WO1996019096A1 - Procede et dispositif de traitement au plasma - Google Patents
Procede et dispositif de traitement au plasma Download PDFInfo
- Publication number
- WO1996019096A1 WO1996019096A1 PCT/JP1995/000506 JP9500506W WO9619096A1 WO 1996019096 A1 WO1996019096 A1 WO 1996019096A1 JP 9500506 W JP9500506 W JP 9500506W WO 9619096 A1 WO9619096 A1 WO 9619096A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- microwave
- plasma processing
- waveguide
- sample
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
Definitions
- a curve A shows an ion current density distribution in the case of the present device provided with the resonator 24 and the reduced waveguide 26.
- Curve B shows the ion current density distribution when a simple cylindrical waveguide is provided instead of the resonator 24 and the reduced waveguide 26.
- Curve C shows an enlarged waveguide (without the slit plate 25 of the resonator 24) through the quartz plate 3 directly from the waveguide 2 without providing the resonator 24 and the reduced waveguide 26.
- Fig. 3 shows the ion current density distribution when the (wave tube) is connected to the plasma processing chamber 4.
- the curve a when the ECR surface is brought close to the wafer 10 using the resonator 24 and the reduced waveguide 26 shows a substantially uniform etching rate distribution in the wafer, and the etching rate It can be seen that they are excellent in uniformity.
- the curve b when the ECR surface is moved away from the wafer 10 using the resonator 24 and the reduced waveguide 26 has improved uniformity, but the etching rate is low.
- the curve c when the enlarged waveguide is simply connected is a state in which the etching rate at the center of the wafer is high and the periphery is low and the uniformity is low.
- the plasma density distribution on the wafer is not uniform.
- the selectivity to resist at the center of the wafer is particularly low, and when the A1 film having the step structure is etched, the resist film at the step is thinner at the center of the wafer.
- the chip portion is etched away faster than the chip portion at the peripheral portion of the wafer, and the etched shape of the A1 film at the step portion cannot be maintained.
- the ion current density at the center of the sample stage slightly decreases as shown by the curve B in FIG.
- the ion current density at the periphery of the sample stage increases, and the uniformity of the ion current density over the entire sample stage is improved as compared with the curve C. That is, it is understood that the plasma density on the sample stage 8 has a high distribution in the peripheral portion, and the uniformity is also improved.
- the resonator 26 having the slit plate 25 has a ring-like strong electric field intensity distribution mode. In this case, the outer peripheral microphone mouth wave electric field intensity is high as in the TE01 mode.
- the resonator 24 and the reduced waveguide 26 are provided, As shown in the curve A in FIG. 3, the ion current density is improved over the entire surface of the sample table while maintaining the uniformity of the curve B, that is, the uniformity of the low-density plasma with the increased plasma density is improved on the sample table 8. It can be seen that it was generated with improvement. When the etching process is performed under such plasma conditions, the processing uniformity and the processing speed of the wafer can be respectively improved.
- the resonator 24 is attached to a part of the waveguide of the microwave propagation means 2 to specify the mode in which the electric field intensity of the microphone mouth wave is ring-shaped, and the cylindrical waveguide is introduced to the plasma processing chamber 4.
- FIG. 6 shows the microwave propagation means and the plasma processing chamber of the apparatus shown in FIG. 1, and is the same as the member shown in FIG. 1 except for the members denoted by the same reference numerals and the illustration in FIG. Omitted.
- This figure is different from Fig. 1 in that the diameter of the reduced waveguide on the plasma processing chamber 4 side is smaller than the diameter of the microphone mouth wave introduction part of the plasma processing chamber 4 26b. It is. By doing so, the ion current density could be further increased especially in the outer peripheral portion of the wafer 10 as compared with the apparatus shown in FIG.
- the apparatus shown in Fig. 1 employs a plasma generation method using ECR resonance by microwaves to generate a magnetic field by solenoids 6, 7, but etching gas and reaction products are generated from the outer periphery of the wafer.
- a plasma processing apparatus of the present invention that is, a plasma processing method in which a wafer is uniformly processed by plasma having a ring-shaped density distribution with a peripheral height on the wafer can be applied.
- the plasma density distribution is made higher at the outer periphery than at the center, whereby the sample in the processing chamber can be uniformly treated. is there.
- an ECR formed by a TE 01 mode microwave and a magnetic field having a magnetic field intensity parallel to the sample under ECR conditions.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
L'invention concerne un procédé de traitement au plasma, par exemple d'attaque et de formation de couches, à l'aide de plasma hyperfréquence. Des ondes hyperfréquence en mode spécifique sont générées localement. La distance de diffusion des ondes hyperfréquence est déterminée de sorte que celles-ci soient diffusées et propagées dans un mode spécifique. La section de l'espace de propagation des ondes hyperfréquence change graduellement sur la distance. Une fois propagées sur ladite distance, les ondes hyperfréquence sont introduites dans une zone de décharge de plasma, dans laquelle un plasma dont la répartition de densité au niveau de la partie centrale du plasma est supérieure à celle située au niveau de la partie périphérique, de sorte qu'un échantillon dans la chambre de traitement soit traité de manière uniforme.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6/312931 | 1994-12-16 | ||
JP6312931A JPH08171998A (ja) | 1994-12-16 | 1994-12-16 | マイクロ波プラズマ処理装置およびプラズマ処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996019096A1 true WO1996019096A1 (fr) | 1996-06-20 |
Family
ID=18035202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/000506 WO1996019096A1 (fr) | 1994-12-16 | 1995-03-20 | Procede et dispositif de traitement au plasma |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH08171998A (fr) |
WO (1) | WO1996019096A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004049419A1 (fr) * | 2002-11-26 | 2004-06-10 | Tokyo Electron Limited | Procede et appareil de traitement au plasma |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3885026B2 (ja) * | 2003-01-22 | 2007-02-21 | 株式会社日立製作所 | 半導体装置の製造方法 |
CN112689376B (zh) * | 2021-03-15 | 2021-06-18 | 四川大学 | 一种采用压电材料的微波等离子体射流激发装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63103088A (ja) * | 1986-10-20 | 1988-05-07 | Hitachi Ltd | エッチング方法及びその装置 |
JPH06104097A (ja) * | 1992-09-18 | 1994-04-15 | Hitachi Ltd | プラズマ生成方法及び装置 |
JPH06333844A (ja) * | 1993-05-21 | 1994-12-02 | Hitachi Ltd | プラズマプロセス装置 |
-
1994
- 1994-12-16 JP JP6312931A patent/JPH08171998A/ja active Pending
-
1995
- 1995-03-20 WO PCT/JP1995/000506 patent/WO1996019096A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63103088A (ja) * | 1986-10-20 | 1988-05-07 | Hitachi Ltd | エッチング方法及びその装置 |
JPH06104097A (ja) * | 1992-09-18 | 1994-04-15 | Hitachi Ltd | プラズマ生成方法及び装置 |
JPH06333844A (ja) * | 1993-05-21 | 1994-12-02 | Hitachi Ltd | プラズマプロセス装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004049419A1 (fr) * | 2002-11-26 | 2004-06-10 | Tokyo Electron Limited | Procede et appareil de traitement au plasma |
JP2004193567A (ja) * | 2002-11-26 | 2004-07-08 | Tokyo Electron Ltd | プラズマ処理方法及びプラズマ処理装置 |
US8512510B2 (en) | 2002-11-26 | 2013-08-20 | Tokyo Electron Limited | Plasma processing method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH08171998A (ja) | 1996-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3233575B2 (ja) | プラズマ処理装置 | |
US6325018B1 (en) | Flat antenna having openings provided with conductive materials accommodated therein and plasma processing apparatus using the flat antenna | |
JP3136054B2 (ja) | プラズマ処理装置 | |
JP3217274B2 (ja) | 表面波プラズマ処理装置 | |
WO2003001578A1 (fr) | Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes | |
KR20130088797A (ko) | 마이크로파 방사 기구 및 표면파 플라즈마 처리 장치 | |
JP2570090B2 (ja) | ドライエッチング装置 | |
JP4974318B2 (ja) | マイクロ波プラズマ処理装置および処理方法 | |
US6343565B1 (en) | Flat antenna having rounded slot openings and plasma processing apparatus using the flat antenna | |
JP7139528B2 (ja) | プラズマ処理装置 | |
JP2018006718A (ja) | マイクロ波プラズマ処理装置 | |
JPH07263187A (ja) | プラズマ処理装置 | |
JPH0319332A (ja) | マイクロ波プラズマ処理装置 | |
JPH09289099A (ja) | プラズマ処理方法および装置 | |
JP2760845B2 (ja) | プラズマ処理装置及びその方法 | |
JP6991934B2 (ja) | プラズマ処理装置 | |
WO1996019096A1 (fr) | Procede et dispositif de traitement au plasma | |
JPH10177994A (ja) | プラズマ処理装置および処理方法 | |
JP2000331998A (ja) | プラズマ処理装置 | |
JP3757159B2 (ja) | プラズマ処理装置 | |
JPH09293599A (ja) | プラズマ処理方法および装置 | |
JP2595128B2 (ja) | マイクロ波プラズマ処理装置 | |
CN113454760A (zh) | 等离子处理装置 | |
JPH08315998A (ja) | マイクロ波プラズマ処理装置 | |
JP2002075969A (ja) | プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |