WO1996017667A2 - Vorrichtung zur spaltung von öl-in-wasser-emulsionen mittels elektrokoagulation - Google Patents

Vorrichtung zur spaltung von öl-in-wasser-emulsionen mittels elektrokoagulation Download PDF

Info

Publication number
WO1996017667A2
WO1996017667A2 PCT/DE1995/001717 DE9501717W WO9617667A2 WO 1996017667 A2 WO1996017667 A2 WO 1996017667A2 DE 9501717 W DE9501717 W DE 9501717W WO 9617667 A2 WO9617667 A2 WO 9617667A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrocoagulation
electrode devices
coagulation
electrode
Prior art date
Application number
PCT/DE1995/001717
Other languages
English (en)
French (fr)
Other versions
WO1996017667A3 (de
Inventor
Johann GÖTZ
Viktor KÄHM
Original Assignee
Hdw-Nobiskrug Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hdw-Nobiskrug Gmbh filed Critical Hdw-Nobiskrug Gmbh
Priority to EP95940126A priority Critical patent/EP0742736A1/de
Publication of WO1996017667A2 publication Critical patent/WO1996017667A2/de
Publication of WO1996017667A3 publication Critical patent/WO1996017667A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/06Separation of liquids from each other by electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C11/00Separation by high-voltage electrical fields, not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D3/00Differential sedimentation
    • B03D3/02Coagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/02Electrostatic separation of liquids from liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/022Laminar

Definitions

  • the invention relates to a device for splitting oil-in-water emulsions by means of electrocoagulation.
  • Large quantities of oily waste water are produced in industrial production processes.
  • oil and water form an emulsion, i.e. the oil is in the form of microdroplets in the water.
  • These oil droplets carry surface electrical charges, which causes these drops to distribute evenly in the water.
  • An additional and often decisive stabilization of the oil-water emulsion is carried out by wetting agents, such as those that are part of cleaning agents.
  • the charges of the oil droplets coated with these surfactants prevent the droplets from flowing together and rising to the surface.
  • the disposal of oil-water emulsions, which are highly polluted waste is becoming an increasingly important factor in production costs.
  • the ever stricter environmental protection legislation requires the avoidance or reduction of waste materials. For this reason, processes are becoming more and more important economically that enable a circulation of cleaning water in particular.
  • splitting agents are only insufficiently removed with the oil.
  • the disadvantages of these processes include the introduction of fission chemicals or their reaction products into the water, which means that the water can only be reused to a limited extent.
  • the use of inorganic splitting agents usually leads to the salting of the water. With the widespread use of hydroxide-forming metal salts, large quantities of sludge are also formed, the disposal of which is becoming increasingly difficult.
  • Electrode surfaces This reduces the current flow, the process comes to a standstill. The result is that the electrodes have to be cleaned frequently.
  • a major disadvantage of this process is the large amounts of hydroxide sludge that is difficult to dispose of.
  • electrocoagulation as described in PS 37 39 580 C2
  • the surface charge of the oil drops is used for phase separation. Under the influence of an electric field between two electrodes, the negatively charged droplets migrate to the positive electrode and coagulate into larger drops, which can then be separated by decanting.
  • the gas formation by electrolysis of the water supports the oil / water separation.
  • the disadvantage of this principle of oil / water separation is the long treatment times, which is why this method has so far found little practical application.
  • a significant reduction in the treatment times for emulsion splitting by electrocoagulation is achieved by entering coagulation kernels in the oil-water mixture to be split.
  • the coagulation nuclei are usually microscopic, inorganic structures on which the Coagulation of the oil droplets discharged at the electrodes takes place. Cores of this type reduce the energy barrier of surface tension and the steric effects created by surfactants. This makes it easier for the droplets discharged in the electric field to flow together. For these reasons, the presence of a sufficient amount of coagulation cores is of crucial importance for the emulsion splitting according to the principle of electrocoagulation.
  • a further disadvantage is that emulsions or aqueous cleaning media with different or fluctuating properties or compositions can only be prepared with difficulty, inter alia in that the necessary modification to achieve a change in the area ratio of the electrodes requires a great deal of effort.
  • the limited formation of coagulation nuclei and their difficult ability to influence leads to a limited use of this method.
  • the object of the invention was to expand the field of use of electrocoagulation and to increase flexibility, and to minimize disposal costs by reducing the quantities of waste material that had to be disposed of.
  • a device for splitting emulsions and for regenerating cleaning and degreasing baths is assumed, in particular by electrocoagulation in an electrophysical cell, in which, according to the invention, at least two mutually independent electrode devices, each with its own circuit, are arranged. This means that each circuit can be regulated independently of the other. In this way, both the formation of the coagulation cores and the process of electrocoagulation can be adapted and optimized independently of one another to the respective operating conditions.
  • the separate circuits for the two electrode devices offer the possibility of using small distances between the electrodes, low voltages and high current densities to form coagulation cores on the soluble electrodes, and with larger distances, high voltages, high field strengths, small current densities and low gas generation for electrocoagulation to operate the durable electrodes.
  • Reversible polarity electrode devices are arranged in the electrophysical cell, the cathode and anode of each electrode device being made of the same material. This has the advantage that the formation of coagulation nuclei on the one hand and the process of electrocoagulation on the other hand is stabilized at a high level by the, in particular periodic, change in the current direction.
  • the cathode of an electrode device becomes the anode and vice versa. This advantageously prevents the formation of electrically non-conductive layers on the electrodes, which lead to a reduced current density with the result of poor coagulation.
  • the arranged electrode devices are equipped with voltage supplies for clocked and variably adjustable Voltage, especially DC voltage connected.
  • At least two of the mutually independent electrode devices consist of different materials.
  • the one intended for the formation of coagulation nuclei advantageously consists of a metal which leads to the formation of hydroxides, insoluble salts, etc. through the electrolysis.
  • these electrodes made of an aluminum alloy can be used, which counteract passivation of the surface.
  • An insoluble or insoluble material is preferably used for another electrode device provided for the process of electrocoagulation. This serves to optimize the implementation of the process and leads to a long service life.
  • high-alloy steel preferably V4A, material number 1.4576 can be used as the electrode material.
  • the electrode devices with different material compositions are arranged in an interlocking manner.
  • the interlocking construction is preferably used with an average power consumption of less than or equal to 2 kWh / m 3 . It is advantageous that the formation of coagulation nuclei, the confluence of the oil droplets and the oil separation supported by flotation take place in one cell. This allows a very compact design that can be used in confined spaces.
  • the electrode devices with different material compositions are arranged spatially separated from one another. High power consumption (preferably greater than 2 kWh / m 3 ) during the splitting process leads to intensive gas formation with the consequence of turbulent flows in the cell, which negatively influence the process of coagulation and can be avoided with the proposed arrangement, since the medium flowing through the cell first the soluble and then the insoluble
  • Electrode arrangement (6) generated gas arranged.
  • This constructive design of electrode devices and housings advantageously ensures that a largely laminar flow is generated between the electrodes and a turbulent flow, convection currents or a
  • Electrode devices can be prevented effectively.
  • Figure 2 shows an electrophysical cell with two
  • Electrode devices each with 4 electrodes, which are arranged in an interlocking manner, and
  • Figure 3 shows the formation of baffles in an electrophysical cell.
  • Figure 1 shows a housing 3 of an electrophysical cell with a baffle 4 and an electrode device for the Coagulation core formation 6 and an electrode device for electrocoagulation 5, both of which have their own controllable current sources.
  • a current source is connected to the alternating and symmetrically arranged anodes 7 or cathodes 8 of the electrode device for electrocoagulation 5, another to the also alternately and symmetrically arranged anodes 9 or cathodes 10 of the electrode device for coagulation core formation 6.
  • the Reverse polarity of the soluble metal electrodes of the coagulation core formation electrodes 2 is the controlled dissolution of deposits or their prevention, which enables continuous coagulation core formation.
  • the polarity reversal of the permanent electrodes 1 of the electrode device for the electrocoagulation 5 is preferably carried out in periods between 1 s and 100 min.
  • the frequency of the clocked DC voltage, in particular at the electrode device for electrocoagulation 5, is preferably between 1 and 1000 Hertz.
  • the emulsion splitting is preferably carried out in the pH range 7 to 12 and at temperatures between 1 ° C. and 100 ° C.
  • the emulsion to be split is introduced into the electrolysis cell in task 13 and is split up in the area of the electrode devices 6 and 5, the gas bubbles formed on the electrodes floating free and demulsified oil as well as flotatable metal hydroxides and solid particles in the oil layer 14. There, the oil and the flotatable solids are removed via the oil drain 12, while sedimentable substances accumulate on the bottom of the secondary clarification zone 15 and are removed if necessary.
  • the treatment times of the emulsion are preferably in the range between 10 s and 60 min, the energy requirement being between 0.1 and 50 kWh / m 3 .
  • FIG. 2 shows the interlocking arrangement of the electrode devices, which can be used particularly advantageously due to its compact design.
  • FIG. 3 shows a particularly advantageous variant of the arrangement of guide plates 4 in the housing of the electrophysical cell 3, which guide the emulsion to be treated or its fission products in a flow that is as uniform as possible.
  • gas formation necessarily results from the electrolysis of the water. Gas formation generally leads to turbulent flow, with the result that the coagulation process is disturbed. This is therefore avoided by the arrangement of the electrode devices 5 and 6 according to FIG. 3, in which the electrolysis gas is derived from the soluble electrodes 1 by a suitable design of the housing 3 and the guide plates 4.
  • Electrodes 5, 6 So far, only two electrode devices 5, 6 have been shown. Arrangements with multiple electrode devices are expedient as required, in particular in order to increase the throughput and the separation quality. Blocks of electrode devices can be formed (5,5,5,5 ...; 6,6,6,6 ...) as well as alternating arrangements (5, 6, 5, 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrostatic Separation (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Spaltung von Öl-in-Wasser-Emulsionen und Regeneration von Reinigungs- und Entfettungsbädern mittels Elektrokoagulation. Die Vorrichtung zur Regeneration von Reinigungs- und Entfettungsbädern insbesondere durch Spaltung in einer elektrophysikalischen Zelle (3) ist insbesondere dadurch gekennzeichnet, daß mindestens zwei voneinander unabhängige Elektrodeneinrichtungen (1, 2) mit jeweils einem eigenen von den anderen unabhängigen und getrennt regelbaren Stromkreis (7-10) angeordnet sind. Auf diese Weise können sowohl die Bildung der Koagulationskerne als auch der Prozeß der Elektrokoagulation unabhängig voneinander an die jeweiligen Betriebsverhältnisse angepaßt und optimiert werden. Die getrennten Stromkreise für die beiden Elektrodeneinrichtungen (1, 2) bieten die Möglichkeit, den Prozeß mit kleinen Elektrodenabständen, niedrigen Spannungen und hohen Stromdichten zur Bildung von Koagulationskernen an den löslichen Elektroden (2) und mit größeren Abständen, hohen Spannungen, hohen Feldstärken, kleinen Stromdichten und geringer Gasentwicklung beim Prozess der Elektrokoagulation an den beständigen Elektroden (1) zu betreiben.

Description

Vorrichtung zur Spaltung von Ol-in-Wasser-Emulsionen mittels Elektrokoagulation
Beschreibung
Die Erfindung betrifft eine Vorrichtung zur Spaltung von Öl-in¬ Wasser-Emulsionen mittels Elektrokoagulation. Bei industriellen Fertigungsprozessen fallen große Mengen öl¬ haltiger Abwässer an. In vielen Fällen bilden Öl und Wasser eine Emulsion, d.h. das Öl liegt in Form von Mikrotröpfchen im Wasser vor. Diese Öltröpfchen tragen elektrische Oberflächenladungen, was dazu führt, daß diese Tropfen eine gleichmäßige Verteilung in dem Wasser einnehmen. Eine zusätzliche und häufig entscheidende Stabilisierung der Öl- Wasser-Emulsion erfolgt durch Netzmittel, wie sie zum Beispiel Bestandteil von Reinigungsmittel sind. Die Ladungen der mit diesen Tensiden umhüllten Öltröpfchen verhindern, daß die Tröpfchen zusammenfließen und an die Oberfläche steigen. Die Entsorgung der Öl-Wasser-Emulsionen, die ein stark umweltbelasteter Abfall sind, wird immer mehr zu einem wichtigen Faktor bei den Produktionskosten. Darüber hinaus fordert die immer strengere Gesetzgebung zum Schutz der Umwelt die Vermeidung bzw. Verminderung von Abfallstoffen. Aus diesem Grund gewinnen Verfahren auch wirtschaftlich an Bedeutung, die eine Kreislaufführung insbesondere von Reinigungswässern ermöglichen.
Bei einer Emulsions-Spaltung mit organischen Stoffen werden die Spaltmittel nur unzureichend mit dem Öl ausgetragen. Zu den Nachteilen dieser Verfahren gehört der Eintrag von Spaltchemikalien oder deren Reaktionsprodukten in das Wasser, wodurch eine Wiederverwendung des Wassers nur bedingt möglich ist. Die Anwendung von anorganischen Spaltmitteln führt in der Regel zur Aufsalzung des Wassers. Bei der weitverbreiteten Verwendung von Hydroxid-bildenden Metallsalzen entstehen darüber hinaus große Mengen von Schlämmen, deren Entsorgung zunehmend schwieriger wird.
Das Problem der Aufsalzung wird bei Verfahren vermieden, bei denen die Hydroxide nicht durch Einsatz von Metallsalzen chemisch, sondern elektrophysikalisch erzeugt werden. Dies geschieht mit einer Elektrodeneinrichtung bei der Aluminiumplatten als Kathode und Eisenplatten als Anode geschaltet werden. Ein Problem stellt die Bildung von elektrisch nicht leitenden Schichten auf den
Elektrodenoberflächen dar. Dadurch geht der Stromfluß zurück, der Prozeß kommt zum Stillstand. Die Notwendigkeit einer häufigen Reinigung der Elektroden ist die Folge. Ein großer Nachteil auch bei diesem Verfahren sind die großen Mengen schwer zu entsorgender, ölbeladener Hydroxidschlämme. Bei der Elektrokoagulation, wie sie in der Schrift PS 37 39 580 C2 beschrieben wird, wird die Oberflächenladung der Öltropfen zur Phasentrennung benutzt. Unter Einfluß eines elektrischen Feldes zwischen zwei Elektroden wandern die negativ geladenen Tröpfchen zur positiven Elektrode und koagulieren zu größeren Tropfen, die dann durch Dekantieren abgeschieden werden können. Die Gasbildung mittels Elektrolyse des Wassers unterstützt dabei die Öl/Wasser-Trennung. Nachteil an diesem Prinzip der Öl/Wassertrennung sind die langen Behandlungszeiten, weshalb dieses Verfahren bisher wenig praktische Anwendung gefunden hat.
Eine deutliche Verkürzung der Behandlungszeiten bei der Emulsionsspaltung durch Elektrokoagulation wird durch Eintragung von Koagulationskernen in die zu spaltende Öl- Wasser-Mischung erreicht. Die Koagulationskerne sind in der Regel mikroskopische, anorganische Strukturen, an denen die Koagulation der an den Elektroden entladenen Öltröpfchen stattfindet. Kerne dieser Art reduzieren die Energiebarriere der Oberflächenspannung und die durch Tenside entstehenden sterischen Effekte. Hierdurch wird ein Zusammenfließen der im elektrischen Feld entladenen Tröpfchen erleichtert. Das Vorhandensein einer ausreichenden Menge an Koagulationskernen ist aus diesen Gründen von entscheidender Bedeutung für die Emulsionsspaltung nach dem Prinzip der Elektrokoagulation.
In einem bekannten Verfahren zur Elektrokoagulation, die in der EP 0 220 189 Bl offengelegt ist, werden die Koagulationskerne aus zwischen den Elektroden befindlichen Metalleinlagen gebildet. Die durch Influenz verursachte Auflösung dieser Metalleinlagen führt bei bestimmten pH-Werten zur Bildung von Hydroxiden, die als Koagulationskerne das Koagulieren der Öltröpfchen beschleunigen. Nachteilig bei diesem Verfahren ist, daß nur begrenzte Mengen an Hydroxiden als Koagulationskerne gebildet werden. "Darüber hinaus bestehen bei diesem Verfahren nur sehr begrenzte Möglichkeiten, die Anzahl der Koagulationskerne zu variieren.
Desweiteren ist von Nachteil, daß Emulsionen bzw. wässerige Reinigungsmedien mit unterschiedlichen oder schwankenden Eigenschaften bzw. Zusammensetzungen nur schwer aufbereitet werden können unter anderem dadurch, daß der notwendige Umbau, um eine Änderung des Flächenverhältnisses der Elektroden zu erreichen, einen hohen Aufwand erfordert. Die begrenzte Bildung von Koagulationskernen und deren schwierige Beeinflußbarkeit führt zu beschränkter Einsatzmöglichkeit dieses Verfahrens.
Der Erfindung lag die Aufgabe zugrunde, den Einsatzbereich der Elektrokoagulation zu erweitern und die Flexibilität zu erhöhen sowie die Entsorgungskosten durch Reduzierung der entsorgungspflichtigen Abstoffmengen zu minimieren. Zur Lösung der Aufgabe wird ausgegangen von einer Vorrichtung zur Spaltung von Emulsionen und zur Regeneration von Reinigungs- und Entfettungsbädern, insbesondere durch Elektrokoagulation in einer elektrophysikalischen Zelle, bei der erfindungsgemäß mindestens zwei voneinander unabhängige Elektrodeneinrichtungen mit jeweils einem eigenen Stromkreis angeordnet sind. Damit kann jeder Stromkreis unabhängig von dem anderen geregelt werden. Auf diese Weise können sowohl die Bildung der Koagulationskerne als auch der Prozeß der Elektrokoagulation unabhängig von einander an die jeweiligen Betriebsverhältnisse angepaßt und optimiert werden. Die getrennten Stromkreise für die beiden Elektrodeneinrichtungen bieten die Möglichkeit, den Prozeß mit kleinen Elektrodenabständen, niedrigen Spannungen und hohen Stromdichten zur Bildung von Koagulationskerne an den löslichen Elektroden, und mit größeren Abständen, hohen Spannungen, hohen Feldstärken, kleinen Stromdichten und geringer Gasentwicklung zur Elektrokoagulation an den beständigen Elektroden zu betreiben.
In der elektrophysikalischen Zelle sind umpolbare Elektrodeneinrichtungen angeordnet wobei Kathode und Anode einer jeden Elektrodeneinrichtungen aus dem gleichen Material bestehen. Dies hat den Vorteil, daß durch die, insbesondere periodische Änderung der Stromrichtung die Bildung von Koagulationskernen einerseits wie auch der Vorgang der Elektrokoagulation andererseits auf hohem Niveau stabilisiert wird. Die Kathode einer Elektrodeneinrichtung wird dabei zur Anode und umgekehrt. Damit wird die Bildung von elektrisch nichtleitenden Schichten auf den Elektroden, die zu einer verminderten Stromdichte mit der Folge einer mangelhaften Koagulation führen, vorteilhafterweise vermieden. Die angeordneten Elektrodeneinrichtungen sind mit Spannungsversorgungen für getaktete und variabel einstellbare Spannung, insbesondere Gleichspannung verbunden. Hierdurch werden vorteilhafterweise bei gegebener Spannung, die die Coulombschen Anziehungskräfte der Tröpfchen zu den Elektroden bestimmt, niedrigere integrale Stromflüsse und dadurch ein wesentlich geringerer Energieverbrauch und eine deutlich verminderte Gasbildung erreicht. Die Einstellbarkeit der Spannung dient vorteilhafterweise der Optimierung des Prozesses und somit der Wirtschaftlichkeit der Anlage. Mindestens zwei der voneinander unabhängigen Elektrodeneinrichtungen bestehen aus unterschiedlichen Materialien. Die eine, für die Bildung von Koagulationskernen vorgesehene, besteht vorteilhafterweise aus einem Metall, das durch die Elektrolyse zur Bildung von Hydroxiden, nichtlöslichen Salzen etc. führt. Zum Beispiel können diese Elektroden aus einer Aluminiumlegierung eingesetzt werden, die einer Passivierung der Oberfläche entgegen wirkt. Für eine weitere, für den Prozess der Elektrokoagulation vorgesehene Elektrodeneinrichtung, wird vorzugsweise ein unlösliches oder weniglösliches Material verwendet. Dies dient der Optimierung der Durchführung des Prozesses und führt zu hohen Standzeiten. Zum Beispiel kann hier als Elektrodenmaterial hochlegierter Stahl (vorzugsweise V4A, Werkstoffnummer 1.4576) eingesetzt werden.
Die Elekrodeneinrichtungen mit unterschiedlicher Materialzusammensetzung sind ineineinandergreifend angeordnet. Die ineinandergreifende Konstruktion wird vorzugsweise bei einem durchschnittlichen Stromverbrauch von kleiner gleich 2 kWh/m3 eingesetzt. Vorteilhaft ist, daß die Bildung von Koagulationskernen, das Zusammenfließen der Öltröpfchen und die durch Flotation unterstützte Ölabscheidung in einer Zelle stattfindet. Dies erlaubt eine sehr kompakte Bauweise, die unter beengten Raumverhältnissen einsetzbar ist. Alternativ sind die Elektrodeneinrichtungen mit unterschiedliche MaterialZusammensetzung räumlich getrennt voneinander angeordnet. Hoher Stromverbrauch (vorzugsweise größer 2 kWh/m3) während des Spaltprozesses führt zu einer intensiven Gasbildung mit der Folge von turbulenten Strömungen in der Zelle, die den Vorgang der Koagulation negativ beeinflussen und mit der vorgeschlagenen Anordnung vermieden werden, da das die Zelle durchströmende Medium zuerst die lösliche und anschließend die unlöslichen
Elektrodeneinrichtungen durchströmt.
In dem Gehäuse sind LeitVorrichtungen zur Ableitung von durch
Elekrolyse an den löslichen Elektroden (2) der
Elekrodenanordnung (6) erzeugtem Gas angeordnet. Durch diese konstruktive Gestaltung von Elektrodeneinrichtungen und Gehäuse wird vorteilhafterweise erreicht, daß zwischen den Elektroden eine weitgehend laminare Strömung erzeugt wird und ein turbulentes Strömen, Konvektionsströme beziehungsweise eine
Rückvermischung insbesondere zwischen den
Elektrodeneinrichtungen wirkungsvoll verhindert werden.
Darüberhinaus wird der Stromverbrauch durch die Optimierung des
Strömungsverhaltens in der Zelle reduziert.
Anhand der Abbildungen soll ein Ausführungsbeispiel erläutert werden. Dabei zeigen
Figur 1 eine elektrophysikalische Zelle mit zwei
Elektrodeneinrichtungen mit jeweils 4 Elektroden, die getrennt voneinander angeordnet sind,
Figur 2 eine elektrophysikalische Zelle mit zwei
Elektrodeneinrichtungen mit jeweils 4 Elektroden, die eineinandergreifend angeordnet sind, und
Figur 3 eine Ausbildung von Leitblechen in einer elektrophysikalische Zelle.
Figur 1 zeigt ein Gehäuse 3 einer elektrophysikalische Zelle mit einem Leitblech 4 sowie einer Elektrodeneinrichtung für die Koagulationskernbildung 6 sowie einer Elektrodeneinrichtung für die Elektrokoagulation 5, die beide über eigene regelbare Stromquellen verfügen. Eine Stromquelle ist an die im Wechsel und symetrisch angeordnete Anoden 7 bzw. Kathoden 8 der Elektrodeneinrichtung für die Elektrokoagulation 5 angeschlossen, eine andere an die ebenfalls im Wechsel und symetrisch angeordnete Anoden 9 bzw. Kathoden 10 der Elektrodeneinrichtung für die Koagulationskernbildung 6. Insbesondere durch die Umpolung der löslichen Metall-Elektroden der Koagulationskernbildungs-Elektroden 2 erfolgt die gesteuerte Auflösung von Ablagerungen bzw. deren Verhinderung, was eine kontinuierliche Koagulationskernbildung ermöglicht. Vorzugsweise erfolgt die Umpolung der beständigen Elektroden l der Elektrodeneinrichtung für die Elektrokoagulation 5 in Zeiträumen zwischen 1 s und 100 min.
Die Frequenz der getakteten Gleichspannung insbesondere an der Elektrodeneinrichtung für die Elekrokoagulation 5 liegt vorzugsweise zwischen 1 und 1000 Hertz.
Dabei wird die Emulsionsspaltung vorzugsweise im pH-Wertbereich 7 bis 12 und bei Temperaturen zwischen 1° C und 100° C durchgeführt.
Die zu spaltende Emulsion wird in der Aufgabe 13 in die Elektrolysezelle eingebracht und wird im Bereich der Elektrodeneinrichtungen 6 und 5 aufgespalten, wobei die an den Elektroden entstehenden Gasblasen freies und demulgiertes Öl sowie flotationsfähige Metallhydroxide und Feststoffpartikel in die Ölschicht 14 flotieren. Dort wird das Öl und die flotationsfähigen Feststoffe über den Ölablauf 12 abgeführt, während sich sedimentationsfähige Stoffe auf dem Boden der Nachklärzone 15 ansammeln und bei Bedarf entfernt werden. Die Behandlungszeiten der Emulsion liegen vorzugsweise im Bereich zwischen 10 s und 60 min, wobei der Energiebedarf zwischen 0,1 und 50 kWh/m3 beträgt. In der Figur 2 ist die ineinandergreifende Anordnung der Elektrodeneinrichtungen dargestellt, die aufgrund ihrer kompakten Bauweise besonders vorteilhaftig einsetzbar ist. Figur 3 zeigt eine besonders vorteilhafte Variante der Anordnung von Leitblechen 4 in dem Gehäuse der elektrophysikalischen Zelle 3, die die zu behandelnde Emulsion bzw. ihre Spaltprodukte in einer möglichst gleichmäßigen Strömung führen. Beim Prozeß der Elektrokoagulation wie auch der Koagulationskernbildung kommt es durch die Elektrolyse des Wassers zwangsläufig zu einer Gasbildung. Die Gasbildung führt im allgemeinen zu einer turbulenten Strömung mit der Folge einer Störung des Vorganges der Koagulation. Dies wird daher durch die Anordnung der Elektrodeneinrichtungen 5 und 6 nach Figur 3 vermieden, bei der das Elektrolysegas von den löslichen Elektroden 1 durch eine geeignete Ausbildung des Gehäuses 3 und der Leitbleche 4 abgeleitet wird.
Soweit wurden lediglich zwei Elektrodeneinrichtungen 5,6 dargestellt. Je nach Bedarf sind Anordnungen mit mehrfachen Elektrodeneinrichtungen zweckmäßig, insbesondere um die Durchsatzleistung und die Trenngüte zu erhöhen. Dabei können sowohl Blöcke von Elektrodeneinrichtungen gebildet werden (5,5,5,5...; 6,6,6,6...) als auch alternierende Anordnungen (5, 6, 5, 6 ) .
Bezugs zeichenliste
1 Unlösliche Elektroden
2 Lösliche Elektroden
3 Gehäuse der elektrophysikalischen Zelle
4 Leitbleche
5 Elektrodeneinrichtung für die Elektrokoagulation
6 Elektrodeneinrichtung für die Koagulationskernbildung
7 Anschluß für die Anoden von 5
8 Anschluß für die Kathoden von 5
9 Anschluß für die Anoden von 6
10 Anschluß für die Kathoden von 6
11 Austrag der wässrigen Phase
12 Ölablauf
13 Aufgabe der Emulsion
14 Ölschicht
15 Boden der Nachklärzone
16 Nachklärzone

Claims

Patentansprüche
1. Vorrichtung zur Spaltung von Emulsionen und zur Regeneration von Reinigungs- und Entfettungsbädern insbesondere durch Spaltung in einer elektrophysikalischen Zelle, dadurch gekennzeichnet, daß darin mindestens zwei voneinander unabhängige Elektrodeneinrichtungen (5,6) angeordnet sind, die jeweils einen eigenen Stromkreis aufweisen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß Kathode und Anode einer jeden Elektrodeneinrichtung (5,6) aus dem gleichen Material bestehen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mit getakteter und variabel einstellbarer Spannung betriebene Elektrodeneinrichtungen angeordnet sind.
4. Vorrichtung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß mindestens zwei der voneinander unabhängigen Elektrodeneinrichtungen (5,6) aus unterschiedlichen Materialien bestehen.
5. Vorrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Elekrodeneinrichtungen (5,6) mit unterschiedlicher Materialzusammensetzung ineineinandergreifend angeordnet sind.
6. Vorrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Elekrodeneinrichtungen (5,6) mit unterschiedlicher Materialzusammensetzung räumlich getrennt voneinander angeordnet sind. Vorrichtung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß in dem Gehäuse (3) Leitbleche (4) zur Ableitung von durch Elekrolyse an den löslichen Elektroden (2) der Elekrodenanordnung (6) erzeugtem Gas angeordnet sind.
PCT/DE1995/001717 1994-12-06 1995-12-04 Vorrichtung zur spaltung von öl-in-wasser-emulsionen mittels elektrokoagulation WO1996017667A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95940126A EP0742736A1 (de) 1994-12-06 1995-12-04 Vorrichtung zur spaltung von öl-in-wasser-emulsionen mittels elektrokoagulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4443297A DE4443297C1 (de) 1994-12-06 1994-12-06 Vorrichtung zur Spaltung von Öl-in-Wasser-Emulsionen mittels Elektrokoagulation
DEP4443297.6 1994-12-06

Publications (2)

Publication Number Publication Date
WO1996017667A2 true WO1996017667A2 (de) 1996-06-13
WO1996017667A3 WO1996017667A3 (de) 1996-08-15

Family

ID=6534989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001717 WO1996017667A2 (de) 1994-12-06 1995-12-04 Vorrichtung zur spaltung von öl-in-wasser-emulsionen mittels elektrokoagulation

Country Status (3)

Country Link
EP (1) EP0742736A1 (de)
DE (1) DE4443297C1 (de)
WO (1) WO1996017667A2 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043617A1 (en) * 1998-02-27 1999-09-02 Scott Wade Powell Method and apparatus for electrocoagulation of liquids
US6746593B2 (en) 2002-01-18 2004-06-08 Robert J. Herbst High volume electrolytic water treatment system and process for treating wastewater
US7211185B2 (en) 1998-02-27 2007-05-01 Scott Wade Powell Method and apparatus for electrocoagulation of liquids
US7758742B2 (en) 1998-02-27 2010-07-20 Scott Wade Powell Method and apparatus for separation of water from petroleum products in an electrocoagulation process
US7981301B2 (en) 2008-11-21 2011-07-19 Scott W. Powell Method and apparatus for treatment of contaminated liquid
US7981293B2 (en) 2008-11-21 2011-07-19 Scott W. Powell Method and apparatus for treatment of contaminated liquid
US7998225B2 (en) 2007-02-22 2011-08-16 Powell Scott W Methods of purifying biodiesel fuels
US8048279B2 (en) 1998-02-27 2011-11-01 Scott Wade Powell Method and apparatus for electrocoagulation of liquids
US10358361B2 (en) 2013-02-22 2019-07-23 Loren L. Losh System and method for remediation of wastewater including aerobic and electrocoagulation treatment
US10745299B2 (en) 2013-02-22 2020-08-18 NiBru Traka, Inc. Struvite formation by precipitation of ammonia in electrocoagulation process
US10918972B2 (en) 2016-01-29 2021-02-16 Borealis Ag Methods for the separation of at least one emulsion by applying an electrical field and device for carrying out said method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9713856D0 (en) * 1997-07-01 1997-09-03 Morgan Philip G Tangential cross-flow electroflocculation
EP1225156A1 (de) * 2001-01-22 2002-07-24 Enomoto Industry Co., Ltd. Vorrichtung und Verfahren zur Entfernung von feinteiligen Metallpulvern aus Emulsionen auf elektrochemischem Weg
US11046596B2 (en) 2012-10-25 2021-06-29 Hydrus Technology Pty. Ltd. Electrochemical liquid treatment apparatus
US11046595B2 (en) 2014-05-23 2021-06-29 Hydrus Technology Pty. Ltd. Electrochemical treatment methods
CA2949865C (en) 2014-05-23 2023-10-24 Hydrus Technology Pty. Ltd. Electrochemical treatment methods
US20180327285A1 (en) * 2015-02-26 2018-11-15 Michele Bassan Aqueous degreasing washer
EP3904297A1 (de) * 2020-04-27 2021-11-03 ATB WATER GmbH Fällmodul

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE740467A (de) * 1968-10-19 1970-04-01
DE2311921A1 (de) * 1972-03-09 1973-09-20 Masanori Ohta Verfahren zur aufbereitung von oel enthaltenden abfallfluessigkeiten
DE2617996A1 (de) * 1976-04-24 1977-10-27 Krugmann Citex Masch Alfred Verfahren und vorrichtung zur abtrennung von fremdstoffen aus verunreinigtem wasser
US4056451A (en) * 1976-03-29 1977-11-01 Maloney-Crawford Tank Corporation Dual field electric treater
EP0019640A1 (de) * 1979-04-19 1980-12-10 Petrolite Corporation Vorrichtung zur Entwässerung und Entsalzung in mehreren Stufen in einem einzelnen Gefäss und Verfahren zur Entsalzung von Erdölen
US4252631A (en) * 1980-01-09 1981-02-24 The United States Of America As Represented By The United States Department Of Energy Electrostatic coalescence system with independent AC and DC hydrophilic electrodes
US4308127A (en) * 1980-03-17 1981-12-29 Combustion Engineering, Inc. Separation of emulsions with electric field
DE3031773A1 (de) * 1980-09-05 1982-02-25 Char'kovskij motorostroitel'nyj zavod "Serp i Molot", Charkov Anlage zur elektrochemischen schmutzwasserreinigung
WO1986001233A1 (en) * 1984-08-11 1986-02-27 Edgar Renzler Process for the regeneration of cleaning and degreasing baths and device for application of the process
FR2571629A1 (fr) * 1984-05-08 1986-04-18 Kh Polt I Im V I Lenina Appareil pour l'epuration electrochimique d'un liquide pollue

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT305914B (de) * 1970-06-02 1973-03-26 Oesterr Alpine Montan Verfahren und Vorrichtung zur Reinigung von Abwässern
DE3528197A1 (de) * 1984-08-11 1987-03-19 Edgar Dipl Ing Renzler Verfahren zur spaltung von emulsionen, bei denen wasser als kontinuierliche phase vorliegt und vorrichtung zur durchfuehrung des verfahrens
DE3717633A1 (de) * 1987-05-26 1988-12-08 Rwo Masch Armaturen App Verfahren zum elektrolytischen trennen einer oel/wasser-emulsion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE740467A (de) * 1968-10-19 1970-04-01
DE2311921A1 (de) * 1972-03-09 1973-09-20 Masanori Ohta Verfahren zur aufbereitung von oel enthaltenden abfallfluessigkeiten
US4056451A (en) * 1976-03-29 1977-11-01 Maloney-Crawford Tank Corporation Dual field electric treater
DE2617996A1 (de) * 1976-04-24 1977-10-27 Krugmann Citex Masch Alfred Verfahren und vorrichtung zur abtrennung von fremdstoffen aus verunreinigtem wasser
EP0019640A1 (de) * 1979-04-19 1980-12-10 Petrolite Corporation Vorrichtung zur Entwässerung und Entsalzung in mehreren Stufen in einem einzelnen Gefäss und Verfahren zur Entsalzung von Erdölen
US4252631A (en) * 1980-01-09 1981-02-24 The United States Of America As Represented By The United States Department Of Energy Electrostatic coalescence system with independent AC and DC hydrophilic electrodes
US4308127A (en) * 1980-03-17 1981-12-29 Combustion Engineering, Inc. Separation of emulsions with electric field
DE3031773A1 (de) * 1980-09-05 1982-02-25 Char'kovskij motorostroitel'nyj zavod "Serp i Molot", Charkov Anlage zur elektrochemischen schmutzwasserreinigung
FR2571629A1 (fr) * 1984-05-08 1986-04-18 Kh Polt I Im V I Lenina Appareil pour l'epuration electrochimique d'un liquide pollue
WO1986001233A1 (en) * 1984-08-11 1986-02-27 Edgar Renzler Process for the regeneration of cleaning and degreasing baths and device for application of the process

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043617A1 (en) * 1998-02-27 1999-09-02 Scott Wade Powell Method and apparatus for electrocoagulation of liquids
US6139710A (en) * 1998-02-27 2000-10-31 Powell; Scott Wade Apparatus for electrocoagulation of liquids
US6488835B1 (en) 1998-02-27 2002-12-03 Scott Wade Powell Method for electrocoagulation of liquids
US7211185B2 (en) 1998-02-27 2007-05-01 Scott Wade Powell Method and apparatus for electrocoagulation of liquids
US7758742B2 (en) 1998-02-27 2010-07-20 Scott Wade Powell Method and apparatus for separation of water from petroleum products in an electrocoagulation process
US8133382B2 (en) 1998-02-27 2012-03-13 Scott Powell Method for electrocoagulation of liquids
US8048279B2 (en) 1998-02-27 2011-11-01 Scott Wade Powell Method and apparatus for electrocoagulation of liquids
US6746593B2 (en) 2002-01-18 2004-06-08 Robert J. Herbst High volume electrolytic water treatment system and process for treating wastewater
US7998225B2 (en) 2007-02-22 2011-08-16 Powell Scott W Methods of purifying biodiesel fuels
US7981293B2 (en) 2008-11-21 2011-07-19 Scott W. Powell Method and apparatus for treatment of contaminated liquid
US7981301B2 (en) 2008-11-21 2011-07-19 Scott W. Powell Method and apparatus for treatment of contaminated liquid
US8192617B2 (en) 2008-11-21 2012-06-05 Powell Scott W System for treatment of contaminated liquid
US10358361B2 (en) 2013-02-22 2019-07-23 Loren L. Losh System and method for remediation of wastewater including aerobic and electrocoagulation treatment
US10745299B2 (en) 2013-02-22 2020-08-18 NiBru Traka, Inc. Struvite formation by precipitation of ammonia in electrocoagulation process
US11407660B2 (en) 2013-02-22 2022-08-09 Bio2 Pw Inc. System and method for remediation of wastewater including aerobic and electrocoagulation treatment
US10918972B2 (en) 2016-01-29 2021-02-16 Borealis Ag Methods for the separation of at least one emulsion by applying an electrical field and device for carrying out said method
US11224828B2 (en) 2016-01-29 2022-01-18 Borealis Ag Methods for the separation of at least one emulsion by applying an electrical field and device for carrying out said method
US11911715B2 (en) 2016-01-29 2024-02-27 Borealis Ag Methods for the separation of at least one emulsion by applying an electrical field and device for carrying out said method

Also Published As

Publication number Publication date
DE4443297C1 (de) 1996-03-07
EP0742736A1 (de) 1996-11-20
WO1996017667A3 (de) 1996-08-15

Similar Documents

Publication Publication Date Title
DE4443297C1 (de) Vorrichtung zur Spaltung von Öl-in-Wasser-Emulsionen mittels Elektrokoagulation
DE4410658C2 (de) Verfahren und Vorrichtung zum Aufbereiten von industriellen Abwässern im Wege der Elektrolyse
DE69410384T2 (de) Vorrichtung zum Trennen von Öl-Wasser-Gemischen mit geladenem Coalescer
DE2930194C2 (de) Vorrichtung zum Aufbereiten von Abwasser
DE2555175C3 (de) Verfahren und Vorrichtung zum Reinigen von Abwassern
DE3336460A1 (de) Verfahren und vorrichtung zum reinigen von wasser
DE3641365C2 (de)
DE3029842C2 (de) Verfahren und Apparat zur elektrochemischen Abwasserreinigung
DE3739580A1 (de) Verfahren und vorrichtung zur spaltung eines dispersen systems in einer elektrochemischen zelle
DE69305799T2 (de) Methode und Apparat für die Trennung durch Agglomeration
DE3031773A1 (de) Anlage zur elektrochemischen schmutzwasserreinigung
DE4236723C1 (de) Vorrichtung zur Reinigung und Aufbereitung von Schmutzwässern mittels Elektroflotation
AT391679B (de) Vorrichtung fuer die elektrochemische reinigung einer verschmutzten fluessigkeit
EP2043956A1 (de) Verfahren zur entfernung von schadstoffen aus flüssigkeiten und vorrichtung zur durchführung des verfahrens
DE2415538A1 (de) Verfahren und vorrichtung zur ausflockung ungeloester substanzen
DE3312744C2 (de)
DE2248298C2 (de) Verfahren und elektrostatisches Filter zum Entfernen von elektrisch leitenden Verunreinigungen suspendiert in Ölen mit hohem spezifischem Widerstand
DE2644744C3 (de) Verfahren und Vorrichtung zum Reinigen einer leitfähigen, verunreinigende Partikel enthaltenden Kühlflüssigkeit
DE883888C (de) Verfahren zur Ausscheidung fester Stoffe oder von Kolloiden aus Fluessigkeiten mittels elektrischen Stromes
EP0074530B1 (de) Verfahren zur Abscheidung von in verunreinigtem Wasser enthaltenen Stoffen und Vorrichtung zur Durchführung des Verfahrens
DE4416973C2 (de) Reinigung von Schmutzwässern durch Elektroflotation
DE4235833C2 (de) Vorrichtung und Verfahren zur Wasserreinigung
DE69802300T2 (de) Behandlung von schädlichen flüssigkeiten
EP0130943B1 (de) Verfahren zur kontinuierlichen Abscheidung von in einer verunreinigten, tensidhaltigen Flüssigkeit enthaltenen Stoffen
DE3490677C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995940126

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995940126

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995940126

Country of ref document: EP