US8199716B2 (en) 1999-08-11 2012-06-12 Qualcomm Incorporated Method and system for performing handoff in wireless communication systems
US8964692B2 (en) 2008-11-10 2015-02-24 Qualcomm Incorporated Spectrum sensing of bluetooth using a sequence of energy detection measurements

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336147A (ja) * 1997-06-03 1998-12-18 Oki Electric Ind Co Ltd Cdma送受信装置および送信レート可変方法
JP5160703B2 (ja) * 1998-05-07 2013-03-13 クゥアルコム・インコーポレイテッド 無線通信システムのハードハンドオフサーチと短いメッセージ送信を調整するための方法と装置
GB2337413A (en) * 1998-05-15 1999-11-17 Nokia Mobile Phones Ltd alternative Channel Measurement in a Radio Communication system
US20030194033A1 (en) 1998-05-21 2003-10-16 Tiedemann Edward G. Method and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US7596378B1 (en) * 1999-09-30 2009-09-29 Qualcomm Incorporated Idle mode handling in a hybrid GSM/CDMA network
US6597922B1 (en) 1999-05-14 2003-07-22 Qualcomm Incorporated Method and apparatus for efficient candidate frequency search while initiating a handoff in a code division multiple access communication system
EP1058473A1 (en) * 1999-05-26 2000-12-06 Motorola, Inc. Group handover in a cellular communications network
JP3445186B2 (ja) 1999-07-08 2003-09-08 松下電器産業株式会社 Cdma受信機
US6732302B1 (en) 1999-09-30 2004-05-04 Telefonaktiebolaget Lm Ericcson (Publ) Blind rate detection in a multiplexed transmission system
KR100308848B1 (ko) * 1999-10-22 2001-11-02 김대기 광대역 코드 분할 다중 접속 시스템에서 협대역 코드 분할 다중 접속 시스템으로의 핸드 오프 방법
US7197768B2 (en) * 2001-07-09 2007-03-27 Advanced Micro Devices, Inc. Software modem for communicating data using encrypted data and unencrypted control codes
EP1421802B1 (en) * 2001-08-14 2013-02-13 QUALCOMM Incorporated Method and apparatus for wireless network connectivity
EP2512185B1 (en) * 2003-09-04 2016-02-10 Fujitsu Limited Communication system
DE102004022147A1 (de) * 2004-05-05 2005-12-01 Siemens Ag Verfahren zum Durchführen von Messungen durch eine Mobilstation eines Funkkommunikationssystems sowie entsprechende mobile Station und Einheit für ein Funkkommunikationssystem
JP2005347846A (ja) * 2004-05-31 2005-12-15 Kyocera Corp 基地局装置及び基地局装置制御方法
JP4929590B2 (ja) * 2004-12-17 2012-05-09 富士通株式会社 移動局および移動局の通信方法
JP4771835B2 (ja) * 2006-03-06 2011-09-14 株式会社リコー トナー及び画像形成方法
US8401479B2 (en) * 2008-08-08 2013-03-19 Motorola Mobility Llc Managing interference from femtocells
GB2494644B (en) * 2011-09-13 2016-08-17 Skype Transmitting data over mulitiple networks
US9226208B2 (en) * 2012-04-06 2015-12-29 Apple Inc. Apparatus and methods for resolving incomplete message content in networks
CN103246261A (zh) * 2013-04-22 2013-08-14 深圳华中数控有限公司 一种使用Android终端控制机械设备的系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326652A (ja) * 1993-05-12 1994-11-25 N T T Idou Tsuushinmou Kk スペクトラム拡散移動通信の通信中チャネル切替方法
WO1994029981A1 (en) * 1993-06-14 1994-12-22 Telefonaktiebolaget Lm Ericsson Non-continuous transmission for seamless handover in ds-cdma systems
WO1995001017A1 (en) * 1993-06-25 1995-01-05 Motorola Inc. Signal processing in communication systems
JPH07107007A (ja) * 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd 拡散符号生成方式

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101501A (en) * 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
JPH05268128A (ja) * 1992-03-18 1993-10-15 Kokusai Denshin Denwa Co Ltd <Kdd> Cdma通信方式
US5568472A (en) * 1992-11-04 1996-10-22 Ntt Mobile Communications Network Inc. Code division multiple access mobile communication system
US5488629A (en) * 1993-02-17 1996-01-30 Matsushita Electric Industrial Co., Ltd. Signal processing circuit for spread spectrum communications
JP2802870B2 (ja) * 1993-03-10 1998-09-24 エヌ・ティ・ティ移動通信網株式会社 符号分割多重移動通信機及び符号分割多重移動通信のセル選択方法
DE69423810T2 (de) * 1993-05-12 2000-10-12 Nippon Telegraph & Telephone Verfahren zum Weiterreichen und Mobilstation für Spreizspektrum Kommunikationssystem
US5768306A (en) * 1993-09-06 1998-06-16 Ntt Mobile Communications Network, Inc. Sliding correlator used in CDMA systems to establish initial synchronization
DE69536131D1 (de) * 1994-02-09 2011-02-03 Ntt Docomo Inc Verfahren und System für CDMA mobile Kommunikation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326652A (ja) * 1993-05-12 1994-11-25 N T T Idou Tsuushinmou Kk スペクトラム拡散移動通信の通信中チャネル切替方法
WO1994029981A1 (en) * 1993-06-14 1994-12-22 Telefonaktiebolaget Lm Ericsson Non-continuous transmission for seamless handover in ds-cdma systems
WO1995001017A1 (en) * 1993-06-25 1995-01-05 Motorola Inc. Signal processing in communication systems
JPH07107007A (ja) * 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd 拡散符号生成方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0773695A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170558B2 (en) 1998-02-13 2012-05-01 Qualcomm Incorporated Method and system for performing a handoff in a wireless communication system, such as a hard handoff
JP2011142656A (ja) * 1998-05-07 2011-07-21 Qualcomm Inc 無線通信システムのハード・ハンドオフサーチと短いメッセージ送信を調整するための方法と装置
JP2011259471A (ja) * 1998-05-07 2011-12-22 Qualcomm Incorporated 無線通信システムのハードハンドオフサーチと短いメッセージ送信を調整するための方法と装置
JP2012235479A (ja) * 1998-05-07 2012-11-29 Qualcomm Inc 無線通信システムのハード・ハンドオフサーチと短いメッセージ送信を調整するための方法と装置
US8199716B2 (en) 1999-08-11 2012-06-12 Qualcomm Incorporated Method and system for performing handoff in wireless communication systems
JP2006121450A (ja) * 2004-10-22 2006-05-11 Nec Corp ディジタル信号送受信システム、並びにそれに用いるディジタル信号送信装置及びディジタル信号受信装置
JP4691953B2 (ja) * 2004-10-22 2011-06-01 日本電気株式会社 ディジタル信号送受信システム、並びにそれに用いるディジタル信号送信装置及びディジタル信号受信装置
JP2005323403A (ja) * 2005-07-19 2005-11-17 Sony Corp 通信方法
US8964692B2 (en) 2008-11-10 2015-02-24 Qualcomm Incorporated Spectrum sensing of bluetooth using a sequence of energy detection measurements

Also Published As

Publication number Publication date
KR100220139B1 (ko) 1999-09-01
CN1337796A (zh) 2002-02-27
EP1229752B1 (en) 2004-10-13
CA2195981A1 (en) 1996-12-05
EP1229752A1 (en) 2002-08-07
KR970705321A (ko) 1997-09-06
DE69629266T2 (de) 2004-04-22
CN1105475C (zh) 2003-04-09
US5953324A (en) 1999-09-14
DE69629266D1 (de) 2003-09-04
CN1155965A (zh) 1997-07-30
EP0773695B1 (en) 2003-07-30
CA2195981C (en) 2000-09-19
CN1170386C (zh) 2004-10-06
EP0773695A4 (en) 1999-04-07
EP0773695A1 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
WO1996038999A1 (fr) Procede et systeme de communication mobile a acces multiple par code de repartition (cdma) et equipement de station mobile
KR100330682B1 (ko) Ds-cdma시스템에서중단없는핸드오버를위한불연속전송
JP4668850B2 (ja) 無線基地局装置
KR100276698B1 (ko) 코드분할다중접속셀룰러이동통신시스템에서소프트핸드오프시의순방향링크전력제어방법및장치
KR100445019B1 (ko) 스펙트럼 확산 통신 장치 및 스펙트럼 확산 통신 방법
JP4669841B2 (ja) 時分割複信の符号分割多重接続(tdd−cdma)ネットワークにおけるソフトハンドオーバおよびソフターハンドオーバの方法
JP3404402B2 (ja) 符号率を増加した圧縮様式のds―cdma方式ならびにその方法
RU2261536C2 (ru) Способ и система для выполнения передачи обслуживания, такой, как жесткая передача обслуживания, в системе радиосвязи
AU724048B2 (en) Multi-code compressed mode DS-CDMA systems and methods
CA2356076C (en) Soft handoff in a cdma cellular telephone system
KR100479311B1 (ko) 이동통신 시스템, 그 이동통신 시스템에 사용되는 전송모드 전환 방법, 및 그 이동통신 시스템에 기록되는동일한 방법의 프로그램을 구비하는 기록 매체
KR100325050B1 (ko) 이동 전화 시스템 및 사이트 다이버시티 수신 방법
JP2005522119A (ja) Mimoターミナルでの周波数間測定
JP2005512430A (ja) セルラシステムにおける最適なスペクトラム利用のための移動端末
JP2005065302A (ja) 無線通信システムの機能強化されたコール回復
WO2000051385A1 (en) A cdma communication system with soft handover
JP2954086B2 (ja) 移動通信システム
JP2007513544A (ja) ソフト・ハンドオーバーのための方法およびシステム
EP0959581A2 (en) Radio transmission system and transmission method with unequal error protection
JP3216809B2 (ja) Cdma移動端末装置のハンドオーバ制御方法及びその制御プログラムを記録した記録媒体
WO2000060884A1 (fr) Dispositif de terminal de communication et dispositif de station de base
JP2883965B2 (ja) Cdma移動通信方法、システムおよび移動局装置
WO1998018273A1 (fr) Systeme de communication radio
JP2003264479A (ja) 可変通信システム
JP3230803B2 (ja) 移動体通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190593.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

WWE Wipo information: entry into national phase

Ref document number: 2195981

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1996920003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970700760

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08776554

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996920003

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970700760

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970700760

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996920003

Country of ref document: EP