WO1996027734A1 - Anordnung zur reduzierung der abgasemission eines verbrennungsmotors mit abgaskatalysator - Google Patents

Anordnung zur reduzierung der abgasemission eines verbrennungsmotors mit abgaskatalysator Download PDF

Info

Publication number
WO1996027734A1
WO1996027734A1 PCT/EP1996/000981 EP9600981W WO9627734A1 WO 1996027734 A1 WO1996027734 A1 WO 1996027734A1 EP 9600981 W EP9600981 W EP 9600981W WO 9627734 A1 WO9627734 A1 WO 9627734A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement according
pipe
load pipe
exhaust gas
load
Prior art date
Application number
PCT/EP1996/000981
Other languages
English (en)
French (fr)
Inventor
Oskar Schatz
Original Assignee
Schatz Thermo Gastech Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schatz Thermo Gastech Gmbh filed Critical Schatz Thermo Gastech Gmbh
Priority to US08/737,386 priority Critical patent/US5934071A/en
Priority to JP8526615A priority patent/JPH10500191A/ja
Publication of WO1996027734A1 publication Critical patent/WO1996027734A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/02Arrangements for controlling or regulating exhaust apparatus using electric components only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to an arrangement for reducing the exhaust gas emission of an internal combustion engine, in particular a motor vehicle, with an exhaust gas line which can be connected to the exhaust gas outlets of an internal combustion engine and a catalytic converter which can be acted upon from the exhaust gas line, the exhaust gas line between the engine and catalytic converter at least via one Part of its length in terms of its thermal reaction to the exhaust gases has differently configured line branches in the form of at least one partial load pipe and at least one full load pipe which is in heat exchange with the surroundings, the distribution of the exhaust gas flow over the line branches via a function of the operating parameters of the system adjustable control device is optionally controllable.
  • the engines are further improved to comply with these regulations and the exhaust gas catalytic converters are equipped with electrical heating during a cold start, and with a heat-insulated exhaust pipe between the engine and catalytic converter, because the possibilities for improving the exhaust gas values are above all In the reduction of the high exhaust gas emissions during the cold start, which are based on the fact that the catalytic converter has not yet reached the operating temperature required for its function.
  • Catalyst heaters using fuel burners are also under discussion, as are HC traps which collect the hydrocarbons when the engine is cold and store them temporarily until the engine and catalytic converter are ready for operation.
  • the electrically heated catalytic converter is given the greatest opportunities for the future.
  • HC and CO can only burn completely if there is sufficient atmospheric oxygen
  • NO x formation increases sharply if there is an excess of 0 2 .
  • the fuel greasing also exacerbates the formation of HC and CO peaks that arise as a result of transient mixture changes in the gear shift or the associated speed jumps of the engine.
  • Fuel enrichment also increases fuel consumption, especially in local traffic. At the same time, the catalysts are cold on cold start and therefore not effective.
  • the FTP test consists of three sections or bags, namely bag 1: cold start and warm-up, - bag 2: operation when the engine and catalytic converter are warm and bag 3: restart of the engine 10 minutes after the end of bag 2.
  • bag 1 cold start and warm-up
  • - bag 2 operation when the engine and catalytic converter are warm
  • bag 3 restart of the engine 10 minutes after the end of bag 2.
  • the catalytic converter is strong and the engine has cooled down only moderately.
  • Bag 1 begins with the cold start of the engine, which is followed by idling for 20 s, whereupon the engine accelerates the vehicle and generates a very high HC and CO emission peak. Further such emission peaks follow each other through accelerations and switching processes between engine and transmission.
  • a restart of the catalyst heating would also make sense even in the event of interruptions in driving or driving situations with a heat deficit or ambient temperatures which are frequently found in real driving traffic and which are usually far below the test temperatures of the FTP test of 20 ° C.
  • the real ambient temperatures are interesting because the harmful exhaust gas emissions from motor vehicles with a low ambient temperature increase sharply.
  • DE-OS 23 03 773 proposes to meet these conflicting requirements by dividing the exhaust pipe between the engine and catalytic converter into two branches, which differ significantly in length, the longer branch being looped and thus should enable sufficient cooling of the exhaust gases at full load, even if the catalytic converter is arranged relatively close to the engine and therefore exhaust gas can be directly applied to the short line branch during start and part-load operation until the desired operating temperature is reached.
  • This construction requires a lot of space for the long line branch which is arranged in a loop, which is often not available in the engine compartment of a motor vehicle.
  • the exhaust gas is to be fed to the still cold catalytic converter in a relatively uncooled state because it flows through the small cross section of the line branch used more quickly than would occur through the total cross section of both branches of the exhaust line.
  • the exhaust gas can only give off a little heat to the pipe and thus to the environment.
  • both line branches are in contact with the ambient air and the heat of the exhaust gas can thus be given off to the environment directly via the line wall.
  • the invention is based on the object of making an arrangement of the type described at the outset even more effective without any particular expense and weight, in particular in order to further reduce the cooling of the exhaust gas in the line branch flowed through at the start or at partial load, and in the event of a lack of heat on the Catalyst to feed the exhaust gases at the highest possible temperature, preferably at a temperature above the catalytic action temperature of approx.
  • the engine should be able to be heated up more quickly in order to obtain faster exhaust gases with an increased temperature, to reduce the HC and CO emissions of the engine, and to switch off the fuel richness earlier or to use the ⁇ control of the catalytic converter earlier regulates stoichiometric operation.
  • the fuel consumption and the consumption of electrical energy are to be minimized and the cabin heating should at least not be reduced.
  • a part-load pipe is arranged in the interior of a full-load pipe in such a way that the full-load pipe has an annular flow cross section which shields the part-load pipe against heat losses, so that when the annular space is blocked between the part-load pipe and Full load pipe this annulus acts as an insulating gap and the full load pipe acts as protection against heat radiation from the partial load pipe into the environment.
  • part-load pipe and full-load pipe are chosen for easy distinction with reference to relevant operating states.
  • Full load is understood to mean an operating state whose exhaust gas temperature corresponds at least to the operating temperature of the catalytic converter
  • partial load is understood to mean an operating state whose exhaust gas and catalytic converter temperature is lower than the operating temperature of the catalytic converter.
  • pipe is intended neither to exclude other lines suitable for conducting gases, nor to lines which comprise more than one pipe or have a cross section other than circular.
  • the partial load pipe can be thermally insulated and its cross section can be designed for the special features of operation with a heat deficit and can therefore be very small in comparison to the flow cross section provided for full load, in which the flow cross section of the partial load pipe can be included. This serves to shorten the residence time of the exhaust gases between the engine and catalytic converter, as well as to reduce the heat-exchanging pipe area and thus to minimize the heat losses.
  • the part-load pipe can be designed so narrow that the backflow of the exhaust gases causes the engine to heat up quickly, which increases the exhaust gas temperature, reduces the formation of CO and HC, and enables controlled catalytic converter operation earlier. Such an accumulation effect can also be brought about by an additional accumulation valve, or the motor can be heated up in a matter of seconds, for example by a heat accumulator.
  • the flow cross section of the partial load pipe based on the constant flow velocity of the exhaust gases, can be 10 to 100 times smaller than that of the full load pipe, depending on the selection of the switching conditions between partial load and full load with regard to the quantity and temperature of the exhaust gases, Backwater, etc.
  • the valve comprises a valve flap which is arranged in the cross-sectional area of one end of the partial load tube and blocks the annular gap in the closed position and which has an opening which keeps the flow cross section of the partial load tube free in the closed position.
  • an advantageous embodiment consists in that the partial load pipe on the engine side is led with a branched end into the branches of the exhaust manifold forming a section of the full load pipe and that the valve on Outlet of the partial load pipe is arranged.
  • the part-load pipe is guided up to directly in front of the catalytic converter, which means that
  • the mouth of the partial load pipe in front of the catalytic converter is expanded so that the flow of the partial cross section of the catalytic converter does not correspond to the possibly very small cross section of the
  • Partial load pipe remains limited.
  • An expedient embodiment also consists in the upstream of the catalyst serving as the main catalyst being preceded by a precatalyst, the exhaust gases of which heat up the main catalyst, the precatalyst preferably being arranged in the flow path of the exhaust gases flowing through the part-load pipe.
  • This arrangement of the pre-catalytic converter allows it to be arranged in a heat-insulated manner and it can be subjected to the high speeds in the part-load pipe, which favors the rapid heating of the catalytic surfaces without the heat penetrating too quickly into the support material.
  • the pre-catalyst is connected to the downstream end of the part-load pipe.
  • the end face of the pre-catalyst can be significantly smaller than the end face of the main catalyst.
  • Pre-catalytic converter and main catalytic converter can therefore be combined with one another in a very advantageous embodiment in such a way that the cross section of the main catalytic converter is the full load pipe fills and is larger than the cross section of the precatalyst, that the main catalytic converter connects directly to the precatalyst, that the part-load pipe inside the full-load pipe widens in a funnel shape to the cross section of the precatalyst and, before this expansion, extends around its circumference is provided with openings.
  • the material of the partial load tube preferably has a low specific heat capacity. Another measure serving this purpose is that the part-load pipe is of very thin-walled design.
  • the partial load pipe should have a very low thermal conductivity, e.g. in a stainless steel version with a high nickel content.
  • FIG. 1 shows a schematic representation of the exhaust system of an internal combustion engine to explain the basic principle of the invention
  • FIG. 2a shows the exhaust manifold of a four-cylinder internal combustion engine with a conventional type of exhaust pipe leading to a catalytic converter, ig. 2b, an exhaust pipe designed according to the invention and replacing the exhaust pipe according to FIG. 2a, ig. 2c a representation similar to FIG. 2b with another embodiment according to the invention
  • 3 shows a detailed view of an embodiment with an enlarged mouth of the partial load pipe
  • FIG. 4 shows a representation similar to FIG. 3 with a pre-catalyst
  • FIG. 5 another variant similar to FIG. 4, FIG. 6 another embodiment with the possibility of a recirculation flow via the main converter,
  • FIG. 7 shows an exhaust system similar to FIG. 2c with a heat exchanger connected downstream of the catalytic converter
  • FIG. 7a shows a larger-scale detail view of the valve for blocking the full-load pipe
  • FIG. 8 shows a variant of the schematic illustration in FIG. 1 with a pre-catalytic converter that can be switched on and off.
  • 10 denotes an internal combustion engine, the exhaust gases of which are discharged via an exhaust line 12 containing a catalytic converter or catalyst 14.
  • the exhaust pipe 12 On most of the route between the engine 10 and the catalytic converter 14, the exhaust pipe 12 is formed by two parallel branches 12a and 12b.
  • a shutoff valve 16 is located in branch 12a. If this valve 16 is closed, the exhaust gases are fed to catalytic converter 14 only via branch 12b, which runs within branch 12a.
  • the line branch 12a is designed in such a way that it promotes heat release to the surroundings, while the line branch 12b, according to the choice of material, flow cross section and arrangement, is intended to prevent heat loss of the exhaust gas flowing through it as effectively as possible.
  • the valve 16 is controlled by a control, not shown, which directly or indirectly processes the exhaust gas temperature of the engine 10 and / or the temperature in the region of the catalytic converter 14, so that the valve 16 is closed when there is a need for heat on the catalytic converter in order to achieve or maintain full effectiveness.
  • the exhaust manifold 13 and the subsequent line section 15 leading to the catalytic converter 14 are each double-walled with an outer tube 13a or 15a and an inner tube 13b or 15b, the exhaust gas being guided in the thin-walled inner tube 13b or 15b and the annular space between outer tube 13a and 15a, on the one hand, and inner tube 13b or 15b, on the other hand, is not flowed through and serves as an insulating gap.
  • the part-load pipe 12b can have a substantially smaller cross-section than the full-load pipe 12a, so that the part-load pipe 12b - as shown in FIG. 2b - can be arranged inside the full-load pipe 12a.
  • the cross section of the partial load tube 12b is considerably smaller than the cross section of the outer one, which envelops the partial load tube 12b to form an annular space.
  • the full-load pipe 12a and the partial-load pipe 12b are, for example, arranged eccentrically in the full-load pipe 12a in such a way that it runs at a distance from a longitudinal center plane and the inner wall of the full-load pipe 12a.
  • control valve 16 can be designed as a simple rotary flap 18, the axis of rotation 20 of which runs in this diametrical plane and which in the closed position can cover the cross section of the full-load pipe 12a.
  • the region of the rotary flap 18 covering the flow cross section of the partial load tube 12b in this closed position is provided with an opening 22, so that the exhaust gas can flow solely over the partial load tube 12b.
  • both the end of the exhaust manifold 13 and the end of the full-load pipe 12a are provided with a cutout, each of which has a length corresponding to the thickness of the rotary flap 18 over the length the axis of rotation 20 certain diametrical plane is led out.
  • the rotary flap 18 bears against the section of the elbow 13 that is not cut out and the part-load pipe 12b.
  • an adjustable throttle valve which is assigned to the part-load pipe 12b and serves as a back-up valve, can be provided.
  • 2b shows such a backflow valve 23 at the end of the partial-load pipe 12b facing the catalytic converter 14.
  • FIG. 2c shows a variant in which the full-load pipe 12a continues in an exhaust manifold 13a with a simple wall and the partial-load pipe 12b is inserted into this manifold 13a and is displaced in a section 13b thereof. branches.
  • the valve 16 is arranged at the end of the tubes 12a and 12b facing the catalytic converter 14.
  • the part-load pipe 12b opens into a funnel-shaped extension 25 of the full-load pipe 12a, so that the catalytic converter 14 is fully charged with the exhaust gas emerging from the part-load pipe 12b.
  • the part-load pipe 12b ends directly in front of the catalytic converter 14, so that during part-load operation when the valve 16 is closed, only a partial cross section of the catalytic converter 14 exits from the part-load pipe 12b alone Exhaust gas is applied and is brought to the working temperature faster.
  • the cross section of the partial load tube 12b can be kept very small relative to the cross section of the full load tube 12a.
  • the mouth region of the partial load pipe 12b is widened in a funnel shape to the desired cross section.
  • FIG. 4 shows a similar arrangement, but here a pre-catalyst 24 is connected to the enlarged mouth of the partial load pipe 12b, which is arranged at a distance from the main catalytic converter 14 in the full load pipe 12a.
  • a pre-catalytic converter 24 is also provided, but this is arranged at a distance from the mouth of the part-load pipe 12b in the full-load pipe 12a, so that it is always acted upon by the entire exhaust gas flowing out in the exhaust pipe 12.
  • Pre-catalytic converter 24 is - as in FIG. 4 - connected to the end of partial-load pipe 12b, which widens in a funnel shape in front of pre-catalytic converter 24, and has a smaller cross-section than the one surrounding it Section of the Full load pipe 12a.
  • the main catalytic converter 14 connects directly to the end of the pre-catalytic converter 24 and completely fills the full-load pipe 12a. Before the funnel-shaped expansion of the partial load tube 12b, this is provided with a series of openings 25 on its circumference.
  • This arrangement creates a suction in the area of the openings 25 due to the venturi effect, which causes a backflow of the exhaust gas emerging from the main catalytic converter 14 over the edge zone of the main catalytic converter 14, which is thereby already preheated in part-load operation, and back into the part-load pipe 12b, while the inner region of the catalyst 14 is heated up more.
  • FIG. 7 shows an overview of an exhaust gas system with the variant already explained with reference to FIG. 2c, with some additional measures which promote the rapid heating of the system being shown, namely a throttle valve 26 or 28, a heat exchanger 30 and a heat accumulator 32, which is preferably designed as a latent heat accumulator.
  • the exhaust gas By closing a valve 26 arranged in the exhaust line 12 parallel to a bypass 34, the exhaust gas can be passed through a heat exchanger 30 arranged in the bypass 34, so that the waste heat still present, for example via the cooling water circuit or air or mixture preheating, the engine 10 can be supplied.
  • the fuel consumption of the engine in partial load operation can be reduced by 10 to 20%, whereby the performance of the cabin heating can increase.
  • the effect can be further increased by using the throttle valve 28, both by promoting the heat transfer in the heat exchanger 30 and by the back pressure acting in the engine 10.
  • the valve 26 can also be used as a throttle valve with a reaction on the engine 10 if the heat exchanger 30 is not to be used.
  • the coolant system of the engine 10 is schematically and designated by ⁇ Darge 36th It is associated with a latent heat accumulator 32, which can give off heat to the engine 10 in the event of a lack of heat, and the usual heat exchanger 38 for cabin heating.
  • the part-load pipe 12b runs partially outside the full-load pipe 12a in order to receive the pre-catalytic converter 24 and a valve 28 following it in this section.
  • the pre-catalytic converter 24 can be moved very close to the engine 10, which promotes rapid heating. So that the hot gas does not flow through it, it can be switched off by the valve 28.
  • the accumulation valve which can be used for rapid heating of the engine in start-up or part-load operation can be arranged at any point along the line path through which exhaust gas flows when valve 16 is closed (FIG. 1), that is to say, for example, also downstream of catalytic converter 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

Zur Reduzierung der Abgasemissionen von Verbrennungsmotoren, insbesondere Kraftfahrzeugmotoren, mit Abgaskatalysatoren werden zwischen Motor (10) und Katalysator (14) die Abgase abhängig vom Betriebszustand des Systems auf hinsichtlich ihrer thermischen Rückwirkung auf die Abgase unterschiedlich gestalteten Leitungswegen geführt und zwar in Form wenigstens eines von einem Vollastrohr (12a) unter Bildung eines Ringraums umschlossenen Teillastrohrs (12b).

Description

Anordnung zur Reduzierung der Abgasemission eines Verbrennungsmotors mit Abgaskatalysator.
Die Erfindung betrifft eine Anordnung zur Reduzierung der Ab¬ gasemission eines Verbrennungsmotors, insbesondere Kraftfahr¬ zeugmotors, mit einer an die Abgasauslässe eines Verbren- nungsmotors anschließbaren Abgasleitung und einem aus der Ab- gasleitung beaufschlagbaren Katalysator, wobei zwischen Motor und Katalysator die Abgasleitung zumindest über einen Teil ihrer Länge hinsichtlich ihrer thermischen Rückwirkung auf die Abgase unterschiedlich gestaltete Leitungszweige in Form wenigstens eines Teillastrohrs und wenigstens eines im Wärme¬ tausch mit der Umgebung stehenden Vollastrohrs aufweist, wo¬ bei die Verteilung des Abgasstroms auf die Leitungszweige über eine in Abhängigkeit von Betriebsparametern des Systems verstellbare Steuervorrichtung wahlweise steuerbar ist.
Für die Einhaltung der heute gültigen Emissionsvorschriften nach der amerikanischen Testvorschrift FTP genügt die Einhal¬ tung der Emissionsklassen TLEV und LEV (Transitional Low Emission Vehicles bzw. Low Emission Vehicles) . Hierfür reicht es aus, z. B. einen Ottomotor mit einer gut funktionierenden Luftmeßeinrichtung und einer präzisen Kraftstoffeinspritzung im Zusammenhang mit einem Abgaskatalysator zu betreiben. Die Abgasvorschriften werden jedoch ständig verschärft, so daß für die Einhaltung künftiger Vorschrif en, beispielsweise die Emissionsklassen ULEV und NZEV (Ultra Low Emission Vehicles bzw. Near Zero Emission Vehicles) weitere Verbesserungen er¬ forderlich sind. Das Gleiche gilt für die Europäische Norm EG
III.
Dem Stand der Technik entsprechend werden für die Einhaltung dieser Vorschriften die Motoren weiter verbessert und die Ab¬ gaskatalysatoren mit elektrischer Beheizung beim Kaltstart ausgestattet, sowie mit einem wärmeisolierten Abgasrohr zwi¬ schen Motor und Katalysator, weil die Möglichkeiten zur Ver- besserung der Abgaswerte vor allem in der Reduzierung der hohen Abgasemissionen beim Kaltstart zu suchen sind, die dar¬ auf beruhen, daß der Katalysator noch nicht die für seine Funktion erforderliche Betriebstemperatur erreicht hat. Ka¬ talysatorheizungen mittels Kraftstoffbrennern sind ebenso in der Diskussion wie HC-Fallen, die bei kaltem Motor die Koh¬ lenwasserstoffe auffangen und Zwischenlagern, bis Motor und Katalysator betriebsbereit sind. Dem elektrisch beheizten Katalysator werden jedoch die größten Chancen für die Zukunft eingeräumt.
Die Probleme des elektrisch beheizten Katalysators und ande¬ rer Maßnahmen werden durch die grundlegenden Eigenschaf en von Verbrennungsmotoren und Abgaskatalysatoren verursacht. Alle Verbrennungsmotoren emittieren beim Kaltstart, bis sie den betriebswarmen Zustand erreicht haben, große Mengen von Kohlenwasserstoffen und Kohlenmonoxyden, weil die Verbrennung sehr schlecht ist. Außerdem wird dem Motor zum Zwecke der Start- und Warmlauffähigkeit ein Überangebot an Kraftstoff zugeführt. Dies verursacht einen Konflikt mit den heute ge- bräuchlichen 3-Wege-Katalysatoren - so genannt, weil sie für die Konvertierung der drei Schadstoffe HC, CO und N0X ausge¬ legt sind - die nur dann voll wirksam sind, wenn ein stöchio- metrisches Kraftstoff/Luft-Verhältnis existiert. Einerseits können HC und CO nur dann vollkommen verbrennen, wenn genü- gend Luftsauerstoff vorhanden ist, andererseits nimmt die NOx-Bildung stark zu, wenn Über-schuß an 02 herrscht. Die Kraftstoffüberfettung verschärft außerdem die Bildung von HC- und CO-Spitzen, die infolge von transienten Gemischänderungen bei der Getriebeschaltung bzw. bei den damit verbundenen DrehzahlSprüngen des Motors entstehen. Die Kraftstoffanfet- tung erhöht außerdem den Kraftstoffverbrauch insbesondere im Nahverkehr. Gleichzeitig sind die Katalysatoren beim Kalt¬ start kalt und deshalb nicht wirksam.
Der FTP-Test besteht aus drei Abschnitten oder bags, nämlich bag 1: Kaltstart und Warmlauf, - bag 2: Betrieb im warmen Zustand von Motor und Kata¬ lysator und bag 3 : Wiederstart des Motors 10 min nach Beendigung von bag 2. Hierbei ist der Katalysator stark und der Motor nur mäßig abgekühlt.
Bag 1 beginnt mit dem Kaltstart des Motors, der von einem 20 s dauernden Leerlauf gefolgt wird, worauf der Motor das Fahr¬ zeug beschleunigt und dabei eine sehr hohe HC- und CO-Emis- sionsspitze erzeugt. Weitere solche Emissionsspitzen folgen jeweils durch Beschleunigungen und SchaltVorgänge zwischen Motor und Getriebe.
Während der ersten 20 s des Leerlaufs sind die Emissionen nicht bedeutsam. Deshalb wird diese Zeit genutzt, um den Katalysator z. B. elektrisch zu beheizen, so daß die kataly- tischen Wirkungsflächen bereits ihre ausreichende Wirkungs¬ temperatur von ca. 300 - 400 °C erreicht haben, wenn die er¬ ste hohe Emissionsspitze 20 s nach dem Kaltstart beginnt. Für die Beheizung des Katalysators sind hierbei 10 - 20 Kw elek- trischer Leistung erforderlich. Für diese Leistung ist eine verstärkte Fahrzeugbatterie oder sogar eine zusätzliche Bat¬ terie erforderlich und ein verstärkter Stromgenerator, um die Batterie baldmöglichst zu beladen. Hierdurch werden hohe Ko¬ sten und Gewichte verursacht. Wegen dieses hohen technischen und finanziellen Aufwands wird der Katalysator nur beim Kalt¬ start beheizt, nicht aber beim Warmstart in bag 3, wo dies von der Emissionsseite her auch sinnvoll wäre, weil der Kata- lysator in den 10 min Pause abkühlt. Auch bei im realen Fahr¬ verkehr häufig vorkommenden Fahrtunterbrechungen oder Fahr- situationen mit Wärmedefizit oder Umgebungstemperaturen, die üblicherweise weit unter den Testtemperaturen des FTP-Tests von 20°C liegen, wäre ein Wiederstart der Katalysatorbehei¬ zung sinnvoll. Die realen Umgebungstemperaturen sind deshalb interessant, weil die schädlichen Abgasemissionen von Kraft¬ fahrzeugen mit niedriger Umgebungstemperatur stark zunehmen.
Um nun den Aufwand für die elektrische Heizung des Katalysa¬ tors so gering wie möglich zu halten, versucht man, den Kata¬ lysator so weit wie möglich dem Motor zu nähern und die Wär¬ meverluste der Abgase in der Abgasleitung zu reduzieren. Die Einführung von wärmeisolierten Abgasleitungen zwischen Motor und Katalysator, wie beispielsweise die Verwendung eines dünnwandigen inneren Rohrs, das durch einen engen Luftspalt von einem äußeren, stärkeren Abgasrohr umgeben wird, geht in dieselbe Richtung. Mit beiden Maßnahmen kommt man jedoch in Konflikt mit Betriebssituationen, in denen ein Wärmeüberschuß besteht, wo nämlich die Abgase zu heiß für den Katalysator sind und dadurch thermisch bedingte Alterung der katalyti- schen Flächen verursachen. Durch lange Vollastfahrten auf der Autobahn oder bei langen Steigungen in gebirgigen Gegenden werden auch Totalschäden durch Überhitzung verursacht. Es sind sogar Entwicklungen im Gange, solche Wärmeschäden in nicht regulierten, also realen Betriebszuständen zu vermei¬ den, indem ein Überschuß an Kraftstoff zur Kühlung des Kata¬ lysators eingespritzt wird. Auf diese Weise wird der Sinn des Katalysators verkehrt und außerdem Kraftstoff vergeudet.
Die effektivste Maßnahme gegen thermische Schäden des Kataly¬ sators ist, den Katalysator weiter vom Motor zu entfernen, so daß die Abgase auf dem Weg zwischen Motor und Katalysator genügend abkühlen. Dies ist aber gerade dem Wunsch entgegen- gesetzt, bei Betriebszuständen mit Wärmemangel den Katalysa¬ tor motornah anzuordnen. In der DE-OS 23 03 773 wird vorgeschlagen, diese einander widerstreitenden Forderungen dadurch zu erfüllen, daß die Abgasleitung zwischen Motor und Katalysator in zwei Zweige aufgeteilt wird, die sich deutlich in ihrer Länge voneinander unterscheiden, wobei der längere Zweig schleifenförmig ge¬ führt wird und dadurch bei Vollast eine ausreichende Abküh¬ lung der Abgase ermöglichen soll, auch wenn der Katalysator relativ nahe am Motor angeordnet wird und deshalb beim Start und Teillastbetrieb bis zum Erreichen der Sollbetriebstempe- ratur über den kurzen Leitungszweig direkt mit Abgas beauf¬ schlagt werden kann.
Diese Konstruktion erfordert für den schleifenförmig angeord¬ neten langen Leitungszweig viel Platz, der im Motorraum eines Kraftfahrzeugs häufig nicht zur Verfügung steht.
Es wurde deshalb beispielsweise in der DE 42 16 834 AI eine Problemlösung vorgeschlagen, die einerseits eine wegen ihres Platzbedarfs unvorteilhafte Leitungsschleife entbehrlich macht, andererseits auch ohne kostenaufwendige Maßnahmen, wie eine Wärmeisolierung des einen oder Außenkühlung des anderen Leitungszweigs auskommt. Die dort vorgeschlagene Lösung be¬ steht darin, den Katalysator soweit entfernt vom Motor anzu¬ ordnen, daß eine Überhitzung beim Kaltstart vernieden wird und die Abgasleitung zwischen Motor und Katalysator in zwei Zweige aufzuteilen, die sich nicht hinsichtlich ihrer Länge unterscheiden, sondern einen unterschiedlichen Querschnitt aufweisen, wobei vorzugsweise der Zweig mit dem geringeren Querschnitt bei kaltem Katalysator das Abgas allein führen kann. Dadurch soll das Abgas dem noch kalten Katalysator in relativ ungekühltem Zustand zugeführt werden, weil es den geringen Querschnitt des benutzten Leitungszweigs schneller durchströmt, als dies durch den Gesamtquerschnitt beider Zweige der Abgasleitung erfolgen würde. Infolge der geringe- ren Verweildauer des Abgases in diesem Leitungszweig mit ge¬ ringem Querschnitt kann das Abgas nur wenig Wärme an das Rohr und damit an die Umgebung abgeben. Bei dieser Konstruktion stehen beide Leitungszweige mit der Umgebungsluft in Kontakt und es kann somit die Wärme des Ab¬ gases direkt über die Leitungswandung an die Umgebung abgege¬ ben werden.
Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung der eingangs beschriebenen Art ohne besonderen Kosten- und Ge¬ wichtsaufwand noch effektiver zu gestalten, um insbesondere die Abkühlung des Abgases in dem beim Start bzw. bei Teillast durchströmten Leitungszweig weiter zu reduzieren, und bei Wärmemangel am Katalysator diesem die Abgase mit möglichst hoher Temperatur zuzuleiten, vorzugsweise mit einer Tempera¬ tur über der katalytischen Wirkungstemperatur von ca. 400 °C, um spätestens mit Beginn der ersten Emissionsspitze 20 s nach dem Kaltstart im US-Test bzw. nach 11 s im EG-III-Test be¬ reits einen voll wirksamen Katalysator zur Verfügung zu haben und in Betriebszuständen mit Wärmeüberschuß die Abgase dem Katalysator mit möglichst niedriger Temperatur zuzuführen, vorzugsweise mit einer Temperatur unter 700 °C, um den Kata- lysator vor Wärmeschäden zu schützen.
Zusätzlich soll der Motor schneller aufheizbar sein, um schneller Abgase mit erhöhter Temperatur zu erhalten, um die HC- und CO-Emissionen des Motors zu verringern, und um die KraftstoffÜberfettung früher auszuschalten bzw. die λ-Rege- lung des Katalysators früher einzusetzen, die den stöchiome- trischen Betrieb regelt. Weiter soll der Kraftstoffverbrauch und der Verbrauch an elektrischer Energie minimiert werden, und die Kabinenheizung soll zumindest nicht vermindert wer- den.
Die schnelle Aufheizung des Motors soll nicht nur beim Kalt¬ start möglich sein, sondern auch bei kurzzeitigen Unterbre¬ chungen des Motorbetriebs bzw. bei Auskühlung des Motors im Leerlauf. Die Lösung dieser Aufgabe besteht bei der eingangs genannten Anordnung darin, daß jeweils ein Teillastrohr derart im Inne¬ ren eines Vollastrohrs angeordnet ist, daß das Vollastrohr einen ringförmigen Strömungsquerschnitt aufweist, der das Teillastrohr gegen Wärmeverluste abschirmt, so daß bei Sperre des Ringraums zwischen Teillastrohr und Vollastrohr dieser Ringraum als Isolierspalt und das Vollastrohr als Schutz ge¬ gen Wärmeabstrahlung des Teilastrohrs in die Umgebung wirkt.
Die Bezeichnungen Teillastrohr und Vollastrohr sind zur ein¬ fachen Unterscheidung mit Bezug auf relevante Betriebszustän- de gewählt. Dabei wird unter Vollast ein Betriebszustand verstanden, dessen Abgastemperatur mindestens der Betriebs¬ temperatur des Katalysators entspricht, während unter Teil- last ein Betriebszustand verstanden wird, dessen Abgas- und Katalysatortemperatur niedriger ist als die Betriebstempera¬ tur des Katalysators. Durch die Verwendung des Begriffs "Rohr" sollen weder andere zur Leitung von Gasen geeignete Leitungen, noch Leitungen ausgeschlossen werden, die mehr als ein Rohr umfassen oder einen anderen als kreisförmigen Quer¬ schnitt haben.
Das Teillastrohr kann wärmeisoliert sein und sein Querschnitt kann auf die Besonderheiten des Betriebs mit Wärmedefizit ausgelegt und deshalb sehr klein sein im Vergleich zu dem für Vollast vorgesehenen Strömungsquerschnitt, in den der Strö¬ mungsquerschnitt des Teillastrohrs mit einbezogen sein kann. Dies dient der Verkürzung der Verweildauer der Abgase zwi¬ schen Motor und Katalysator, sowie der Reduzierung der wärme- tauschenden Rohrfläche und damit der Minimierung der Wärme¬ verluste. Das Teillastrohr kann dabei so eng ausgelegt sein, daß durch den Rückstau der Abgase eine Schnellaufheizung des Motors verursacht wird, wodurch die Abgastemperatur erhöht wird, die CO- und HC-Bildung abnimmt und der geregelte Kata- lysatorbetrieb früher möglich wird. Eine solche Stauwirkung kann auch durch ein zusätzliches Stauventil bewirkt werden, oder der Motor kann z.B. durch einen Wärmespeicher in Sekundenschnelle aufgeheizt werden.
Die Abgasvolumina beim Betrieb mit Wärmedefizit sind wesent¬ lich niedriger als bei Vollast. Sowohl die Motordrehzahl als auch die Abgastemperaturen sind wesentlich niedriger. Nimmt man z. B. für Betrieb mit Wärmemangel eine Leerlaufdrehzahl von n = 600 /min an, einen Lastfaktor von 1 = 0,3 und eine Abgas empe-ratur von t = 100 °C und entsprechend für Vollast n = 6000, 1 = 1,2 und t = 900 °C, so steigen die Abgasvolu¬ mina bei Vollast gegenüber Leerlauf um den Faktor
6000/600 x 1,2/0,3 x (900 + 273)/(100 + 273) - 126
Hieraus ergibt sich, daß der Fließquerschnitt des Teillast¬ rohrs bezogen auf konstante Fließgeschwindigkeit der Abgase um den Faktor 10 bis 100 kleiner sein kann als der des Vol¬ lastrohrs, je nach der Wahl der Umschaltbedingungen zwischen Teillast und Vollast hinsichtlich Menge und Temperatur der Abgase, Rückstau, etc.
Während bei niedrigen Abgastemperaturen das Abgas zur mög¬ lichst vollständigen Nutzung seines Wärmeinhalts für die Auf- heizung des Katalysators bzw. die Aufrechterhaltung der Kata¬ lysatortemperatur zweckmäßigerweise nur über das Teillastrohr geführt wird, kann bei Vollast zusätzlich zum vom Vollastrohr umschlossenen Ringraum gegebenenfalls auch der Querschnitt des Teillastrohrs für die Abführung des Abgases eingesetzt werden. Zur Steuerung des Abgasstroms ist es deshalb ausrei¬ chend, wenn nur der Ringspalt zwischen Vollastrohr und Teil¬ lastrohr durch ein Ventil absperrbar ist. Eine vorteilhafte Ausgestaltung besteht dabei darin, daß das Ventil eine im Querschnittsbereich eines Endes des Teillastrohrs angeordne- te, in Schließstellung den Ringspalt sperrende Ventilklappe umfaßt, die eine in Schließstellung den Strömungsquerschnitt des Teillastrohrs freihaltende Durchbrechung aufweist. Um auch im Bereich des Abgaskrümmers am Motor Wärmeverluste des Abgases bei Teillast zu vermeiden, besteht eine vorteil¬ hafte Ausführungsform darin, daß das Teillastrohr motorseitig mit einem verzweigten Ende bis in die Verzweigungen des einen Abschnitt des Vollastrohrs bildenden Abgaskrümmers geführt ist und daß das Ventil am Auslaß des Teillastrohrs angeordnet ist.
Nach einer zweckmäßigen Ausführungform ist das Teillastrohr bis unmittelbar vor den Katalysator geführt, wodurch bei
Teillastbetrieb nur ein Teil des Katalysatorquerschnitts vom
Abgas durchströmt wird und sich dadurch schneller aufheizt.
Dabei besteht eine bevorzugte Ausgestaltung darin, daß die
Mündung des Teillastrohrs vor dem Katalysator erweitert ist, damit der angeströmte Teilquerschnitt des Katalysators nicht auf den gegebenenfalls sehr gering gehaltenen Querschnitt des
Teillastrohrs beschränkt bleibt.
Eine zweckmäßige Ausgestaltung besteht auch darin, daß dem als Hauptkatalysator dienenden Katalysator stromauf ein Vor¬ katalysator vorgeschaltet ist, dessen Abgase den Hauptkata¬ lysator aufheizen, wobei vorzugsweise der Vorkatalysator im Strömungsweg der das Teillastrohr durchströmenden Abgase an¬ geordnet ist. Durch diese Anordnung des Vorkatalysators kann dieser wärmeisoliert angeordnet werden, und er kann mit den hohen Geschwindigkeiten im Teillastrohr beaufschlagt werden, was die schnelle Beheizung der katalytischen Oberflächen be¬ günstigt, ohne daß die Wärme zu schnell in das Trägermaterial eindringt. Nach einer zweckmäßigen Ausgestaltung ist der Vorkatalysator an das stromab gelegenen Ende des Teillast¬ rohrs angeschlossen.
Die Stirnfläche des Vorkatalysators kann wesentlich geringer ausfallen als die Stirnfläche des Hauptkatalysators. Vorkata- lysator und Hauptkatalysator können deshalb nach einer sehr vorteilhaften Ausgestaltung so miteinander kombiniert werden, daß der Querschnitt des Hauptkatalysators das Vollastrohr ausfüllt und größer ist als der Querschnitt des Vorkatalysa¬ tors, daß der Hauptkatalysator sich direkt an den Vorkataly¬ sator anschließt, daß sich das Teillastrohr im Inneren des Vollastrohrs auf den Querschnitt des Vorkatalysators trich- terförmig erweitert und vor dieser Erweiterung an seinem Um¬ fang mit Durchbrechungen versehen ist. Auf diese Weise wird bei mittleren Volumenströmen durch das Teillastrohr vor der trichterförmigen Erweiterung eine Venturiwirkung entstehen, die Abgase vom Austritt aus dem Hauptkatalysator her ansaugt, so daß der Hauptkatalysator in seinen äußeren Lagen rückwärts durchströmt und aufgeheizt wird und diese Abgase dann wieder durch den Vorkatalysator und den inneren Teil des Hauptkata¬ lysators weiterfließen.
Zur Vermeidung von Wärmeverlusten weist vorzugsweise das Ma¬ terial des Teillastrohrs eine geringe spezifische Wärmekapa¬ zität auf. Eine weiterer diesem Zweck dienende Maßnahme be¬ steht darin, daß das Teillastrohr sehr dünnwandig ausgebildet ist. Ausserdem sollte das Teillastrohr möglichst eine sehr geringe Wärmeleitfähigkeit aufweisen, z.B. bei einer Ausfüh¬ rung aus Edelstahl mit hohem Nickelanteil.
Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Un¬ teransprüchen in Verbindung mit der nachfolgenden Beschrei- bung.
Anhand der nun folgenden Beschreibung der in der Zeichnung dargestellten Ausführungsbeispiele wird die Erfindung näher erläutert.
Es zeigt:
Fig. 1 eine schematische Darstellung des Abgassystems ei¬ nes Verbrennungsmotors zur Erläuterung des Grund¬ prinzips der Erfindung, Fig. 2a den Abgaskrümmer eines Vierzylinder-Verbrennungsmo¬ tors mit einem zu einem Katalysator führenden Ab- gasrohr üblicher Bauart, ig . 2b ein das Abgasrohr nach Fig. 2a ersetzendes, erfin¬ dungsgemäß gestaltetes Abgasrohr, ig . 2c eine der Fig. 2b ähnliche Darstellung mit einer anderen erfindungsgemäßen Ausführungsform, Fig . 3 eine Detailansicht einer Ausführungsform mit erwei¬ terter Mündung des Teillastrohrs,
Fig . 4 eine der Fig. 3 ähnliche Darstellung mit Vorkataly¬ sator,
Fig . 5 eine weitere Variante ähnlich Fig. 4, Fig . 6 eine andere Ausführungsform mit der Möglichkeit einer Rezirkulationsströmung über den Hauptkonver¬ ter,
Fig. 7 ein Abgassystem ähnlich Fig. 2c mit einem dem Kata¬ lysator nachgeschalteten Wärmetauscher, Fig. 7a eine im Maßstab größere Detailansicht des Ventils zur Sperre des Vollastrohrs und
Fg. 8 eine Variante der schematischen Darstellung in Fig. l mit zu- und abschaltbarem Vorkatalysator.
In Fig. l bezeichnet 10 einen Verbrennungsmotor, dessen Ab¬ gase über eine einen katalytischen Konverter bzw. Katalysator 14 enthaltende Abgasleitung 12 abgeführt werden. Auf dem größten Teil der Strecke zwischen dem Motor 10 und dem Kata¬ lysator 14 wird die Abgasleitung 12 durch zwei parallele Zweige 12a und 12b gebildet. Im Zweig 12a befindet sich ein Absperrventil 16. Ist dieses Ventil 16 geschlossen, werden die Abgase nur über den Zweig 12b, der innerhalb des Zweigs 12a verläuft, dem Katalysator 14 zugeführt.
Wie nachfolgend noch näher erläutert wird, ist der Leitungs- zweig 12a derart gestaltet, daß er eine Wärmeabgabe an die Umgebung begünstigt, während der Leitungszweig 12b nach Mate¬ rialwahl, Fließquerschnitt und Anordnung einen Wärmeverlust des ihn durchströmenden Abgases möglichst wirkungsvoll ver- hindern soll. Das Ventil 16 ist durch eine nicht dargestellte Steuerung, die direkt oder indirekt die Abgastemperatur des Motors 10 und/oder die Temperatur im Bereich des Katalysators 14 anzei¬ gende Betriebsparameter des Systems verarbeitet, so gesteu- ert, daß das Ventil 16 geschlossen ist, wenn am Katalysator zur Erlangung oder Aufrechterhaltung der vollen Wirksamkeit Wärmebedarf besteht. Dies ist nach einem Kaltstart und in der Regel auch dann der Fall, wenn aufgrund der Betriebsbe¬ dingungen die Abgastemperatur unter die für die katalytische Funktion des Konverters erforderliche Temperatur absinkt, weshalb dieser Betriebszustand hier vereinfachend als "Teil¬ last" bezeichnet wird, während andere Betriebszustände "Vol¬ last" genannt werden. Wenn Wärmebedarf besteht, wird das Ab¬ gas bei geschlossenem Ventil 16 über den Leitungszweig 12b geführt, damit der Wärmeinhalt des Abgases möglichst verlust¬ frei zur Erwärmung des Katalysators 14 genutzt werden kann. Der Leitungszweig 12b wird deshalb nachfolgend als "Teillast¬ rohr" und der Leitungszweig 12a als "Vollastrohr" bezeichnet.
Die Fig. 2a zeigt eine Abgasleitung, wie sie bereits bekannt ist, um Wärmeverluste des Abgases zu verhindern. Der Abgas- krümmer 13 und der anschließende, zum Katalysator 14 führende Leitungsabschnitt 15 sind jeweils doppelwandig mit Außenrohr 13a bzw. 15a und einem Innenrohr 13b bzw. 15b ausgeführt, wo- bei das Abgas im dünnwandigen Innenrohr 13b bzw. 15b geführt wird und der Ringraum zwischen Außenrohr 13a und 15a einer¬ seits und Innenrohr 13b bzw. 15b andererseits nicht durch¬ strömt wird und als Isolierspalt dient.
Wie bereits einleitend erläutert wurde, kann das Teillastrohr 12b einen wesentlich geringeren Querschnitt aufweisen als das Vollastrohr 12a, so daß das Teillastrohr 12b - wie es die Fig. 2b zeigt - im Inneren des Vollastrohrs 12a angeordnet werden kann. Im Gegensatz zu der bereits bekannten, in Fig. 2a gezeigten Bauart ist dabei der Querschnitt des Teillast¬ rohrs 12b wesentlich kleiner als der Querschnitt des äußeren, das Teillastrohr 12b unter Bildung eines Ringraums umhüllen- den Vollastrohrs 12a und das Teillastrohr 12b ist z.B. exzen¬ trisch im Vollastrohr 12a derart angeordnet, daß es mit Ab¬ stand von einer Längsmittelebene und der Innenwandung des Vollastrohrs 12a verläuft. Dadurch kann das Steuerventil 16 als einfache Drehklappe 18 ausgeführt werden, deren Drehachse 20 in dieser Diametralebene verläuft und die in Schließstel¬ lung den Querschnitt des Vollastrohrs 12a abdecken kann. Der in dieser Schließstellung den Strömungsquerschnitt des Teil¬ lastrohrs 12b abdeckende Bereich der Drehklappe 18 ist mit einer Durchbrechung 22 versehen, so daß das Abgas allein über das Teillastrohr 12b strömen kann.
Bei der in Fig. 2b gezeigten Anordnung wird der bisherige, doppelwandige Abgaskrümmer 13 verwendet und das erfindungs- gemäß ausgebildete Abgasrohr mit Vollastrohr 12a und Teil¬ lastrohr 12b schließt sich an Stelle des Leitungsabschnitts 15 an den Krümmer 13 an. Um die Öffnungsbewegung der Dreh¬ klappe 18 nicht zu behindern, ist sowohl das Ende des Abgas¬ krümmers 13, als auch das Ende des Vollastrohrs 12a mit einem Ausschnitt versehen, der jeweils um eine der Dicke der Dreh¬ klappe 18 entsprechende Länge über die durch die Drehachse 20 bestimmte Diametralebene hinausgeführt ist. In geschlossener Stellung liegt die Drehklappe 18 an dem nicht ausgeschnitte¬ nen Abschnitt des Krümmers 13 und dem Teillastrohr 12b an.
Um bei Betrieb mit Wärmedefizit gegebenenfalls den Rückstau verstärken zu können, kann ein dem Teillastrohr 12b zugeord¬ netes, einstellbares, als Stauventil dienendes Drosselventil vorgesehen sein. Die Fig. 2b zeigt ein solches Stauventil 23 an dem dem Katalysator 14 zugewandten Ende des Teillastrohrs 12b.
Die Fig. 2c zeigt eine Variante, bei welcher sich das Voll- lastrohr 12a in einem Abgaskrümmer 13a mit einfacher Wandung fortsetzt und das Teillastrohr 12b in diesen Krümmer 13a hin¬ eingeführt ist und sich in diesem in einem Abschnitt 13b ver- zweigt. In diesem Fall ist das Ventil 16 an dem dem Kataly¬ sator 14 zugewandten Ende der Rohre 12a und 12b angeordnet.
Bei der Ausführungsform nach den Fig. 2b und 2c mündet das Teillastrohr 12b in eine trichterförmige Erweiterung 25 des Vollastrohrs 12a, so daß der Katalysator 14 voll mit dem aus dem Teillastrohr 12b austretenden Abgas beaufschlagt wird.
Bei der in Fig. 3 gezeigten Variante endet das Teillastrohr 12b unmittelbar vor dem Katalysator 14, so daß bei Teillast¬ betrieb, wenn das Ventil 16 geschlossen ist, nur ein Teil¬ querschnitt des Katalysators 14 von dem allein aus dem Teil¬ lastrohr 12b austretenden Abgas beaufschlagt und dadurch schneller auf die Wirkungstemperatur gebracht wird. Wie er- wähnt, kann der Querschnitt des Teillastrohrs 12b relativ zum Querschnitt des Vollastrohrs 12a sehr klein gehalten werden. Damit ein für eine wirksame Abgasentgiftung ausreichender Querschnitt des Katalysators beaufschlagt wird, ist der Mün¬ dungsbereich des Teillastrohrs 12b trichterförmig bis auf den gewünschten Querschnitt erweitert.
Die Fig. 4 zeigt eine ähnliche Anordnung, jedoch ist hier mit der erweiterten Mündung des Teillastrohrs 12b ein Vorkataly¬ sator 24 verbunden, der in einem Abstand vom Hauptkatalysator 14 im Vollastrohr 12a angeordnet ist.
Bei der Variante nach Fig. 5 ist ebenfalls ein Vorkatalysator 24 vorgesehen, jedoch ist dieser mit Abstand von der Mündung des Teillastrohrs 12b im Vollastrohr 12a angeordnet, so daß er stets von der gesamten in der Abgasleitung 12 abströmenden Abgas beaufschlagt wird.
Eine besonders vorteilhafte Ausgestaltung zeigt die Fig. 6. Der Vorkatalysator 24 ist dabei - wie in Fig. 4 - mit dem Ende des Teillastrohrs 12b verbunden, das sich vor dem Vor¬ katalysator 24 trichterförmig erweitert, und besitzt einen kleineren Querschnitt als der ihn umschließende Abschnitt des Vollastrohrs 12a. Der Hauptkatalysator 14 schließt sich di¬ rekt an das Ende des Vorkatalysators 24 an und füllt das Vollastrohr 12a vollständig aus. Vor der trichterförmigen Erweiterung des Teillastrohrs 12b ist dieses an seinem Umfang mit einer Reihe von Durchbrechungen 25 versehen. Durch diese Anordnung entsteht durch Venturiwirkung ein Sog im Bereich der Durchbrechungen 25, der eine Rückströmung des aus dem Hauptkatalysator 14 austretenden Abgases über die Randzone des Hauptkatalysators 14, die dadurch bereits im Teillastbe- trieb vorgeheizt wird, und zurück in das Teillastrohr 12b verursacht, während der innere Bereich des Katalysators 14 stärker aufgeheizt wird.
Die Fig. 7 zeigt eine Übersicht über ein Abgassystem mit der bereits anhand der Fig. 2c erläuterten Variante, wobei noch einige zusätzliche, die schnelle Aufheizung des Systems för¬ dernde Vorkehrungen dargestellt sind, nämlich ein Drosselven¬ til 26 oder 28, ein Wärmetauscher 30 und ein vorzugsweise als Latentwärmespeicher ausgebildeter Wärmespeicher 32.
Durch Schließen eines in der Abgasleitung 12 parallel zu ei¬ nem Bypass 34 angeordneten Ventils 26 kann das Abgas über einen im Bypass 34 angeordneten Wärmetauscher 30 geleitet werden, so daß die noch vorhandene Abfallwärme z.B. über den Kühlwasserkreislauf oder eine Luft- bzw. Gemischvorwärmung dem Motor 10 zugeführt werden kann. Durch die Rückgewinnung der Abfallwärme kann der Kraftstoffverbrauch des Motors im Teillastbetrieb um 10 bis 20% gesenkt werden, wobei die Lei¬ stung der Kabinenheizung ansteigen kann. Die Wirkung kann noch durch den Einsatz des Drosselventils 28 gesteigert wer¬ den, und zwar sowohl durch Förderung des Wärmeübergangs im Wärmetauscher 30, als auch durch den im Motor 10 wirkenden Rückstau. Gegebenenfalls kann auch das Ventil 26 als Dros¬ selventil mit Rückwirkung auf den Motor 10 eingesetzt werden, wenn der Wärmetauscher 30 nicht eingesetzt werden soll. Das Kühlmittelsystem des Motors 10 ist schematisch darge¬ stellt und mit 36 bezeichnet. Ihm ist ein Latentwärmespeicher 32 zugeordnet, der bei Wärmemangel Wärme an den Motor 10 ab¬ geben kann, sowie der übliche Wärmetauscher 38 zur Kabinen¬ heizung.
Bei der in Fig. 8 gezeigten Variante verläuft das Teillast¬ rohr 12b teilweise außerhalb des Vollastrohrs 12a, um in die¬ sem Abschnitt den Vorkatalysator 24 und ein auf diesen fol¬ gendes Ventil 28 aufzunehmen. Dadurch kann der Vorkatalysa- tor 24 sehr nahe an den Motor 10 herangerückt werden, was die schnelle Aufheizung fördert. Um nicht vom Heißgas durch¬ strömt zu werden, kann er durch das Ventil 28 abgeschaltet werden.
Das im Start- bzw. Teillastbetrieb zur Schnellaufheizung des Motors einsetzbare Stauventil kann an jeder beliebigen Stelle des bei geschlossenem Ventil 16 (Fig. 1) vom Abgas durch¬ strömten Leitungsweges angeordnet werden, also beispielsweise auch stromab vom Katalysator 14.

Claims

Patentansprüche:
1. Anordnung zur Reduzierung der Abgasemission eines Verbrennungsmotors, insbesondere Kraftfahrzeugmotors, mit einer an die Abgasauslässe eines Verbrennungsmotors (10) an¬ schließbaren Abgasleitung (12) und einem aus der Abgasleitung beaufschlagbaren Katalysator (14) , wobei zwischen Motor (10) und Katalysator (14) die Abgasleitung (12) zumindest über einen Teil ihrer Länge hinsichtlich ihrer thermischen Rück- Wirkung auf die Abgase unterschiedlich gestaltete Leitungs- zweige in Form wenigstens eines Teillastrohrs (12b) und we¬ nigstens eines im Wärmetausch mit der Umgebung stehenden Vollastrohrs (12a) aufweist, wobei die Verteilung des Abgas¬ stroms auf die Leitungszweige über eine in Abhängigkeit von Betriebsparametern des Systems verstellbare Steuervorrichtung (16) wahlweise steuerbar ist, dadurch gekennzeichnet, daß jeweils ein Teillastrohr (12b) derart im Inneren eines Vol¬ lastrohrs (12a) angeordnet ist, daß das Vollastrohr (12a) einen ringförmigen Strömungsquerschnitt aufweist, der das Teillastrohr (12b) gegen Wärmeverluste abschirmt.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß das Teillastrohr (12b) wärmeisoliert ist.
3. Anordnung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Teillastrohr (12b) einen wesentlich kleineren Querschnitt aufweist als das Vollastrohr (12a) .
4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß der Querschnitt des Teillastrohrs (12b) um den Faktor 10 bis 100 kleiner ist als der Querschnitt des Vollastrohrs (12a) .
5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Vollastrohr (12a) durch die Steuer¬ vorrichtung (16) absperrbar ist.
6. Anordnung nach den Ansprüchen 1 und 5, dadurch ge¬ kennzeichnet, daß die Steuervorrichtung (16) eine im Quer¬ schnittsbereich eines Endes des Teillastrohrs (12b) angeord¬ nete, in Schließstellung das Vollastrohr (12a) sperrende Ven- tilklappe (18) umfaßt, die eine in Schließstellung den Strö¬ mungsquerschnitt des Teillastrohrs (12b) freihaltende Durch¬ brechung (22) aufweist.
7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Teillastrohr (12b) motorseitig mit einem verzweigten Ende (13b) bis in die Verzweigungen (13a) des einen Abschnitt des Vollastrohrs (12a) bildenden Abgas- krümmers geführt ist und daß die Steuervorrichtung (16) am Ende des Teillastrohrs (12b) angeordnet ist.
8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Teillastrohr (12b) bis unmittelbar vor den Katalysator (14) geführt ist.
9. Anordnung nach Anspruch 8, dadurch gekennzeichnet, daß die Mündung des Teillastrohrs (12b) vor dem Katalysator (14) erweitert ist.
10. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß dem als Hauptkatalysator dienenden Kata¬ lysator (14) stromauf ein Vorkatalysator (224) vorgeschaltet ist.
11. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß der Vorkatalysator (24) im Strömungsweg der das Teillast¬ rohr (12b) durchströmenden Abgase angeordnet ist.
12. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß der Vorkatalysator (24) an das stromab gelegenen Ende des Teillastrohrs (12b) angeschlossen ist.
13. Anordnung nach Anspruch 11, dadurch gekennzeichnet, daß der Vorkatalysator (24) auf das stromab gelegenen Ende des Teillastrohrs (12b) folgend im Vollastrohr (12a) angeord¬ net ist.
14. Anordnung nach Anspruch 12, dadurch gekennzeichnet, daß der Querschnitt des Hauptkatalysators (14) das Vollast¬ rohr (12a) ausfüllt und größer ist als der Querschnitt des Vorkatalysators (24) , daß der Hauptkatalysator (14) sich di- rekt an den Vorkatalysator (24) anschließt, daß sich das
Teillastrohr (12b) im Inneren des Vollastrohrs (12a) auf den Querschnitt des Vorkatalysators (24) trichterförmig erweitert und vor dieser Erweiterung an seinem Umfang mit Durchbrechun¬ gen (25) versehen ist.
15. Anordnung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Teillastrohr (12b) eine geringe spe¬ zifische Wärmekapazität aufweist.
16. Anordnung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Teillastrohr (12b) sehr dünnwandig ausgebildet ist.
17. Anordnung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Teillastrohr (12b) eine sehr geringe
Wärmeleitfähigkeit aufweist.
18. Anordnung nach Anspruch 17, dadurch gekennzeichnet, daß das Teillastrohr (12b) aus Edelstahl mit hohem Nickelan- teil besteht.
19. Anordnung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, daß der Querschnitt des Teillastrohrs (12b) so bemessen wird, daß bei einem vorgegebenen Betriebszustand der durch das Teillastrohr (12b) verursachte Rückstau einen vorgegebenen Wert nicht überschreitet.
20. Anordnung nach Anspruch 19, dadurch gekennzeichnet, daß bei einer Drehzahl von 2500 U/min und einem Lastfaktor 0,7 der durch das Teillastrohr (12b) verursachte Rückstau 0,5 bar nicht überschreitet.
21. Anordnung nach einem der Ansprüche 19 oder 20, dadurch gekennzeichnet, daß einer der Betriebsparameter zur Steuerung der Steuervorrichtung (16) der Staudruck am Teil¬ lastrohr (12b) ist, derart, daß beim Überschreiten eines vor- gegebenen Staudrucks das Ventil (16) geöffnet wird.
22. Anordnung nach Anspruch 21, dadurch gekennzeichnet, daß die Steuervorrichtung (16) zugleich als Überdruckventil mit einstellbarer Öffnungsschwelle ausgebildet ist.
23. Anordnung nach einem der Ansprüche 21 und 22, dadurch gekennzeichnet, daß der vorgegebene Schwellenwert für die Öffnung des Überdruckventils (16) 0,6 bar ist.
24. Anordnung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß sich ein Stauventil (23, 26, 28) im Weg der das Teillastrohr (12b) durchfließenden Abgase befindet.
25. Anordnung nach Anspruch 24, dadurch gekennzeichnet, daß sich das Stauventil (23) am Ende des Teillastrohrs (12b) befindet.
26. Anordnung nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß dem Motor (10) zur Aufheizung ein Latent- ärmespeicher (32) zugeordnet ist.
27. Anordnung nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß in die Abgasleitung (12) stromab vom Ka¬ talysator (14) zur Nutzung der Abfallenergie für die Aufhei- zung des Systems ein Abgaswärmetauscher (30) einbezogen ist.
28. Anordnung nach Anspruch l, dadurch gekennzeichnet, daß in einem außerhalb des Vollastrohrs (12a) verlaufenden Abschnitt des Teillastrohrs (12b) ein Vorkatalysator (24) und ein Absperrventil (28) angeordnet ist.
29. Anordnung nach Anspruch 28, dadurch gekennzeichnet, daß das Absperrventil (28) zugleich als Drosselventil ausge¬ bildet ist.
PCT/EP1996/000981 1995-03-07 1996-03-07 Anordnung zur reduzierung der abgasemission eines verbrennungsmotors mit abgaskatalysator WO1996027734A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/737,386 US5934071A (en) 1995-03-07 1996-03-07 Assembly for reducing the exhaust gas emissions of an internal combustion engine
JP8526615A JPH10500191A (ja) 1995-03-07 1996-03-07 内燃エンジンの排気ガス放出量を削減するための組立体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19507977.9 1995-03-07
DE19507977A DE19507977A1 (de) 1995-03-07 1995-03-07 Verfahren und Anordnung zur Reduzierung der Abgasemissionen von Verbrennungsmotoren mit Abgaskatalysatoren

Publications (1)

Publication Number Publication Date
WO1996027734A1 true WO1996027734A1 (de) 1996-09-12

Family

ID=7755881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000981 WO1996027734A1 (de) 1995-03-07 1996-03-07 Anordnung zur reduzierung der abgasemission eines verbrennungsmotors mit abgaskatalysator

Country Status (4)

Country Link
US (2) US5934071A (de)
JP (1) JPH10500191A (de)
DE (1) DE19507977A1 (de)
WO (1) WO1996027734A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000301A1 (en) * 1996-06-28 1998-01-08 Mobitec Ab Heat energy extracting device
EP0867603A1 (de) * 1997-03-28 1998-09-30 Ford Global Technologies, Inc. Temperaturregelungsverfahren und -system einer Abgasanlage
CN102705053A (zh) * 2012-06-11 2012-10-03 山东交通学院 一种脉冲式复合排气管系涡轮增压系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769666B1 (fr) * 1997-10-10 1999-12-24 Valeo Thermique Moteur Sa Installation d'echappement pour moteur de vehicule automobile
FR2770582B1 (fr) * 1997-10-31 2000-01-28 Valeo Thermique Moteur Sa Ligne d'echappement et de recirculation des gaz pour moteur de vehicule automobile
US6286306B1 (en) * 1999-02-08 2001-09-11 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas purification system of internal combustion engine
AU1522701A (en) * 1999-12-08 2001-06-18 Volkswagen Aktiengesellschaft Method for supplying exhaust gases from an internal combustion engine to a catalyst, in particular a storage catalyst
JP3573044B2 (ja) * 2000-02-03 2004-10-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
FR2810371B1 (fr) * 2000-06-15 2002-10-11 Renault Dispositif d'echappement comportant des moyens de derivation des gaz d'echappement
DE10139424B4 (de) * 2001-08-17 2004-08-05 Benteler Automobiltechnik Gmbh Abgasanlage eines Kraftfahrzeugs
US20050193988A1 (en) * 2004-03-05 2005-09-08 David Bidner System for controlling valve timing of an engine with cylinder deactivation
US20040231323A1 (en) * 2003-05-23 2004-11-25 Fujita Mahoro M. Exhaust system and process for operating the same
US7021046B2 (en) * 2004-03-05 2006-04-04 Ford Global Technologies, Llc Engine system and method for efficient emission control device purging
US7159387B2 (en) * 2004-03-05 2007-01-09 Ford Global Technologies, Llc Emission control device
US7367180B2 (en) * 2004-03-05 2008-05-06 Ford Global Technologies Llc System and method for controlling valve timing of an engine with cylinder deactivation
US6978204B2 (en) * 2004-03-05 2005-12-20 Ford Global Technologies, Llc Engine system and method with cylinder deactivation
DE102004048338C5 (de) * 2004-10-01 2015-11-19 Eberspächer Exhaust Technology GmbH & Co. KG Brennkraftmaschine
EP1643094B1 (de) * 2004-10-01 2009-06-17 J. Eberspächer GmbH & Co. KG Abgasanlage für eine Brennkraftmaschine und zugehöriges Betriebsverfahren
JP2006214300A (ja) * 2005-02-02 2006-08-17 Nissan Motor Co Ltd 多気筒内燃機関の排気装置
JP4551272B2 (ja) * 2005-05-06 2010-09-22 株式会社三五 排気熱回収装置
GB2466722B (en) * 2005-08-05 2010-10-13 Ford Global Tech Llc An exhaust manifold for an internal combustion engine
TWI298239B (en) * 2005-09-09 2008-06-21 Delta Electronics Inc Passive heat-dissipating fan system and electronic system containing the same
DE102005048909A1 (de) * 2005-10-10 2007-04-12 J. Eberspächer GmbH & Co. KG Bauteil einer Abgasanlage
CA2711004C (en) * 2007-12-27 2015-05-05 In The Works... High-efficiency catalytic converters for treating exhaust gases
CN102007277B (zh) * 2008-04-17 2014-08-20 丰田自动车株式会社 内燃机的排气净化系统
US8136350B2 (en) * 2008-05-28 2012-03-20 Briggs & Stratton Corporation Catalytic muffler having crossover passageway for secondary air
DK2821606T3 (da) 2010-04-28 2019-11-18 Tecogen Inc Fremgangsmåde til reduktion af nitrogenoxider, carbonmonoxid og carbonhydrider i udstødninger fra indre forbrændingsmotorer
US8578704B2 (en) * 2010-04-28 2013-11-12 Tecogen, Inc. Assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines
US11220948B1 (en) * 2020-07-02 2022-01-11 David A Endrigo Emissions reduction systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529018A (en) * 1978-08-18 1980-03-01 Fuji Heavy Ind Ltd Exhauster for internal combustion engine
DE3317205A1 (de) * 1983-05-11 1984-11-15 Wolfgang Dr.-Ing. 7951 Warthausen Molt Vorrichtung zur vorwaermung von kraftfahrzeugen
DE3629945A1 (de) * 1986-09-03 1987-10-01 Daimler Benz Ag Vorrichtung zur nachbehandlung der abgase einer brennkraftmaschine
GB2221252A (en) * 1988-07-28 1990-01-31 Austin Rover Group I.C. engine exhaust pipe
EP0401196A2 (de) * 1989-06-01 1990-12-05 Franz Dipl.Ing.Dr. Laimböck Auspuffanlage für Zweitakt-Brennkraftmaschinen
EP0519778A1 (de) * 1991-06-18 1992-12-23 Institut Français du Pétrole Motorauspufflinie zum schnellen Erregen eines Katalysators
JPH0586843A (ja) * 1991-09-26 1993-04-06 Suzuki Motor Corp 自動二輪車の排ガス浄化装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824788A (en) * 1972-04-26 1974-07-23 Gen Motors Corp Internal combustion engine and method of operation for exhaust emission control
DE2303773A1 (de) * 1973-01-26 1974-08-01 Volkswagenwerk Ag Anordnung zur abgasfuehrung
FR2376292A1 (fr) * 1976-12-30 1978-07-28 Peugeot & Renault Perfectionnement aux dispositifs de controle de la composition des gaz d'echappement d'un moteur thermique
US5014511A (en) * 1986-04-09 1991-05-14 Ford Motor Company Filtration system for diesel engine exhaust-II
US4671059A (en) * 1986-06-30 1987-06-09 Ontario Research Foundation Diesel particulate traps
US5250268A (en) * 1990-03-09 1993-10-05 Volkswagen Ag Catalytic cleaning arrangement for exhaust from an internal combustion engine
US5184462A (en) * 1991-03-19 1993-02-09 Oskar Schatz Method and an apparatus for the treatment of exhaust gas from an IC engine
DE4205496C1 (de) * 1992-02-22 1993-01-28 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE9204220U1 (de) * 1992-03-28 1992-05-21 Heinrich Gillet Gmbh & Co Kg, 6732 Edenkoben, De
DE4212251C1 (de) * 1992-04-11 1993-03-18 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4218834C2 (de) * 1992-06-09 1996-11-28 Opel Adam Ag Abgasanlage für einen Verbrennungsmotor
US5634332A (en) * 1992-09-16 1997-06-03 Nippondenso Co., Ltd. Exhaust gas purification apparatus
US5582003A (en) * 1994-04-28 1996-12-10 Corning Incorporated Temperature actuated zeolite in-line adsorber system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529018A (en) * 1978-08-18 1980-03-01 Fuji Heavy Ind Ltd Exhauster for internal combustion engine
DE3317205A1 (de) * 1983-05-11 1984-11-15 Wolfgang Dr.-Ing. 7951 Warthausen Molt Vorrichtung zur vorwaermung von kraftfahrzeugen
DE3629945A1 (de) * 1986-09-03 1987-10-01 Daimler Benz Ag Vorrichtung zur nachbehandlung der abgase einer brennkraftmaschine
GB2221252A (en) * 1988-07-28 1990-01-31 Austin Rover Group I.C. engine exhaust pipe
EP0401196A2 (de) * 1989-06-01 1990-12-05 Franz Dipl.Ing.Dr. Laimböck Auspuffanlage für Zweitakt-Brennkraftmaschinen
EP0519778A1 (de) * 1991-06-18 1992-12-23 Institut Français du Pétrole Motorauspufflinie zum schnellen Erregen eines Katalysators
JPH0586843A (ja) * 1991-09-26 1993-04-06 Suzuki Motor Corp 自動二輪車の排ガス浄化装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 423 (M - 1458) 6 August 1993 (1993-08-06) *
PATENT ABSTRACTS OF JAPAN vol. 4, no. 64 (M - 011) 14 May 1980 (1980-05-14) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000301A1 (en) * 1996-06-28 1998-01-08 Mobitec Ab Heat energy extracting device
EP0867603A1 (de) * 1997-03-28 1998-09-30 Ford Global Technologies, Inc. Temperaturregelungsverfahren und -system einer Abgasanlage
US5855113A (en) * 1997-03-28 1999-01-05 Ford Global Technologies, Inc. Method and system for controlling the temperature of an exhaust system having a variable length exhaust pipe
CN102705053A (zh) * 2012-06-11 2012-10-03 山东交通学院 一种脉冲式复合排气管系涡轮增压系统

Also Published As

Publication number Publication date
US5934071A (en) 1999-08-10
DE19507977A1 (de) 1996-09-12
JPH10500191A (ja) 1998-01-06
US6016654A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
WO1996027734A1 (de) Anordnung zur reduzierung der abgasemission eines verbrennungsmotors mit abgaskatalysator
DE4410820C2 (de) Zusatzluft-Zuführgerät für eine Verbrennungsmaschine
DE69924459T2 (de) Brennkraftmaschine mit NOx-Katalysator für Magergemischverbrennung
DE3918596A1 (de) Verfahren und vorrichtung zur katalytischen behandlung der abgase von verbrennungsmotoren
DE10328839A1 (de) Dieselmotorsystem zur Verwendung mit einer Abgasreinigungsvorrichtung
EP3660287A1 (de) Abgasnachbehandlungssystem sowie verfahren zur abgasnachbehandlung eines verbrennungsmotors
DE102007011184A1 (de) Wärmetauscher zur Kühlung von Abgas, Vorrichtung zur Überführung einer flüssigen Harnstofflösung in zumindest gasförmiges Ammoniak, System zur Abgaskühlung, Verfahren zur Rückführung von Abgas und zur Stickoxidreduzierung
DE4106249C2 (de) Einrichtung zur katalytischen Reinigung der Abgase einer Brennkraftmaschine
DE102009004418A1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
EP1238187B1 (de) Vorrichtung zur zuführung von abgasen von einem verbrennungsmotor zu einem katalysator, insbesondere speicherkatalysator
WO2013083463A1 (de) Einspritzvorrichtung zur zugabe eines flüssigen additivs
WO1996021803A1 (de) Verfahren zur reduzierung der abgasemissionen eines verbrennungsmotors für kraftfahrzeuge mit abgaskatalysator
DE102020103565B4 (de) Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors sowie Verbrennungsmotor
DE4414904C1 (de) Temperaturgeregelte Abgaskatalysatoranlage für eine Brennkraftmaschine
DE19500476A1 (de) Verfahren zur Heizung eines aus einem Verbrennungsmotor und einer von diesem angetriebenen Maschine bestehenden Systems
DE3918601A1 (de) Verfahren und vorrichtung zur behandlung der abgase von verbrennungsmotoren
EP3751106B1 (de) Abgasnachbehandlungssystem und verfahren zur abgasnachbehandlung eines verbrennungsmotors
DE2435004C3 (de) Aufgeladene Viertaktbrennkraftmaschine
EP2783086B1 (de) Verfahren zum betrieb einer brennkraftmaschine
DE102021000706A1 (de) Vorrichtung zur Abgasnachbehandlung mit Abgasaufheizung
DE10053674B4 (de) Verfahren zur Temperierung eines in einem Abgasstrang von einer Verbrennungskraftmaschine zu einem Katalysator geführten Abgasstroms und entsprechendes Abgastemperiersystem
WO1995014160A1 (de) Beheizbarer katalysator mit kohlenwasserstoff-falle für abgassysteme
EP4102036B1 (de) Verfahren zur aufheizung eines elektrisch beheizbaren katalysators im leerlauf
DE102020101194B4 (de) Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors sowie Verbrennungsmotor
EP4026994B1 (de) Abgasnachbehandlungssystem sowie verfahren zur abgasnachbehandlung eines verbrennungsmotors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08737386

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA