WO1996016898A1 - Procede pour la production de phosgene - Google Patents

Procede pour la production de phosgene Download PDF

Info

Publication number
WO1996016898A1
WO1996016898A1 PCT/JP1995/002421 JP9502421W WO9616898A1 WO 1996016898 A1 WO1996016898 A1 WO 1996016898A1 JP 9502421 W JP9502421 W JP 9502421W WO 9616898 A1 WO9616898 A1 WO 9616898A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosgene
chlorine
reaction
carbon monoxide
activated carbon
Prior art date
Application number
PCT/JP1995/002421
Other languages
English (en)
French (fr)
Inventor
Noriyuki Kunisi
Norio Murai
Hiroo Kusama
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Priority to BR9509842A priority Critical patent/BR9509842A/pt
Priority to EP95937202A priority patent/EP0796819B1/en
Priority to DE69515693T priority patent/DE69515693T2/de
Publication of WO1996016898A1 publication Critical patent/WO1996016898A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst

Definitions

  • the present invention relates to a method for producing phosgene from carbon monoxide and chlorine using activated carbon as a catalyst. More specifically, the present invention relates to a method for producing high-purity phosgene that can minimize the generation of impurities due to a rapid exothermic reaction when activated carbon is used as a catalyst in the reaction.
  • Phosgene is known as an important raw material for synthetic chemistry, especially in the production of polycarbonate, and high-quality phosgene is required.
  • an object of the present invention is to produce high-purity phosgene suitable for chemical reaction, particularly for production of an interfacial polycondensation method polycarbonate, and to provide a pretreatment step for activated carbon and a special cooling pipe. It is an object of the present invention to find a method that makes it possible to produce phosgene efficiently without the need for a reactor or any other special flow mode of the reaction gas. Disclosure of the invention
  • the present inventor has conducted intensive studies to solve the above problems, and as a result, by adding and dispersing another inert material to the catalyst layer containing activated carbon, and diluting the activated carbon in the catalyst layer, effectively, Furthermore, they have found that high-purity phosgene can be produced more efficiently by using a specific inert material in a special shape, and completed the present invention.
  • the gist of the present invention is as follows. First, in a method for producing phosgene by reacting carbon monoxide and chlorine through a catalyst layer mainly composed of activated carbon, a catalyst layer diluted with a material substantially inert to carbon monoxide and chlorine is used. Phosgene production method,
  • the method for producing phosgene according to the second aspect wherein the ceramic material and / or the metal material is a molded article having a hollow spherical or tubular structure,
  • the method for producing phosgene according to the first aspect wherein the material substantially inert to carbon monoxide and chlorine is 5 to 90% by volume in the catalyst layer,
  • FIG. 1 is a conceptual diagram showing a phosgene production method according to the present invention
  • FIG. 2 is a longitudinal sectional view of a multitubular phosgene reactor
  • FIG. 3 is a reaction tube of the reactor.
  • FIG. 3 is a partially cutaway view of a longitudinal section of FIG.
  • reference numeral 1 is a raw material gas CO
  • 2 is a raw material gas Cl 2
  • 3 is a catalyst
  • 4 is a diluent
  • 5 is phosgene
  • 6 is a phosgene reactor
  • 6 a is an inlet of a phosgene reactor
  • 6 b Is the outlet of the Hosgen reactor
  • 6c is the reaction tube
  • 6d is the cooling water passage jacket
  • 6e is the cooling water inlet
  • 6f is the cooling water outlet
  • A is the catalyst dilution section.
  • FIG. 1 is a conceptual diagram illustrating a phosgene production method according to the present invention, the raw material gas C 0 (1) and C 1 2 (2), the sera Mi catalyst (3) in which the activated carbon with a diluent (4)
  • a phosgene reactor (6) filled with a charging agent mixed with a ball or a stainless steel material is introduced from an inlet (6a) of the reactor, and an outlet (6b) from the reactor (6) is supplied with a reaction product. COC 1 2 (5) is removed.
  • Carbon monoxide and chlorine which are raw materials for producing phosgene according to the present invention, are required to be dry and of high purity.
  • a method for producing the above-mentioned raw material carbon monoxide used in the present invention Synthetic gas, carbide furnace gas, blast furnace gas, smelting furnace gas, and the like can also be used. Purified by the above high purity requirement through an adsorption tower or cryogenic separation is supplied. Further, as a method for producing chlorine as another raw material, a method for purifying chlorine generated by electrolysis of a saline solution (eg, a diaphragm method, an ion exchange membrane method) can be applied.
  • the activated carbon used as a catalyst in the present invention it is not necessary to use a special one, but typical ones can be classified and exemplified as follows. (1) From the aspect of form: powdered activated carbon, granulated (pellet, tablet, etc.) activated carbon.
  • the diluent for the catalyst layer in the present invention is to reduce the concentration of the catalyst component in the catalyst layer to reduce the heat generated by the reaction. To prevent concentration
  • the diluent must be a material that is inert to carbon monoxide and chlorine as a raw material. If the diluent itself is reactive with carbon monoxide or chlorine, it is difficult to achieve the object of the present invention. Further, even if the catalyst has a positive or negative catalytic activity in the reaction between carbon monoxide and chlorine, the effect of the present invention cannot be obtained as described above. Further, the diluent used in the present invention needs to be inert in the impurity contained therein as well.
  • the diluent for the activated carbon-containing catalyst layer used in the present invention the following can be classified and exemplified.
  • Ceramic A material made from alumina, zirconia, magnesium oxide, chromium oxide, silicon carbide, zinc sulfide, etc.
  • Metals In addition to precious metals as simple substances, alloys such as stainless steel, hastelloy, and inconel.
  • Metals generally have better thermal conductivity than ceramics and are therefore suitable for lowering the heat generation temperature.
  • Raschig ring For example, Raschig ring, Lessing ring, Terralet, Boring, etc.
  • Diameter and length are each about 0.1 to 10 mm.
  • the molar ratio between the two materials is usually equimolar or it is preferred to use a slight excess of carbon monoxide.
  • the dilution of the catalyst layer (activated carbon) in the present invention is most preferably performed over the entire area of the catalyst layer.
  • an exothermic reaction such as in the case of the production of phosgene by the reaction of carbon monoxide and chlorine is performed in a tubular reactor. It is known that there is a sharp rise in temperature in the first half of the reactor (for example, since the Chemical Engineering Society, “Chemical Equipment Design Guide” (1991)) It is necessary to dilute the catalyst layer at least in the first half or in the feed gas introduction part, and this dilution can avoid an undesired increase in the reaction temperature.
  • the dilution ratio of the catalyst layer according to the present invention is preferably 5 to 90% by volume, more preferably 5 to 80% by volume of a diluent. Less than 5% by volume for dilution The effect of lowering the reaction temperature cannot be obtained, and if it exceeds 90% by volume, uniform dilution is difficult. If the dilution ratio is in a more preferable range than the above, the above effects are further improved.
  • a multitubular tubular reactor is preferable.
  • Fig. 2 is a longitudinal sectional view of a horizontal multitubular tube reactor.
  • the phosgene reactor (6) has a large number of built-in reaction tubes (6c) at the center in the longitudinal direction, and the inlet of the phosgene reactor (6a) is installed.
  • Side and outlet (6b) side Side and outlet (6b) side.
  • the gap between the reaction tubes constitutes a cooling water passage (6d), and cooling water introduced from the cooling water inlet (6e) passes through this jacket and is discharged from the cooling water outlet (6f). Is done.
  • the cooling water is used to remove a large amount of heat generated in each reaction tube quickly, and makes the reaction between carbon monoxide and chlorine using activated carbon as a catalyst as efficient as possible.
  • Each reaction tube (6c) is filled with a mixture of a catalyst (3) containing activated carbon as a main component and a diluent (4), and a raw material gas C introduced from an inlet (6a) of a phosgene reactor. 0 (1), C 1 is passed through 2 (2), reacted in the reaction tube, the generated phosgene (5) Ru is discharged from the outlet of the phosgene reactor (6b) o
  • C 1 2 (2) pre-merging is not a raw material in Fig. 2 C 0 (1)
  • the raw material C 0 (1) and C 1 2 (2) is the reaction tube It is sufficient if they are supplied at a predetermined molar ratio to the phosgene reactor.
  • the mode of introduction into the phosgene reactor There is no particular limitation on the mode of introduction into the phosgene reactor. The effect of the present invention is not particularly influenced by the mode of introduction.
  • each reaction tube is not particularly limited, but is preferably about 3 to 200 mm in order to uniformly fill the catalyst and the diluent.
  • the length depends on the inner diameter of the reaction tube, the flow rate of the raw material gas, the cooling efficiency, and the like, and cannot be specified.
  • the number of reaction tubes is variable according to i of the phosgene to be produced, and is not particularly limited.
  • a vertical reactor is more preferably used than a horizontal reactor because of the work of filling the inside with a catalyst and the like.
  • FIG. 2 is a partially cutaway view of a vertical cross section of the reaction tube of FIG. 1, which is a diagram schematically showing a dispersedly charged state of a catalyst (3) and a diluent (4) charged in the reaction tube. 1) and (2) are supplied from the upper inlet, but the catalyst is diluted mainly at the part where the temperature is expected to increase at the inlet of the reactor (A in Fig. 3). It indicates the range of dilution and can be called the catalyst dilution section).
  • This catalyst diluting section is effective in one stage, but two-stage dilution or more may be carried out depending on the size of the reaction tube.
  • thermocouples were attached at intervals of 5 cm from the raw material gas inlet side of the reaction tube, so that the maximum temperature of the reactor could be measured.
  • the reaction tube became a double tube, forming a jacket, and flowing hot water at about 75 to remove the heat of reaction.
  • the results were evaluated based on the maximum temperature at a predetermined position from the inlet of the reaction tube, the reaction rate of the reacted gas measured by gas chromatography, and the content of impurities in phosgene.
  • Phosgene was produced under the same conditions as in Example 1 except that the type of activated carbon in the catalyst layer and the length of the packed catalyst were changed.
  • Example 1 the inside of the reaction tube was directly charged with the activated carbon of the catalyst without dilution.
  • the reaction temperature is considerably lowered by diluting the catalyst layer mainly composed of activated carbon, particularly the catalyst layer on the raw material gas inlet side, with the diluent, and the content of impurities in the generated phosgene is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Linear Motors (AREA)

Description

明 細 害 ホスゲンの製造方法
技術分野
本発明は、 活性炭を触媒として一酸化炭素と塩素からホスゲンを製 造する方法に関する。 更に詳しく は、 同反応に活性炭を触媒として使 用した場合の急激な発熱反応に伴う不純物の生成を極力抑制するこ と のできる高純度のホスゲンの製造方法に関する。 背景技術
ホスゲンは重要な合成化学原料として知られており、 特にボリ カー ボー トにおいては重要な製造原料であり、 しかも高品質のホスゲンが 要求されている。
一方、 ホスゲンは従来より活性炭を触媒として一酸化炭素と塩素か ら製造する方法が一般的であるが、 下記のような副反応物の生成とか 低製造効率等種々の問題があった。 即ち、
( 1 ) —酸化炭素と塩素の反応に触媒として市販の活性炭をそのまま使 用した場合、 活性炭中の不純物により (特公平 6 - 2 9 1 2 9号) 、 また通常は急激な反応が起こることに基づく反応温度上昇により (特 公昭 5 5 - 1 4 0 4 4号) 、 生成反応ガス中に不純物、 特に四塩化炭 素が多量に副生することが知られており、 高純度のホスゲンが要求さ れる分野の合成化学原料としては問題があった。
(2) 市販の活性炭に含まれる金属不純物は、 一酸化炭素と塩素との反 応において四塩化炭素等の副反応物の生成を促進すると言われ、 触媒 の酸洗浄等により該金厲不純物を特定の含量以下にすることが有効と されている (特公平 6 — 2 9 1 2 9号) が、 生産量が多い場合は多量 の触媒をこのように処理することは煩雑であり、 実生産上、 困難であ るばかりか、 効率的に除去することも困難であり、 問題視されてきた,
(3) また、 上記反応温度の上昇を避けるため、 触媒層の表面層のみに 反応用原料 ガスを流通させたり、 冷却管を多段に設けたりする方法 が提案されているが、 反応器の容積効率が極端に低下する問題があ り、 また後者の場合は反応器の構造が複雑になるこ とは避けられない,
(4) 触媒層を外部冷却する方法も紹介されているが、 この場合も触媒 層中央部は 高温となり、 四塩化炭素が多量に生成することも知られ てレゝる(K i rk_O t hmer " Encyc l oped i a of Chemi ca l Tech-no l ogy " 第 二版, 第五巻等) 。
ホスゲン中に四塩化炭素等の不純物を含む場合、 化学反応、 特に界 面重縮合法ボリカーボネー 卜の製造では生成ボリマーの品質に影響を 与えるとされ、 高純度のホスゲンの製造方法の出現が望まれてきた。
従って本発明の課題は、 化学反応、 特に界面重縮合法ポリカーボネ ー トの製造に好適な高純度ホスゲンを製造することができ、 また、 活 性炭の前処理工程、 特殊な冷却管を備えた反応器、 その他反応ガスの 特殊なフロー態様などを全く不要とし、 しかも効率良く ホスゲンを製 造することができる方法を見出すことにある。 発明の開示
本発明者は、 上記課題を解決するため、 鋭意研究をした結果、 活性 炭を含む触媒層に他の不活性材料を添加分散せしめ、 触媒層中の活性 炭を希釈することにより効果的に、 また更には特定の不活性材料を特 殊な形状で使用することにより、 一層効率よく高純度のホスゲンが製 造できることを見出し、 本発明を完成した。
即ち、 本発明の要旨は、 以下の通りである。 第 1 に、 活性炭を主成分とする触媒層を通して一酸化炭素と塩素と を反応させてホスゲンを製造する方法において、 一酸化炭素及び塩素 に実質的に不活性な材料で希釈した触媒層を使用するホスゲンの製造 方法であり、
第 2に、 一酸化炭素及び塩素に実質的に不活性な材料が、 セラ ミ ツ ク材料及び又は金属材料である上記第 1 に記載のホスゲンの製造方法 であり、
第 3に、 セラ ミ ツ ク材料及び又は金属材料が中空球状又は管状構造 成形体である上記第 2に記載のホスゲンの製造方法であり、
第 4 に、 一酸化炭素及び塩素に実質的に不活性な材料が、 触媒層中 5〜 9 0容積%である上記第 1 に記載のホスゲンの製造方法であり、 第 5に、 多管式の管型反応器を用いて、 一酸化炭素と塩素とを反応 させる上記第 1 に記載のホスゲンの製造方法であり、
第 6 に、 該管型反応器の導入部において、 希釈した触媒層を用いる 上記第 5に記載のホスゲンの製造方法である。 図面の簡単な説明
第 1 図は、 本発明に係るホスゲン製造方法を示す概念図であり、 第 2図は、 多管式管型のホスゲン反応器の縱断面図であり、 第 3図は、 反応器の反応管の縱断面の一部切り欠き図である。 図中、 符号 1 は原 料ガス C O , 2は原料ガス C l 2 , 3は触媒, 4 は希釈剤, 5はホス ゲン, 6はホスゲン反応器, 6 aはホスゲン反応器の入口, 6 bはホ スゲン反応器の出口, 6 cは反応管, 6 dは冷却水通路ジャケッ ト, 6 eは冷却水導入口, 6 f は冷却水排出口, Aは触媒希釈部を示す。
発明を実施するための最良の形態 図 1 は、 本発明に係るホスゲン製造方法を示す概念図であり、 原料 ガス C 0 ( 1 ) と C 1 2 (2) は、 触媒(3) である活性炭と希釈剤(4) の セラ ミ ッ クボール又はステンレス材料のものを混合した充墳剤が充塡 されたホスゲン反応器(6) の入口(6a)から導入され、 該反応器(6) の 出口(6b)からは、 反応生成物 C O C 1 2 (5) が取り出される。
本発明に係るホスゲン製造用原料である一酸化炭素及び塩素は乾燥 した高純度のものが要求される。
一酸化炭素の場合、 不純物として水素があればホスゲン製造用原料 塩素と反応して塩酸を生成し、 また水分が存在すれば生成したホスゲ ンを炭酸ガスと塩酸に加水分解してしまうおそれがぁリ、 一方塩素の 場合は、 不純物として炭化水素類があれば塩酸を生成したり、 対応す る塩素化炭化水素を生成し易い。 これらの生成物は本願発明に係る触 媒の活性炭への吸着能が高いため、 活性炭の触媒毒となり好ま しくな い。 また、 上記塩素中に硫化物が存在すれば、 塩化硫黄となるので予 め極力除去しておく必要がある。 更に酸素の存在はホスゲン生成反応 を抑制する弊害をもたらすので好ましくない。
本願発明において使用される上記原料の一酸化炭素の製造方法とし ては各種の方法が知られ、 合成ガス、 カーバイ ド炉ガス、 高炉ガス、 製鐦炉ガス等を用いることもできるが、 一般には上記高純度の要求か ら吸着塔を通したり、 深冷分離等により精製したものが供給される。 また、 他の原料の塩素の製造方法としては、 食塩水溶液の電解 (例 えば、 隔膜法、 イオン交換膜法) に伴い生成する塩素の精製方法が適 用できる。
本発明において触媒として使用される活性炭については、 特殊なも のを用いる必要はないが、 代表的なものとして次のようなものが分類 例示できる。 ( 1 ) 形態面から : 粉末状活性炭、 造粒した (ペレ ツ ト、 タブレ ツ ト 等) 活性炭。
(2) 原料面から : 木材、 鋸屑、 ヤシガラ、 リ グニン、 亜炭、 褐炭、 泥 炭、 石炭を原料とするもの。
(3) 処理面から : 水蒸気陚活法、 薬品賦活法等により前処理したもの, 本発明における触媒層の希釈剤は、 触媒層中の触媒成分濃度を希釈 することにより、 反応に伴う発熱の集中化を防止するためのものであ る
該希釈剤としては、 原料の一酸化炭素及び塩素に対して不活性な材 料である必要があり、 それ自体一酸化炭素とか塩素と反応性があって は本発明の目的が達成し難い。 また、 一酸化炭素と塩素との反応に正 又は負に触媒的に活性のあるものであっても上記同様本発明の効果は 得られない。 また、 本発明で使用される希釈剤はその含有される不純 物も同様に不活性である必要がある。
本発明において使用される活性炭含有触媒層の希釈剤としては、 次 のようなものが分類例示できる。
( 1 ) 材質面から: 原料ガスに対して実質的に不活性なセラ ミ ッ ク、 金 属等。
(2) セラ ミ ッ ク: アルミナ、 ジルコニァ、 酸化マグネシウム、 酸化ク ロム、 炭化珪素、 硫化亜鉛等を原料としたもの。
(3) 金属: 単体としての貴金属類のほか、 ステン レス、 ハステロィ、 ィ ンコネル等の合金。
金属は一般にセラ ミ ッ クよりは熱伝導性がよいため、 発熱温度低下 に好適である。
(4) 形状面から: 活性炭と混合されやすい形状として、 一般に入手が し易い球状のもの。 活性炭との密度差が小で、 混合充填時に分離偏折し難い中空球状の もの。
活性炭と分離偏析し難い構造のリ ング状又は管状のもので、 流体と 充塡剤との間の接触性をあげるために充填塔等に使用されるもの。 例 えば、 ラシヒ リ ング、 レッシングリ ング、 テラ レッ ト、 ボーリ ング等,
(5) 大きさ: 径、 長さがそれぞれ 0. 1 〜 1 0 m m程度のもの。
0. 1未満又は 1 0 m mを超えると活性炭に、 安定的に且つ均一に分 散し難くなり、 触媒層内にホッ トスボッ トゃ偏流が形成しやすく なる, 次に、 本発明に係る、 活性炭を触媒とする一酸化炭素と塩素との反 応条件について説明する。
一酸化炭素と塩素の反応は、
C O + C 1 a = C 0 C 1 2
なる反応式で知られる一般的なものであり、 温度 · 圧力等は公知の方 法に準じて行う ことができる。
両原料間のモル比は、 通常は等モルか、 一酸化炭素を僅かに過剰に 使用することが好ま しい。
本発明における触媒層 (活性炭) の希釈は、 触媒層全域にわたり行 うこ とが最も好ま しいが、 一般に上記一酸化炭素と塩素の反応による ホスゲンの製造の場合のような発熱反応を管型反応器で実施する場合. 該反応器の前半部で急激な温度上昇があることが知られている (例え ば、 (社) 化学工学会編 「化学装置設計ガイ ド」 ( 1 9 9 1 ) ) ので. 少なく ともこの前半部分または原料ガスの導入部の触媒層を希釈する 必要があり、 この希釈により望ま しくない反応温度上昇の影響を避け るこ とができる。
本発明に係る触媒層の希釈率は、 希釈剤が好ま しく は 5〜 9 0容積 %、 より好ま しく は 5〜 8 0容積%である。 5容積%未満では希釈に よる反応温度低下の効果が得られず、 9 0容積%を超えると、 均一な 希釈が困難である。 上記より好ま しい範囲の希釈率をとれば、 上記効 果はそれぞれ一層向上する。
本発明に係る製造方法に適用できる反応器の形式としては、 多管式 の管型反応器が好ま しい。
図 2は、 横型多管式管型反応器の縱断面図でありホスゲン反応器( 6) は長さ方向中央部に多数本の反応管(6c)を内蔵し、 ホスゲン反応 器の入口 (6a) 側及び出口(6b)側にそれぞれ開口している。 各反応管 の間隙は冷却水通路であるジャケッ 卜(6d)を構成し、 冷却水導入口(6 e)から導入された冷却水はこのジャケッ トを通り、 冷却水排出口(6f ) から排出される。 この冷却水は、 各反応管中で発生する熱を多量に且 つ速く除去するためのものであり、 活性炭を触媒とする一酸化炭素と 塩素との反応を可及的に効率よく行わしめる。
各反応管(6c)の中には、 活性炭を主成分とする触媒(3) と希釈剤( 4) の混合物が充填されており、 ホスゲン反応器の入口(6a)から導入 される原料ガス C 0 (1 ) , C 1 2 (2) を通過させ、 各反応管中で反応さ せ、 生成したホスゲン(5) はホスゲン反応器の出口(6b)から排出され る o
なお、 図 2では原料 C 0 (1 ) と C 1 2 (2) を予め合流させて供給す る態様に表現しているが、 原料 C 0 (1 ) 及び C 1 2 (2) は反応管内に 所定のモル比で供給されれば充分であり、 個別に導入されてもよいが- 予め混合されていてもよく、 ホスゲン反応器への導入態様には特に制 限はない。 この導入の態様によって本発明の効果が特に左右されるこ とはない。
上記各反応管の内径には特に制限はないが、 触媒及び希釈剤を均一 に充塡するために、 内径 3〜 2 0 0 m m程度のものが好ま しい。 また長さは、 反応管内径、 原料ガス流量、 冷却効率等により左右さ れ、 特定できるものではない。
反応管の本数は、 生産するホスゲンの iに応じて可変であり、 特に 限定されるものでない。
反応管は内部に触媒等を充填する作業上、 横型より も、 縦型がより 好ま しく使用される。
ホスゲン反応器の材質、 特にその反応管の内壁は耐 C 0 ( 1 ) と酎 C 1 2 が要求され、 ガラス製、 ステン レス製が特に好ま しく使用される, 図 3は、 縱型反応器の反応管の縦断面の一部切り欠き図であり、 反 応管内に充塡された触媒(3) と希釈剤(4) の分散充塡状態を模式的に 表した図であり、 原料(1 ) , (2) は上方の導入口から供給されるが、 触 媒の希釈は、 反応器入り口部で温度が高くなると予想される部分を中 心に行われている (図 3において Aは希釈された範囲を示すもので、 触媒希釈部と呼ぶことができる) 。
この触媒希釈部は一段で十分効果があるが、 反応管のサイズの設計 により二段希釈あるいはそれ以上を実施してもよい。
次に、 実施例により本発明をさらに詳細に説明するが、 本発明はこ れらの例によってなんら限定されるものではない。
実施例 1
図 2 と同じホスゲン反応器(6) を縱型態様で使用し、 市販の粒状活 性炭 (直径 1. 2〜2. 4 m mに粉砕したヤシガラ活性炭) をステン レス 製で長さ 4 m、 内径 1 5 m mの反応管に充填した。 充填態様は、 原料 ガス導入側 i mを残し、 上記活性炭を 3 m長さにわたり充塡し、 次に ジルコニァ製セラ ミ ッ クボール (直径 2 m m ) と上記活性炭を混合比 (容積) 1 で混合して得た充填剤を残部 1 mに充塡した。
希釈触媒が充塡されている側から反応管に一酸化炭素及び塩素をそ れぞれ 5. 0 5 モル Z h r及び 4. 8 0モル Z h r流入させ、 約 5 0 0 g Z h rの速度でホスゲンを製造した。
反応管の原料ガス入口側から 5 c m間隔で 1 0本の熱鼋対が取り付 けられ、 反応器の最高温度が測定できるようにした。 反応管は 2重管 になって、 ジャケッ トを構成し、 約 7 5での温水を流通し、 反応熱を 除去した。
その結果は、 反応管の入り口より所定の位置における最高温度、 反 応後のガスをガスクロマ トグラフィーで測定した反応率及びホスゲン 中の不純物の含有量で評価した。
触媒層充塡条件及び反応結果は、 それぞれ第 1 表及び第 2表に示し た。
実施例 2〜 6
触媒層の活性炭の種類、 充塡触媒の長さを変えた以外は実施例 1 と 同じ条件でホスゲンを製造した。
触媒層の条件及び反応結果はそれぞれ第 1表及び第 2表に示した。 比較例 1
実施例 1 において、 反応管内部に、 触媒の活性炭を希釈することな く そのまま充填した。
触媒層の条件及び反応結果はそれぞれ第 1 表及び第 2表に示した。
第 1
Figure imgf000012_0001
* 1 : 原料ガス入口部からの長さ
* 2 : 希釈に使用した希釈剤の容積% 第 2 表
Figure imgf000012_0002
* 3 :原料ガス入口からの長さ 産業上の利用可能性
以上の如く、 本発明によれば、 活性炭を主成分とする触媒層、 特に 原料ガス入り口側の触媒層を希釈剤で希釈することにより、 反応温度 は相当低下し、 生成ホスゲン中の不純物の含量を極めて少量に減少さ せることができ、 その工業的利用価値は極めて大きい。

Claims

請求の範囲
1 . 活性炭を主成分とする触媒層を通して一酸化炭素と塩素とを反 応させてホスゲンを製造する方法において、 一酸化炭素及び塩素に実 質的に不活性な材料で希釈した触媒層を使用することを特徵とするホ スゲンの製造方法。
2 . —酸化炭素及び塩素に実質的に不活性な材料が、 セラ ミ ッ ク材 料及び又は金属材料である請求項 1 記載のホスゲンの製造方法。
3 . セラ ミ ッ ク材料及び又は金属材料が、 中空球状又は管状構造成 形体である請求項 2記載のホスゲンの製造方法。
4 . 一酸化炭素及び塩素に実質的に不活性な材料が、 触媒層中 5〜 9 0容積%であることを特徴とする請求項 1 記載のホスゲンの製造方 法 o
5 . 多管式の管型反応器を用いて、 一酸化炭素と塩素とを反応させ ることを特徴とする請求項 1 記載のホスゲンの製造方法。
6 . 前記管型反応器の導入部において、 希釈した触媒層を用いるこ とを特徴とする請求項 5記載のホスゲンの製造方法。
PCT/JP1995/002421 1994-12-01 1995-11-28 Procede pour la production de phosgene WO1996016898A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR9509842A BR9509842A (pt) 1994-12-01 1995-11-28 Processo para produção de fosgênio
EP95937202A EP0796819B1 (en) 1994-12-01 1995-11-28 Process for producing phosgene
DE69515693T DE69515693T2 (de) 1994-12-01 1995-11-28 Verfahren zur herstellung von phosgen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/298686 1994-12-01
JP06298686A JP3124455B2 (ja) 1994-12-01 1994-12-01 ホスゲンの製造方法

Publications (1)

Publication Number Publication Date
WO1996016898A1 true WO1996016898A1 (fr) 1996-06-06

Family

ID=17862976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002421 WO1996016898A1 (fr) 1994-12-01 1995-11-28 Procede pour la production de phosgene

Country Status (7)

Country Link
EP (1) EP0796819B1 (ja)
JP (1) JP3124455B2 (ja)
KR (1) KR100365081B1 (ja)
BR (1) BR9509842A (ja)
DE (1) DE69515693T2 (ja)
TW (1) TW366327B (ja)
WO (1) WO1996016898A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020444A1 (de) 2007-04-27 2008-11-06 Bayer Materialscience Ag Verfahren zur Oxidation eines Chlorwasserstoffenthaltenden Gasgemisches
US7612234B2 (en) 2006-05-23 2009-11-03 Bayer Materialscience Ag Processes for separating carbon monoxide from a hydrogen chloride-containing gas
EP2272890A1 (de) 2009-07-07 2011-01-12 Bayer MaterialScience AG Verfahren zur Herstellung von Polycarbonat
CN105408249A (zh) * 2013-07-26 2016-03-16 沙特基础全球技术有限公司 用于生产高纯光气的方法和装置
EP3498752A1 (de) 2017-12-18 2019-06-19 Covestro Deutschland AG Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
WO2019121248A1 (de) 2017-12-18 2019-06-27 Covestro Deutschland Ag Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
WO2021023690A1 (en) 2019-08-08 2021-02-11 Covestro Intellectual Property Gmbh & Co. Kg Process for the preparation of a polycarbonate
EP3985047A1 (de) 2020-10-13 2022-04-20 Covestro Deutschland AG Verfahren zur herstellung eines polycarbonats nach dem phasengrenzflächenverfahren unter lösungsmittelaustausch
EP4083106A1 (de) 2021-04-30 2022-11-02 Covestro Deutschland AG Verfahren zur herstellung von polycarbonat mit verbesserter nachhaltigkeit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19848668A1 (de) 1998-10-22 2000-04-27 Bayer Ag Tetrachlorkohlenstoffarmes Phosgen
JP4504552B2 (ja) * 2000-12-01 2010-07-14 旭化成ケミカルズ株式会社 触媒性能評価装置
JPWO2007083721A1 (ja) * 2006-01-17 2009-06-11 帝人化成株式会社 ポリカーボネートオリゴマーの連続製造方法
DE102007057462A1 (de) * 2007-11-29 2009-06-10 Bayer Materialscience Ag Verfahren zur Herstellung von Phosgen mit reduzierter CO-Emission
JP5222089B2 (ja) * 2008-10-23 2013-06-26 帝人化成株式会社 ホスゲンの製造方法
FR2965490B1 (fr) 2010-09-30 2013-01-11 Aet Group Dispositif et procede pour la phosgenation en continu
JP6045825B2 (ja) 2012-07-05 2016-12-14 出光興産株式会社 ポリカーボネート−ポリオルガノシロキサン共重合体及びその連続的な製造方法
WO2015013655A1 (en) 2013-07-26 2015-01-29 Sabic Innovative Plastics Ip B.V. Method and apparatus for producing high purity phosgene
WO2015119982A2 (en) * 2014-02-04 2015-08-13 Sabic Global Technologies B.V. Method for producing carbonates
JP6316446B2 (ja) 2014-02-04 2018-04-25 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ カーボネートの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4518703B1 (ja) * 1966-02-07 1970-06-26
JPS5253768A (en) * 1975-10-29 1977-04-30 Toshiba Mach Co Ltd Structure of packing
JPS52100365A (en) * 1976-02-20 1977-08-23 Ricoh Co Ltd Decomposition of ammonia gas
JPS5514044B1 (ja) * 1970-12-26 1980-04-14
JPS61161133A (ja) * 1985-01-08 1986-07-21 Mitsubishi Heavy Ind Ltd 吸熱反応装置
JPS621736U (ja) * 1985-06-21 1987-01-08
JPS6358696U (ja) * 1986-10-02 1988-04-19
JPH0629129B2 (ja) * 1988-06-25 1994-04-20 出光石油化学株式会社 ホスゲンの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4518703B1 (ja) * 1966-02-07 1970-06-26
JPS5514044B1 (ja) * 1970-12-26 1980-04-14
JPS5253768A (en) * 1975-10-29 1977-04-30 Toshiba Mach Co Ltd Structure of packing
JPS52100365A (en) * 1976-02-20 1977-08-23 Ricoh Co Ltd Decomposition of ammonia gas
JPS61161133A (ja) * 1985-01-08 1986-07-21 Mitsubishi Heavy Ind Ltd 吸熱反応装置
JPS621736U (ja) * 1985-06-21 1987-01-08
JPS6358696U (ja) * 1986-10-02 1988-04-19
JPH0629129B2 (ja) * 1988-06-25 1994-04-20 出光石油化学株式会社 ホスゲンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0796819A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612234B2 (en) 2006-05-23 2009-11-03 Bayer Materialscience Ag Processes for separating carbon monoxide from a hydrogen chloride-containing gas
DE102007020444A1 (de) 2007-04-27 2008-11-06 Bayer Materialscience Ag Verfahren zur Oxidation eines Chlorwasserstoffenthaltenden Gasgemisches
EP1992592A2 (de) 2007-04-27 2008-11-19 Bayer MaterialScience AG Verfahren zur Oxidation eines Chlorwasserstoff enthaltenden Gasgemisches
EP2272890A1 (de) 2009-07-07 2011-01-12 Bayer MaterialScience AG Verfahren zur Herstellung von Polycarbonat
DE102009032020A1 (de) 2009-07-07 2011-01-13 Bayer Materialscience Ag Verfahren zur Herstellung von Polycarbonat
US8173762B2 (en) 2009-07-07 2012-05-08 Bayer Materialscience Ag Process for the preparation of polycarbonate
CN105408249A (zh) * 2013-07-26 2016-03-16 沙特基础全球技术有限公司 用于生产高纯光气的方法和装置
EP3498752A1 (de) 2017-12-18 2019-06-19 Covestro Deutschland AG Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
WO2019121240A1 (de) 2017-12-18 2019-06-27 Covestro Deutschland Ag Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
WO2019121248A1 (de) 2017-12-18 2019-06-27 Covestro Deutschland Ag Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
WO2021023690A1 (en) 2019-08-08 2021-02-11 Covestro Intellectual Property Gmbh & Co. Kg Process for the preparation of a polycarbonate
EP3985047A1 (de) 2020-10-13 2022-04-20 Covestro Deutschland AG Verfahren zur herstellung eines polycarbonats nach dem phasengrenzflächenverfahren unter lösungsmittelaustausch
EP4083106A1 (de) 2021-04-30 2022-11-02 Covestro Deutschland AG Verfahren zur herstellung von polycarbonat mit verbesserter nachhaltigkeit
WO2022229245A1 (de) 2021-04-30 2022-11-03 Covestro Deutschland Ag Verfahren zur herstellung von polycarbonat mit verbesserter nachhaltigkeit

Also Published As

Publication number Publication date
EP0796819B1 (en) 2000-03-15
KR987000231A (en) 1998-03-30
DE69515693D1 (de) 2000-04-20
BR9509842A (pt) 1997-12-23
EP0796819A4 (ja) 1997-09-24
JP3124455B2 (ja) 2001-01-15
DE69515693T2 (de) 2000-07-27
JPH08157206A (ja) 1996-06-18
EP0796819A1 (en) 1997-09-24
TW366327B (en) 1999-08-11
KR100365081B1 (ko) 2003-02-19

Similar Documents

Publication Publication Date Title
WO1996016898A1 (fr) Procede pour la production de phosgene
US10351974B2 (en) Feedstocks for forming carbon allotropes
US9783416B2 (en) Methods of producing hydrogen and solid carbon
JP5275228B2 (ja) 気相酸化による塩素の製造方法
CN1212966C (zh) 氯的制造方法
US20090143619A1 (en) Process for the production of phosgene with reduced co emission
SK282577B6 (sk) Spôsob oxychlorácie etylénu v jednostupňovom reaktore s nehybnou vrstvou
KR20010101602A (ko) 염소의 제조 방법
JP3606147B2 (ja) 塩素の製造方法
KR20010080288A (ko) 사염화탄소 함량이 적은 포스겐
JP2006137669A (ja) ホスゲンの製造方法
CN104961621B (zh) 一种两段反应串联生产三氯乙烯和四氯乙烯的方法
US3325252A (en) Preparation of iron oxide and chlorine by two-zone oxidation of iron chloride
JP2003183191A (ja) 塩化メチルの製造方法
JP3570322B2 (ja) 塩素の製造方法
US3699178A (en) Oxychlorination process
US4035473A (en) Method of removing acetylene from anhydrous-hydrogen chloride
US3291846A (en) Process for producing vinyl chloride
EP0146925A2 (en) Method for the oxychlorination of ethylene
JP4854193B2 (ja) ホスゲンの製造方法
JPH02283601A (ja) 軽質炭化水素の一部酸化による合成ガスの製造方法
JPS6356210B2 (ja)
JP4999406B2 (ja) 塩素の製造方法
US3919400A (en) Recovering chlorine from ferric chloride vapors
JP2008105862A (ja) 塩素の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995937202

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 836987

Date of ref document: 19970529

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019970703639

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995937202

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703639

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995937202

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970703639

Country of ref document: KR