WO1996025909A2 - Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de agentes infecciosos relacionados - Google Patents

Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de agentes infecciosos relacionados Download PDF

Info

Publication number
WO1996025909A2
WO1996025909A2 PCT/ES1996/000031 ES9600031W WO9625909A2 WO 1996025909 A2 WO1996025909 A2 WO 1996025909A2 ES 9600031 W ES9600031 W ES 9600031W WO 9625909 A2 WO9625909 A2 WO 9625909A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
mixture
oligonucleotides
amplification
reaction
Prior art date
Application number
PCT/ES1996/000031
Other languages
English (en)
French (fr)
Other versions
WO1996025909A3 (es
Inventor
Inmaculada Casas
Antonio Tenorio
José Manuel ECHEVARRIA
Paul E. Klapper
Graham M. Cleator
Original Assignee
Instituto De Salud Carlos Iii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto De Salud Carlos Iii filed Critical Instituto De Salud Carlos Iii
Priority to AU64614/96A priority Critical patent/AU6461496A/en
Priority to GB9621809A priority patent/GB2301888A/en
Priority to EP96901812A priority patent/EP0789081A2/en
Publication of WO1996025909A2 publication Critical patent/WO1996025909A2/es
Publication of WO1996025909A3 publication Critical patent/WO1996025909A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/705Specific hybridization probes for herpetoviridae, e.g. herpes simplex, varicella zoster
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the invention relates to new mixtures of reaction initiators and to new methods of gene amplification useful for the specific detection and identification of related infectious agents, especially infectious agents capable of producing neurological disease and more especially for detection and specific identification of herpes viruses. and human enteroviruses.
  • Herpesviridae infectious agents that establish latency after primoinfection causing periodic recurrences under certain conditions. They are enveloped viruses whose genome consists of a double stranded DNA molecule.
  • HSV1 Herpes simplex type 1
  • HSV2 Herpes simplex type 2
  • VZV Varicella zoster virus
  • CMV Cytomegalovirus
  • HHV6 Human Herpesvirus 6
  • EBV Epstein-Barr Virus
  • Aseptic meningitis, encephalitis, meningoencephalitis and polyradiculitis are the most common clinical manifestations of central nervous system infections associated with this group of viruses.
  • Picornaviridae included in the family Picornaviridae is part of the group of enteroviruses, a genus known since the fourteenth century BC for the production of polio epidemics. Infection by these small non-enveloped viruses and whose genome is constituted by a single-stranded RNA molecule of positive polarity, has a higher incidence in the first years of life and generates a broad spectrum of clinical syndromes. In developed countries they are the most frequent etiologic agents of cases of aseptic meningitis, a neurological syndrome that in Spain is associated with enteroviruses in 90% of the total cases depending on the year and the epidemic outbreaks produced.
  • enteroviruses and herpes viruses are capable of producing neurological syndromes in both immunocompetent and immunocompromised patients.
  • Aseptic meningitis due to its high frequency, in addition to encephalitis and meningoencephalitis, due to its worse clinical evolution, are the reason for different studies aimed at finding the viruses involved in its production.
  • the control of acute neurological diseases can be done by establishing an effective diagnosis that allows the finding and identification of the etiologic agent associated with a specific neurological picture.
  • the detection and identification of these infectious agents is one of the fundamental needs of a microbiological diagnostic laboratory.
  • laboratory diagnosis is based on the isolation of different viruses in cell cultures. This technique is slow and It also requires an additional effort to maintain different cell lines in order to cover the largest number of enterovirus serotypes, in addition to the different herpes viruses.
  • a positive result in isolation can be established in a period of time between 4 and 15 days.
  • certain enteroviruses are unable to grow in cell cultures, which prevents their detection in this type of diagnostic system.
  • the indirect systems of analysis of specific antibodies produced against a certain herpes virus are very useful when analyzing samples where the antibody titer is high. This situation is different in those cases of neurological infection, where the sample analyzed is mainly cerebrospinal fluid (CSF). In these types of samples the specific antibody titer against a virus can be very low and barely detectable.
  • CSF cerebrospinal fluid
  • indirect methods of analysis of specific antibodies against enteroviruses do not have a diagnostic value due to their free circulation as normal pathogens in the healthy population.
  • the great antigenic diversity of enteroviruses does not. allows to develop sufficiently sensitive and specific serological techniques to identify all types.
  • PCR genomic amplification techniques
  • Viruses belonging to the same family and that are intrinsically related to each other have a high degree of homology of certain genomic areas; for example, the 5 'non-coding region, in the case of enteroviruses and the region that codes for the DNA polymerase gene, in the case of Herpes viruses.
  • genomic areas for example, the 5 'non-coding region, in the case of enteroviruses and the region that codes for the DNA polymerase gene, in the case of Herpes viruses.
  • These highly conserved genomic areas are the subject of molecular studies and in them common and specific primers are designed that will be used in the PCR technique to be able to detect and identify each virus in a single assay.
  • the main advantage of this type of trials is the saving of clinical sample and time to establish a differential etiological diagnosis.
  • multiple amplification techniques not only allows detecting any enteroviruses or herpesviruses including those that are difficult to grow, but also allows their specific identification in the case of herpes viruses, even if they are present in quantities as small as in CSF. It should be noted that a multiple amplification technique also presents a series of problems and problems that are difficult to solve. The problems of nonspecificity, reproducibility and lack of sensitivity are, among others, issues that a priori, are necessary to consider, especially at the time of the design of the specific initiators of each virus to be amplified. Once the primers have been designed, the standardization phase of the multiple amplification technique is essential, and it is during this period that they present the greatest incompatibility problems at all levels.
  • the present invention aims to describe new mixtures of reaction initiators and new Genomic amplification procedures useful for the specific detection and identification of related infectious agents, especially infectious agents capable of producing neurological disease and more especially for specific detection and identification of human herpesviruses and enteroviruses, viruses without any significant homology at genomic level.
  • An aspect of the invention is a genome amplification method for the detection of related infectious agents in a single reaction mixture, characterized by
  • oligonucleotide initiator mixtures each mixture being specifically designed for a family of infectious agents with genomically related sequences and characterized in turn by: i) obtained as a simple sum of oligonucleotides, ii) to include, each of the component oligonucleotides of said mixture, preferably at its 3 'end, homologous sequences selected from the related sequences to be amplified, iii) by being able to also include each of the component oligonucleotides of said mixture, preferably at its 5' end, non-homologous sequences selected from the related sequences to be amplified, and iv) because one or more of the component oligonucleotides of said mixture can be distinguished from known sequences that are to be amplified in at least one nucleotide, and
  • homology in the sense used in this description, refers to nucleotide sequences that have a homology to each other greater than
  • Another aspect of the invention are mixtures such as those described for the above procedure.
  • the improvement in specificity is achieved by increasing, if necessary, the length of the initiators and extending them at their 5 'end towards unconserved areas between the different family members and thus achieving a sufficient initiator length to avoid nonspecific hybridization. with similar sequences that may be present in genomes with high complexity, such as the human.
  • the mixtures and procedures described above are useful for the detection of infectious agents that produce similar pathologies but are not genomically related to each other, especially those that cause pathology in humans, such as those belonging to the Herpesviridae and Picornaviridae families.
  • Another aspect of the invention is a method of detecting and identifying related genomic sequences, characterized by
  • Another aspect of the invention is a genome amplification method for the detection and identification of related infectious agents in a single reaction mixture, characterized in that at least one of the initiators used is a characterized mixture.
  • Another aspect of the invention are mixtures such as those described for the above procedure.
  • Another aspect of the invention is a method of detecting and identifying related genomic sequences, characterized by
  • This procedure also allows the detection and identification of related infectious agents, in two consecutive reactions.
  • the complex mixture of initiators used in the second reaction does not produce nonspecific amplifications due to its use in presence of a complex genome. This is achieved using the reaction product obtained in the first amplification reaction as the substrate of the second reaction.
  • the mixtures and procedures described above are especially useful for the detection and specific identification of different infectious agents related to produce similar pathology, especially in man.
  • Another aspect of the invention is the inclusion of an internal amplification control in the above procedures and mixtures that are used for the detection and identification of related infectious agents.
  • the above processes and mixtures can include in the reaction mixture itself specific amounts of a genome that cannot be expected in a clinical sample, in addition to the reaction initiators or other specific reagents that allow its detection if the reaction amplification has developed in the absence of inhibitors.
  • the inclusion of the internal amplification control will allow the detection of samples containing amplification inhibitors, thus easily identifying false negative results.
  • a final aspect of the invention are mixtures of oligonucleotides designed to be used as initiators of the amplification reaction, characterized in that at least one of the component oligonucleotides of said mixture differs from the known sequences that are to be amplified in at least one nucleotide.
  • the alteration of the sequence according to the invention has as main objective to make the complex mixtures of initiators compatible with each other; that is, no hybridization occurs between the different components of the oligonucleotide mixtures present in the amplification reaction mixture.
  • the oligonucleotide hybridizations, frequent in complex mixtures, produce during the amplification reaction sequestration of the necessary reagent and, frequently, the formation of initiator dimers.
  • An embodiment of the invention is the application of the mixtures and methods described above for the detection and identification of related infectious agents for being able to produce similar pathology, especially those capable of producing similar pathology in man, more especially those capable of producing disease.
  • neurological in man specifically those belonging to the Herpesviridae and Picornaviridae families.
  • FIG. 1 Schematic representation of the alignments of the nucleotide sequences corresponding to: (A) target fragments of the DNA polymerase genes of the 6 human herpesviruses: Herpes simplex type 1 (HSV1); Herpes simplex type 2 (HSV2); Varicella-zoster virus (VZV); Cytomegalovirus (HCMV); Human herpesvirus 6 type A (HHV6-A); Epstein-Barr virus (EBV); of human DNA polymerase (HUMAN) and Swine Pseudorrabia Virus (PRV), (B) Oligonucleotides initiating the first amplification reaction and (C) Oligonucleotides initiating the second amplification reaction. Each oligonucleotide is identified with the sequence code (SEQ ID No :).
  • Figure 3 Figure 3
  • Molecular weight marker M
  • Coxsackievirus A 16 (lane 1); HSV1 (lane 2); HSV2 (lane 3); VZV (lane 4); CMV (lane 5); HHV6 (lane 6); EBV (lane 7); Mix of all herpesviruses (lane 8); Human fetal fibroblasts (lanes 9 and 17); Coxsackievirus A16 and HSV1 (lane 10); Coxsackievirus A16 and HSV2 (lane 11); Coxsackievirus A16 and VZV (lane 12); Coxsackievirus A16 and CMV (lane 13); Coxsackievirus A16 and HHV6 (lane 14); Coxsackievirus A16 and EBV (lane 15); Coxsackievirus A16 and mixture of all herpesviruses (lane 16).
  • the 500 bp fragment corresponds to the enteroviruses and the 194 bp fragment to the herpesviruse
  • FIG. 4 Agarose gel electrophoresis of the amplification fragments generated in Example 4.
  • Molecular weight marker (M) molecular weight marker of the amplified fragments: 120 bp HSV1 and HSV2, 98 bp VZV, 78 bp CMV, 66 bp HHV6 and 54 bp EBV (lanes 1, 10 and 19).
  • HSV1, HSV2, VZV, CMV, HHV6, EBV (lanes 2, 3, 4, 5, 6 and 7 without Coxsackievirus A16 RNA respectively, lanes 11, 12, 13, 14, 15 and 16 in the presence of Coxsackievirus A16 RNA respectively).
  • Mixture of all herpesviruses (lane 8 and 17 with and without Coxsackievirus A16 RNA respectively); Human fibroblasts (lanes 9 and 18).
  • Molecular weight marker (M) 500 bp fragment corresponds to the amplification of Coxsackievirus A16 (lanes 1, 3 and 4 ), the 194 bp fragment corresponds to the first PRV amplification (lanes 2, 3 and 4).
  • M Molecular weight marker
  • HSV1, HSV2, VZV, CMV, HHV6, EBV and human fetal fibroblasts initiators of the second herpesvirus multiple amplification reaction (lanes 1 to 8 respectively), with PRV initiators in addition to those of multiple amplification of herpesvirus (lanes 9 to 16 respectively), with PRV primers and PRV DNA (lanes 17 to 24 respectively).
  • Figure 7 Agarose gel electrophoresis of the amplification fragments generated in the first and second amplification according to Example 10.
  • Molecular weight marker M
  • 500 bp fragment for Coxsackievirus A16 lane 1
  • the fragments 194 bp for HSV1 lanes 2 and 3)
  • HSV2 lane 4
  • a method for differential diagnosis of related infectious agents is provided by their ability to produce a similar pathology, belonging to different families that are not genomically related to each other, which includes (a) the detection of said infectious agents by enzymatic amplification of a fragment of their genomes and (b) the identification of said agents infectious from the products of the amplification reaction, wherein said amplification reaction is carried out in a single reaction mixture comprising, as the reaction initiator, a combination of oligonucleotide mixtures, each of which It has been specifically designed for each of the families of infectious agents to be detected so that each oligonucleotide mixture: i) is obtained as a simple sum of oligonucleotides, ii) each of the component oligonucleotides of said mixture, preferably includes 3 ' end, homologous sequences selected from the genomically related sequences that are to be amplified, üi) each of the component oligonucleotides of said mixture, may
  • a specific application of this method consists in the detection and identification of infectious agents that produce a similar pathology in humans, in particular, a neurological pathology, such as that caused by infectious agents belonging to the Herpesviridae families and
  • Picornaviridae particularly that caused by human herpesviruses and enteroviruses.
  • the mixture for the amplification reaction further includes an internal amplification control comprising the genome of a virus that should not be present in the sample to be studied together with specific reaction initiators of a fragment of said genome.
  • said genome is derived from a viral species belonging to one of the virus families to be identified and is not capable of infecting the animal species, for example the human one, on which the diagnosis is made.
  • said genome corresponds to a herpesvirus that cannot infect man such as porcine herpesvirus 1.
  • the identification of the infectious agent once detected can be done either by hybridization of the amplified sequences with specific oligonucleotide probes or mixtures of specific oligonucleotides of the species or genera to be identified or, alternatively, by means of a second amplification reaction of the resulting products of the first amplification reaction in which the reaction mixture for said second amplification reaction comprises, as a reaction initiator, a mixture of oligonucleotides designed such that: i) is obtained as a simple sum of oligonucleotides, ii) each of the component oligonucleotides of said mixture, preferably includes at its 3 ' end, specific sequences of each of the sequences to be typified in said second amplification reaction, iii) the specific amplified fragments are different from each other by size or by different marking physical or chemical of each d and the component oligonucleotides of said mixture, and iv) one or more of the component oligonucleot
  • the proposed method also contemplates the possibility of confirming the Identity of each virus species identified by an additional specific hybridization reaction with a specific oligonucleotide of each species whose identity is to be confirmed or alternatively by an additional genomic amplification reaction using the appropriate initiator oligonucleotides.
  • the diagnostic method facilitated by this invention specifically identifies the presence of herpes simplex virus (type 1 or type 2) in a sample (see Example 10).
  • Example l Design of primers for the detection of human enteroviruses in order to obtain a multiple method of amplification of enteroviruses and / or herpesviruses.
  • the genus enterovirus encompasses a very large number of viruses from which only a minority have been able to obtain complete sequences of their genome.
  • the 5 ' non-coding region (5 NCR) has been highlighted by the enormous homology presented by sequenced enteroviruses and whose sequences are available to date in the GENBANK database.
  • the 5 ' NCR region has an enormous biological interest for its participation in the beginning of the replication of this group of viruses.
  • SEQ ID No: 2 NEGATIVE POLARITY SEQ ID No: 3
  • the degree of homology between the two designed primers and the corresponding specific sequence of each of the enteroviruses whose genome has been sequenced is very high, becoming exactly the same in most viruses. This high degree of homology allows very specific and highly sensitive enteroviru ⁇ amplification reactions.
  • the system must be made compatible in order to amplify in a first RNA amplification reaction from the enteroviruses, in addition to DNA from the herpesviruses.
  • a reaction mixture has been designed containing the first reaction primers of enterovirus and herpesvirus amplification.
  • Herpesvirus primers were designed and described in Spanish Patent P9201174.
  • the mixture of initiators consists of:
  • Example 2 Detection of human enteroviruses and / or herpesviruses in a first amplification reaction.
  • the samples to be analyzed contain different dilutions of enteroviruses mixed with a certain amount of human fibroblasts.
  • the method of preparation of viral RNA has been described above (Casas, I. Powell L., Klapper PE, Cleator GM A new extraction method for RNA and DNA by precipitation in clinical samples. J. Virol. Methods 1994, in press). Once the nucleic acids (DNA and RNA) present in the sample to be precipitated are diluted in 10 ⁇ l of water.
  • RNA present in 5 ⁇ l of the previous dilution is transformed into cDNA by a 30-minute reverse transcription at a temperature of 37 ° C, under the conditions recommended by the manufacturer of the reverse transcriptase, a vital enzyme for this process. 100 pmol of negative polarity initiator is used, since the RNA strand has a positive polarity.
  • the cDNA will undergo an amplification of 40 cycles, with an initiator hybridization temperature of 60 ° C.
  • the denaturation temperature range is set between 92 ° C and 95 ° C, although 94 ° C has preferably been chosen.
  • the extension temperature of the DNA polymerase is set between 60 ° C and 80 ° C, although preferably it is 72 ° C.
  • the reaction mixture is constituted by a mixture of the two initiator mixtures in a chosen concentration of 100 pmol of each of them.
  • the total volume chosen from the reaction is 50 ⁇ l.
  • Example 3 Design of primers for the specific detection of enteroviruses and / or herpesviruses in which the marking is the molecular weight of the amplified fragment
  • the primers For the identification of the fragments generated in Example 2, the primers have been designed for a second amplification reaction that uses the fragment obtained in the first amplification reaction as the target molecule. This increases the sensitivity and specificity of the identification reaction. From the related and compared sequences in Figure 1, they have been initially selected the following common primers for all enteroviruses
  • Example 4 Detection and identification by molecular weight of the amplified fragment of human herpesviruses in the presence of enteroviruses.
  • Example 5 Common and specific probe design for the identification of human enteroviruses.
  • Example 6 Design of the primers for the detection of an internal amplification control in each reaction tube.
  • the multiple method of amplification of herpesviruses already described in Spanish Patent P9201174 has been taken as the basis of the design. It is based on the multiple amplification of the herpesviruses HSV1, HSV2, VZV, CMV, HHV6 and EBV using a mixture of primers characterized in said patent because their 3 ' ends are conserved areas between the DNA polymerase genes of human herpesviruses.
  • primers capable of reamplifying the fragment generated in the first PRV amplification reaction have been designed as an internal amplification control.
  • the following primers have been designed for the second amplification reaction:
  • the specific PRV fragment would have a size of 140 bp after the second amplification so it is easily detectable.
  • Example 7 Detection of herpesvirus in the presence of the specific primers of the PRV virus used as internal control of first and second amplification.
  • Example 4 According to the procedure described in Example 4, a new mixture of specific herpes virus initiators has been used which also contains the specific PRV initiators, used as an internal amplification control. First, they have undergone a first DNA amplification reaction of each of the herpes viruses according to the procedures described in Example 1 and using the compound initiator mixture by:
  • the DNA fragments from the first amplification reaction corresponding to each of the herpes viruses (HSV1, HSV2, VZV, CMV, HHV6 and EBV) have been amplified ). It has been possible to detect specific DNA from each of the herpes viruses and PRV after the second amplification reaction using the mixture of specific primers consisting of:
  • Each virus is identified based on the molecular weight of the amplified fragments Figure 6.
  • Example 8 Detection of enteroviruses and herpesviruses in the presence of specific PRV virus primers as internal control of first and second amplification reactions.
  • an internal amplification control the one designed in Example 6 has been used.
  • the mixture of primers consisting of those specific for enteroviruses and those of herpesviruses is enriched by the presence of the initiators of the internal control, which consists of a cloned fragment of the gene. of the PRV virus polymerase DNA.
  • Example 9 Design of the mixture of HSV1 and HSV2 specific initiators The homology between herpes simplex type 1 virus and herpes simplex type 2 virus is very high. Similar to how the design of the primers of Example 6 has been performed, the nucleotide sequences of the HSV1 and HSV2 specific primers have been determined for a second amplification reaction in which the target molecule is the resulting amplification fragment of a first amplification reaction previously developed and described in Spanish Patent P9201174. From the aligned and compared sequences of The human herpesviruses of Figure 2 have designed specific primers for these two viruses so homologous.
  • Amplification using the designed mixtures should generate fragments of 93 bp for HSV1 and 138 for HSV2.
  • Example 10 Detection of specific sequences of HSV1 or HSV2 in samples containing or not enterovirus RNA.
  • TYPE nucleic acid
  • C STRANDEDNESS: single
  • D TOPOLOGY: linear
  • MOLECULE TYPE DNA (genomic)
  • HYPOTHETICAL YES
  • ANTI-SENSE NO (vi) ORIGINAL SOURCE:
  • ORGANISM Herpes simplex virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: CGCATCATCT ACGGGGACAC GGA 23
  • MOLECULE TYPE DNA (genomic)
  • HYPOTHETICAL YES
  • ORIGINAL SOURCE
  • ORGANISM Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
  • MOLECULE TYPE DNA (genomic)
  • Üi HYPOTHETICAL: YES
  • ORGANISM Human cytomegalovirus
  • ORGANISM Human herpesvirus 6
  • xi SEQUENCE DESCRIPTION: SEQ ID NO: 7: GAGGTAATTT ATGGTGATAC GGA 23
  • MOLECULE TYPE DNA (genomic)
  • ORGANISM Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
  • MOLECULE TYPE DNA (genomic)
  • Üi HYPOTHETICAL: YES
  • ORGANISM Human cytomegalovirus
  • ORGANISM Human herpesvirus 6
  • SEQUENCE DESCRIPTION SEQ ID NO: 12: TGTCTACCAA TGTATCTTTT TTT 23
  • MOLECULE TYPE DNA (genomic)
  • MOLECULE TYPE cDNA to mRNA
  • HYPOTHETICAL YES
  • ANTI-SENSE NO
  • ORIGINAL SOURCE
  • MOLECULE TYPE DNA (genomic)
  • HYPOTHETICAL YES
  • ORGANISM Varicella-zoster virus
  • xi SEQUENCE DESCRIPTION: SEQ ID NO: 17: TGAGGGGATA GCTAAAATCG 20
  • MOLECULE TYPE DNA (genomic)
  • MOLECULE TYPE DNA (genomic)
  • Üi HYPOTHETICAL: YES
  • MOLECULE TYPE DNA (genomic)
  • HYPOTHETICAL YES
  • ANTI-SENSE NO
  • ORGANISM Herpes simplex virus
  • xi SEQUENCE DESCRIPTION: SEQ ID NO: 21: GGTGAACGTC TTTTCGAACT C 21 (2) INFORMATION FOR SEQ ID NO: 22:
  • ORGANISM Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:
  • ORGANISM Human cytomegalovirus
  • xi SEQUENCE DESCRIPTION: SEQ ID NO: 23: GACGAAGACC TTTTCAAACT C 21
  • ORGANISM Pseudorabies virus
  • xi SEQUENCE DESCRIPTION: SEQ ID NO: 27: CGCGTGGTCT ACGGGGACAC GGA 23
  • MOLECULE TYPE DNA (genomic)
  • HYPOTHETICAL YES
  • ORGANISM Pseudorabies virus
  • xi SEQUENCE DESCRIPTION: SEQ ID NO: 29:
  • MOLECULE TYPE DNA (genomic)
  • HYPOTHETICAL YES
  • ORGANISM Herpes simplex virus type 1
  • ORGANISM Herpes simplex virus type 2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GACACGGACT CCATTTTCGT TT 22

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Se utiliza para la reacción de detección una combinación de mezclas de oligonucleótidos iniciadores, estando cada una de dichas mezclas específicamente diseñada para una familia de agentes infecciosos con secuencias genómicamente relacionadas y obteniéndose como suma simple de oligonucleótidos homólogos en su extremo 3'. La reacción de amplificación puede realizarse igualmente con la inclusión de un control de amplificación interno. Los productos de la amplificación pueden discriminarse posteriormente por hibridación o por una segunda reacción de amplificación. Los procedimientos y mezclas de la invención son especialmente útiles para realizar el diagnóstico diferencial de agentes infecciosos que producen patologías similares, especialmente los herpesvirus y enterovirus humanos.

Description

PROCEDIMIENTOS DE AMPLIFICACIÓN DE GENOMA Y MEZCLAS DE OLIGONUCLEOTIDOS INICIADORES PARA LA DETECCIÓN Y LA IDENTIFICACIÓN DE AGENTES INFECCIOSOS RELACIONADOS.
Campo de la invención
La invención se refiere a nuevas mezclas de iniciadores de reacción y a nuevos procedimientos de amplificación genó ica útiles para la detección e identificación especifica de agentes infecciosos relacionados, especialmente de agentes infecciosos capaces de producir enfermedad neurológica y más especialmente para detección e identificación especifica de virus herpes y enterovirus humanos.
Estado de la técnica
La detección y caracterización de los diferentes agentes infecciosos es uno de los objetivos de trabajo de un laboratorio de diagnóstico que con frecuencia tiene que plantearse la necesidad de establecer un diagnóstico diferencial, tal como sucede, entre otros, en el diagnóstico de infección neurológica aguda. Las infecciones neurológicas y más concretamente, las de origen vírico se producen, entre otros, por virus pertenecientes a dos Familias taxonómicamente no relacionadas: Herpesviridae y Picornaviridae . En primer lugar, los virus Herpes son agentes infecciosos que tras la primoinfección establecen latencia produciendo en determinadas condiciones recurrencias periódicas. Son virus envueltos cuyo genoma consiste en una molécula de ADN bicatenario. Fundamentalmente, la patología neurológica se asocia a recurrencias de los virus Herpes simplex tipo 1 (HSV1), Herpes simplex tipo 2 (HSV2) y Virus de la varicela zóster (VZV). Además, Citomegalovirus (CMV) , Herpesvirus humano 6 (HHV6) y el Virus de Epstein- Barr (EBV) son posibles agentes directamente relacionados con determinados síndromes que conllevan una alteración neurológica. Meningitis aséptica, encefalitis, meningoencefalitis y polirradiculitis son las manifestaciones clínicas más comunes de las infecciones del sistema nervioso central asociadas a este grupo de virus. En segundo lugar, incluido dentro de la familia Picornaviridae se encuadra al grupo de los enterovirus, género conocido ya desde el siglo XIV a.C. por la producción de epidemias de poliomielitis. La infección por estos virus de pequeño tamaño no envueltos y cuyo genoma está constituido por una molécula de ARN monocatenaria de polaridad positiva, tiene mayor incidencia en los primeros años de vida y genera un amplio espectro de síndromes clínicos. En los países desarrollados son los agentes etiológicos más frecuentes de casos de meningitis aséptica, síndrome neurológico que en España se asocia con los enterovirus en un 90% del total de los casos dependiendo del año y de los brotes epidémicos producidos.
Tanto los enterovirus como los virus herpes son capaces de producir síndromes neurológicos tanto en pacientes inmunocompetentes como en inmunodeprimidos. La meningitis aséptica, por su elevada frecuencia, además de encefalitis y meningoencefalitis, por su peor evolución clínica, son motivo de diferentes estudios que tienen como fin el hallazgo de los virus implicados en su producción.
El control de las enfermedades neurologicas agudas puede realizarse mediante el establecimiento de un diagnóstico eficaz que permita el hallazgo y la identificación del agente etiológico asociado a un determinado cuadro neurológico. La detección e identificación de estos agentes infecciosos es una de las necesidades fundamentales de un laboratorio de diagnóstico microbiológico. En la actualidad, el diagnóstico de laboratorio se basa en el aislamiento de los diferentes virus en cultivos celulares. Esta técnica es lenta y además requiere un esfuerzo adicional para mantener líneas celulares distintas con el fin de abarcar el número mayor de serotipos de enterovirus, además de los diferentes virus herpes. Un resultado positivo en aislamiento puede ser establecido en un período de tiempo entre 4 y 15 días. Sin embargo, determinados enterovirus son incapaces de crecer en cultivos celulares lo que impide su detección en este tipo de sistemas de diagnóstico.
Con respecto a las técnicas serológicas, los sistemas indirectos de análisis de anticuerpos específicos producidos frente a un determinado virus herpes son de gran utilidad cuando se analizan muestras en donde el título de anticuerpos es elevado. Esta situación es diferente en aquellos casos de infección neurológica, en donde la muestra que se analiza es, principalmente, líquido cefalorraquídeo (LCR). En este tipo de muestras el título de anticuerpos específicos frente a un virus puede ser muy bajo y apenas detectable. Por otra parte los métodos indirectos de análisis de anticuerpos específicos frente a enterovirus no tienen un valor diagnóstico debido a su libre circulación como patógenos normales entre la población sana. Además, la gran diversidad antigénica de los enterovirus no . permite desarrollar técnicas serológicas suficientemente sensibles y específicas para identificar todos sus tipos.
La introducción de técnicas de amplificación genómica (PCR) de agentes infecciosos víricos en muestras clínicas, ha supuesto uno de los mayores avances a la hora de detectar el agente etiológico de numerosas enfermedades infecciosas y por ello a la hora de establecer un diagnóstico etiológico diferencial. Así, los procedimientos de amplificación genómica de herpesvirus y enterovirus en muestras clínicas están ampliamente documentados en la literatura. Concretamente en el proceso de amplificación de ARN es necesario llevar a cabo una primera fase inicial en la que se debe de producir una molécula de ADN complementario específico mediante un proceso de transcripción inversa. Particularmente, son importantes aquellos protocolos en los que se han diseñado conjuntamente la amplificación de diferentes virus en una única reacción (multiplex-PCR) como es el caso de los virus herpes (Patente Española P9201174). Virus pertenecientes a una misma familia y que están intrínsecamente relacionados entre sí, presentan un elevado grado de homología de determinadas zonas genómicas; por ejemplo, la región 5' no codificante, en el caso de los enterovirus y la región que codifica para el gen de la ADN polimerasa, en el caso de los virus Herpes. Estas zonas genómicas altamente conservadas, son motivo de estudios moleculares y en ellas se diseñan iniciadores comunes y específicos que serán utilizados en la técnica de PCR para poder detectar e identificar cada uno de los virus en un solo ensayo. La principal ventaja de este tipo de ensayos es el ahorro de muestra clínica y de tiempo para establecer un diagnóstico etiológico diferencial.
El uso de técnicas de amplificación múltiple no sólo permite detectar cualquier enterovirus o herpesvirus incluyendo los difícilmente cultivables, sino que permite en el caso de los virus herpes su identificación específica aunque estén presentes en cantidades tan pequeñas como en LCR. Hay que destacar, que una técnica de amplificación múltiple presenta también una serie de inconvenientes y problemas de difícil solución. Los problemas de inespecificidad, reproducibilidad y falta de sensibilidad son, entre otros, cuestiones que a priori , son necesarias considerar, sobre todo en el momento del diseño de los iniciadores específicos de cada uno de los virus a amplificar. Una vez diseñados los iniciadores, la fase de estandarización de la técnica de amplificación múltiple es esencial, y es en este período en donde se presentan los mayores problemas de incompatibilidad a todos los niveles. Interacciones entre los iniciadores específicos de los correspondientes virus a detectar y el genoma humano, molécula que presenta un elevado grado de complejidad, generan amplificaciones inespecíficas no deseables. Hay que tener en cuenta, que la molécula de ADN humano está presente en todo tipo de muestra clínica en donde se realiza la detección específica de los agentes víricos implicados en una determinada enfermedad infecciosa. Además, la presencia en una misma muestra de agentes radicalmente diferentes como los virus herpes y los enterovirus puede suponer un fallo del sistema en cuanto a la reproducibilidad de los resultados obtenidos. Otro factor a tener en cuenta es la fase inicial de transcripción inversa de las moléculas de ARN enterovírico ya que puede representar una pérdida de la disponibilidad de las moléculas de ADN de herpesvirus a ser amplificadas en la segunda fase de polimerización (PCR).
Otro de los problemas que se pueden encontrar cuando se utiliza la técnica de PCR en el laboratorio de diagnóstico, se deben incluir una serie de controles específicos que excluyan los falsos negativos, debidos a la presencia de inhibidores de la reacción de amplificación. Así, es muy recomendable el desarrollo y uso de controles internos de amplificación en cada tubo de reacción.
La aplicación de la tecnología de PCR y las posibles combinaciones de iniciadores para poder amplificar secuencias genómicas de virus asociados con la producción de infección neurológica, cubriría una de las necesidades que se plantean en el diagnóstico de laboratorio.
Descripción de la invención
La presente invención tiene por objeto describir nuevas mezclas de iniciadores de reacción y nuevos procedimientos de amplificación genómica útiles para la detección e identificación específica de agentes infecciosos relacionados, especialmente de agentes infecciosos capaces de producir enfermedad neurológica y más especialmente para detección e identificación específica de herpesvirus y enterovirus humanos, virus sin ninguna homología significativa a nivel genómico.
Un aspecto de la invención es un procedimiento de amplificación de genoma para la detección de agentes infecciosos relacionados en una única mezcla de reacción, caracterizado por
1 utilizar una combinación de mezclas de oligonucleótidos iniciadores, estando cada mezcla específicamente diseñada para una familia de agentes infecciosos con secuencias genómicamente relacionadas y caracterizada a su vez por: i) obtenerse como suma simple de oligonucleótidos, ii) por incluir, cada uno de los oligonucleótidos componentes de dicha mezcla, preferentemente en su extremo 3', secuencias homologas seleccionadas de entre las secuencias relacionadas que se quieren amplificar, iii) por poder incluir además, cada uno de los oligonucleótidos componentes de dicha mezcla, preferentemente en su extremo 5', secuencias no homologas seleccionadas de entre las secuencias relacionadas que se quieren amplificar, y iv) porque uno o más de los oligonucleótidos componentes de dicha mezcla pueden diferenciarse de las secuencias conocidas que se quieren amplificar en la menos un nucleótido, y
2 porque todas las mezclas diseñadas según las características anteriores se combinan en una única mezcla que será utilizada para la reacción de amplificación genómica.
El término "secuencias hom logas", en el sentido utilizado en esta descripción, se refiere a secuencias de nucleótidos que tienen una homología entre sí superior al
50%, preferiblemente superior al 70% y, todavía más preferiblemente, superior al 90%.
Otro aspecto de la invención son mezclas como las descritas para el procedimiento anterior.
El uso de los procedimientos y mezclas anteriormente descritos suma, a las ventajas logradas por el uso individual de las mezclas descritas y que esencialmente son una mejora en la especificidad y sensibilidad de reacción, la ventaja añadida de poder detectar, en una única reacción de amplificación, agentes infecciosos que producen patologías similares pero que no están genómicamente relacionados entre sí, tal como sucede con los virus pertenecientes a las familias Herpesviridae y Picornaviridae . Para cada una de las familias, la mejora en la sensibilidad se logra disminuyendo al máximo el grado de degeneración de los iniciadores, diseñados sobre una zona con secuencias relativamente conservadas entre los diferentes miembros de la familia. La mejora en la especificidad se logra aumentando, si fuera necesario, la longitud de los iniciadores y extendiéndolos en su extremo 5' hacia zonas no conservadas entre los diferentes miembros de la familia y logrando así una longitud de iniciador suficiente como para evitar la hibridación inespecífica con secuencias similares que puedan estar presentes en genomas con elevada complejidad, como el humano.
Las mezclas y procedimientos anteriormente descritos son útiles para la detección de agentes infecciosos que producen patologías similares pero que no están genómicamente relacionados entre sí, especialmente los que producen patología en humanos, como son los pertenecientes a las familias Herpesviridae y Picornaviridae.
Otro aspecto de la invención es un procedimiento de detección e identificación de secuencias genómicas relacionadas, caracterizado por
i) hacerse una primera reacción de amplificación de genoma en la que al menos uno de los iniciadores utilizados es en una mezcla como la utilizada en el primer procedimiento descrito
ii) tomando como substrato el producto de la primera reacción, realizar la identificación específica mediante hibridación con oligonucleótidoε específicos de cada una de las especies que se quiere identificar.
Este procedimiento permite realizar tanto la detección como la identificación de agentes infecciosos relacionados en dos reacciones consecutivas, la primera de amplificación genómica y la segunda de hibridación específica, posibilitando así tanto la detección como la identificación de agentes infecciosos relacionados. Otro aspecto de la invención es un procedimiento de amplificación de genoma para la detección y la identificación de agentes infecciosos relacionados en una única mezcla de reacción, caracterizado porque al menos uno de los iniciadores utilizados es una mezcla caracterizada
i) por obtenerse como suma simple de oligonucleótidos, ii) por incluir, cada uno de los oligonucleótidos componentes de dicha mezcla, preferentemente en su extremo 3', secuencias específicas de cada una de las secuencias que se quieren tipificar en la reacción de amplificación, iii) por estar diseñada de manera que los fragmentos específicos amplificados son diferentes entre sí por tamaño o por diferente mareaje físico o químico de cada uno de los oligonucleótidos componentes de la mezcla, y iv) porque uno o más de los oligonucleótidos componentes de dicha mezcla pueden diferenciarse de las secuencias conocidas que se quieren amplificar en la menos un nucleótido.
Otro aspecto de la invención son mezclas como las descritas para el procedimiento anterior.
Otro aspecto de la invención es un procedimiento de detección e identificación de secuencias genómicas relacionadas, caracterizado por
i) hacerse una primera reacción de amplificación de genoma en la que al menos uno de los iniciadores utilizados es en una mezcla como la utilizada en el primer procedimiento descrito y
ii) tomando como substrato el producto de la primera reacción, realizar una segunda reacción de amplificación en la que se utiliza una mezcla como la descrita en el procedimiento anterior.
Este procedimiento permite igualmente realizar tanto la detección como la identificación de agentes infecciosos relacionados, en dos reacciones consecutivas.
Además, según la invención, la mezcla compleja de iniciadores utilizada en la segunda reacción no produce las amplificaciones inespecíficas debidas a su uso en presencia de un genoma complejo. Esto se logra utilizando como substrato de la segunda reacción el producto de reacción obtenido en la primera reacción de amplificación. Las mezclas y los procedimientos anteriormente descritos son especialmente útiles para la detección y la identificación específica de diferentes agentes infecciosos relacionados por producir patología similar, especialmente en el hombre.
Otro aspecto de la invención es la inclusión de un control interno de amplificación en los procedimientos y mezclas anteriores que se utilizan para la detección e identificación de agentes infecciosos relacionados. Así, según la invención, los procedimientos y mezclas anteriores pueden incluir en la propia mezcla de reacción cantidades concretas de un genoma que no cabe esperar en una muestra clínica, además de los iniciadores de reacción u otros reactivos específicos que permitan su detección si la reacción de amplificación se ha desarrollado en ausencia de inhibidores. La inclusión del control interno de amplificación permitirá detectar las muestras que contienen inhibidores de la amplificación, identificando así fácilmente los resultados falsos negativos.
Un último aspecto de la invención son mezclas de oligonucleótidos diseñadas para ser utilizadas como iniciadores de la reacción de amplificación, caracterizadas porque al menos uno de los oligonucleótidos componentes de dicha mezcla se diferencia de las secuencias conocidas que se quieren amplificar en al menos un nucleótido. La alteración de la secuencia según la invención, tiene como principal objetivo lograr que las mezclas complejas de iniciadores sean compatibles entre sí; es decir, que no se produzcan hibridaciones entre los diferentes componentes de las mezclas de oligonucleótidos presentes en la mezcla de reacción de amplificación. Las hibridaciones entre oligonucleótidos, frecuentes en mezclas complejas, producen durante la reacción de amplificación secuestro del reactivo necesario y, frecuentemente, la formación de dímeros de iniciadores. Una realización de la invención es la aplicación de las mezclas y procedimientos anteriormente descritos para la detección e identificación de agentes infecciosos relacionados por ser capaces de producir patología similar, especialmente aquéllos capaces de producir patología similar en el hombre, más especialmente aquéllos capaces de producir enfermedad neurológica en el hombre, concretamente los pertenecientes a las familias Herpesviridae y Picornaviridae .
Los siguientes ejemplos y figuras ilustran, pero no limitan, algunos de los modos de llevar a cabo la invención.
Descripción de las figuras Figura 1 Alineamiento de las secuencias de nucleótidos correspondientes a los fragmentos 5' no codificantes (5,NCR) de los enterovirus de secuencia conocida. Los nombres de los virus y su procedencia se describe a continuación, así como el código de reconocimiento de secuencia en la base de datos de donde se han obtenido (GenBan ), entre corchetes, y su identificación en la figura, entre paréntesis. Poliovirus tipo 1, cepa Mahoney [POLI] (POL1A); Poliovirus tipo 1, cepa Mahoney versión A [POLI01A] (POL1B); Poliovirus tipo 1, cepa Mahoney versión B [POLI01B] (P0L1C); Poliovirus tipo 1, cepa Sabin 1 [POLIOS] (P0L1D); Poliovirus tipo 2, cepa Sabin 2 [PIPOLS2] (POL2A); Poliovirus tipo 2 [POL2CG1] (POL2B) Poliovirus tipo 2, cepa Lansing [POL2LAN] (P0L2C) Poliovirus tipo 3, cepa Sabin 3 [PIP0L3] (POL3A) Poliovirus tipo 3, cepa 23127 [PIP03XX] (POL3B) Poliovirus tipo 3, cepa León 37 [POL3L37] (POL3E); Poliovirus tipo 3, cepa P3/119 [PIP03119] (POL3C); Poliovirus tipo 3, cepa León 12alb [POL3L12C] (POL3D); Coxackievirus A21 [CXA21CG] (CA21); Coxackievirus Bl [CXAlg] (CB1); Coxackievirus B3 [CXA3CG] (CB3); Coxackievirus B4 [PICOXB4] (CB4); Coxackievirus B4 [CXB4S] (CB4S); Coxackievirus B5 [CXB5CGA] (CB5); Coxackievirus A16 [CAU05876] (CA16); Coxackievirus A9 [CXA9CG] (CA9); Coxackievirus A24 [CXA24CG] (CA24); Echovirus 12 [EC12TCG] (E12); Echovirus 12, prototipo Travis salvaje [EC12TCGW] (E12W). Se identifican con el código de secuencia (SEQ ID No: ) las correspondientes secuencias de los iniciadores de enterovirus. Los guiones representan ausencia del correspondiente nucleótido en los alineamientos. Figura 2
Representación esquemática de los alineamientos de las secuencias de nucleótidos correspondiente a: (A) fragmentos diana de los genes de la ADN polimerasa de los 6 herpesvirus humanos: Herpes simplex tipo 1 (HSV1); Herpes simplex tipo 2 (HSV2); Virus Varicela-zóster (VZV); Citomegalovirus (HCMV) ; Herpesvirus humano 6 tipo A (HHV6- A) ; virus Epstein-Barr (EBV); de la ADN polimerasa humana (HUMANA) y del Virus de la Pseudorrabia Porcina (PRV), (B) Oligonucleótidos iniciadores de la primera reacción de amplificación y (C) Oligonucleótidos iniciadores de la segunda reacción de amplificación. Se identifica cada oligonucleótido con el código de secuencia (SEQ ID No:). Figura 3
Electroforesis en gel de agarosa de los fragmentos de amplificación generados en el Ejemplo 2. Marcador de peso molecular (M); Coxsackievirus A 16 (carril 1); HSV1 (carril 2); HSV2 (carril 3); VZV (carril 4); CMV (carril 5); HHV6 (carril 6); EBV (carril 7); Mezcla de todos los herpesvirus (carril 8); Fibroblastos fetales humanos (carriles 9 y 17); Coxsackievirus A16 y HSV1 (carril 10); Coxsackievirus A16 y HSV2 (carril 11); Coxsackievirus A16 y VZV (carril 12); Coxsackievirus A16 y CMV (carril 13); Coxsackievirus A16 y HHV6 (carril 14); Coxsackievirus A16 y EBV (carril 15); Coxsackievirus A16 y mezcla de todos los herpesvirus (carril 16). El fragmento de 500 bp corresponde a los enterovirus y el de 194 bp a los herpesvirus.
Figura 4 Electroforesis en gel de agarosa de los fragmentos de amplificación generados en el Ejemplo 4. Marcador de peso molecular (M); marcador de peso molecular de los fragmentos amplificados: 120 bp HSV1 y HSV2, 98 bp VZV, 78 bp CMV, 66 bp HHV6 y 54 bp EBV (carriles 1, 10 y 19). HSV1, HSV2, VZV, CMV, HHV6, EBV (carriles 2, 3, 4, 5, 6 y 7 sin ARN de Coxsackievirus A16 respectivamente, carriles 11, 12, 13, 14, 15 y 16 en presencia de ARN de Coxsackievirus A16 respectivamente). Mezcla de todos los herpesvirus (carril 8 y 17 con y sin ARN de Coxsackievirus A16 respectivamente); Fibroblastos humanos (carriles 9 y 18) .
Figura 5
Electroforesis en gel de agarosa de los fragmentos de amplificación generados en la primera y en la segunda amplificación según el Ejemplo 6. Marcador de peso molecular (M) , fragmento de 500 bp corresponde a la amplificación de Coxsackievirus A16 (carriles 1, 3 y 4), el fragmento de 194 bp corresponde a primera amplificación de PRV (carriles 2, 3 y 4). Marcador de peso molecular de herpesvirus (carril 6), Coxsackievirus A16 en segunda amplificación (carril 7), identificación de PRV sin enterovirus (carril 8), con enterovirus (carril 9), en una mezcla de todos los herpesvirus (carril 10), Fibroblastos fetales humanos (carriles 5 y 11). Figura 6
Electroforesis en gel de agarosa de los fragmentos de amplificación generados en segunda amplificación de los virus herpes con o sin control interno de amplificación según el Ejemplo 7. Marcador de peso molecular (M); mezcla de todos los herpesvirus, HSV1, HSV2, VZV, CMV, HHV6, EBV y Fibroblastos fetales humanos con iniciadores del segunda reacción de amplificación múltiple de herpesvirus (carriles 1 al 8 respectivamente), con iniciadores de PRV además de los de amplificación múltiple de herpesvirus (carriles 9 al 16 respectivamente), con iniciadores de PRV y ADN de PRV (carriles 17 al 24 respectivamente).
Figura 7 1) Electroforesis en gel de agarosa de los fragmentos de amplificación generados en la primera y en la segunda amplificación según el Ejemplo 10. Marcador de peso molecular (M) , fragmento de 500 bp para Coxsackievirus A16 (carril 1) y los fragmentos de 194 bp para HSV1 (carriles 2 y 3) y HSV2 (carril 4). Después de la tipificación se observa amplificación específica de HSV1 (carril 5) y HSV2 (carril 6) .
2) Electroforesis en gel de agarosa de cuatro muestras clínicas en las que se identificó previamente a la amplificación genómica HSV1 (carriles 1 y 2) y HSV2 (carriles 3 y 4). Fibroblastos fetales humanos (carriles 5 y 6). Marcador de peso molecular (M).
En una realización práctica de esta invención, se proporciona un método para el diagnóstico diferencial de agentes infecciosos relacionados por su capacidad de producir una patología similar, pertenecientes a distintas familias que no están genómicamente relacionadas entre sí, que incluye (a) la detección de dichos agentes infecciosos por amplificación enzimática de un fragmento de sus genomas y (b) la identificación de dichos agentes infecciosos a partir de los productos de la reacción de amplificación, en el que dicha reacción de amplificación se lleva a cabo en una única mezcla de reacción que comprende, como iniciador de la reacción, una combinación de mezclas de oligonucleótidos, cada una de las cuales ha sido específicamente diseñada para cada una de las familias de agentes infecciosos a detectar de manera que cada mezcla de oligonucleótidos: i) se obtiene como suma simple de oligonucleótidos, ii) cada uno de los oligonucleótidos componentes de dicha mezcla, incluye, preferentemente en su extremo 3 ' , secuencias homologas seleccionadas de entre las secuencias genómicamente relacionadas que se quieren amplificar, üi) cada uno de los oligonucleótidos componentes de dicha mezcla, puede incluir además, preferentemente en su extremo 5', secuencias no homologas seleccionadas de entre las secuencias genómicamente relacionadas que se quieren amplificar, y iv) cuyos oligonúcleótidos componentes pueden diferenciarse de las secuencias conocidas que se quieren amplificar en al menos un nucleótido.
Una aplicación concreta de dicho método consiste en la detección e identificación de agentes infecciosos que producen una patología similar en humanos, en particular, una patología neurológica, tal como la causada por agentes infecciosos pertenecientes a las familias Herpesviridae y
Picornaviridae, particularmente la causada por herpesvirus y enterovirus humanos.
En una realización alternativa de dicho método, la mezcla para la reacción de amplificación incluye además un control interno de amplificación que comprende el genoma de un virus que no debe estar presente en la muestra a estudiar junto con iniciadores de reacción específicos de un fragmento de dicho genoma. Preferiblemente, dicho genoma deriva de una especie vírica perteneciente a una de las familias de virus a identificar y no es capaz de infectar a la especie animal, por ejemplo la humana, sobre la que se realiza el diagnóstico. En una realización particular, dicho genoma corresponde a un herpesvirus que no puede infectar al hombre tal como el herpesvirus porcino 1.
La identificación del agente infeccioso una vez detectado puede realizarse bien por hibridación de las secuencias amplificadas con sondas de oligonucleótidos específicos o mezclas de oligonucleótidos específicos de las especies o géneros a identificar o, alternativamente, por medio de una segunda reacción de amplificación de los productos resultantes de la primera reacción de amplificación en la que la mezcla de reacción para dicha segunda reacción de amplificación comprende, como iniciador de la reacción, una mezcla de oligonucleótidos diseñada de manera que: i) se obtiene como suma simple de oligonucleótidos, ii) cada uno de los oligonucleótidos componentes de dicha mezcla, incluye, preferentemente en su extremo 3 ' , secuencias específicas de cada una de las secuencias a tipificar en dicha segunda reacción de amplificación, iii) los fragmentos específicos amplificados son diferentes entre sí por tamaño o por diferente mareaje físico o químico de cada uno de los oligonucleótidos componentes de dicha mezcla, y iv) uno o más de los oligonucleótidos componentes de dicha mezcla pueden diferenciarse de las secuencias conocidas que se quieren amplificar en al menos un nucleótido.
Al objeto de confirmar el diagnóstico, el método propuesto también contempla la posibilidad de confirmar la identidad de cada especie de virus identificado mediante una reacción de hibridación específica adicional con un oligonucleótido específico de cada especie cuya identidad se desea confirmar o alternativamente mediante una reacción de amplificación genómica adicional utilizando los oligonucleótidos iniciadores adecuados. De este modo, el método de diagnóstico facilitado por esta invención permite identificar específicamente la presencia de virus herpes simplex (tipo 1 ó tipo 2) en una muestra (véase Ejemplo 10) .
Ejemplos Ejemplo l. Diseño de iniciadores para la detección de enterovirus humanos con objeto de obtener un método múltiple de amplificación de enterovirus y/o herpesvirus.
El género enterovirus engloba a un número muy elevado de virus de los que en sólo una minoría se ha podido obtener secuencias completas de su genoma. Se ha destacado la región 5' no codificante (5 NCR) por la enorme homología que presentan los enterovirus secuenciados y cuyas secuencias están disponibles hasta la fecha en la base de datos GENBANK. La región 5 'NCR presenta un enorme interés biológico por su participación en el inicio de la replicación de este grupo de virus. Excepcionalmente enterovirus 22 y Coxsackievirus A2 que no presentan homología en esta zona del genoma, han sido excluidos del bloque génico conservado de la región 5'NCR de los enterovirus disponibles, que se representa en la Figura 1.
A partir de los análisis comparativos de cada uno de los genomas estudiados se han diseñado los siguientes iniciadores:
POLARIDAD POSITIVA: SEQ ID No: 1
SEQ ID No: 2 POLARIDAD NEGATIVA: SEQ ID No: 3 Como se puede apreciar en la Figura 1, el grado de homología entre los dos iniciadores diseñados y la correspondiente secuencia específica de cada uno de los enterovirus cuyo genoma ha sido secuenciado, es muy elevada llegando a ser exactamente igual en la mayoría de los virus. Este grado de homología tan elevado permite realizar reacciones de amplificación de enteroviruε muy específicas y altamente sensibles.
Una vez diseñados los iniciadores de enterovirus, se ha de compatibilizar el sistema para poder amplificar en una primera reacción de amplificación ARN procedente de los enterovirus, además de ADN procedente de los herpesvirus. Para ello se ha diseñado una mezcla de reacción que contiene los iniciadores de primera reacción de amplificación de enterovirus y herpesvirus. Los iniciadores de herpesvirus fueron diseñados y descritos en la Patente Española P9201174.
A partir de las secuencias reflejadas en las Figuras 1 y 2 y según el Ejemplo 2 y los procedimientos descritos en la Patente Española P9201174 se ha diseñado una mezcla de amplificación de enterovirus y herpesvirus en una única reacción de amplificación. La mezcla de iniciadores consiste en:
POLARIDAD POSITIVA POLARIDAD NEGATIVA
SEQ ID No: 1 SEQ ID No: 3
SEQ ID No: 2 SEQ ID No: 9
SEQ ID No: 4 SEQ ID No: 10
SEQ ID No: 5 SEQ ID No: 11 S SEEQQ I IDD N Noo:: 6 6 SEQ ID No: 12
SEQ ID No: 7 SEQ ID No: 13
SEQ ID No: 8
Ejemplo 2. Detección de enterovirus y/o herpesvirus humanos en una primera reacción de amplificación. Para realizar un primer ensayo de amplificación las muestras para analizar contienen diferentes diluciones de enterovirus mezcladas con una cantidad determinada de fibroblastos humanos. El método de preparación del ARN viral ha sido descrito anteriormente (Casas, I. Powell L. , Klapper P.E. , Cleator G.M. A new extraction method for RNA and DNA by precipitation in clinical samples. J. Virol. Methods 1994, en prensa). Una vez precipitados los ácidos nucleicos (ADN y ARN) presentes en la muestra a analizar se diluyen en 10 μl de agua. El ARN presente en 5 μl de la anterior dilución se transforma en cDNA mediante una transcripción inversa de 30 minutos de duración a una temperatura de 37°C, en las condiciones que recomienda el fabricante de la transcriptasa inversa, enzima vital para este proceso. Se utilizan 100 pmol de iniciador de polaridad negativa, ya que la hebra de ARN presenta una polaridad positiva.
El cDNA se someterá a una amplificación de 40 ciclos, con una temperatura de hibridación de los iniciadores de 60°C. El rango de la temperatura de desnaturalización se fija entre 92°C y 95°C, aunque preferentemente se ha elegido 94°C. La temperatura de extensión de la ADN polimerasa se fija entre 60°C y 80°C, aunque preferiblemente es 72°C. La mezcla de reacción está constituida por una mezcla de las dos mezclas de iniciadores en una concentración elegida de 100 pmol de cada uno de ellos. El volumen total elegido de la reacción es 50 μl.
Utilizando los iniciadores diseñados en el Ejemplo 1, se ensayan muestras conteniendo 30 tipos diferentes de enterovirus procedentes de aislados clínicos obtenidos en nuestro laboratorio: Polio 1, salvaje y vacunal Echovirus 7 Polio 2, salvaje y vacunal Echovirus 9 Polio 3, salvaje y vacunal Echovirus 11 Coxackievirus Bl Echovirus 14 Coxackievirus B2 Echovirus 17 Coxackievirus B4 Echovirus 19 Coxackievirus B5 Echovirus 20 Coxackievirus B6 Echovirus 21 Coxackievirus A9 Echovirus 24 Coxackievirus Al6 Echovirus 25 Echovirus 2 Echovirus 27 Echovirus 3 Echovirus 30 Echovirus 4 Echovirus 31 Echovirus 5 Echovirus 33 Echovirus 6 Enterovirus 70
Utilizando los iniciadores diseñados en el Ejemplo 1, se ensayan muestras conteniendo 100 TCID50 de Coxsackievirus A16 con HSV1, HSV2, VZV, CMV, HHV6 y EBV. El análisis de los fragmentos generados se muestra en la Figura 3. Todos los enterovirus generan fragmentos de amplificación entre 500 y 487 bp y los herpesvirus lo generan de 194 bp.
Ejemplo 3. Diseño de iniciadores para la detección específica de enterovirus y/o herpesvirus en los que el mareaje es el peso molecular del fragmento amplificado
Para la identificación de los fragmentos generados en el Ejemplo 2, se han diseñado los iniciadores para una segunda reacción de amplificación que utilice como molécula diana el fragmento obtenido en la primera reacción de amplificación. De esta forma se aumenta la sensibilidad y la especificidad de la reacción de identificación. A partir de las secuencias relacionadas y comparadas en la Figura 1 se han seleccionado inicialmente los siguientes iniciadores comunes para todos los enterovirus
POLARIDAD POSITIVA: SEQ ID No: 14 POLARIDAD NEGATIVA: SEQ ID No: 15
Después de la segunda reacción de amplificación se generan fragmentos de amplificación de 272 bp. A partir de la comparación de secuencias de las Figuras 1 y y según los procedimientos descritos en la Patente Española P9201174 se ha diseñado una mezcla para una segunda amplificación que utilizará como sustrato los fragmentos de amplificación obtenidos en el Ejemplo 2 de enterovirus y herpesvirus. Dicha mezcla consiste en
POLARIDAD POSITIVA POLARIDAD NEGATIVA
SEQ ID No: 14 SEQ ID No: 15
SEQ ID No: 16 SEQ ID No: 21
SEQ ID No: 17 SEQ ID No: 22 SEQ ID No: 18 SEQ ID No: 23
SEQ ID No: 19 SEQ ID No: 24
SEQ ID No: 20 SEQ ID No: 25
Ejemplo 4. Detección e identificación por el peso molecular del fragmento amplificado de herpesvirus humanos en presencia de enterovirus.
Utilizando las mezclas de iniciadores definidas para una segunda reacción de amplificación de herpesvirus diseñadas en la Patente Española P9201174, se reamplificaron, en las condiciones descritas en dicha patente, diluciones 1:1000 de los fragmentos de 194 bp generados en la reacción primera de amplificación Ejemplo 2. Como se puede apreciar en la Figura 4, se puede determinar e identificar el virus herpes que está presente en la muestra sin que ésta amplificación se vea afectada por la presencia de fragmentos de amplificación procedentes de ARN de enterovirus. Todos los herpeεvirus humanos generaron un fragmento de amplificación del peso molecular esperado.
Ejemplo 5. Diseño de sonda común y específica para la identificación de enterovirus humanos.
Para la identificación de los fragmentos generados en el Ejemplo 2, se ha diseñado una sonda específica a partir de las secuencias relacionadas y comparadas en la Figura 1. La zona elegida en el interior del fragmento de amplificación presenta una elevada homología siendo prácticamente la misma para todos los enterovirus comparados. La secuencia de nucleótidos es la siguiente: POLARIDAD POSITIVA: SEQ ID No: 26
Ejemplo 6. Diseño de los iniciadores para la detección de un control interno de amplificación en cada tubo de reacción. Se ha tomado como base del diseño el método múltiple de amplificación de herpesvirus ya descrito en la Patente Española P9201174. Se basa en la amplificación múltiple de los herpesvirus HSV1, HSV2, VZV, CMV, HHV6 y EBV utilizando una mezcla de iniciadores caracterizados en dicha patente porque sus extremos 3 ' son zonas conservadas entre los genes de la ADN polimerasa de los herpesvirus humanos.
Como control de amplificación interno se ha diseñado el uso de un fragmento clonado del gen de la ADN polimerasa del herpesvirus porcino PRV (virus de la pseudorrabia porcina o enfermedad de Auzjevski). Este fragmento de ADN añadido de forma sistemática en todos los tubos será amplificado por iniciadores específicos que han sido diseñados de igual forma que el resto de los herpesvirus en la patente anteriormente mencionada. En la Figura 2 se presentan las secuencias de nucleótidos de los fragmentos seleccionados de la ADN polimerasa y las mezclas de polaridad positiva y de polaridad negativa de los herpesvirus. Las secuencias de los iniciadores específicos del control interno o del fragmento clonado del virus PRV son las siguientes:
POLARIDAD POSITIVA: SEQ ID No: 27 POLARIDAD NEGATIVA: SEQ ID No: 28
Se han diseñado iniciadores específicos capaces de reamplificar el fragmento generado en la primera reacción de amplificación de PRV como control interno de amplificación. Para la segunda reacción de amplificación se han diseñado los siguientes iniciadores:
POLARIDAD POSITIVA: SEQ ID No: 29 POLARIDAD NEGATIVA: SEQ ID No: 30
El fragmento específico de PRV tendría un tamaño de 140 bp tras la segunda amplificación por lo que es fácilmente detectable.
Ejemplo 7. Detección de herpesvirus en presencia de los iniciadores específicos del virus PRV utilizado como control interno de primera y segunda amplificación.
Según el procedimiento descrito en el Ejemplo 4, se ha utilizado una nueva mezcla de iniciadores específicos de los virus herpes que contiene además los iniciadores específicos de PRV, utilizado como control interno de amplificación. En primer lugar se han sometido a una primera reacción de amplificación ADN de cada uno de los virus herpes según los procedimientos descritos en el Ejemplo 1 y utilizando la mezcla de iniciadores compuesta por:
POLARIDAD POSITIVA POLARIDAD NEGATIVA
SEQ ID No: 27 SEQ ID No: 28
SEQ ID No: 4 SEQ ID No: 9
SEQ ID No: 5 SEQ ID No: 10
SEQ ID No: 6 SEQ ID No: 11
SEQ ID No: 7 SEQ ID No: 12
SEQ ID No: 8 SEQ ID No: 13
A continuación tras una segunda reacción de amplificación según el procedimiento descrito en el Ejemplo 4 se han amplificado los fragmentos de ADN procedentes de la primera reacción de amplificación correspondientes a cada uno de los virus herpes (HSV1, HSV2, VZV, CMV, HHV6 y EBV). Se ha podido detectar ADN específico de cada uno de los virus herpes y de PRV tras la segunda reacción de amplificación utilizando la mezcla de iniciadores específicos compuesta por:
POLARIDAD POSITIVA POLARIDAD NEGATIVA
SEQ ID No: 29 SEQ ID No: 30
SEQ ID No: 16 SEQ ID No: 21
SEQ ID No: 17 SEQ ID No: 22
SEQ ID No: 18 SEQ ID No: 23
SEQ ID No: 19 SEQ ID No: 24
SEQ ID No: 20 SEQ ID No: 25
Cada virus se identificar en función del peso molecular de los fragmentos amplificados Figura 6.
Ejemplo 8. Detección de enterovirus y herpesvirus en presencia de los iniciadores específicos del virus PRV como control interno de primera y de segunda reacción de amplificación. Como control de amplificación interno se ha utilizado el diseñado en el Ejemplo 6. La mezcla de iniciadores constituida por aquellos específicos de enterovirus y por los de herpesvirus se enriquece por la preεencia de loε iniciadores del control interno, que consiste en un fragmento clonado del gen de la ADN polimerasa del virus PRV.
Utilizando las mezclas de iniciadores de amplificación general de enterovirus y herpesvirus diseñadas en el Ejemplo 1 y reamplificadas en las condiciones definidas en el Ejemplo 4, se han obtenido fragmentos de amplificación de 500 bp específicos de enterovirus y de 194 bp específicos de herpesvirus cuando se realiza la primera reacción de amplificación. Con respecto a la segunda reacción de amplificación se pueden tipificar todos los herpesvirus y se demuestra la presencia de un fragmento de amplificación de 140 bp de tamaño coincidente con los fragmentos generados en el Ejemplo 6. Los fragmentos de amplificación de primera y segunda reacción e amplificación pueden ser observados en la Figura 5.
Ejemplo 9. Diseño de la mezcla de iniciadores específicos de HSV1 y HSV2 La homología existente entre el virus herpes simplex tipo 1 y el virus herpes simplex tipo 2 es muy elevada. De manera similar a como se ha realizado el diseño de los iniciadores del Ejemplo 6, se han determinado las secuencias de nucleótidos de los iniciadores específicos de HSV1 y HSV2 para una segunda reacción de amplificación en la que la molécula diana es el fragmento de amplificación resultado de una primera reacción de amplificación previamente desarrollada y descrita en la Patente Española P9201174. A partir de las secuencias alineadas y comparadas de los herpesvirus humanos de la Figura 2 se ha diseñado unos iniciadores específicos para estos dos virus tan homólogos.
POLARIDAD POSITIVA: SEQ ID No: 31 POLARIDAD NEGATIVA: SEQ ID No: 32
La amplificación utilizando las mezclas diseñadas debería generar fragmentos de 93 bp para HSV1 y de 138 para HSV2.
Ejemplo 10. Detección de secuencias específicas de HSV1 o HSV2 en muestras que contienen o no ARN de enterovirus.
Utilizando las mezclas de iniciadores de primera reacción de amplificación y de tipificación de los Ejemplos 1 y 8 y los procedimientos descritos en los Ejemplos 2 y 4 se ha podido identificar específicamente fragmentos de amplificación de HSV1 o de HSV2. Como en Ejemplos anteriores 4 y 7 la presencia de enterovirus en la mezcla de reacción de la primera amplificación, así como de la segunda reacción de amplificación, no influye para poder caracterizar los fragmentos de amplificación específicos de 93 bp y de 138 bp en el caso de ser HSV1 o HSV 2 respectivamente.
SEQUENCE LISTING
(1) GENERAL INFORMATION: (i) APPLICANT: (A) ÑAME: INSTITUTO DE SALUD CARLOS III
(B) STREET: Sinesio Delgado, 6 / Pabellón 3
(C) CITY: Madrid
(D) STATE: Madrid
(E) COUNTRY: Spain (F) POSTAL CODE (ZIP): E-28029
(G) TELEPHONE: + 34 1 3230141 (H) TELEFAX: + 34 1 3231943 (Ü) TITLE OF INVENTION: PROCEDIMIENTOS DE AMPLIFICACIÓN DE GENOMA Y MEZCLAS DE OLIGONUCLEOTIDOS INICIADORES PARA LA DETECCIÓN Y LA IDENTIFICACIÓN DE SECUENCIAS GENOMICAS RELACIONADAS (iii) NUMBER OF SEQUENCES: 32 (iv) COMPUTER READABLE FORM:
(A) MÉDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentln Reléase #1.0, Versión
#1.30 (EPO)
(2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA to mRNA
(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE: (A) ORGANISM: Enterovirus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: CGGTACCTTT GTGCGCCTGT TTTA 24
(2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Enterovirus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
CGGTACCTTT GTACGCCTGT TTTA 24
(2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA to mRNA (iü) HYPOTHETICAL: YES (vi) ORIGINAL SOURCE:
(A) ORGANISM: Enterovirus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GAAACACGGA CACCCAAAGT AGTCG 25
(2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Herpes simplex virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: CGCATCATCT ACGGGGACAC GGA 23
(2) INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (vi) ORIGINAL SOURCE:
(A) ORGANISM: Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
AAGGTTATAT ATGGAGATAC GGA 23
(2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (Üi) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Human cytomegalovirus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: CGGGTCATCT ACGGGGACAC GGA 23 (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Human herpesvirus 6 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: GAGGTAATTT ATGGTGATAC GGA 23
(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE: (A) ORGANISM: Epstein-Barr virus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: CGAGTCATCT ACGGGGACAC GGA 23
(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE: (A) ORGANISM: Herpes simplex virus
( i) SEQUENCE DESCRIPTION: SEQ ID NO: 9: ATGACGCCGA TGTACTTTTT CTT 23
(2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
ATTACCCCAA TGTACTTTTT CTT 23
(2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (Üi) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Human cytomegalovirus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: ACTTTACCAA TGTATCTTTT CTT 23 (2) INFORMATION FOR SEQ ID NO: 12: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Human herpesvirus 6 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: TGTCTACCAA TGTATCTTTT TTT 23
(2) INFORMATION FOR SEQ ID NO: 13: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE: (A) ORGANISM: Epstein-Barr virus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: AGCACCCCCA CATATCTCTT CTT 23
(2) INFORMATION FOR SEQ ID NO: 14: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Enteroviruε (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:
CAAGCACTTC TGTTTCCCCG G 21
(2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA to mRNA (Üi) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Enterovirus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:
TAGCTCAATA GGCTCTTCAC ACC 23
(2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (üi) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Herpes simplex virus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: GTGTTGTGCC GCGGTCGCAC 20 (2) INFORMATION FOR SEQ ID NO: 17: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17: TGAGGGGATA GCTAAAATCG 20
(2) INFORMATION FOR SEQ ID NO: 18: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE: (A) ORGANISM: Human cytomegalovirus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18: GGGCCCAGCC TGGCGCACTA 20
(2) INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Human herpesvirus 6 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:
GCCAAACATA TCACAGATCG 20
(2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (Üi) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Epstein-Barr virus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20: ACCCGGAGCC TGTTTGTAGC 20
(2) INFORMATION FOR SEQ ID NO: 21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Herpes simplex virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21: GGTGAACGTC TTTTCGAACT C 21 (2) INFORMATION FOR SEQ ID NO: 22: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Varicella-zoster virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:
TATAAAAGTT TTTTCACACT C 21
(2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Human cytomegalovirus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23: GACGAAGACC TTTTCAAACT C 21
(2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE: (A) ORGANISM: Human herpesvirus 6
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24: ACATAAAATC TTTTCAAACT C 21
(2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Epstein-Barr virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:
GGAGAAGGTC TTCTCGGCCT C 21
(2) INFORMATION FOR SEQ ID NO: 26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA to mRNA (Üi) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Enterovirus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26: CCTCCGGCCC CTGAATGCGG CTAAT 25 (2) INFORMATION FOR SEQ ID NO: 27: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Pseudorabies virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27: CGCGTGGTCT ACGGGGACAC GGA 23
(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudorabies virus
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: ATGACGCCGA TGTATTTCTT CTT 23
(2) INFORMATION FOR SEQ ID NO: 29: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Pseudorabies virus (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:
GGGACACGGA CTCGGTCTTC 20
(2) INFORMATION FOR SEQ ID NO: 30: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
(A) ORGANISM: Pseudorabieε viruε (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:
CCGGAAGGTC TTCTCGCACT C 21
(2) INFORMATION FOR SEQ ID NO: 31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: εingle
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iü) HYPOTHETICAL: YES
(iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Herpes simplex virus type 1
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31: GGGCTCACGG CCGCCGGGCT GACG 24 (2) INFORMATION FOR SEQ ID NO: 32: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: YES (iv) ANTI-SENSE: NO (Vi) ORIGINAL SOURCE:
(A) ORGANISM: Herpes simplex virus type 2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: GACACGGACT CCATTTTCGT TT 22

Claims

Reivindicaciones
1. Un método para el diagnóstico diferencial de agentes infecciosos relacionados por su capacidad de producir una patología similar, pertenecientes a distintas familias que no están genómicamente relacionadas entre sí, que incluye (a) la detección de dichos agentes infecciosos por amplificación enzimática de un fragmento de sus genomas y (b) la identificación de dichos agentes infecciosos a partir de los productoε de la reacción de amplificación, caracterizado porque dicha reacción de amplificación εe lleva a cabo en una única mezcla de reacción que comprende, como iniciador de la reacción, una combinación de mezclaε de oligonucleótidos, cada una de las cuales ha sido específicamente diseñada para cada una de las familias de agentes infecciosos a detectar de manera que cada mezcla de oligonucleótidos: i) se obtiene como suma simple de oligonucleótidos, ii) cada uno de los oligonucleótidos componentes de dicha mezcla, incluye, preferentemente en su extremo 3 , secuencias homologas seleccionadas de entre las εecuenciaε genómicamente relacionadaε que εe quieren amplificar, iii) cada uno de los oligonucleótidos componentes de dicha mezcla, puede incluir ademáε, preferentemente en su extremo 5' , secuencias no homologas seleccionadas de entre las εecuencias genómicamente relacionadas que se quieren amplificar, y iv) cuyos oligonucleótidoε componentes pueden diferenciarse de laε εecuenciaε conocidaε que se quieren amplificar en al menos un nucleótido.
2. Un método según la reivindicación 1, en el que la mezcla para la reacción de amplificación incluye además un control interno de amplificación que comprende el genoma de un virus que no debe estar presente en la muestra a estudiar junto con iniciadores de reacción específicos de un fragmento de dicho genoma.
3. Un método según la reivindicación 2, en el que dicho genoma deriva de una especie vírica perteneciente a una de las familias de virus a identificar.
4. Un método según la reivindicación 3, en el que dicho genoma corresponde a un virus que no es capaz de infectar a la especie animal sobre la que se realiza el diagnóstico.
5. Un método según la reivindicación 4, en el que dicho genoma corresponde a un virus que no es capaz de infectar a humanos.
6. Un método según la reivindicación 5, en el que dicho genoma corresponde a un herpesvirus que no puede infectar al hombre.
7. Un método según la reivindicación 6, en el que dicho genoma corresponde al herpesvirus porcino 1.
8. Un método según la reivindicación 1, en el que la identificación del agente infeccioso se realiza por hibridación de las secuencias amplificadas con sondas de oligonucleótidos específicos o mezclas de oligonucleótidos específicos de las especies o géneros a identificar.
9. Un método según la reivindicación 1, en el que la identificación del agente infeccioso se realiza por una segunda reacción de amplificación de los productos resultantes de la primera reacción de amplificación en la que la mezcla de reacción para dicha segunda reacción de amplificación comprende, como iniciador de la reacción, una mezcla de oligonucleótidos diseñada de manera que: i) se obtiene como suma simple de oligonucleótidos, ii) cada uno de los oligonucleótidos componentes de dicha mezcla, incluye, preferentemente en su extremo 3 , secuencias específicas de cada una de las secuencias a tipificar en dicha segunda reacción de amplificación, iii) los fragmentos específicos amplificados εon diferenteε entre εí por tamaño o por diferente mareaje físico o químico de cada uno de los oligonucleótidoε componentes de dicha mezcla, y iv) uno o más de los oligonucleótidoε componentes de dicha mezcla pueden diferenciarse de las secuencias conocidas que se quieren amplificar en al menos un nucleótido.
10. Un método según la reivindicación 1, en el que dichos agentes infecciosos producen una patología similar en humanos.
11. Un método según la reivindicación 1, en el que dichos agentes infecciosos pertenecen a las familias Herpeεviridae y Picornaviridae .
12. Un método según la reivindicación 11, en el que dichos agentes infecciosos son herpesviruε y enteroviruε humanos.
13. Un método según la reivindicación 12, en el que la mezcla para la reacción de amplificación comprende:
- al menos un oligonucleótido seleccionado del grupo formado por los oligonucleótidos identificados como SEQ ID No: 1, SEQ ID No: 2 y SEQ ID No: 3; y - al menos un oliqonucleótido seleccionado del grupo formado por los oligonucleótidos identificados como SEQ ID
No: 4, SEQ ID No: 5, SEQ ID No: 6, SEQ ID No: 7, SEQ ID
No: 8, SEQ ID No: 9, SEQ ID No: 10, SEQ ID No: 11, SEQ ID No: 12 y SEQ ID No: 13; o sus homólogos en las hebras complementarias.
14. Un método según la reivindicación 13, en el que la mezcla para la reacción de amplificación incluye, además, un control interno de amplificación que comprende un genoma completo o un fragmento genómico del herpesviruε porcino 1, y unoε iniciadoreε de reacción capaces de amplificar un fragmento del mismo.
15. Un método según la reivindicación 14, en el que dichoε iniciadores de reacción capaces de amplificar un fragmento del genoma del herpesvirus porcino 1 se seleccionan del grupo formado por los oligonucleótidos identificados como SEQ ID No: 27, SEQ ID No: 29, SEQ ID No: 28 y SEQ ID No: 30, o suε homólogoε en las hebras complementarias.
16. Un método εegún la reivindicación 12, en el que la identificación de los enterovirus detectados se lleva a cabo por hibridación específica con un oligonucleótido que comprende una secuencia como la identificada como SEQ ID No: 26 o su homólogo en las hebras complementarias.
17. Un método según la reivindicación 12, en el que la identificación de los herpesvirus detectados se lleva a cabo por hibridación específica con una mezcla de oligonucleótidos específicos de cada una de las especies víricas a identificar.
18. Un método según la reivindicación 17, en el que tras la identificación de los herpesvirus detectados se lleva a cabo una reacción de hibridación específica con un oligonucleótido específico de cada especie de herpesviruε a identificar.
19. Un método εegún la reivindicación 12, en el que la identificación de los virus detectados se lleva a cabo por medio de una segunda reacción de amplificación cuya mezcla de reacción comprende al menos uno de los oligonucleótidos identificadoε como SEQ ID No: 14, SEQ ID No: 16, SEQ ID No: 17, SEQ ID No: 18, SEQ ID No: 19, SEQ ID No: 20, SEQ ID No: 15, SEQ ID No: 21, SEQ ID No: 22, SEQ ID No: 23, SEQ ID No: 24 y SEQ ID No: 25, o sus homólogos en las hebraε complementariaε.
20. Un método εegún la reivindicación 19, en el que traε identificar la preεencia de viruε herpeε simplex (tipo 1 ó tipo 2), se lleva a cabo una segunda reacción de amplificación genómica para su identificación específica, cuya mezcla de reacción comprende al menos uno de los oligonucleótidos identificados como SEQ ID No: 31, SEQ ID No: 32, o sus homólogos en las hebras complementarias.
21. Una combinación de mezclas de oligonucleótidos, para ser utilizada como iniciador de una reacción de amplificación de genoma para la detección de agentes infecciosos relacionados por su capacidad de producir una patología similar, pertenecientes a distintas familiaε que no eεtán genómicamente relacionadas entre sí, estando cada una de dichaε mezclaε específicamente diseñada para cada una de la familias de agentes infecciosos que se quieren detectar y diseñada de manera que cada mezcla de oligonucleótidoε: i) se obtiene como εuma simple de oligonucleótidos, ii) cada uno de los oligonucleótidos componentes de dicha mezcla, incluye, preferentemente en su extremo 3 , secuencias homologas seleccionadas de entre las secuencias genómicamente relacionadaε que εe quieren amplificar, üi) cada uno de los oligonucleótidoε componenteε de dicha mezcla, puede incluir ademáε, preferentemente en εu extremo 5', secuencias no homologas seleccionadas de entre las secuencias genómicamente relacionadas que se quieren amplificar, y iv) cuyos oligonucleótidos componentes pueden diferenciarse de las secuencias conocidas que se quieren amplificar en al menos un nucleótido.
22. Una combinación εegún la reivindicación 21, útil como iniciador de una reacción de amplificación de genoma para la detección de agentes infecciosos relacionados por su capacidad de producir una patología similar en humanos.
23. Una combinación según la reivindicación 21, útil como iniciador de una reacción de amplificación de genoma para la detección de agentes infecciosos pertenecientes a las familias Herpesviridae y Picornaviridae .
24. Una combinación εegún la reivindicación 21, útil como iniciador de una reacción de amplificación de genoma para la detección de agentes infecciosos seleccionados del grupo formado por herpesvirus y enterovirus humanos.
PCT/ES1996/000031 1995-02-17 1996-02-16 Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de agentes infecciosos relacionados WO1996025909A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU64614/96A AU6461496A (en) 1995-02-17 1996-02-16 Process for the genome amplification and mixtures of induceroligonucleotides for the detection and identification of related infectious agents
GB9621809A GB2301888A (en) 1995-02-17 1996-02-16 Process for the genome amplification and mixtures of inducer oligonucleotides for the detection and identification of related infectious agents
EP96901812A EP0789081A2 (en) 1995-02-17 1996-02-16 Process for the genome amplification and mixtures of inducer oligonucleotides for the detection and identification of related infectious agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9500320 1995-02-17
ES09500320A ES2093554B1 (es) 1995-02-17 1995-02-17 Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de agentes infecciosos relacionados.

Publications (2)

Publication Number Publication Date
WO1996025909A2 true WO1996025909A2 (es) 1996-08-29
WO1996025909A3 WO1996025909A3 (es) 1996-09-26

Family

ID=8289510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1996/000031 WO1996025909A2 (es) 1995-02-17 1996-02-16 Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de agentes infecciosos relacionados

Country Status (6)

Country Link
EP (1) EP0789081A2 (es)
AU (1) AU6461496A (es)
CA (1) CA2188134A1 (es)
ES (1) ES2093554B1 (es)
GB (1) GB2301888A (es)
WO (1) WO1996025909A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618214A2 (en) * 2003-04-25 2006-01-25 Becton, Dickinson and Company Detection of herpes simplex virus types 1 and 2 by nucleic acid amplification
EP1659187A1 (en) * 2004-11-18 2006-05-24 bioMerieux B.V. Nucleic acid sequences that can be used as primers and probes in the amplification and detection of HSV DNA and method for the amplification and detection of HSV DNA using a transcription based amplification
WO2009122201A1 (en) * 2008-04-03 2009-10-08 Genomica S.A.U. Method for detection of herpesvirus in a test sample

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921419A1 (de) 1999-05-08 2000-11-16 Univ Ruprecht Karls Heidelberg Verfahren zum spezifischen Nachweis und zur Identifizierung retroviraler Nukleinsäuren / Retroviren in einem Untersuchungsgut
SE0102198D0 (sv) * 2001-06-20 2001-06-20 Gun Frisk New sequences
WO2003051388A2 (en) * 2001-12-18 2003-06-26 Mondobiotech Laboratories Anstalt Pharmaceutical composition of interferon gamma or pirfenidone with molecular diagnostics for the improved treatment of interstitial lung diseases
EP1430902A1 (en) * 2002-12-20 2004-06-23 Mondobiotech Laboratories Anstalt Pharmaceutical composition of interferon gamma with molecular diagnostics for the improved treatment of asthma bronchiale
DE10320519A1 (de) * 2003-04-30 2004-11-25 4Base Lab Gmbh Advanced Molecular Analysis Verfahren zum Nachweis infektiöser (+)-Strang-RNA-Viren, insbesondere infektiöser Enteroviren

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002091A1 (en) * 1989-08-10 1991-02-21 Northwestern University Method of identifying herpesviruses and oligonucleotides for use therein
WO1991010675A1 (en) * 1990-01-19 1991-07-25 Stichting Researchfonds Pathologie Primers and process for detecting human papillomavirus genotypes by pcr
US5075212A (en) * 1989-03-27 1991-12-24 University Of Patents, Inc. Methods of detecting picornaviruses in biological fluids and tissues
WO1993025707A2 (es) * 1992-06-05 1993-12-23 Instituto De Salud Carlos Iii Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de secuencias genomicas relacionadas
WO1994004706A1 (en) * 1992-08-24 1994-03-03 Akzo Nobel N.V. Elimination of false negatives in nucleic acid detection
US5354653A (en) * 1991-02-25 1994-10-11 Iatron Laboratories, Inc. Method of type-specific detection of herpes simplex virus
EP0628640A1 (en) * 1993-06-04 1994-12-14 Becton, Dickinson and Company Simultaneous amplification of multiple targets

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075212A (en) * 1989-03-27 1991-12-24 University Of Patents, Inc. Methods of detecting picornaviruses in biological fluids and tissues
WO1991002091A1 (en) * 1989-08-10 1991-02-21 Northwestern University Method of identifying herpesviruses and oligonucleotides for use therein
WO1991010675A1 (en) * 1990-01-19 1991-07-25 Stichting Researchfonds Pathologie Primers and process for detecting human papillomavirus genotypes by pcr
US5354653A (en) * 1991-02-25 1994-10-11 Iatron Laboratories, Inc. Method of type-specific detection of herpes simplex virus
WO1993025707A2 (es) * 1992-06-05 1993-12-23 Instituto De Salud Carlos Iii Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de secuencias genomicas relacionadas
WO1994004706A1 (en) * 1992-08-24 1994-03-03 Akzo Nobel N.V. Elimination of false negatives in nucleic acid detection
EP0628640A1 (en) * 1993-06-04 1994-12-14 Becton, Dickinson and Company Simultaneous amplification of multiple targets

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ACTA OTOLARYNGOL., vol. 514, 1994, páginas 132-134, XP002009399 TOSHIYA AONO ET AL.: "Detection of human alpha-herpesvirus DNA using consensus primers and specific probes" *
JOURNAL OF CLINICAL MICROBIOLOGY, vol. 32, num. 2, 1994, páginas 285-291, XP002009400 KAMMERER ET AL.: "Nsted PCR for specific detection and rapid identification of human picornaviruses" *
JOURNAL OF VIROLOGICAL METHODS, vol. 30, 1990, páginas 215-227, XP000319809 VANDENVELDE ET AL.: "Fast multiplex polymerase chain reaction on boiled clinical samples for rapid viral diagnosis" *
JOURNAL OF VIROLOGICAL METHODS, vol. 44, 1993, páginas 261-269, XP002009397 TENORIO ET AL.: "Detection and typing of human herpesvirus by multiplex polymerase chain reaction" *
MED. MICROBIOL. IMMUNOL., vol. 179, 1990, páginas 177-184, XP002009398 KIMURA ET AL.: "Detection and direct typing of herpes simplex virus by polymerase chain reaction" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618214A2 (en) * 2003-04-25 2006-01-25 Becton, Dickinson and Company Detection of herpes simplex virus types 1 and 2 by nucleic acid amplification
EP1618214A4 (en) * 2003-04-25 2008-02-13 Becton Dickinson Co DETECTION OF TYPES 1 AND 2 OF HERPES SIMPLEX VIRUS BY AMPLIFICATION OF NUCLEIC ACID
EP2071038A1 (en) * 2003-04-25 2009-06-17 Becton, Dickinson & Company Detection of herpes simplex virus types 1 and 2 by nucleic acid amplifiction
EP2267166A1 (en) * 2003-04-25 2010-12-29 Becton Dickinson and Company Detection of herpes simplex virus types 1 and 2 by nucleic acid amplification
US8221976B2 (en) 2003-04-25 2012-07-17 Becton, Dickinson And Company Detection of herpes simplex virus types 1 and 2 by nucleic acid amplification
EP1659187A1 (en) * 2004-11-18 2006-05-24 bioMerieux B.V. Nucleic acid sequences that can be used as primers and probes in the amplification and detection of HSV DNA and method for the amplification and detection of HSV DNA using a transcription based amplification
WO2006053779A3 (en) * 2004-11-18 2006-08-03 Biomerieux Bv Nucleic acid sequences that can be used as primers and probes in the amplification and detection of hsv dna and method for the amplification and detection of hsv dna using a transcription based amplification
US8298761B2 (en) 2004-11-18 2012-10-30 Biomerieux B.V. Nucleic acid sequences that can be used as primers and probes in the amplification and detection of HSV DNA and method for the amplification and detection of HSV DNA using a transcription based amplification
WO2009122201A1 (en) * 2008-04-03 2009-10-08 Genomica S.A.U. Method for detection of herpesvirus in a test sample
RU2470999C2 (ru) * 2008-04-03 2012-12-27 Хеномика С.А.У. Способ детекции вируса герпеса в тестируемом образце

Also Published As

Publication number Publication date
WO1996025909A3 (es) 1996-09-26
ES2093554A1 (es) 1996-12-16
GB2301888A (en) 1996-12-18
ES2093554B1 (es) 1997-07-01
EP0789081A2 (en) 1997-08-13
AU6461496A (en) 1996-09-11
CA2188134A1 (en) 1996-08-29
GB9621809D0 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
Casas et al. Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification
Parida et al. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases
CN111500771B (zh) 一种新型冠状病毒SARS-CoV-2检测的引物组和试剂盒
Tsai et al. Development of a loop-mediated isothermal amplification for rapid detection of orf virus
ES2439951T3 (es) Detección y cuantificación multiplex de ácidos nucleicos microbianos controlada de forma interna
US20080261198A1 (en) Diagnostic Primers and Method for Detecting Avian Influenza Virus Subtype H5 and H5n1
ES2759339T3 (es) Conversión de secuencia y ADN amplificador de señal que tiene ácidos nucleicos bloqueados y métodos de detección que usan los mismos
US5863717A (en) Use of conserved oligonucleotide primers to amplify human papillomavirus DNA sequences
Alvarado et al. Molecular characterization of avian infectious bronchitis virus strains isolated in Colombia during 2003
Josko Molecular virology in the clinical laboratory
ES2278043T3 (es) Sistema de deteccion universal de multiples variantes.
CA2035471A1 (en) Techniques for the amplification of nucleic acid
CN110343784B (zh) 基于熔解曲线的四重流感病毒核酸检测的组合物及试剂盒
CN113564280A (zh) 一种用于检测禽腺病毒i群12个血清型的raa引物及其检测方法
WO1996025909A2 (es) Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de agentes infecciosos relacionados
Nanda et al. Universal virus detection by degenerate-oligonucleotide primed polymerase chain reaction of purified viral nucleic acids
BRPI0911330B1 (pt) método e kit para a detecção e identificação em uma amostra de teste do vírus da herpes e uso dos mesmos para a detecção e identificação do dito vírus em uma amostra de teste
RU2422536C1 (ru) НАБОР СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДОВ ДЛЯ ВЫЯВЛЕНИЯ ДНК В КРОВИ И ДРУГИХ БИОМАТЕРИАЛАХ ВОЗБУДИТЕЛЯ ЛАТЕНТНОЙ ВИРУСНОЙ ИНФЕКЦИИ - ВИРУСА Torque teno virus СЕМЕЙСТВА Circoviridae МЕТОДОМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ
RU2360971C1 (ru) Способ и тест-система для обнаружения днк вируса африканской чумы свиней с помощью специфических олигонуклеотидных праймеров в полимеразной цепной реакции
WO2006132601A1 (en) Diagnostic primers and method for detecting avian influenza virus subtype h5 and h5n1
WO1993025707A2 (es) Procedimientos de amplificacion de genoma y mezclas de oligonucleotidos iniciadores para la deteccion y la identificacion de secuencias genomicas relacionadas
ES2622908T3 (es) Ensayo de Neisseria gonorrhoeae
CN112322784B (zh) 寡聚核苷酸组、试剂盒及其应用
EP1706506A1 (en) A sensitive and specific test to detect sars coronavirus
FI95398B (fi) Menetelmä ihmisen nuhaviruksen serotyypittämiseksi

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA CN GB JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA CN GB JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2188134

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1996901812

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 727612

Country of ref document: US

Date of ref document: 19970225

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996901812

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996901812

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: GB

Free format text: 19960216 A 9621809