WO1996038709A1 - Procede et appareil d'observation d'objet - Google Patents

Procede et appareil d'observation d'objet Download PDF

Info

Publication number
WO1996038709A1
WO1996038709A1 PCT/JP1996/001437 JP9601437W WO9638709A1 WO 1996038709 A1 WO1996038709 A1 WO 1996038709A1 JP 9601437 W JP9601437 W JP 9601437W WO 9638709 A1 WO9638709 A1 WO 9638709A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
observation target
reflected
observation
incident
Prior art date
Application number
PCT/JP1996/001437
Other languages
English (en)
French (fr)
Inventor
Tamio Miyake
Tomoya Ishida
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to KR1019970700764A priority Critical patent/KR970705006A/ko
Priority to EP96919983A priority patent/EP0773426A1/en
Publication of WO1996038709A1 publication Critical patent/WO1996038709A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0817Monitoring of soldering processes

Definitions

  • the present invention relates to an object observation apparatus and method for observing an object including a portion having a specular reflection characteristic such as a solder portion of a component mounting board, or for observing and judging the quality of the object.
  • This object observation device emits three colors of red, blue, and blue light from different elevation angles to the object to be observed, including the part with specular reflection characteristics, and observes the object with a color image obtained by imaging them. It is used to observe the position, and is composed of light emitting means and light receiving means.
  • the light emitting means has a total of three annular fluorescent light sources of a red light source, a green light source, and a blue light source, and emits these three colors of light from different elevation angles to a site to be observed.
  • the luminous intensity of these three-color light sources is adjusted in advance so as to have a wavelength-emission energy distribution with respect to wavelength at which complete white light can be obtained when colors are mixed at a position where an object is placed.
  • the light receiving means is a color television camera, such as a CCD camera, and obtains a color image signal by capturing a reflected light image from the observation target site.
  • FIG. 18 is a block diagram of the light projecting means.
  • the annular light sources of the red light source 14 2, the blue light source 1 4 3, and the blue light source 1 4 4 of the light section 1 4 1 are aligned so that their centers coincide with the light receiving center axis 1 4 6 of the light receiving section 1 4 It is installed on a concentric circle and has a ring radius r! , R a, Chigae a ra, height hi from the reference plane 1 4 7, h 2, by the this made different to h 3, elevation from point A and receiving central shaft 1 4 6 and the reference plane 1 4 7 intersects But different angles 0 !, ⁇ 2.
  • ⁇ 3 (where 0!>>2> ⁇ 3
  • the curved surface element reflects each colored light incident from an oblique direction correctly in a direction corresponding to the angle of incidence.
  • a curved surface element whose reflection direction coincides with the direction of the light-receiving central axis 144 of the light-receiving unit (perpendicular to the reference plane) is colored with the corresponding colored light source color in the color image, so that it is close to the flat part.
  • the curved surface element is colored red
  • the steeply curved surface element is colored blue
  • the curved surface element with an intermediate gradient is colored green. That is, the portion having the specular reflection characteristic is separated and colored into the respective colored light source colors according to the three-dimensional curved surface shape.
  • the color image has a low-wavelength luminous energy distribution that enables complete white light to be obtained when mixed, the color image
  • the portions having diffuse reflection characteristics are colored in their respective colors.
  • some of the apparatuses also have an inspection executing means for performing an inspection for judging the quality of an observation target part such as a solder part based on the color image obtained in this way.
  • each colored light source has variations in wavelength characteristics and luminous intensity, it is necessary to adjust the luminous intensity of each colored light source so that white light can be obtained when mixing colors in individual devices. There was an inconvenience of taking.
  • the present invention has been made to solve such a conventional problem, and has as its object to improve maintainability including adjustment work and reduce costs. It is intended to improve the accuracy of measurement or inspection.
  • the object observation device of the present invention includes: a light projecting means for projecting light through a predetermined optical path to an observation target portion of an object; and a retroreflecting means for reflecting light reflected by the observation target portion and incident in an incident direction. And a light receiving means for receiving the light reflected by the observation target portion and incident through a predetermined optical path. Therefore, according to the object observation device of the present invention, the light is projected from above onto the observation target portion by the light projection device, and the reflected light from the observation target portion is reflected in the incident direction by the recursive reflection device, and the light is received.
  • the light source can be a single light source by receiving the light reflected from the site to be observed through the retroreflective means by means of the light source, so that the cost is reduced, the maintenance is improved, and the light source is improved. Adjustment work can be simplified, and observation accuracy can be improved.
  • the retroreflective means is arranged in a ring with respect to the center of the observation site.
  • the retroreflective means is arranged in a dome shape with respect to the center of the observation target site.
  • a plurality of retroreflection means are provided, each of which is arranged at a different elevation angle from the center of the observation target site.
  • a plurality of retroreflection means are provided in a ring shape with respect to the center of the observation target site, and are arranged at positions at different elevation angles from the center of the observation target site.
  • the retroreflecting means reflects a specific wavelength of light reflected from the observation target site.
  • the specific wavelength reflected by the retroreflective means according to the elevation angle from the center of the observation target portion changes continuously.
  • the plurality of retroreflectors reflect different specific wavelengths.
  • the light projecting means reflects the light emitted from the light source and the light source, projects the light to the observation target site, and transmits the light reflected from the observation target site to enter the light receiving device. Having evening.
  • the light emitting means is provided near the light receiving axis of the light receiving means, and has a light source for emitting light to a site to be observed.
  • the light source of the light emitting means is an annular light source centered on the light receiving axis of the light receiving means.
  • an object observation device includes: a light projecting unit configured to project white light from a white light source through a predetermined optical path to an observation target portion of an object; and an elevation angle from a center of the observation target portion.
  • a plurality of retroreflecting means that are arranged at different positions in different directions and reflect at least two color wavelength components of white light reflected and incident on the observation target site in the incident direction, respectively.
  • a light receiving means for interleaving and receiving at least two color wavelength components reflected by the observation target portion and incident via a predetermined optical path.
  • an object observation device includes: a light projecting unit that projects white light from a white light source through a predetermined optical path to an object to be observed of an object; and an elevation from the center of the object to be observed.
  • a plurality of retroreflecting means for reflecting the red wavelength component, the blue wavelength component or the blue wavelength component of the white light reflected and incident at the observation target site in the annular direction at different positions, respectively, in the incident direction; and , Retroreflective means and observation target site Light receiving means for identifying and receiving red light, green light and blue light, respectively, which are reflected by the light and entered through a predetermined optical path.
  • the object observation device includes: a light projecting unit configured to project white light from a white light source through a predetermined optical path onto an object observation target portion; A retro-reflective means in which a specific wavelength of white color, which is arranged in a dome shape and reflected by the observation target site, is reflected in the incident direction, and the specific wavelength continuously changes depending on the elevation angle from the center of the observation target site. And a light receiving means for receiving light of a specific wavelength reflected by the observation target portion and incident through a predetermined optical path.
  • an object observation device comprises: a light projecting means for sequentially projecting light of at least two color wavelength components to a site to be observed of an object via a predetermined optical path at predetermined time intervals. And at least two retroreflecting means that are arranged at different elevation angles from the center of the observation target site and reflect at least two color wavelength components reflected and incident on the observation target site, respectively, in the incident direction. And a light receiving means having a two-dimensional light receiving element for sequentially receiving at least two color wavelength components which are reflected by a site to be observed and are incident through a predetermined optical path.
  • the object observation device includes a red light source, a green light source, and a blue light source arranged on a light projecting axis of a white light source.
  • a light projecting means for sequentially projecting the red, green, and blue light transmitted through each color filter through a predetermined optical path to an object observation target site by changing the color filter at predetermined time intervals; and Multiple recurrences that are arranged at different elevation angles from the center of the part and reflect the red, green, or blue wavelength components of each color light reflected and incident on the observation target part in the incident direction.
  • an object observation device includes: a light projecting unit configured to project white light from a white light source through a predetermined optical path to an object to be observed of an object; A plurality of retroreflecting means for reflecting the red, green, or blue wavelength components of the incident white light reflected at the observation site at different angles, respectively, in an incident direction; Red, green, and blue color filters are placed at a predetermined time interval on the light receiving axis of a monochromatic television camera that receives the wavelength components of each color that are reflected by the reflective means and the observation target site and are incident via a predetermined optical path.
  • Light receiving means for sequentially receiving the red light, the green light or the blue light transmitted through each color filter by changing in the above.
  • an object observation device changes red light, green light, and blue light at predetermined time intervals.
  • Light emitting means for sequentially projecting each color light from the three-color light source through a predetermined optical path to the observation target part of the object, and the elevation angles from the center of the observation target part are arranged at different positions and reflected at the observation target part
  • a plurality of retroreflecting means for respectively reflecting the red wavelength component, the blue wavelength component or the blue wavelength component of each color light incident in the incident direction; and the retroreflecting means and the predetermined light path reflected by the observation target portion and reflected by the predetermined path.
  • a light receiving means having a monochromatic telecamera for sequentially receiving each color wavelength component incident thereon.
  • an object observation device projects light of at least two color wavelength components simultaneously or at predetermined time intervals via a predetermined optical path to a target observation site of an object.
  • an inspection executing means for detecting a specular reflection portion of the observation target part based on the light receiving data by the light receiving means, and for judging pass / fail of the observation target part based on the detection result.
  • the inspection execution means Detects and identifies the specular reflection part of the observation target based on the light reception data from the light receiving means, and determines the quality of the observation target by reducing the cost of the equipment in the inspection process, improving maintenance, and adjusting The work can be simplified, and the accuracy of the inspection can be improved.
  • an object observation method includes: projecting light from a light projecting unit through a predetermined optical path onto an observation target portion of an object; and reflecting light incident and reflected by the observation target portion. The light is reflected in the incident direction by the retroreflecting means, and the light reflected by the retroreflecting means and the observation target site and incident through a predetermined optical path is received by the light receiving means.
  • the light is projected from above onto the observation target portion by the light projection device, and the reflected light from the observation target portion is reflected in the incident direction by the retroreflective reflection device and is reflected by the light reception device.
  • the light source can be made a single light source by receiving the light reflected from the observation target site via the retroreflecting means, so that the cost is reduced, the maintenance is improved, and the light source is improved.
  • the adjustment work can be simplified, and the accuracy of observation can be improved.
  • the reflected light from the observation target portion is reflected in the incident direction by the retroreflecting means arranged annularly with respect to the center of the observation target portion.
  • a retro-reflective means arranged in a dome shape with respect to the center of the observation target portion be used to prevent reflection from the observation target portion. The emitted light is reflected in the incident direction.
  • the reflected light from the observation target portion is reflected in the incident direction by a plurality of retroreflectors arranged at different elevation angles from the center of the observation target portion.
  • the reflected light from the observation target site is provided by a plurality of retroreflecting means arranged in a circle with respect to the center of the observation target site and at different elevation angles from the center of the observation target site. Is reflected in the incident direction.
  • the specific wavelength component of the reflected light from the observation target site is reflected in the incident direction by a retroreflective means for reflecting a specific wavelength of the reflected light from the observation target site.
  • a wavelength component corresponding to the elevation angle of the reflected light from the observation target portion is incident by the retroreflective means in which the specific wavelength reflected by the elevation angle from the center of the observation target portion continuously changes. Reflect in the direction.
  • the specific wavelength component of the reflected light from the observation target site is reflected in the incident direction by the retroreflective means having partially different specific wavelengths.
  • a method for observing an object includes projecting white light from a light projecting unit having a white light source through a predetermined optical path onto a site to be observed of an object.
  • Red wavelength component, green wavelength component, or blue wavelength component of white light reflected and incident on the observation target site by a plurality of retroreflectors arranged in a ring at different elevation angles Are reflected in the incident direction, respectively, and red light, green light and blue light reflected by the retroreflecting means and the observation target site and incident through a predetermined optical path are received by the light receiving means.
  • an object observation method includes: projecting a white light from a light projecting unit having a white light source through a predetermined optical path onto an observation target portion of an object;
  • the white light reflected from the target area by the dome-shaped retroreflective means and reflected by the dome is reflected in the incident direction at a specific wavelength that varies with the elevation angle from the center of the target area.
  • the light of a specific wavelength reflected by the retroreflecting means and the observation target site and incident via a predetermined optical path is received by the light receiving means.
  • an object observation method includes projecting light of at least two color wavelength components simultaneously or through a predetermined optical path at predetermined time intervals from a light projecting unit to an object to be observed of an object. At least two color wavelength components reflected by the observation target site by at least two retroreflecting means arranged at different elevation angles from the center of the observation target site, respectively, are respectively arranged. At least two color wavelength components, which are reflected in the incident direction, reflected by the retroreflecting means, and reflected by the observation target site and incident via a predetermined optical path, are sequentially received by the light receiving means having the two-dimensional light receiving element.
  • light of at least two color wavelength components is predetermined from a light projecting unit at an observation target portion of an object.
  • I- Light is sequentially projected through a predetermined optical path at a time interval of, and reflected at the observation target site by at least two retroreflection means arranged at different elevation angles from the center of the observation target site and incident.
  • the two-dimensional light-receiving element reflects at least two color wavelength components in the incident direction, and reflects at least two color wavelength components reflected by the retroreflecting means and the observation target site and incident through a predetermined optical path.
  • the light is sequentially received by the light receiving means.
  • the specular reflection portion of the observation target part is detected by the inspection executing means based on the received light data by the light receiving means, and the quality of the observation target part is determined based on the detection result.
  • the inspection execution means detects the specular reflection portion of the observation target part based on the received light data by the light receiving means, and judges the quality of the observation target part. In this way, it is possible to reduce the cost of the device, improve the maintainability, simplify the adjustment work, and improve the accuracy of the inspection.
  • each colored light source for obtaining white light which was conventionally performed becomes unnecessary, the adjustment work of a light source can be simplified. Further, the reflection wavelength of each retroreflector does not need to be a combination of colors capable of obtaining white light when mixed colors as in the conventional example, and can be arbitrarily selected.
  • the light emitted from the light source is reflected on the back of the light source
  • the light source utilization efficiency can be improved about twice.
  • the approximate shape and position of the specular reflection portion need only be known, and if a peripheral color image is not required, the color of the light receiving means can be obtained. Instead, a monochromatic telecamera is used.In place of the retroreflector having wavelength characteristics, a retroreflector that does not have wavelength characteristics and reflects all wavelength components of incident light in the incident direction is used. The cost can be reduced.
  • a dome-shaped retroreflector which reflects a specific wavelength in the incident direction and continuously changes the specific wavelength according to the elevation angle viewed from the observation target site, is used.
  • a two-dimensional shape space is created by arranging a retroreflector that incidents the red wavelength component, green wavelength component, or blue wavelength component of the incident light in the incident direction on the same plane in a flat plate shape and concentric circles.
  • the same effect can be obtained by providing the respective retroreflectors at different elevation angles.
  • retroreflectors that reflect the red, green, or blue wavelength components of the incident light in the incident direction are provided at different elevation angles, and a red filter is provided on the optical path of the white light source in the light emitting means.
  • Blue and blue filters are sequentially inserted at predetermined time intervals, and red, green, and blue lights are sequentially emitted at predetermined time intervals to the observation target site, and each reflected light image
  • the color image signal is received by a monochrome television camera, and the color image signal creation circuit combines the monochrome image signals from the monochrome television camera to create a color image signal. Since it is possible to obtain a color plane image of different positions, cost can be reduced.
  • a three-color light source that emits red light, blue light, and blue light in order at predetermined time intervals instead of the white light source of the light emitting means without using a color filter, and controls the emission colors of the three-color light source Similar effects can be obtained by providing a controller.
  • a single retroreflector is moved in a direction perpendicular to the reference plane without using a plurality of retroreflectors, and a white color is projected from the white light source to the retroreflectors at each height position. The same effect can be obtained by illuminating.
  • FIG. 1 is a configuration diagram of Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory view of a retroreflector having a wavelength characteristic according to the present invention.
  • A is an explanatory view of a retroreflector using a corner cube
  • b is an explanatory view of a retroreflector using a cat's eye
  • C is a front view of the corner cube shown in (a).
  • FIG. 3 is an explanatory diagram showing an example of a color image of a site to be observed according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram when the white light source is arranged above the beam splitter in the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of a retroreflector having a wavelength characteristic using a color filter according to the present invention.
  • A is an explanatory diagram of a retroreflector using a color filter and a corner cube;
  • FIG. 6 is a configuration diagram of a light projecting unit provided with a spherical reflector according to the first embodiment of the present invention.
  • FIG. 7 is a configuration diagram of Embodiment 2 of the present invention.
  • FIG. 8 is a configuration diagram of a projection unit using a non-annular white light source according to the second embodiment of the present invention.
  • FIG. 9 is a configuration diagram of Embodiment 3 of the present invention.
  • FIG. 10 is an explanatory diagram showing an example of a force color image of an observation target site according to Embodiment 3 of the present invention.
  • FIG. 11 is an explanatory diagram showing an example of a monochrome image of an observation target object when a monochrome camera is used in the third embodiment of the present invention.
  • FIG. 12 is a configuration diagram of Embodiment 4 of the present invention.
  • FIG. 13 is a configuration diagram of Embodiment 5 of the present invention.
  • FIG. 14 is a configuration diagram of the light receiving means in the case where a filter plate is provided on the light receiving central axis in the fifth embodiment of the present invention.
  • FIG. 15 is a configuration diagram of the light projecting means when a three-color light source is used in the fifth embodiment of the present invention.
  • FIG. 16 is a block diagram of Embodiment 6 of the present invention.
  • FIG. 17 is a block diagram of Embodiment 7 of the present invention.
  • FIG. 18 is an explanatory diagram showing a configuration diagram of the light projecting means in the conventional object observation device.
  • FIG. 1 is a configuration diagram showing Embodiment 1 of an object observation device according to the present invention.
  • reference numeral 1 denotes a white light source such as an incandescent lamp or a xenon lamp
  • reference numeral 2 denotes a lens for converting white light emitted from the white light source 1 into parallel light.
  • 3 reflects a part of the parallel white light incident from the lens 2 and emits it to the observation target part 12, and is reflected by the observation target part 12 via the retroreflector 4, 5, or 6
  • a beam splitter such as a half mirror that projects part of the light.
  • White light source 1, lens 2 and beam splitter 3 constitute light emitting means I do.
  • Reference numeral 4 denotes an annular red retroreflector that reflects the red wavelength component of white light that is reflected and incident on the observation site 12 in the incident direction, and 5 is white light that is reflected and incident on the observation site 12
  • a blue retroreflector 6 reflects the green wavelength component of light in the incident direction, and 6 is a green retroreflector that reflects the blue wavelength component of white light that is reflected at the observation site 12 and incident in the incident direction. is there.
  • the red retroreflector 4, the green retroreflector 5 and the blue retroreflector 6 have an annular radius or a height from the reference plane 10 or both a circumferential radius and a height from the reference plane 10. Due to the difference, the elevation angles are different from each other when viewed from the observation target part 12 located at the intersection of the reference plane 10 and the light receiving center axis 11 of the color television camera 8.
  • the retroreflectors 4 to 6 are formed by laying out small corner cubes or glass beads that serve as a caterpillar in a plane, and are in principle the same as those added to the guard rails of roads. is there.
  • Fig. 2 is an illustration of a retroreflector.
  • Fig. (A) is for a corner cube
  • Fig. (B) is for a cat's eye.
  • Figure (c) is a front view of the corner cube viewed from the direction of the arrow shown in Figure (a).
  • the inner surface of the corner cube 21 has a specific wavelength reflection layer that transmits only specific wavelength components of incident light. 22 is applied or vapor-deposited, and the corner cube 21 reflects only a specific wavelength component of incident light.
  • the specific wavelength reflection layer 22 is applied or deposited on the hemisphere of the cat's eye 23.
  • the specific wavelength reflection layer 22 transmits only the red wavelength component of the incident light, for example, and absorbs other wavelength components. Therefore, as shown in the figure, the corner cube 21 and the cat's eye 23 reflect the specific wavelength component of the incident light as it is in the incident direction.
  • the corner cube 21 shown in FIG. 2 (a) transmits only a specific wavelength in the specific wavelength reflection layer 22 and absorbs other wavelengths, so that the reflection surface (inner surface) of the corner cube 21 is Although the light transmitted through the specific wavelength reflective layer 22 is reflected, the optical multilayer film that specularly reflects only the specific wavelength and transmits other wavelengths, and the light transmitted through the optical multilayer film,
  • the corner cup 21 may be constituted by a light absorber that absorbs light. This can improve the reflectance over the former. Also, in the cat's eye 23, by coloring the sphere, only the specific wavelength component may be transmitted and other wavelengths may be absorbed.
  • reference numeral 7 denotes a dome-shaped hood to which the red retroreflector 4, the green retroreflector 5, and the blue retroreflector 6 are fixed. It is preferable that the inner surface of the foot '7 has a light absorbing structure such as black paint so as not to reflect light. Red recursive The reflector 4, the green retroreflector 5, the blue retroreflector 6, and the hood 7 constitute a retroreflector.
  • a color television camera that outputs color image signals
  • 9 is a monitor that displays this color image.
  • the color television camera 8 and the monitor 9 constitute light receiving means.
  • the white light emitted from the white light source 1 is collimated by the lens 2, and a part of the light, for example, half of the light is reflected by the beam splitter 3.
  • Light is emitted from above.
  • the white light emitted through the beam splitter 3 is reflected at each curved surface element of the observation target portion 12 in a direction corresponding to the inclination angle of each curved surface element with respect to the reference plane 10.
  • Elevation 0! White light reflected in the direction of the red recursive anti Itay 4, white light reflected in the direction of elevation 0 2 green retroreflector 5, which is reflected in the direction of the elevation angle 0 3
  • the white light respectively reaches the blue retroreflector 6.
  • each of the retroreflectors 4 to 6 reflects only a specific wavelength component in the incident direction, red light is emitted by the red retroreflector 4 and green light is emitted by the green retroreflector 5.
  • the blue retroreflector 6 the blue light is reflected in the incident direction, returns to its original path, and The light is reflected in the direction of the light receiving central axis 11.
  • the reflected red, green, and blue light arrives at the beam splitter 3 through the same optical path as when the light is projected, and a part of the reflected light, for example, half of the light passes through the beam splitter 3 and passes through the beam splitter 3. You will arrive at Televicamera 8.
  • the color television camera 8 takes a color image of the reflected light image including the red light, the green light and the blue light, sends this color image signal to the monitor 9, and displays a color image taken by the monitor 9.
  • the observation target part 12 is a specular reflection part, those corresponding to the elevation angles 0,, 0 2 and 0 3 of the following curved surface element are red, Since it is colored green or blue, the observation target part 12 is colored red, green or blue according to its three-dimensional shape.
  • the observation target part 12 is a diffuse reflection part
  • the surface color of the observation target part 12 is imaged by the power TV camera 8, and the surface color can be observed.
  • Fig. 3 is an explanatory diagram showing an example of a color image when the observation target part 12 is a specular reflection part, where 31 is a part colored red, 32 is a part colored green, 3 3 indicates the portions colored blue. Further, each part of the diffuse reflection part is colored in the color of the respective part in the color image.
  • the first embodiment By using a plurality of retroreflectors that reflect specific wavelengths depending on the incident direction, a single light source can be used, reducing costs and improving maintainability. It can be done. Furthermore, since the adjustment work of each colored light source for obtaining white light is not required, the adjustment work of the light source can be simplified.
  • the white light source 1 and the lens 2 are arranged above the beam splitter 3, and conversely, the color television camera 8 is arranged horizontally with respect to the beam splitter 3. May be.
  • the reflection wavelengths of the retroreflector were set to red, green, and blue. Needless to say, these can be easily changed to other colors. Does not need to be the color combination that results.
  • a medical filter that transmits only a specific wavelength component of the incident light is provided on the front surface of a corner cube 42 on which an all-reflective layer 41 such as silver foil is deposited or coated on the inner surface.
  • a retroreflector for reflecting a specific wavelength may be formed by providing the corner cube 43 and the color filter 43.
  • a color filter 43 is provided on the front surface of a cat's eye 44 having a hemispherical surface on which a total reflection layer 41 of silver foil or the like is deposited or coated.
  • a retroreflector may be constituted by the color filter 43.
  • the use efficiency of the white light source 1 can be improved about twice.
  • the cost can be further reduced.
  • the general shape and position g of the specular reflection portion need only be known, and if a peripheral O-color image is not required, a monochromatic camera instead of the color television camera 8 may be used. Black TV cameras can be used.
  • a retroreflector which does not have a specific wavelength and reflects all the wavelength components of the incident light in the incident direction. In this case, the red part 31, the green part 32, and the blue part 33 shown in FIG. 3 are observed as a part having higher brightness than the peripheral part in the monochrome mouth image.
  • the cost can be further reduced by using a monochrome television camera.
  • FIG. 7 shows Embodiment 2 of the object observation device according to the present invention.
  • reference numeral 61 denotes an annular white light source such as a fluorescent lamp or an optical fiber which has its center on the light receiving central axis 11 and is provided near the light receiving central axis 11.
  • the diameter r of the annular white light source 6 1 is set to be smaller than the height h from the reference plane 10, the optical axis with respect to the observation target portion 12 is parallel to the light receiving center axis 11. Can be considered. This approximation is based on the fact that the direction of reflection of the retroreflector does not completely match the direction of incidence of light, and has a width.In fact, objects with surface reflection characteristics actually cause partial diffuse reflection. It is also effective from the viewpoint of having a width.
  • the white light emitted from the annular white light source 61 is projected from almost above onto the observation target portion 12, and is projected if the observation target portion 12 has a specular reflection characteristic such as a solder portion.
  • the obtained white light is specularly reflected on each curved surface element of the observation target portion 12 in a direction corresponding to the inclination angle of each curved surface element with respect to the reference plane.
  • the white light reflected in the direction of each of the retroreflectors 4 to 6 reaches the respective retroreflectors 4 to 6, and the red light is emitted by the red retroreflector 4 and the green light is reflected by the green retroreflector 5.
  • the green light is reflected by the blue retroreflector 6, and the blue light is reflected in the incident direction, returns to the original path, is received by the observation target part 12 and is reflected in the direction of the central axis 11 by the color television.
  • the annular white light source 61 having the center on the light receiving central axis 11 near the light receiving central axis 11, beam splitting becomes unnecessary.
  • the amount of light received by the color television camera 8 as the light receiving means can be increased, and cost reduction and maintenance performance can be improved.
  • a non-annular white light source 71 may be provided near the light receiving central axis 11 to serve as a light projecting unit.
  • FIG. 9 is a configuration diagram showing Embodiment 3 of the object observation device according to the present invention.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • reference numeral 81 denotes a dome-shaped retroreflector that reflects, in the incident direction, a specific wavelength component of white light that is reflected and incident on the observation target portion 12 having specular reflection characteristics. The reflected wavelength component changes continuously according to the elevation angle seen from 12.
  • a region where the elevation angle is 0 reflects the red wavelength component in the incident direction, and as the elevation angle decreases, the reflected wavelength component changes continuously to yellow, ⁇ ,..., and the region where the elevation angle is 0 2 Reflects the violet wavelength component.
  • Beams The white light projected on the observation target portion 12 via the splitter 3 is reflected in each curved surface element of the observation target portion 12 in a direction corresponding to an inclination angle of each curved surface element with respect to the reference plane. .
  • the white light reflected in the directions of the elevation angles 0 2 to ⁇ reaches the retroreflector 81, and in each area where the elevation angle of the retroreflector 81 is different, the specific wavelength component corresponding to the elevation angle Only is reflected in the direction of incidence.
  • the reflected red to purple colored light returns along the original path and is reflected at the observation target part 12 in the direction of the light receiving central axis 11.
  • each curved surface element of the observation target portion 12 is colored in a color corresponding to the inclination angle with respect to the reference plane.
  • the observation target portion 12 is continuously colored with a color that changes according to its three-dimensional shape.
  • FIG. 10 is an explanatory diagram showing an example of the color image at this time.
  • 91 is a red color portion
  • 92 is a yellow color portion
  • 93 is a green color portion
  • 94 is a cyan color portion
  • 95 is a cyan color portion.
  • 96 is a purple color portion.
  • the observation target portion 12 is continuously colored from red to purple according to its three-dimensional shape.
  • the specific wavelength component of the incident white light is reflected in the incident direction, and is reflected by the elevation angle viewed from the observation target portion 12.
  • the dome-shaped retroreflector 81 whose wavelength component changes continuously, is used as the retroreflecting means, and the target area 12 in the color image is continuously changed by the color that changes according to its three-dimensional shape.
  • the two-dimensional shape and position of the specular reflection portion need only be known, and a color image around the specular reflection portion is not required.
  • a monochromatic television camera can be used instead of the color television camera 8, and a retroreflector 81 having a wavelength characteristic can be substituted for the monochromatic television camera.
  • a retroreflector that does not have wavelength characteristics and reflects all wavelength components of the incident light in the incident direction can be used.
  • FIG. 11 is an explanatory view showing an example of a monochrome image by such an object observation device, where 101 is a specular reflection portion on the observation target object 102, and 103 is a monochrome image. It is a part with higher brightness than the peripheral part in, and corresponds to the specular reflection part 101. According to such an object observation device, the cost can be reduced by using a monochrome television camera.
  • FIG. 12 is a block diagram showing Embodiment 4 of the object observation device according to the present invention, and the same parts as those shown in FIG. The same reference numerals are used, and the detailed description is omitted.
  • 4 B is a red retroreflector that reflects the red wavelength component of the white light that is reflected and incident on the observation site 12 in the incident direction
  • 5 B is a red retroreflector on the observation site 12.
  • 6B is a green retroreflector that reflects the green wavelength component of the incident white light in the incident direction
  • 6B reflects the blue wavelength component of the white light that is reflected and incident on the observation site 12 in the incident direction.
  • a blue retroreflector is a red retroreflector that reflects the red wavelength component of the white light that is reflected and incident on the observation site 12 in the incident direction
  • 5 B is a red retroreflector on the observation site 12.
  • 6B is a green retroreflector that reflects the green wavelength component of the incident white light in the incident direction
  • red retroreflector 4B, green retroreflector 5B and blue retroreflector 6B have the same height from the reference plane 10 but differ from the reference plane 10 by changing the radius.
  • color television elevation viewed from the light receiving center axis 1 1 of the observation Target site 1 2 located at the intersection of the camera 8 0, 0 2, 0 3 flat and concentric to the lower surface of the disk 7 B to so that different respective These are the members installed above.
  • the white light emitted from the white light source 1 is collimated by the lens 2, a part of the white light is reflected by the beam splitter 3, and is projected to the observation target 12 from almost above.
  • the projected white light is specularly reflected at each curved surface element of the observation target portion 12 in a direction corresponding to the inclination angle of each curved surface element with respect to the reference plane 10.
  • the white light reflected in the directions of the respective retroreflectors 4B to 6B reaches the respective retroreflectors 4B to 6B, and the red light is reflected by the red retroreflectors 4B and the green 5 B
  • the blue light is reflected by the blue retroreflector 6B in the incident direction, returns to the original path, is reflected in the direction of the light-receiving central axis 11 at the observation target part 12, and the color It is received by the bi-camera 8.
  • each of the retroreflectors 4B to 6B on the same plane, a two-dimensional configuration can be achieved. It can be configured by a manufacturing method.
  • FIG. 13 is a configuration diagram showing Embodiment 5 of the object observation device according to the present invention.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • reference numeral 111 denotes a filter plate having a red filter 112, a blue filter 111, and a blue filter 114, and 115 a filter plate 111. This is a rotating drive.
  • the filter plate 1 1 1 1 1 is rotated by the drive motor 1 1 5 every predetermined time, and the red filter 1 1 2, the blue filter 1 1 3 and the blue filter 1 1 4 at a predetermined time interval, the red light, the blue light and the blue light are sequentially transmitted to the observation target part 12 via the lens 2 and the beam splitter 3 at predetermined time intervals.
  • Flood light
  • Reference numeral 118 denotes a frame memory and the like, and synthesizes a monochrome image signal that has been input from the monochrome television camera 117 and captured by the color filters 112, 113, and 114. And a color image signal generating circuit for generating a color image signal.
  • the red light from the red filter 1 12 is converted into parallel light by the lens 2, and a part of it, for example, half of the light is reflected by the beam splitter 3. Then, the light is projected onto the observation target portion 12 from above, and is reflected from each curved surface element of the observation target portion 12 in a direction corresponding to the inclination angle of each curved surface element with respect to the reference plane. Then, the red light reflected in the direction of the elevation angle 0 i reaches the red retroreflector 4, where it is reflected in the incident direction, returns to the original path, and receives the central light-receiving axis at the observation target part 12. 1 Reflected in the direction of 1.
  • the red light reflected in the direction of the elevation angle 0 2 reaches the green retroreflector 5, and the red light reflected in the direction of the elevation angle 0 3 reaches the blue reproduction reflector 6, but is green. No light is reflected due to the wavelength characteristics of the retroreflector 5 and the blue retroreflector 6.
  • the level of each monochromatic plane image signal by the monochromatic television camera 117 when projecting red light, blue light, and blue light is set to R and R, respectively. Create color image signals as G and B signal levels.
  • the color image signal created by the color image signal creation circuit 118 is input to the monitor 9, a color image of the observation target part 12 as shown in FIG. 3 is displayed on the monitor 9 0
  • the light emitted from the white light source 1 to the apex of the observation target part 12 is reflected as it is in the direction of the light receiving central axis 11 and received by the micro television camera 11 17. Regions that are received in common when projecting light of each color shall be ignored.
  • the filter plate 111 having the red filter 112, the green filter 113, and the blue filter 114 is provided, and the red light is provided in the optical path 116.
  • Filter 1 1 2, Green filter 1 1 3 and Blue filter 1 1 4 Light, and sequentially emits red, green, and blue light to the observation target site 12 at predetermined time intervals, and receives each reflected light image with a monocular TV camera 117, respectively.
  • the image signal generation circuit 118 combines the monochrome image signals from the monochrome television camera 117 to create a color image signal. Since 12 color images can be obtained, cost reduction can be achieved.
  • the filter # 111 may be provided on the light receiving center axis 11 of the monochromatic television camera 1i7. Further, instead of the filter plate 11 1 and the motor filter 115, a mechanism for sequentially inserting a red filter, a green filter and a blue filter as a slide may be used.
  • red light, green light and blue light are sequentially emitted at predetermined time intervals.
  • a three-color light source 121 that emits light and a controller 122 that controls the emission color of the three-color light source 121 may be provided.
  • FIG. 16 is a block diagram showing a sixth embodiment of the object observation apparatus according to the present invention.
  • the same reference numerals are given to the same components as those shown in FIG. 13 and the detailed description thereof will be omitted.
  • 1 25 is reflected from the observation site 1 2 Is a ring-shaped retroreflector that reflects all wavelength components of incident light incident in the incident direction, and 126 is a support bar that holds this retroreflector 125 in parallel with the reference plane 10.
  • Reference numeral 127 denotes a moving port for moving the support bar 126 in the vertical direction. This moving rod 127 is driven by a driving device (not shown) in the direction perpendicular to the reference plane 10 to move the retroreflector 125 to the upper, interrupted and lower positions.
  • the white light including all wavelength components emitted from the white light source 1 is collimated by the lens 2, a part of the light is reflected by the beam splitter 3, and is projected from above onto the observation target part 12 to be observed In each curved surface element of the portion 12, the light is reflected in a direction corresponding to the inclination angle of each curved surface element with respect to the reference plane.
  • the retroreflector 1 25 is at the position where the elevation angle 0 2 is interrupted as shown in the figure, only white light reflected in the direction of the elevation angle 0 2 reaches the retroreflector 1 25.
  • the light is reflected in the incident direction, returns to the original path, and is reflected in the direction of the light-receiving central axis 11 at the observation site 12.
  • a part of the light for example, half of the light passes through the beam splitter 3 and is received by the monochrome television camera 117.
  • the retroreflector 125 moves to the top of the elevation angle 0, only white light reflected in the direction of the elevation angle 0, reaches the retroreflector 125, where it is incident. Reflected in the direction Then, the light is reflected in the direction of the light receiving central axis 11 at the observation target portion 12, passes through the beam splitter 3, and is received by the monochrome television camera 117.
  • the retroreflector 1 2 5 when the retroreflector 1 2 5 is moved to the lower position of the elevation angle 0 S, only the white light reflected in the direction of the elevation angle 0 3 reaches the retroreflector 1 2 5, wherein the incident direction Then, the light returns to the original path, is reflected in the direction of the light receiving central axis 11 at the observation target part 12, passes through the beam splitter 3, and is received by the monochrome television camera 117.
  • the level of each monochrome image signal by the monochrome television camera 117 at each position of the retroreflector 125 is set as the level of the R, G, and 3 signals, respectively. Create a color image signal.
  • the color image signal created by the color image signal creation circuit 118 is input to the monitor 9, a color image of the observation target part 12 as shown in FIG. 3 is displayed on the monitor 9.
  • the light projected from the white light source 1 to the top of the observation target part 12 is reflected as it is in the direction of the light receiving central axis 11 and is received by the monochromic television camera 117.
  • the area that is received in common during each light projection shall be ignored.
  • the white light is projected on the observation target portion 12, and the reflected light image formed according to each height position of the retroreflector 125 is converted to the monochromatic television camera.
  • the color television camera is constructed by combining each monochrome image signal from the monochrome television camera 117 to create a color image signal in the color plane image signal creation circuit 118 that receives the light, respectively. Since a color image of the observation target portion 12 can be obtained without using the filter and without using the filter plate, the cost can be reduced.
  • each curved surface element of the observation target part 12 is changed according to one inclination angle with respect to the reference plane. If the color is changed to a different color, as shown in FIG. 10, it is possible to continuously color with a color that changes according to the three-dimensional shape of the observation target portion 12.
  • FIG. 17 is a configuration diagram showing Embodiment 7 of the object observation device according to the present invention, and shows an example in which a component mounting portion of a component mounting board is inspected.
  • the acceptability of an observation target portion is determined using the received light data obtained by the object observation device as shown in Embodiments 1 to 6.
  • reference numeral 13 1 denotes a moving unit on which the part ⁇ mounting board 13 7 is set, moves in the XY direction, and sequentially positions the component mounting parts 13 8 below the light receiving center axis 11.
  • Reference numeral 132 denotes an object observation device as shown in Embodiments 1 to 6, which is the object to be observed, that is, the force of the component mounting part 1 38 Output the color image signal.
  • 1 3 3 is an image processing unit that performs AZD conversion on the color image signal output from the object observation device 1 3 2 and performs various image processing on the obtained digital color image data.
  • 1 3 4 is an image processing unit. This is a determination unit that determines the quality of the component mounting part 1337 based on the pattern, area, length, or difference image between the RGB color images of the processed image data obtained in the unit 133.
  • Numeral 35 denotes a storage unit for storing digital color image data and processed image data by the plane image processing unit 133, a result of the pass / fail judgment of the component mounting portion 1338 by the judgment unit 134, and the like.
  • a control unit 1336 controls the moving unit 131, the object observation device 132, the image processing unit 133, the determination unit 134, and the storage unit 135.
  • the moving section 13 1 and the control section 13 6 constitute a moving means
  • the image processing section 13 3, the judgment section 13 4, the storage section 13 5 and the control section 13 36 constitute an inspection executing means.
  • the control unit 1336 operates the moving unit 131, positions the component mounting site 1338 below the light receiving center axis 11 of the object observation device 132, and operates the object observation device 1332. Then, a color image signal is obtained by capturing an image of the component mounting portion 1388. This color image signal is sent to the image processing unit 133.
  • control unit 1336 activates the image processing unit 133 to operate the component mounting part 138 input from the object observation device 1332.
  • the AD converter converts the color image signal into digital color image data, and performs various types of image processing on the digital image data to judge the quality of the component mounting part 138.
  • the processed surface image data is sent to the determination unit 134.
  • control unit 1336 operates the judging unit 134, and based on the processed image data output from the image processing unit 13.3, the amount, shape, and mounting of the solder on the component mounting portion 1338. The quality of the position and the like is determined, and this determination result is stored in the storage unit 135, and the inspection of the component mounting part 1338 is completed.
  • control unit 13 6 operates the moving unit 13 1 to sequentially position the component mounting portions 13 8 of the component mounting board 13 7 below the light receiving center axis 11 1. Perform the above inspection for 1 3 8.
  • a pass / fail judgment test of an observation target portion is performed using the received light data obtained by the object observation device as described in the first or sixth embodiment.
  • a single light source can be used, so that the cost can be reduced. And maintainability can be improved.
  • An apparatus and method for observing an object including a portion having specular reflection characteristics can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

明細書
物体観測装置および方法
技術分野
本発明は、 部品実装基板のハンダ部位等の鏡面反射特性 を有する部分を含む物体を観測し、 あるいは観測してその 良否を判定検査する物体観測装置および方法に関するもの である。
背景技術
従来のこの種の物体観測装置としては、 特開平 6 — 1 1 7 3号公報に記載のものが挙げられる。 この物体観測装置 は、 鏡面反射特性を有する部位を含む物体の観測対象部位 に、 赤色、 綠色、 青色の 3色光を異なる仰角から投光し、 これらを撮像して得られたカラー画像によって観測対象部 位の観測を行なう ものであり、 投光手段および受光手段な どによって構成される。
投光手段は、 赤色光源、 緑色光源、 青色光源の計 3個の 環状蛍光灯光源を有し、 これら 3色光を異なる仰角から観 測対象部位に投光する。 また、 これら 3色光源は、 物体が 置かれた位置において混色されると完全な白色光が得られ る対波長発光エネルギ分布を有するように予め光度調整さ れている。 受光手段は C C Dカメラ等のカラーテレ ビカメ ラであり、 観測対象部位からの反射光像を撮像してカラー 画像信号を得る。
第 1 8図は投光手段の構成図である。 同図において、 投 光部 1 4 1 の赤色光源 1 4 2、 綠色光源 1 4 3、 青色光源 1 4 4の各環状光源は、 その中心が受光部 1 4 5の受光中 心軸 1 4 6 と一致するように同心円上に設置され、 かつリ ング半径 r ! 、 r a 、 r a を違え、 基準面 1 4 7からの高 さ h i 、 h 2 、 h 3 を違えるこ とによって、 受光中心軸 1 4 6 と基準面 1 4 7 とが交わる点 Aからの仰角が、 互いに 異なる角度 0 ! 、 Θ 2 . Θ 3 (ただし、 0 ! > Θ 2 > Θ 3
) となるように設置され、 かつ点 Aと各光源との距離が ほぼ等しくなるように構成されている。
この物体観測装置によれば、 基準面 1 4 7 に対してさま ざまな傾斜角を有する各曲面要素に構成される、 部品実装 基板のハンダ部位などの鏡面反射特性を有する部分におい ては、 各曲面要素は、 斜め方向より入射した各有色光を入 射角に応じた方向に正しく反射させる。
この反射方向が受光部の受光中心軸 1 4 6の方向 (基準 面に対して垂直方向) と一致する曲面要素は、 カラー画像 において、 対応する有色光源色に彩色されるので、 平坦部 に近い傾斜を有する曲面要素は赤色に彩色され、 傾斜が急 な曲面要素は青色に彩色され、 この中間の傾斜を有する曲 面要素は緑色に彩色される。 すなわち、 鏡面反射特性を有 する部分はその三次元曲面形状に応じて各有色光源色に分 離彩色される。
また、 3色光は混色されると完全な白色光が得られる低 波長発光エネルギ分布を有しているので、 カラー画像にお いて、 乱反射特性を有する部分はそれぞれの有する色に彩 色される。 さ らに、 このようにして得られたカラー画像に 基づいて、 ハンダ部位等の観測対象部位の良否判定検査を 行なう検査実行手段を兼ね備えたものもある。
前述した従来の物体観測装匱においては、 3色の可視光 を得るために 3個の有色光源を必要とするため、 投光部の 構造が複雑となり、 メ ンテナンス性が悪く、 コス トが高く なるという不都合があった。
また、 各有色光源に波長特性や光度のばらつきがあ た め、 個々の装置において混色時に白色光が得られるように 各有色光源の光度調整を行なう必要があり、 この光度調整 作業が困難で手間がかかるという不都合があった。
本発明は、 このような従来の課題を解決するためになさ れたものであり、 調整作業を含めたメ ンテナンス性の向上 および低コス ト化を図るこ とを目的とするもので、 また観 測あるいは検査の高精度化を図ることを目的とするもので め 。
発明の開示
本発明の物体観測装置は、 物体の観測対象部位に所定の 光路を経て光を投光する投光手段と、 観測対象部位で反射 されて入射された光を入射方向に反射する再帰性反射手段 と、 再帰性反射手段および観測対象部位で反射され所定の 光路を介して入射された光を受光する受光手段とを具備す るものである。 したがって、 本発明の物体観測装置によれば、 投光手段 によって観測対象部位に上方から光を投光し、 観測対象部 位からの反射光を再帰性反射手段によってその入射方向に 反射し、 受光手段によって再帰性反射手段を介して観測対 象部位から反射された光を受光するこ とによって、 光源を 単一光源とすることができるので、 低コス ト化、 メ ンテナ ンス性の向上、 光源の調整作業の簡単化を図るこ とができ、 また観測の高精度化を図ることができる。
好ま しく は、 再帰性反射手段は、 観測対象部位の中央に 対して環状に配設される。
好ま しくは、 再帰性反射手段は、 観測対象部位の中央に 対してドーム状に配設される。
好ま しく は、 再帰性反射手段は複数設けられ、 観測対象 部位の中央からの仰角が異なる位置にそれぞれ配置される。
好ま しく は、 再帰性反射手段は観測対象部位の中央に対 して環状に複数備えられ、 観測対象部位の中央からの仰角 が異なる位置にそれぞれ配置される。
さらに好ましく は、 再帰性反射手段は観測対象部位から の反射光の特定波長を反射する。
好ま しく は、 再帰性反射手段が観測対象部位の中央から の仰角によって反射する特定波長は連続的に変化するもの である。
さらに好ま しく は、 複数の再帰性反射手段が、 それぞれ 異なる特定波長を反射する。 また好ま しく は、 投光手段が、 光源と、 光源の放射光を 反射して観測対象部位に投光し、 観測対象部位から反射さ れた光を通過させて受光手段に入射させるビームスプリ ッ 夕を有する。
好ま しく は、 投光手段が、 受光手段の受光軸の近傍に配 設され、 観測対象部位に光を投光する光源を有する。
さらに好ま しく は、 投光手段の光源が、 受光手段の受光 軸を中心とした環状光源である。
この発明の他の局面によれば、 物体観測装置は、 物体の 観測対象部位に白色光源からの白色光を所定の光路を経て 投光する投光手段と、 観測対象部位の中央からの仰角がそ れぞれ異なる位置に環伏に配設され観測対象部位で反射さ れて入射された白色光の少なく とも 2つの色波長成分をそ れぞれ入射方向に反射する複数の再帰性反射手段と、 再帰 性反射手段および観測対象部位で反射され所定の光路を介 して入射された少なく とも 2つの色波長成分をそれぞれ織 別して受光する受光手段とを具備する。
この発明のさらに他の局面によれば、 物体観測装置は、 物体の観測対象部位に白色光源からの白色光を所定の光路 を経て投光する投光手段と、 観測対象部位の中央からの仰 角がそれぞれ異なる位置に環状-に配置され観測対象部位で 反射されて入射された白色光の赤色波長成分、 綠色波長成 分または青色波長成分をそれぞれ入射方向に反射する複数 の再帰性反射手段と、 再帰性反射手段および観測対象部位 で反射されて所定の光路を介して入射された赤色光、 緑色 光および青色光をそれぞれ識別して受光する受光手段とを 具備する。
この発明のきらに他の局面によれば、 物体観測装置は、 物体の観測対象部位に白色光源からの白色光を所定の光路 を経て投光する投光手段と、 観測対象部位の中央に対して ドーム状に配置され観測対象部位で反射されて入射された 白色色の特定波長を入射方向に反射し観測対象部位の中央 からの仰角によって特定波長が連続的に変化する再帰性一反 射手段と、 再帰性反射手段および観測対象部位で反射され て所定の光路を介して入射された特定波長の光を受光する 受光手段とを具備する。
この発明のさらに他の局面によれば、 物体観測装置は、 少なく とも 2つの色波長成分の光を所定の時間間隔で所定 の光路を経て物体の観測対象部位に順次投光する投光手段 と、 観測対象部位の中央からの仰角がそれぞれ異なる位置 に配置されて観測対象部位で反射されて入射された少なく とも 2つの色波長成分をそれぞれ入射方向に反射する少な く とも 2つの再帰性反射手段と、 再帰性反射手段および観 測対象部位で反射されて所定の光路を介して入射される少 なく とも 2つの色波長成分を順次受光する 2次元受光素子 を有する受光手段とを具備する。
この発明のさらに他の局面によれば、 物体観測装置は、 白色光源の投光軸上に、 赤色、 緑色および青色の各色フィ
— D — ル夕を所定の時間間隔で変更することによって各色フィ ル 夕を透過した赤色光、 緑色光および青色光を所定の光路を 経て物体の観測対象部位に順次投光する投光手段と、 観測 対象部位の中央からの仰角がそれぞれ異なる位置に配置さ れ観測対象部位で反射されて入射された各色光の赤色波長 成分、 緑色波長成分または青色波長成分をそれぞれ入射方 向に反射する複数の再帰性反射手段と、 再帰性反射手段お よび観測対象部位で反射され所定の光路を介して入射され る各色波長成分を順次受光するモノ クロテレビカメラを有 する受光手段とを具備する。
この発明のさらに他に局面によれば、 物体観測装置は、 物体の観測対象部位に白色光源からの白色光を所定の光路 を経て投光する投光手段と、 観測対象部位の中央からの仰 角がそれぞれ異なる位置に配置され観測対象部位で反射さ れた入射された白色光の赤色波長成分、 緑色波長成分また は青色波長成分をそれぞれ入射方向に反射する複数の再帰 性反射手段と、 再帰性反射手段および観測対象部位で反射 され所定の光路を介して入射される各色波長成分を受光す るモノ クロテレビカメラの受光軸に、 赤色、 緑色および青 色の各色フィ ルタを所定の時間間隔で変更するこ とによつ て各色フィルタを透過した赤色光、 緑色光または青色光を 順次受光する受光手段とを具備する。
この発明のさらに他の局面によれば、 物体観測装置は、 赤色光、 緑色光および青色光を所定の時間間隔で変更する 3色光源からの各色光を所定の光路を経て物体の観測対象 部位に順次投光する投光手段と、 観測対象部位の中央から の仰角がそれぞれ異なる位置に配置され観測対象部位で反 射されて入射された各色光の赤色波長成分、 綠色波長成分 または青色波長成分をそれぞれ入射方向に反射する複数の 再帰性反射手段と、 再帰性反射手段および観測対象部位で 反射され前記所定の光路を介して入射される各色波長成分 を順次受光するモノ クロテレ ビカメ ラを有する受光手段と を具備する。
この発明のさらに他の局面によれば、 物体観測装置は、 少なく とも 2つの色波長成分の光を同時にまたは所定の時 間間隔で所定の光路を経て物体の観測対象部位に投光する 投光手段と、 観測対象部位の中央からの仰角がそれぞれ異 なる位置に配置されて観測対象部位で反射されて入射され た少なく とも 2つの色波長成分をそれぞれ入射方向に反射 する少なく とも 2つの再帰性反射手段と、 再帰性反射手段 および観測対象部位で反射されて所定の光路を介して入射 される少なく とも 2つの色波長成分を順次受光する 2次元 受光素子を有する受光手段とを具備する。
好ましく は、 受光手段による受光データに基づいて、 観 測対象部位の鏡面反射部分を検知し、 その検知結果に基づ いて観測対象部位の良否を判定する検査実行手段を具備す る。
本発明の物体観測装置によれば、 検査実行手段によって 受光手段による受光データに基づいて観測対象部位の鏡面 反射部分を検知特定し、 観測対象部位の良否を判定するこ とによって、 検査工程における装置の低コス ト化、 メ ンテ ナンス性の向上、 調整作業の簡単化を図るこ とができ、 ま た検査の高精度化を図ることができる。
この発明のさらに他の局面によれば、 物体観測方法は、 物体の観測対象部位に投光手段からの光を所定の光路を経 て投光し、 観測対象部位で反射され入射される光を再帰性 反射手段によって入射方向に反射させ、 再帰性反射手段お よび観測対象部位で反射されて所定の光路を介して入射さ れる光を受光手段によって受光する。
本発明の物体観測方法によれば、 投光手段によって観測 対象部位に上方から光を投光し、 観測対象部位からの反射 光を再帰性反射手段によってその入射方向に反射して受光 手段によつて再帰性反射手段を介して観測対象部位から反 射された光を受光するこ とによつて光源を単一光源とする ことができるので、 低コス ト化、 メ ンテナンス性の向上、 光源の調整作業の簡単化を図ることができ、 また観測の高 精度化を図ることができる。
好ま しく は、 観測対象部位の中央に対して環状に配設す した再帰性反射手段によつて観測対象部位からの反射光を 入射方向に反射させる。
また好ま しく は、 観測対象部位の中央に対して ドーム状 に配設した再帰性反射手段によって観測対象部位からの反 射光を入射方向に反射させる。
また好ま しく は、 観測対象部位の中央からの仰角が異な る位置にそれぞれ配置した複数の再帰性反射手段によって、 観測対象部位からの反射光を入射方向に反射させる。
さらに好ま しく は、 観測対象部位の中央に対して環状に、 かつ観測対象部位の中央からの仰角が異なる位置にそれぞ れ配設した複数の再帰性反射手段によって、 観測対象部位 からの反射光を入射方向に反射させる。
さらに好ま しく は、 観測対象部位からの反射光の特定波 長を反射する再帰性反射手段によって、 観測対象部位から の反射光の特定波長成分を入射方向に反射させる。
また好ましく は、 観測対象部位の中央からの仰角によつ て反射する特定波長が連続的に変化する再帰性反射手段に よって、 観測対象部位からの反射光の仰角に応じた波長成 分を入射方向に反射させる。
さ らに好ま しく は、 それぞれ部分的に異なる特定波長を 有する再帰性反射手段によって、 観測対象部位からの反射 光の特定波長成分を入射方向に反射させる。
この発明のさらに他の局面によれば、 物体観測方法は、 物体の観測対象部位に白色光源を有する投光手段からの白 色光を所定の光路を経て投光し、 観測対象部位の中央から の仰角がそれぞれ異なる位置に環状に配置された複数の再 帰性反射手段によつて観測対象部位で反射され入射された 白色光の赤色波長成分、 緑色波長成分または青色波長成分 を入射方向にそれぞれ反射させ、 再帰性反射手段および観 測対象部位で反射され所定の光路を介して入射された赤色 光、 緑色光および青色光を受光手段によって受光する。
この発明のさ らに他の局面によれば、 物体観測方法は、 物体の観測対象部位に白色光源を有する投光手段からの白 色光を所定の光路を経て投光し、 観測対象部位の中央に対 して ドーム状に配置された再帰性反射手段によって観測対 象部位で反射されて入射された白色光を観測対象部位の中 央からの仰角によって変化する特定波長を入射方向に反射 し、 再帰性反射手段および観測対象部位で反射され所定の 光路を介して入射された特定波長の光を受光手段によつて 受光する。
この発明のさらに他の局面によれば、 物体観測方法は、 物体の観測対象部位に投光手段から少なく とも 2つの色波 長成分の光を同時にまたは所定の時間間隔で所定の光路を 経て投光し、 観測対象部位の中央からの仰角がそれぞれ異 なる位置に配置された少なく とも 2つの再帰性反射手段に よつて観測対象部位で反射されて入射された少なく とも 2 つの色波長成分をそれぞれ入射方向に反射し、 再帰性反射 手段および観測対象部位で反射されて所定の光路を介して 入射された少なく とも 2つの色波長成分を 2次元受光素子 を有する受光手段によって順次受光する。
この発明のさらに他の局面によれば、 物体の観測対象部 位に投光手段から少なく とも 2つの色波長成分の光を所定
- 1 I - の時間間隔で所定の光路を経て順次投光し、 観測対象部位 の中央からの仰角がそれぞれ異なる位置に配置された少な く とも 2つの再帰性反射手段によって観測対象部位で反射 されて入射された少なく とも 2つの色波長成分をそれぞれ 入射方向に反射し、 再帰性反射手段および観測対象部位で 反射されて所定の光路を介して入射された少なく とも 2つ の色波長成分を 2次元受光素子を有する受光手段によって 順次受光する。
好ま しく は、 受光手段による受光データに基づいて観測 対象部位の鏡面反射部分を検査実行手段によって検知し、 その検知結果に基づいて観測対象部位の良否を判定する。
この発明の物体観測方法によれば、 検査実行手段によつ て受光手段による受光データに基づいて観測対象部位の鏡 面反射部分を特定検知し、 観測対象部位の良否を判定する ことによって検査工程における装置の低コス ト化、 メ ンテ ナンス性の向上、 調整作業の簡単化を図ることができ、 ま た検査の高精度化を図ることができる。
本発明に係る物体観測装置および物体観測方法によれば、 従来行なっていた白色光を得るための各有色光源の調整作 業が不要となるため、 光源の調整作業を簡単化できる。 ま た、 各再帰性反射体の反射波長は従来例のように混色され たときに白色光が得られる色の組合せである必要はなく、 任意に選択できる。
また、 投光手段の光源の背面に光源の放射光を反射する リ フ レクタを設けることによって、 光源の利用効率を約 2 倍向上させることができる。
また、 鏡面反射特性を有する部位を含む観測対象物体に おいて、 鏡面反射部位の概略形状と位置がわかればよく、 周辺のカラー画像を必要としない場合は、 受光手段のカラ —テレ ビカメ ラに代えてモノ クロテレ ビカ メ ラを用い、 ま た波長特性を有する再帰性反射体に代えて波長特性を持た ず、 入射光の全波長成分を入射方向に反射する再帰性反射 体を用いるこ とによって、 低コス ト化を図ることができる。
また、 受光手段の受光中心軸近傍に投光手段の光源を設 けるこ とによって、 ビームスプリ ツ夕が不要となるため、 低コス ト化を図るこ とができ、 またメ ンテナンス性を向上 させることができる。
また、 特定波長を入射方向に反射するものであり、 観測 対象部位から見た仰角によって上記特定波長が連続的に変 化する ドーム状の再帰性反射体を用い、 受光手段による力 ラー画像において、 観測対象部位をその 3次元形状に応じ て変化する色によって連統的に彩色させることによって、 より高精度な観測を行なうことができる。
また、 それぞれ入射光の赤色波長成分、 緑色波長成分ま たは青色波長成分を入射方向に入射する再帰性反射体を同 —平面内に平板伏かつ同心円上に配置することによって、 2次元形状空間内に各再帰性反射体を異なる仰角に設ける こ とによつても同様の効果を得られる。 また、 それぞれ入射光の赤色波長成分、 緑色波長成分ま たは青色波長成分を入射方向に反射する再帰性反射体を異 なる仰角に設け、 投光手段において白色光源の光路上に赤 色フィ ルタ、 綠色フィル夕および青色フィ ルタを所定の時 間間隔で順番に挿入して、 赤色光、 緑色光および青色光を 観測対象部位に所定の時間間隔で順番に投光し、 この各反 射光像をモノ クロテレビカメラでそれぞれ受光し、 カラー 画像信号作成回路において、 モノ クロテレ ビカメ ラによる 各モノ クロ画像信号を合成してカラー画像信号を作成する ことによって、 カラーテレビカメラを用いずに観測対象部 位のカラー面像を得るこ とができるので、 低コス ト化を図 ることができる。
また、 色フィルタを用いずに投光手段の白色光源に代え、 赤色光、 綠色光および青色光を所定の時間間隔で順番に放 射する 3色光源およびこの 3色光源の発光色を制御するコ ン トローラを設けることによつても同様の効果が得られる。 また、 複数の再帰性反射体を用いずに単独の再帰性反射 体を基準面に対して垂直方向に移動させ、 各高さ位置にお ける再帰性反射体に対し白色光源から白色色を投光するこ とによっても同様の効果が得られる。
また、 得られた受光データを用いて観測対象部位の良否 判定検査を行なう ことによって、 検査工程における装置の 低コス ト化、 メ ンテナンス性の向上、 調整作業の簡単化を 図るこ とができ、 また高精度な検査を行なうことができる。 図面の簡単な説明
第 1 図は本発明の実施の形態 1 の構成図である。
第 2図は本発明における波長特性を有する再帰性反射体 の説明図で、 ( a ) はコーナーキューブによる再帰性反射 体の説明図、 ( b ) はキャ ッツアイによる再帰性反射体の 説明図、 ( c ) は ( a ) に示すコーナーキューブの正面図 である。
第 3図は本発明の実施の形態 1 における観測対象部位の カラー画像の一例を示す説明図である。
第 4図は本発明の実施の形態 1 において白色光源をビー ムスプリ ッ夕の上方に配置した場合の構成図である。
第 5図は本発明における色フィル夕を用いて波長特性を 持たせた再帰性反射体の説明図で、 ( a ) は色フィ ルタお よびコーナーキューブによる再帰性反射体の説明図、 ( b ) は色フィ ル夕およびキャ ッ ツアイによる再帰性反射体 の説明図である。
第 6図は本発明の実施の形態 1 における球面リ フレタ夕 を設けた投光手段の構成図である。
第 7図は本発明の実施の形態 2の構成図である。
第 8図は本発明の実施の形態 2における環状でない白色 光源による投光手段の構成図である。
第 9図は本発明の実施の形態 3の構成図である。
第 1 0図は本発明の実施の形態 3における観測対象部位 の力ラー画像の一例を示す説明図である。 第 1 1 図は本発明の実施の形態 3においてモノ クロカメ ラを用いた場合の観測対象物体のモノ クロ画像の一例を示 す説明図である。
第 1 2図は本発明の実施の形態 4の構成図である。
第 1 3図は本発明の実施の形態 5の構成図である。
第 1 4図は本発明の実施の形態 5において受光中心軸に フィルタ板を設けた場合の受光手段の構成図である。
第 1 5図は本発明の実施の形態 5 において 3色光源を用 いた場合の投光手段の構成図である。 ― 第 1 6図は本発明の実施の形態 6の構成図である。
第 1 7図は本発明の実施の形態 7の構成図である。
第 1 8図は従来の物体観測装置における投光手段の構成 図を示す説明図である。
発明を実施するための最良の形態
(実施の形態 1 )
第 1 図は本発明による物体観測装置の実施の形態 1 を示 す構成図である。 第 1図において、 1 は白熱ランプ、 キセ ノ ンラ ンブ等の白色光源であり、 2は白色光源 1 から放射 された白色光を平行光にするレンズである。 3はレンズ 2 から入射する平行白色光の一部を反射して観測対象部位 1 2に投光するとともに、 再帰性反射体 4、 5 または 6を介 して観測対象部位 1 2で反射された光の一部を投光させる ハーフ ミ ラー等のビームスブリ ツタである。 白色光源 1 お よびレンズ 2およびビ一ムスプリ ッタ 3は投光手段を構成 する。
4は観測対象部位 1 2で反射されて入射する白色光の赤 色波長成分を入射方向に反射する環状の赤色再帰性反射体 であり、 5 は観測対象部位 1 2で反射されて入射する白色 光の緑色波長成分を入射方向に反射する綠色再帰性反射体 であり、 6 は観測対象部位 1 2で反射されて入射する白色 光の青色波長成分を入射方向に反射する緑色再帰性反射体 である。
これら赤色再帰性反射体 4、 緑色再帰性反射体 5および 青色再帰性反射体 6 は環状半径または基準面 1 0からの高 さ、 あるいは環伏半径と基準面 1 0からの高さの両方を違 えるこ とにより、 基準面 1 0 とカラーテレビカメラ 8の受 光中心軸 1 1 の交点に位置する観測対象部位 1 2から見た 仰角がそれぞれ異なるように設置されている。
再帰性反射体 4〜 6は微小なコーナーキューブまたはキ ャ ッツァイ となるガラスビーズを面状に敷きつめて形成さ れるものであり、 道路のガー ドレール等に付加されている ものと原理的に同じである。
第 2図は再帰性反射体の説明図であり、 図 ( a ) はコー ナーキューブによるもの、 図 ( b ) はキャ ッツアイによる ものである。 また、 図 ( c ) は図 ( a ) に示す矢印方向か ら見たコーナーキューブの正面図である。
図 ( a ) において、 コーナーキューブ 2 1 の内面には、 入射する光の特定波長成分のみを透過する特定波長反射層 2 2が塗布または蒸着されており、 コーナーキューブ 2 1 は入射する光の特定波長成分のみを反射する。 また、 図 ( b ) において、 キャ ッツアイ 2 3の半球面には、 特定波 長反射層 2 2が塗布または蒸着されている。
この特定波長反射層 2 2は、 たとえば入射した光の赤色 波長成分のみを透過し、 他の波長成分を吸収するものであ る。 したがって、 図中に示すように、 コーナーキューブ 2 1 およびキャ ッツアイ 2 3は入射光の特定波長成分を入射 方向にそのまま反射する。
なお、 図 2 ( a ) に示すコーナーキューブ 2 1 は特定波 長反射層 2 2で特定波長のみを透過し、 その他の波長を吸 収するようにし、 コーナーキューブ 2 1 の反射面 (内面) において特定波長反射層 2 2を透過した光を反射させるよ うにしているが、 特定波長のみを正反射し、 その他の波長 を透過する光学的多層膜と、 この光学的多層膜を透過した 光を吸収する光吸収体によってコーナーキュープ 2 1 を構 成してもよい。 このほうが前者より反射率を向上させるこ とができる。 また、 キャ ッツアイ 2 3 においては、 球を着 色するこ とにより、 特定波長成分のみを透過し、 その他の 波長を吸収するようにしてもよい。
第 1 図に戻り、 7は赤色再 性反射体 4、 緑色再帰性反 射体 5および青色再帰性反射体 6が固定される ドーム状の フー ドである。 このフー ト' 7の内面は光が反射しないよう に黒色塗装等の光吸収構造であるほうがよい。 赤色再帰性 反射体 4、 緑色再帰性反射体 5、 青色再帰性反射体 6およ びフー ド 7は再帰性反射手段を構成する。
8 は赤色再帰性反射体 4、 緑色再帰性反射体 5 または青 色再帰性反射体 6 を介して観測対象部位 1 2で反射され、 ビームスプリ ツ夕 3を透過した反射光像を撮像してカラ一 画像信号を出力するカラーテレ ビカメラであり、 9はこの カラー画像を映すモニタである。 カラーテレビカメラ 8お よびモニタ 9は受光手段を構成する。
次に実施の形態 1 の動作について説明する。 白色光源 1 から放射された白色光は、 レンズ 2によって平行光にされ、 ビームスプリ ツ夕 3によつてその一部、 たとえば半分の光 量が反射され、 観測対象部位 1 2に所定の光路を経て上方 から投光される。 ビームスブリ ツ夕 3を介して投光された 白色光は、 観測対象部位 1 2の各曲面要素において、 基準 面 1 0 に対する各曲面要素の傾斜角に応じた方向に反射さ れる。 仰角 0 ! の方向に反射された白色光は赤色再帰性反 射体 4 に、 仰角 0 2 の方向に反射された白色光は緑色再帰 性反射体 5に、 仰角 0 3 の方向に反射された白色光は青色 再帰性反射体 6 にそれぞれ到達する。
各再帰性反射体 4〜 6 においては、 前述したように特定 波長成分のみが入射方向に反射されるので、 赤色再帰性反 射体 4では赤色光が、 緑色再帰性反射体 5では緑色光が、 青色再帰性反射体 6では青色光が、 それぞれ入射方向に反 射され、 もと来た経路を戻り、 観測対象部位 1 2 において 受光中心軸 1 1 の方向に反射される。
反射された赤色光、 緑色光および青色光は、 投光時と同 じ光路を通ってビームスプリ ッタ 3 に到着し、 その一部、 たとえば半分の光量がビームスプリ ッ タ 3を透過してから テレ ビカメ ラ 8 に到達する。
そしてカラーテレビカメラ 8 によってこれら赤色光、 緑 色光および青色光を含む反射光像がカラー撮像され、 この カラー画像信号がモニタ 9に送られ、 モニタ 9 に撮像され たカラ一画像が映し出される。 モニタ 9に映し出された反 射光像のカラー画像において、 観则対象部位 1 2が鏡面反 射部位であれば、 下記曲面要素の仰角 0 , 、 0 2 、 0 3 に 対応するものは、 赤色、 緑色または青色に彩色されるので、 観測対象部位 1 2はその 3次元形状に応じて赤色、 緑色ま たは青色に分雠彩色される。
—方、 観測対象部位 1 2が乱反射部位であれば、 観測対 象部位 1 2の表面色が力ラーテレビカメラ 8によって撮像 され、 表面色を観測できる。
第 3図は観測対象部位 1 2が鏡面反射部位の場合におけ るカラー画像の一例を示す説明図で、 3 1 は赤色に彩色さ れた部分、 3 2は緑色に彩色された部分、 3 3は青色に彩 色された部分をそれぞれ示す。 また、 乱反射部位の各部分 は、 力ラー画像においてはそれぞれの部分が有する色に彩 色される。
このように、 '本実施の形態 1 によれば、 それぞれ異なる 特定波長を入射方向により反射する複数の再帰性反射体を 用いるこ とにより、 光源を単一光源とするこ とができるの で、 低コス ト化を図るこ とができ、 メ ンテナンス性を向上 させるこ とができる。 さらに、 白色光を得るための各有色 光源の調整作業が不要となるため、 光源の調整作業を簡単 化できる。
なお第 4図に示すように、 白色光源 1 およびレンズ 2を ビームスブリ ック 3の上方に配置し、 逆にカラーテレビ力 メラ 8 をビームスブリ ツ夕 3に対して水平方向に配置し一た 構成と してもよい。
また、 再帰性反射体の反射波長を赤色、 緑色および青色 としたが、 これらは他の色に容易に変更できるこ とは言う までもなく、 また従来例のように混色させたときに白色光 が得られる色の組合せである必要はない。
また、 第 5図 ( a ) に示すように、 内面に銀箔等の全反 射層 4 1 を蒸着または塗布したコーナーキューブ 4 2の前 面に、 入射光の特定波長成分のみを透過させる医フィルタ 4 3を設け、 このコーナーキューブ 4 2および色フィ ル 4 3によって特定波長を反射する再帰性反射体を構成しても よい。 また、 第 5図 ( b ) に示すように、 半球面に銀箔等 の全反射層 4 1 を蒸着または塗布したキヤ ッツァイ 4 4 の 前面に色フィル夕 4 3を設け、 このキャ ッツアイ 4 4およ び色フィルタ 4 3 によつて再帰性反射体を構成してもよい。
また、 第 6図に示すように、 白色光源 1 を介してレンズ 2 と対向する位置に白色光源 1 から放射された白色光を反 射する球面リ フレクタ 5 1 を配置すれば、 白色光源 1 の利 用効率を約 2倍向上させることができる。
また、 鏡面反射特性を有する部位を含む観測対象物体に おいて、 鏡面反射部位の概略形状と位置がわかればよい場 合は、 再帰性反射体を異なる仰角に複数配置せず、 たとえ ば観測対象物体に緑色の乱反射部位がなければ綠色再帰性 反射体 5のみとしてもよく、 このような物体観測装匱によ れば、 さらに低コス ト化を図ることができる。
さらに、 鏡面反射特性を有する部位を含む観測対象物体 において、 鏡面反射部位の概略形状と位 gがわかればよ く、 周辺 Oカラー画像を必要としない場合は、 カラーテレビ力 メラ 8 に代えてモノ クロテレビカメラを使用することがで きる。 また、 波長特性を有する再帰性反射体 4〜 6に代え、 波長特定を持たず、 入射光の全波長成分を入射方向に反射 する再帰性反射体を使用するこ とができる。 この場合は、 第 3図に示す赤色部分 3 1、 緑色部分 3 2および青色部分 3 3はモノ ク口濃淡画像において周辺部よりも明度の高い 部分として観測される。
このような物体観測装置によれば、 モノ クロテレビカメ ラを使用することによってさらに低コス ト化を図ること力 できる。
(実施の形態 2 )
第 7図は、 本発明による物体観測装置の実施の形態 2を 示す構成図で、 第 1図に示す構成要素と同一部分には同一 符号を付し、 その詳細説明は省略する。 第 7図において、 6 1 は受光中心軸 1 1上にその中心を有し、 受光中心軸 1 1近傍に設けられた蛍光灯、 光ファイバ等の環状白色光源 である。
この環状白色光源 6 1 の径 rが基準面 1 0からの高さ h に比して小さ くなるように設定すれば、 観測対象部位 1 2 に対する光軸は受光中心軸 1 1 に平行である とみなすこ と ができる。 この近似は、 再帰性反射体の反射方向が光の入 射方向とは完全に一致せず幅を持つこ と、 镜面反射特性を 有する物体において実際には部分拡散反射を生じるため反 射方向に幅を持つことなどから考えても有効である。
次に実施の形態 2の動作について説明する。 環状白色光 源 6 1 から放射された白色光は、 観測対象部位 1 2にほぼ 上方から投光され、 観測対象部位 1 2がハンダ部位等の鏡 面反射特性を有するものであれば、 投光された白色光は観 測対象部位 1 2の各曲面要素において、 基準面に対する各 曲面要素の傾斜角に応じた方向に正反射される。
そして、 各再帰性反射体 4〜 6の方向に反射された白色 光は、 各再帰性反射体 4〜 6 に到達し、 赤色再帰性反射体 4では赤色光が、 緑色再帰性反射体 5では緑色光が、 青色 再帰性反射体 6では青色光が、 それぞれ入射方向に反射さ れ、 もと来た経路を戻り、 観測対象部位 1 2において受光 中心軸 1 1 の方向に反射され、 カラーテレビカメラ 8によ つて受光される。
このように、 実施の形態 2によれば、 受光中心軸 1 1 上 にその中心を有する環状白色光源 6 1 を受光中心軸 1 1 近 傍に設けるこ とによって、 ビームスブリ ツ夕が不要となる ため、 実施の形態 1 に比べ、 受光手段であるカラーテレビ カメラ 8 に受光される光量を大きくすることができ、 低コ ス ト化とメ ンテナンス性の向上を図ることができる。
なお、 実施の形態 2において、 第 8図に示すように、 環 状でない白色光源 7 1 を受光中心軸 1 1近傍に設けて投光 手段としてもよい。
(実施の形態 3 )
第 9図は、 本発明による物体観測装置の実施の形態 3を 示す構成図で、 第 1 図に示す構成要素と同一部分には同一 符号を付し、 その詳細説明は省略する。 第 9図において、 8 1 は鏡面反射特性を有する観測対象部位 1 2で反射され て入射する白色光の特定波長成分を、 入射方向に反射する ドーム状の再帰性反射体であり、 観測対象部位 1 2から見 た仰角によって反射する波長成分が連続的に変化するもの である。
たとえば仰角 0 , である領域は、 赤色波長成分を入射方 向に反射し、 仰角が小さ くなるに従って反射する波長成分 が黄、 綠、 …と連続的に変化し、 仰角が 0 2 である領域で は紫色の波長成分を反射する。
次に、 実施の形態 3の動作について説明する。 ビームス プリ ッ タ 3を介して観測対象部位 1 2に投光された白色光 は、 観測対象部位 1 2の各曲面要素において基準面に対す る各曲面要素の傾斜角に応じた方向に反射される。
そして、 仰角 0 2 〜 θ の方向に反射された白色光は再 帰性反射体 8 1 に到達し、 再帰性反射体 8 1 の仰角が異な る各領域において、 その仰角に対応した特定波長成分のみ が入射方向に反射される。 反射された赤色〜紫色の各有色 光は、 もと来た経路を戻り、 観測対象部位 1 2において受 光中心軸 1 1 の方向に反射される。
したがって、 カラーテレビカメラ 8 によって撮像され、 モニタ 9 に映し出された反射光像の力ラー画像において、 観測対象部位 1 2の各曲面要素は、 基準面に対する傾斜角 に応じた色に彩色されるので、 観測対象部位 1 2 にはその 三次元形状に応じて変化する色によって連続的に彩色され る。
第 1 0図はこのときのカラー画像の一例を示す説明図で、 9 1 は赤色彩色部分、 9 2は黄色彩色部分、 9 3 は緑色彩 色部分、 9 4 はシアン色彩色部分、 9 5 は青色彩色部分、 9 6は紫色彩色部分である。 このように観測対象部位 1 2 はその三次元形状に応じて赤色〜紫色に連続的に彩色され る。
このように、 実施の形態 3に示す物体観測装置によれば、 入射する白色光の特定波長成分を入射方向に反射するもの であり、 観測対象部位 1 2から見た仰角によって反射する 波長成分が連続的に変化する ドーム状の再帰性反射体 8 1 を再帰性反射手段と して用い、 カラー画像において観測対 象部位 1 2をその三次元形状に応じて変化する色によって 連続的に彩色することによって、 より精密な観測を行なう こ とができる。
なお、 実施の形態 3において、 鏡面反射特性を有する部 位を含む観測対象物体において、 鏡面反射部位の二次元形 状と位置がわかればよく、 この鏡面反射部位周辺のカラー 画像を必要としない場合、 たとえば観測対象物体に付着し た水滴を観測したい場合は、 カラ一テレビカメラ 8に代え てモノ クロテレビカメラを使用するこ とができ、 また波長 特性を有する再帰性反射体 8 1 に代えて波長特性を持たず、 入射光の全波長成分を入射方向に反射する再帰性反射体を 使用することができる。
第 1 1 図は、 このような物体観測装置によるモノ クロ画 像の一例を示す説明図で、 1 0 1 は観測対象物体 1 0 2上 の鏡面反射部位であり、 1 0 3 はモノ クロ画像において周 辺部より明度の高い部分であり、 鏡面反射部位 1 0 1 に対 応するものである。 このような物体観測装置によれば、 モ ノ クロテレビカメラを使用することによって低コス ト化を 図るこ とができる。
(実施の形態 4 )
第 1 2図は、 本発明による物体観測装置の実施の形態 4 を示す構成図で、 第 1 図に示す構成要素と同一部分には同 一符号を付し、 その詳細説明は省略する。 第 1 2図におい て、 4 Bは観測対象部位 1 2で反射されて入射する白色光 の赤色波長成分を入射方向に反射する赤色再帰性反射体で あり、 5 Bは観測対象部位 1 2で反射されて入射する白色 光の緑色波長成分を入射方向に反射する緑色再帰性反射体 であり、 6 Bは観測対象部位 1 2で反射されて入射する白 色光の青色波長成分を入射方向に反射する青色再帰性反射 体である。
これら赤色再帰性反射体 4 B、 緑色再帰性反射体 5 Bお よび青色再帰性反射体 6 Bは基準面 1 0からの高さは同一 であるが、 半径を違えることによって基準面 1 0 とカラー テレビカメラ 8の受光中心軸 1 1 の交点に位置する観測対 象部位 1 2から見た仰角 0 , 、 0 2 、 0 3 がそれぞれ異な るように円板 7 Bの下面に平板状かつ同心円上に配設され た設置された部材である。
次に、 実施の形態 4の動作について説明する。 白色光源 1 から放射された白色光はレンズ 2によって平行光にされ、 ビームスプリ ッタ 3によつてその一部が反射され、 観測対 象部 1 2にほぼ上方から投光される。 投光された白色光は 観測対象部位 1 2の各曲面要素において、 基準面 1 0 に対 する各曲面要素の傾斜角に応じた方向に正反射される。
そして、 各再帰性反射体 4 B〜 6 Bの方向に反射された 白色光は、 各再帰性反射体 4 B〜 6 Bに到達し、 赤色再帰 性反射体 4 Bでは赤色光が、 緑色再帰性反射体 5 Bでは綠 色光が、 青色再帰性反射体 6 Bでは青色光が、 それぞれ入 射方向に反射され、 もと来た経路を戻り、 観測対象部位 1 2において受光中心軸 1 1 の方向に反射され、 カラーテレ ビカメラ 8 によって受光される。
このように、 実施の形態 4によれば、 各再帰性反射体 4 B〜 6 Bを同一平面上に設けるととによって 2次元形状に 構成することができるため、 実施の形態 1 に比べ簡易な製 造方法によって構成することができる。
(実施の形態 5 )
第 1 3図は、 本発明による物体観測装置の実施の形態 5 を示す構成図で、 第 1 図に示す構成要素と同一部分には同 —符号を付し、 その詳細説明は省略する。 第 1 3図におい て、 1 1 1 は赤色フィルタ 1 1 2、 綠色フィルタ 1 1 3お よび青色フィ ル夕 1 1 4を有するフィ ルタ板であり、 1 1 5はこのフィルタ板 1 1 1 を回転駆動するモー夕である。 駆動モータ 1 1 5 によってフィルタ板 1 1 1 を所定時間 ごとに回転させ、 白色光源 1 とレンズ 2間の光路 1 1 6 に 赤色フィルタ 1 1 2、 綠色フィルタ 1 1 3および青色フィ ル夕 1 1 4を所定の時間間隔で順番に揷入するこ とによつ て、 赤色光、 綠色光および青色光をレンズ 2およびビーム スブリ ツ夕 3を介して観測対象部位 1 2に所定時間ごとに 順番に投光する。
1 1 7は赤色再帰性反射体 4、 綠色再帰性反射体 5 また は青色再帰性反射体 6を介して観測対象部位 1 2で反射さ れ、 ビームスプリ ツ夕 3を透過した反射光像を撮像してモ ノ クロ画像信号を出力するモノ クロテレビカメラである。
1 1 8はフ レームメモリ等を有し、 モノ クロテレビカメ ラ 1 1 7 より入射された、 前記各色フィル夕 1 1 2、 1 1 3、 1 1 4で撮像したモノ クロ画像信号を合成してカラー 画像信号を作成する力ラー画像信号作成回路である。
次に実施の形態 5の動作について説明する。 光路 1 1 6 に赤色フィルタ 1 1 2が挿入された場合、 赤色フ ィルタ 1 1 2による赤色光はレンズ 2によって平行光にされ、 ビー ムスブリ ツ夕 3によってその一部、 たとえば半分の光量が 反射されて観測対象部位 1 2に上方より投光され、 観測対 象部位 1 2の各曲面要素において、 基準面に対する各曲面 要素の傾斜角に応じた方向に反射される。 そして仰角 0 i の方向に反射された赤色光は赤色再帰性反射体 4 に到達し、 こ こで入射方向に反射され、 もと来た経路を戻り、 観測対 象部位 1 2において受光中心軸 1 1 の方向に反射される。
—方、 仰角 0 2 の方向に反射された赤色光は緑色再帰性 反射体 5に、 また仰角 0 3 の方向に反射された赤色光は青 色再生反射体 6に、 それぞれ到達するが、 緑色再帰性反射 体 5、 青色再帰性反射体 6の各波長特性のため反射されな い。
したがって、 赤色再帰性反射体 4で反射された赤色光の みがビームスプリ ッタ 3に到達し、 その一部、 たとえば半 分の光量がビームスプリ ッタ 3を透過してモノ クロテレ ビ カメラ 1 1 7 によって受光される。
同様にして、 光路 1 1 6に緑色フィルタ 1 1 3が挿入さ れた場合は、 綠色再帰性反射体 5で反射された緑色光のみ がビ一ムスプリ ッ タ 3 に到達し、 モノ クロテレ ビカメ ラ 1 1 7によって受光される。 また、 光路 1 1 6に青色フィ ル タ 1 1 4が挿入された場合は、 青色再帰性反射体 6で反射 された青色光のみがビームスプリ ッ夕 3に到達し、 モノ ク 口テレ ビカメラ 1 1 7によつて受光される。
カラー画像信号作成回路 1 1 8においては、 赤色光投光 時、 綠色光投光時および青色光投光時のモソ クロテレビ力 メラ 1 1 7による各モノ クロ面像信号のレベルをそれぞれ R、 G、 Bの信号のレベルとしてカラー画像信号を作成す る。 このカラー画像信号作成回路 1 1 8で作成されたカラ 一画像信号をモニタ 9 に入力すれば、 モニタ 9 には第 3図 に示すような観測対象部位 1 2のカラー画像が映し出され る 0
なお、 白色光源 1 から観測対象部位 1 2の頂点に投光さ れた光は、 そのまま受光中心軸 1 1 の方向に反射されてモ ノ クロテレビカメラ 1 1 7によつて受光されるので、 各色 光投光時に共通に受光される領域は無視するものとする。
このように実施の形態 5によれば、 赤色フィルタ 1 1 2、 綠色フィル夕 1 1 3および青色フィ ル夕 1 1 4を有するフ ィル夕板 1 1 1 を設け、 光路 1 1 6 に赤色フィル夕 1 1 2、 緑色フィルタ 1 1 3および青色フィ ルタ 1 1 4を順番に挿 入して、 赤色光、 緑色光および青色光を観測対象部位 1 2 に所定の時間間隔で順番に投光し、 各反射光像をモノ ク口 テレビカメラ 1 1 7でそれぞれ受光し、 力ラー画像信号作 成回路 1 1 8 において、 モノ クロテレ ビカ メラ 1 1 7によ る各モノ クロ画像信号を合成してカラー画像信号を作成す るこ とによって、 カラーテレビカメラを用いずに観測対象 部位 1 2のカラー画像を得るこ とができるので、 低コス ト 化を図ることができる。
なお、 実施の形態 5 においては、 第 1 4図に示すよう—に、 フィルタ扳 1 1 1 をモノ クロテレビカメラ 1 i 7の受光中 心軸 1 1上に設けてもよい。 また、 フィルタ板 1 1 1 およ びモー夕 1 1 5に代えて、 赤色フィル夕、 緑色フィルタお よび青色フィ ル夕をスライ ドのように順番に揷入する機構 を用いてもよい。
また、 フィ ルタ板 1 1 1 を用いずに、 第 1 5図に示すよ うに、 投光手段の白色光源 1 に代えて、 赤色光、 緑色光お よび青色光を所定の時間間隔で順番に放射する 3色光源 1 2 1 と、 この 3色光源 1 2 1 の発光色を制御するコ ン ト口 ーラ 1 2 2 とを設けてもよい。
(実施の形態 6 )
第 1 6図は、 本発明による物体観測装置の実施の形態 6 の示す構成図で、 第 1 3図に示す構成要素と同一部分には 同一符号を付し、 その詳細説明は省略する。
第 1 6図において、 1 2 5 は観測対象部位 1 2で反射さ れて入射する入射光の全波長成分を入射方向に反射する環 状の再帰性反射体であり、 1 2 6 はこの再帰性反射体 1 2 5を基準面 1 0 と平行に保持する支持バーであり、 1 2 7 はこの支持バー 1 2 6を上下方向に移動させる移動口 ッ ド である。 この移動ロ ッ ド 1 2 7 は駆動装置 (図示せず) に によって基準面 1 0 に対して垂直方向に駆動され、 再帰性 反射体 1 2 5を上段、 中断および下段の各位置に移動させ る Ο
次に、 実施の形態 6の動作について説明する。 白色光源 1 から放射された全波長成分を含む白色光はレンズ 2によ つて平行光にされ、 ビームスブリ ツタ 3によってその一部 が反射されて観測対象部位 1 2に上方から投光され、 観測 対象部位 1 2の各曲面要素において、 基準面に対する各曲 面要素の傾斜角に応じた方向に反射される。
いま、 再帰性反射体 1 2 5が図示のように仰角 0 2 の中 断の位置にあるとすると、 仰角 0 2 の方向に反射された白 色光のみが再帰性反射体 1 2 5に到達し、 こ こで入射方向 に反射され、 もと来た経路を戻り、 観測対象部位 1 2にお いて受光中心軸 1 1 の方向に反射される。 そして、 その一 部、 たとえば半分の光量がビームスプリ ッタ 3を透過して モノ クロテレビカメラ 1 1 7によつて受光される。
同様にして、 再帰性反射体 1 2 5が仰角 0 , の上段に移 動すると、 仰角 0 , の方向に反射された白色光のみが苒帰 性反射体 1 2 5に到達し、 ここで入射方向に反射され、 も と来た経路を戻り、 観測対象部位 1 2において受光中心軸 1 1 の方向に反射され、 ビームスプリ ッタ 3を透過してモ ノ クロテレビカメラ 1 1 7によって受光される。
また、 再帰性反射体 1 2 5が仰角 0 S の下段の位置に移 動すると、 仰角 0 3 の方向に反射された白色光のみが再帰 性反射体 1 2 5 に到達し、 ここで入射方向に反射され、 も と来た経路を戻り、 観測対象部位 1 2において受光中心軸 1 1 の方向に反射され、 ビームスブリ ツ夕 3を透過してモ ノ クロテレビカメラ 1 1 7によって受光される。
カラー画像信号作成回路 1 1 8 においては、 再帰性反射 体 1 2 5 の各位置におけるモノ クロテレ ビカメ ラ 1 1 7 に よる各モノ クロ画像信号のレベルをそれぞれ R、 G、 3の 信号のレベルとしてカラー画像信号を作成する。 このカラ 一画像信号作成回路 1 1 8で作成されたカラー画像信号を モニタ 9に入力すれば、 モニタ 9 には第 3図に示すような 観測対象部位 1 2のカラー画像が映し出される。
なお、 この場合も白色光源 1 から観測対象部位 1 2の頂 点に投光された光は、 そのまま受光中心軸 1 1 の方向に反 射されてモノ クロテレビカメラ 1 1 7によって受光される ので、 各光投光時に共通に受光される領域については無視 するものとする。
このように実施の形態 6によれば、 白色光を観測対象部 位 1 2に投光し、 再帰性反射体 1 2 5の各高さ位置に応じ て形成される反射光像をモノ クロテレ ビカメラ 1 1 7でそ れぞれ受光し、 カラ—面像信号作成回路 1 1 8において、 モノ クロテレビカメ ラ 1 1 7による各モノ クロ画像信号を 合成してカラー画像信号を作成するこ とによって、 カラー テレビカメラを用いずに、 またフィルタ板を用いずに観測 対象部位 1 2のカラー画像を得ることができるので、 低コ ス ト化を図ることができる。
なお、 実施の形態 6 においては、 再帰性反射体 1 2 5の 高さ位置を連続的に変化させることにより、 それに応じて 観測対象部位 1 2の各曲面要素を基準面に対する傾斜角一に 応じた色に彩色するようにすれば、 第 1 0図に示すように、 観測対象部位 1 2の 3次元形状に応じて変化する色によつ て連続的に彩色することができる。
(実施の形態 7 )
第 1 7図は、 本発明による物体観測装置の実施の形態 7 を示す構成図で、 同図には部品実装基板の部品実装部位を 検査する場合を例として示してある。 本実施の形態は、 実 施の形態 1 ないし実施の形態 6に示すような物体観測装置 によって得られた受光データを用いて、 観測対象部位の良 否を判定するものである。
第 1 7図において、 1 3 1 は部 α 実装基板 1 3 7がセッ トされ、 X Y方向に移動して部品実装部位 1 3 8を順次受 光中心軸 1 1 下に位置決めする移動部である。 1 3 2は実 施の形態 1 ないし実施の形態 6 に示すような物体観測装置 であり、 観測対象部位、 すなわち部品実装部位 1 3 8の力 ラー画像信号を出力するものである。
1 3 3は物体観測装置 1 3 2から出力されたカラー画像 信号に A Z D変換を施し、 得られたディ ジタルカラー画像 データに各種の画像処理を施す画像処理部であり、 1 3 4 は画像処理部 1 3 3で得られた処理画像データのバタ一ン 形状やパターン面積、 長さ、 あるいは R G B各色画像間の 差画像などから部品実装部位 1 3 7の良否を判定する判定 部であり、 1 3 5は面像処理部 1 3 3によるディ ジタル力 ラー画像データおよび処理画像データ、 判定部 1 3 4 によ る部品実装部位 1 3 8の良否判定結果等を記憶する記憶部 である。
1 3 6は移動部 1 3 1、 物体観測装置 1 3 2、 画像処理 部 1 3 3、 判定部 1 3 4および記憶部 1 3 5を統括制御す る制御部である。 移動部 1 3 1 および制御部 1 3 6は移動 手段を構成し、 画像処理部 1 3 3、 判定部 1 3 4、 記憶部 1 3 5および制御部 1 3 6は検査実行手段を構成する。 次に、 実施の形態 7の動作について説明する。 制御部 1 3 6は、 移動部 1 3 1 を動作させて部品実装部位 1 3 8 を 物体観測装置 1 3 2の受光中心軸 1 1下に位置決めし、 物 体観測装置 1 3 2を動作させて部品実装部位 1 3 8を撮像 してカラー画像信号を得る。 このカラー画像信号は画像処 理部 1 3 3に送られる。
続いて制御部 1 3 6は、 画像処理部 1 3 3を動作させて 物体観測装置 1 3 2より入力された部品実装部位 1 3 8の 力ラー画像信号をディ ジ夕ルカラ—画像データに A D変 換し、 このディ ジタル画像データに、 部品実装部位 1 3 8 の良否判定を行なうための各種の画像処理を施す。 この処 理面像データは判定部 1 3 4 に送られる。
続いて制御部 1 3 6は、 判定部 1 3 4を動作させて画像 処理部 1 3 .3から出力された処理画像データに基づいて、 部品実装部位 1 3 8のハンダの量や形状、 実装位置等の良 否を判定し、 この.判定結果を記憶部 1 3 5に記憶して、 部 品実装部位 1 3 8 の検査を終了する。
このように制御部 1 3 6 は、 移動部 1 3 1 を動作させて 部品実装基板 1 3 7の各部品実装部位 1 3 8を順次受光中 心軸 1 1下に位置決めし、 各部品実装部位 1 3 8 について 上記の検査を行なう。
以上のように、 実施の形態 7によれば、 実施の形態 1 な いし実施の形態 6に示すような物体観測装置によつて得ら れた受光データを用いて観測対象部位の良否判定検査を行 なうこ とによって、 検査工程における装置の低コス ト化、 メ ンテナンス性の向上、 調整作業の簡単化を図るこ とがで き、 また検査の高精度化を図ることができる。
産業上の利用可能性
以上のように、 本発明によれば、 それぞれ異なる特定波 長を入射方向に反射する複数の再帰性反射体を用いるこ と により、 光源を単一光源とすることができるので、 低コス ト化を図るこ とができ、 またメ ンテナンス性を向上するこ とができる、 鏡面反射特性を有する部分を含む物体の観測 装置および方法が提供できる。

Claims

請求の範囲
1 . 物体の観測対象部位に所定の光路を経て光を投光する 投光手段と、
前記観測対象部位で反射されて入射された前記光を入射 方向に反射する再帰性反射手段と、
前記再帰性反射手段および前記観測対象部位で反射され 前記所定の光路を介して入射された前記光を受光する受光 手段とを具備するこ とを特徵とする物体観測装置。
2 . 前記再帰性反射手段を、 前記観測対象部位の中央に対 して環状に配設したことを特徵とする請求の範囲第 1項記 載の物体観測装置。
3 . 前記再帰性反射手段を、 前記観測対象部位の中央に対 して ドーム状に配設したことを特徵とする請求の範囲第 1 項記載の物体観測装置。
4 . 前記再帰性反射手段を複数備え、 前記観測対象部位の 中央からの仰角が異なる位置にそれぞれ配置したことを特 徵とする請求の範囲第 1 項記載の物体観測装置。
5 . 前記再帰性反射手段を、 前記観測対象部位の中央に対 して環状に複数備え、 前記観測対象部位の中央からの仰角 が異なる位置にそれぞれ配置したことを特徵とする請求の 範囲第 1項記載の物体観測装置。
6 . 前記再帰性反射手段は、 前記観測対象部位からの反射 光の特定波長を反射するものであるこ とを特徵とする、 請 求の範囲第 1 項ないし第 5項のいずれかに記載の物体観測 装置。
7 . 前記再帰性反射手段は、 前記観測対象部位の中央から の仰角によつて反射する特定波長が連铙的に変化するもの であることを特徵とする、 請求の範囲第 1 項ないし第 3項 のいずれかに記載の物体観測装置。
8 . 前記複数の再帰性反射手段は、 それぞれ異なる特定波 長を反射するものであることを特徵とする、 請求の範囲第 4項または第 5項に記載の物体観測装置。
9 . 前記投光手段は、 光源と、 前記光源の放射光を反射し て前記観測対象部位に投光し、 前記観測対象部位から反射 された光を透過させて前記受光手段に入射させるビームス ブリ ツ夕を有するものであることを特徵とする、 請求の範 囲第 1 項ないし第 5項のいずれかに記載の物体観測装置。
1 0 . 前記投光手段は、 前記受光手段の受光軸の近傍に配 設され、 前記観測対象都位に光を投光する光源を有する も のであることを特徵とする、 請求の範囲第 1項ないし第 5 項のいずれかに記載の物体観測装置。
1 1 . 前記投光手段の光源は、 前記受光手段の受光軸を中 心とした環状光源であることを特徴とする、 請求の範囲第 1 0項記載の物体観測装置。
1 2 . 物体の観測対象部位に白色光源からの白色光を所定 の光路を経て投光する投光手段と、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に環状に配置され前記観測対象部位で反射されて入射さ れた前記白色光の少なく とも 2つの色波長成分をそれぞれ 入射方向に反射する複数の再帰性反射手段と、
前記再起性反射手段および前記観測対象部位で反射され 前記所定の光路を介して入射された前記少なく とも 2つの 色波長成分をそれぞれ識別して受光する受光手段とを具備 するこ とを特徴とする物体観測装置。
1 3 . 物体の観測対象部位に白色光源からの白色光を所定 の光路を経て投光する投光手段と、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に環状に配置され前記観測対象部位で反射されて入射さ れた前記白色光の赤色波長成分、 緑色波長成分または青色 波長成分をそれぞれ入射方向に反射する複数の再帰性反射 手段と、
前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射された赤色光、 綠色光およ び青色光をそれぞれ識別して受光する受光手段とを具備す ることを特徵とする物体観測装置。
1 4 . 物体の観測対象部位に白色光源からの白色光を所定 の光路を柽て投光する投光手段と、
前記観測対象部位の中央に対して ドーム状に配置され前 記観測対象部位で反射されて入射された前記白色光の特定 波長を入射方向に反射し前記観測対象部位の中央からの仰 角によつて前記特定波長が連铳的に変化する再帰性反射手 段と、 前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射された前記特定波長の光を 受光する受光手段とを具備することを特徴とする物体観測 装置。
1 5 . 少なく とも 2つの色波長成分の光を所定の時間間隔 で所定の光路を経て物体の観測対象部位に順次投光する投 光手段と、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置され前記観測対象部位で反射されて入射された前 記少なく とも 2つの色波長成分をそれぞれ入射方向に反射 する少なく とも 2つの再帰性反射手段と、
前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射される前記少なく とも 2つ の色波長成分を順次受光する 2次元受光素子とを有する受 光手段とを具備することを特徵とする物体観測装置。
1 6 . 白色光源の投光軸上に赤色、 綠色および青色の各色 フィル夕を所定の時間間隔で変更することによつて前記各 色フィ ルタを透過した赤色光、 綠色光および青色光を所定 の光路を経て物体の観測対象部位に順次投光する投光手段
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置され、 前記観測対象部位で反射されて入射された 前記各色光の赤色波長成分、 緑色波長成分または青色波長 成分をそれぞれ入射方向に反射する複数の再帰性反射手段 前記再帰性反射手段および前記観測対象部位で反射され 前記所定の光路を介して入射される前記各色波長成分を順 次受光するモノ クロテレ ビカ メ ラを有する受光手段とを具 備することを特徴とする物体観測装置。
1 7 . 物体の観測対象部位に白色光源からの白色光を所定 の光路を経て投光する投光手段と、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置され、 前記観測対象部位で反射されて入射された 前記白色光の赤色波長成分、 緑色波長成分または青色波長 成分をそれぞれ入射方向に反射する複数の再帰性反射手段 と、
前記再帰性反射手段および前記観 M対象部位で反射され、 前記所定の光路を介して入射される前記各波長成分を受光 するモノ クロテレビカメラの受光軸上に、 赤色、 緑色およ び青色の各色フィルタを所定の時間間隔で変更するこ とに よって前記各色フィルタを透過した赤色光、 綠色光または 青色光を順次受光する受光手段とを具備することを特徴と する物体観測装置。
1 8 . 赤色光、 綠色光および青色光を所定の時間間隔で変 更する 3色光源からの前記各色光を所定の光路を経て物体 の観測対象部位に順次投光する投光手段と、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置され、 前記観測対象部位で反射されて入射された 前記各色光の赤色波長成分、 緑色波長成分または青色波長 成分をそれぞれ入射方向に反射する複数の再帰性反射手段 と、
前記再帰性反射手段および前記観測対象部位で反射され、 前記所定の経路を介して入射される前記各色波長成分を順 次受光するモノ クロテレ ビカ メ ラを有する受光手段とを具 備することを特徵とする物体観測装置。
1 9 . 少なく とも 2つの色波長成分の光を同時にまたは所 定の時間間隔で所定の光路を経て物体の観測対象部位に投 光する投光手段と、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置されて前記観測対象部位で反射されて入射された 前記少なく とも 2つの色波長成分をそれぞれ入射方向に反 射する少なく とも 2つの再帰性反射手段と、
前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射される前記少なく とも 2つ の色波長成分を順次受光する二次元受光素子を有する受光 手段とを具備するこ とを特徵とする物体観測装置。
2 0 . 前記受光手段による受光データに基づいて前記観測 対象部位の鏡面反射部分を検知し、 その検知結果に基づい て前記観測対象部位の良否を判定する検査実行手段を具備 するこ とを特徵とする請求の範囲第 1項ないし第 5項のい ずれかに記載の物体観測装置。
2 1 . 物体の観測対象部位に投光手段からの光を所定の光 路を経て投光し、
前記観測対象部位で反射されて入射される前記光を再帰 性反射手段によって入射方向へ反射させ、
前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射される前記光を受光手段に よって受光することを特徴とする物体観測方法。
2 2 . 前記観測対象部位の中央に対して環状に配設した前 記再帰性反射手段によって、 前記観測対象部位からの反射 光を入射方向に反射させることを特徵とする請求の範囲—第 2 1項記載の物体観測方法。
2 3 . 前記観測対象部位の中央に対してドーム状に配設し た前記再帰性反射手段によって、 前記観測対象部位からの 反射光を入射方向に反射させることを特徵とする、 請求の 範囲第 2 1項記載の物体観測方法。
2 4 . 前記観測対象部位の中央からの仰角が異なる位置に それぞれ配置した複数の前記再帰性反射手段によって、 前 記観測対象部位からの反射光を入射方向に反射させるこ と を特徴とする請求の範囲第 2 1 項記載の物体観測方法。
2 5 . 前記観測対象部位の中央に対して環状に、 かつ前記 観測対象部位の中央からの仰角が異なる位置にそれぞれ配 設した複数の前記再帰性反射手段によって、 前記観測対象 部位からの反射光を入射方向に反射させることを特徵とす る請求の範囲第 2 1項記載の物体観測方法。
2 6 . 前記観測対象部位からの反射光の特定波長を反射す る前記再帰性反射手段によって、 前記観測対象部位からの 反射光の特定波長成分を入射方向に反射させるこ とを特徵 とする請求の範囲第 2 1 項ないし第 2 5項のいずれかに記 載の物体観測方法。
2 7 . 前記観測対象部位の中央からの仰角によって反射す る特定波長が連铳的に変化する前記再帰性反射手段によつ て、 前記観測対象部位からの反射光の、 前記仰角に応じた 波長成分を入射方向に反射させることを特徴とする請求の 範囲第 2 1項または第 2 3項に記載の物体観測方法。
2 8 . それぞれ部分的に異なる特定波長を反射する前記再 帰性反射手段によって、 前記観測対象部位からの反射光の 特定波長成分を入射方向に反射させることを特徴とする請 求の範囲第 2 4項または第 2 5項のいずれかに記載の物体 観測方法。
2 9 . 物体の観測対象部位に白色光源を有する投光手段か らの白色光を所定の光路を経て投光し、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 匿に環伏に配置された複数の再帰性反射手段によって前記 観測対象部位で反射されて入射された前記白色光の赤色波 長成分、 緑色波長成分または青色波長成分を入射方向にそ れぞれ反射させ、
前記再帰性反射手段および前記観測対象部位で反射され 前記所定の光路を介して入射された赤色光、 綠色光および 青色光を受光手段によって受光するこ とを特徴とする物体 観測方法。
3 0 . 物体の観測対象部位に白色光源を有する投光手段か らの白色光を所定の光路を経て投光し、
前記観測対象部位の中央に対して ドーム状に配置された 再帰性反射手段によって前記観測対象部位で反射されて入 射された前記白色光を前記観測対象部位の中央からの仰角 によって変化する特定波長を入射方向に反射し、
前記再帰性反射手段および前記観測対象部位で反射され 前記所定の光路を介して入射された前記特定波長の光を受 光手段によって受光することを特徵とする物体観測方法。
3 1 . 物体の観測対象部位に投光手段から少なく とも 2つ の色波長成分の光を同時にまたは所定の時間間隔で所定の 光路を経て投光し、
前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置された少な く とも 2つの再帰性反射手段によって 前記観測対象部位に反射されて入射された前記少なく とも 2つの色波長成分をそれぞれ入射方向に反射し、
前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射された前記少なく とも 2つ の色波長成分を 2次元受光素子を有する受光手段によつて 順次受光することを特徵とする物体観測方法。
3 2 . 物体の観測対象部位に投光手段から少なく とも 2つ の色波長成分の光を所定の時間間隔で所定の光路を経て順 次投光し、 前記観測対象部位の中央からの仰角がそれぞれ異なる位 置に配置された少なく とも 2つの再帰性反射手段によつて 前記観測対象部位に反射されて入射された前記少なく とも 2つの色波長成分をそれぞれ入射方向に反射し、
前記再帰性反射手段および前記観測対象部位で反射され て前記所定の光路を介して入射された前記少なく とも 2つ の色波長成分を二次元受光素子を受光手段によって順次受 光することを特徵とする物体観測方法。
3 3 . 前記受光手段による受光データに基づいて前記観測 対象部位の鏡面反射部分を検査実行手段によって検知し、 その検知結果に基づいて前記観測対象部位の良否を判定す るこ とを特徵とする請求の範囲第 2 1 項ないし第 2 5項お よび第 2 9項ないし第 3 2項のいずれかに記載の物体観測 法。
PCT/JP1996/001437 1995-05-31 1996-05-29 Procede et appareil d'observation d'objet WO1996038709A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970700764A KR970705006A (ko) 1995-05-31 1996-05-29 물체관측장치 및 방법
EP96919983A EP0773426A1 (en) 1995-05-31 1996-05-29 Object observation apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/155551 1995-05-31
JP15555195 1995-05-31

Publications (1)

Publication Number Publication Date
WO1996038709A1 true WO1996038709A1 (fr) 1996-12-05

Family

ID=15608542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001437 WO1996038709A1 (fr) 1995-05-31 1996-05-29 Procede et appareil d'observation d'objet

Country Status (5)

Country Link
EP (1) EP0773426A1 (ja)
KR (1) KR970705006A (ja)
CN (1) CN1158160A (ja)
TW (1) TW296429B (ja)
WO (1) WO1996038709A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129283A1 (zh) * 2019-12-27 2021-07-01 苏州康代智能科技股份有限公司 一种用于自动光学检测设备的照明装置及成像系统
US11519718B2 (en) * 2018-07-26 2022-12-06 Sikora Ag Device and method for determining a measurement of a strand-shaped object

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065861A2 (en) * 2000-03-02 2001-09-07 Roane Jerry M Method and apparatus for recording multiple perspective images
EP2551634A1 (de) * 2011-07-26 2013-01-30 Alicona Imaging GmbH Retroflektierender Probenhalter und Messeinrichtung
DE102011108599A1 (de) * 2011-07-27 2013-01-31 Byk-Gardner Gmbh Vorrichtung und Verfahren zur Untersuchung von Beschichtungen mit Effektpigmenten
JP5701837B2 (ja) * 2012-10-12 2015-04-15 横河電機株式会社 変位センサ、変位測定方法
JP7000037B2 (ja) * 2017-05-12 2022-01-19 株式会社ミツトヨ 三次元測定機および三次元測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282410A (ja) * 1988-05-09 1989-11-14 Omron Tateisi Electron Co 曲面性状検査装置
JPH04105009A (ja) * 1990-08-23 1992-04-07 Diffract Ltd 逆反射を利用した表面検査及び歪み測定のための方法及び装置
JPH04315906A (ja) * 1991-04-16 1992-11-06 Fujitsu Ltd 外観検査装置
JPH05259031A (ja) * 1992-03-12 1993-10-08 Nikon Corp 傾き検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282410A (ja) * 1988-05-09 1989-11-14 Omron Tateisi Electron Co 曲面性状検査装置
JPH04105009A (ja) * 1990-08-23 1992-04-07 Diffract Ltd 逆反射を利用した表面検査及び歪み測定のための方法及び装置
JPH04315906A (ja) * 1991-04-16 1992-11-06 Fujitsu Ltd 外観検査装置
JPH05259031A (ja) * 1992-03-12 1993-10-08 Nikon Corp 傾き検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11519718B2 (en) * 2018-07-26 2022-12-06 Sikora Ag Device and method for determining a measurement of a strand-shaped object
WO2021129283A1 (zh) * 2019-12-27 2021-07-01 苏州康代智能科技股份有限公司 一种用于自动光学检测设备的照明装置及成像系统

Also Published As

Publication number Publication date
CN1158160A (zh) 1997-08-27
KR970705006A (ko) 1997-09-06
TW296429B (ja) 1997-01-21
EP0773426A1 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US7626709B2 (en) Device for examining the optical properties of surfaces
US9243897B2 (en) Three-dimensional measuring device and three-dimensional measuring system
KR101257586B1 (ko) 광축 조정 장치, 광축 조정 방법 및 투사형 표시 장치
CN103069436B (zh) 照明系统
US7130033B2 (en) Portable device for measuring the light intensity from an object, and the use of such a device
US6927862B2 (en) Three-dimensional shape and color detecting apparatus
CN109154661A (zh) 用于基于lidar的3-d成像的集成照射和检测
US6688744B2 (en) Back projection visual field tester
JP2003107390A (ja) 画像装置の視野内の照明濃度を増加するための方法及び装置
JP2002214143A (ja) 検査用照明装置
US7256895B2 (en) Spherical scattering-light device for simultaneous phase and intensity measurements
JP2008026236A (ja) 位置姿勢測定装置および位置姿勢測定方法
JP2019124600A (ja) 画像検査装置および照明装置
WO1996038709A1 (fr) Procede et appareil d'observation d'objet
RU2543680C2 (ru) Оптический отражатель с полуотражающими пластинами для устройства отслеживания положения шлема и шлем, содержащий такое устройство
JPH0949803A (ja) 物体観測装置および方法
JPH0672046U (ja) 検査装置用照明装置
US20080013158A1 (en) Perspective switching optical device for 3D semiconductor inspection
JP4540013B2 (ja) 平行光出力ユニット、プロジェクタ、および立体像表示ユニット
CN115769258A (zh) 用于漫射照明和结构光的投影仪
EP0982705B1 (en) Thin illuminator for reflective displays
TW202344911A (zh) 光照射裝置及光無線通信系統
CN116170575A (zh) 一种发光组件、检测装置及检测控制方法
JPH10213482A (ja) 色彩測定装置
WO1996038709B1 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190695.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 1997 776253

Country of ref document: US

Date of ref document: 19970128

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970700764

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996919983

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996919983

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970700764

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996919983

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970700764

Country of ref document: KR