WO1996014443A9 - - Google Patents
Info
- Publication number
- WO1996014443A9 WO1996014443A9 WO9614443A9 WO 1996014443 A9 WO1996014443 A9 WO 1996014443A9 WO 9614443 A9 WO9614443 A9 WO 9614443A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- strength
- less
- heat
- carbides
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 87
- 239000010959 steel Substances 0.000 claims description 87
- 229910052726 zirconium Inorganic materials 0.000 claims description 38
- 229910052719 titanium Inorganic materials 0.000 claims description 37
- 150000001247 metal acetylides Chemical class 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000006104 solid solution Substances 0.000 claims description 16
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 238000005096 rolling process Methods 0.000 claims description 10
- 210000004940 Nucleus Anatomy 0.000 claims description 6
- 229910000529 magnetic ferrite Inorganic materials 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 238000010079 rubber tapping Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 238000005242 forging Methods 0.000 claims 1
- 238000003466 welding Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 25
- 239000002244 precipitate Substances 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 24
- 238000007792 addition Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- 238000001556 precipitation Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 10
- 229910052721 tungsten Inorganic materials 0.000 description 10
- 239000010953 base metal Substances 0.000 description 9
- 238000005496 tempering Methods 0.000 description 9
- 229910001566 austenite Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 230000001131 transforming Effects 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 229910052803 cobalt Inorganic materials 0.000 description 3
- 230000002708 enhancing Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000087 stabilizing Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 210000001503 Joints Anatomy 0.000 description 1
- 241000282332 Martes Species 0.000 description 1
- 229910019794 NbN Inorganic materials 0.000 description 1
- 210000002381 Plasma Anatomy 0.000 description 1
- 229910034327 TiC Inorganic materials 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- QXUAMGWCVYZOLV-UHFFFAOYSA-N boride(3-) Chemical compound [B-3] QXUAMGWCVYZOLV-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- TWXTWZIUMCFMSG-UHFFFAOYSA-N nitride(3-) Chemical compound [N-3] TWXTWZIUMCFMSG-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Definitions
- the present invention relates to a ferritic heat resistant steel, and more particularly to a ferritic heat resistant steel which is excellent in creep rupture strength used under high temperature and high pressure environments and is excellent in H AZ softness. In particular, by controlling changes due to thermal effects of constituent elements of the carbide, it improves strength and toughness.
- the heat-resistant steels used for thermal power plants differ in the environment to which they are exposed depending on the area where they are used. So-called superheater tubes, reheater tubes, etc., high temperature corrosion resistance and high strength corrosion resistance in areas with high metal temperature, or those containing 9-12% Cr. Many materials of the system are used.
- the high pressure of the thermal power generation plant can be realized, and the operating conditions of the part where the operating temperature was low until then, such as the furnace wall pipe or heat exchanger, the steam generator, the main steam pipe, etc.
- Low-Cr-containing, heat-resistant steels such as those specified in the industry standards of conventional so-called 1Cr steel, 1. 25Cr steel, and 2. 25Cr steel are becoming inapplicable.
- the phase transformation that accompanies cooling during heat treatment exhibits a supercooling phenomenon from the austenite single phase region to a ferriferite + carbide precipitated phase, and as a result It utilizes the high strength of ferritic-based structures such as martensite structure and panet structure, or the tempered structure obtained by encapsulating a large amount of dislocations. Therefore, when this structure is subjected to a heat history such that it is reheated to an austenite single phase region again, for example, when affected by welding heat, high density dislocations are released again, and the welding heat affected zone is Local strength reduction may occur.
- the temperature near the transformation point for example, to 800 to 900 ° C. in the case of 2.25% Cr steel.
- the site cooled again in time causes a non-diffusive transformation such as martensite transformation or bainite transformation again to form a fine-grained structure before the austenite grains sufficiently grow.
- M 2 3 C 6 type carbides which are the main factor to improve material strength by precipitation strengthening, have high C and N solid solution limits that they have when heated to temperatures above their transformation point even for a short time. For the most part resolute.
- M 2 3 C 6 type carbides which are the main factor to improve material strength by precipitation strengthening, have high C and N solid solution limits that they have when heated to temperatures above their transformation point even for a short time. For the most part resolute.
- C 6 -type carbides mainly precipitate coarsely on 7 grain boundaries or on very coarse undissolved carbides.
- HZ softening The phenomenon in which creep strength is locally reduced by the combined action of these mechanisms is hereinafter referred to as âHAZ softeningâ for convenience.
- the present inventors have repeatedly conducted detailed studies on the softened zone, and found that the decrease in strength is mainly due to changes in the constituent elements of the M 2 3 C 6 type carbide, and as a result of further studies, strength Marte Nsai preparative system Mo or W particularly essential element to a solid â of heat-resistant steel is, while the Ru received the weld heat affected, large quantities solid in constituent metal elements in M in M 2 3 C 6 It was found that it melts and precipitates on the grain boundaries of the finely divided structure, resulting in the formation of a Mo or W deficient phase near austenite grain boundaries, which leads to a local decrease in creep strength.
- the new low Cr ferrite-based heat-resistant steels to which W and Mo have been added have higher base material strength at the same angle, but in the heat-affected zone, compared to the base metal. At present, the reduction of strength by as much as 30% occurs locally, and it is currently positioned as a material with little strength improvement effect from the prior art. Disclosure of the invention
- the present invention is a conventional steel drawbacks described above, i.e., alteration of the M 23 C 6 type carbide, vector to avoid local softening zone generation of weld heat affected zone due to coarsening, the composition of the M 23 C 6 type carbide
- alteration of the M 23 C 6 type carbide vector to avoid local softening zone generation of weld heat affected zone due to coarsening
- the composition of the M 23 C 6 type carbide In order to enable control and control of precipitation size, it is a new ferrite-based heat-resistant steel with W, Mo added type and its manufacturing method.
- the present invention has been made based on the above findings, and the gist of the present invention is mass%,
- FIG. 1 is a view showing the shape of the butted groove of a welded joint.
- Fig. 2 is a diagram showing the method for collecting precipitate analysis specimens in the weld heat affected zone.
- FIG. 3 is a view showing the relationship between the addition time of Ti and Zr and the existence form of Ti and Zr as precipitates in steel.
- FIG. 4 is a view showing the relationship between the temporary cooling temperature after solution heat treatment and the holding time thereof and the size of precipitated carbides.
- FIG. 5 is a view showing the relationship between the temporary cooling temperature after solution heat treatment and the form and structure of precipitates in the weld heat affected zone.
- Figure 6 is occupied in 600 ° C, 10 thousand hours straight out â Ku M 23 C 6 type carbide during the M Leap estimated rupture strength of the base metal part and in the difference D-CRS and weld heat affected zone of the weld (Ti It is a figure which shows the relationship of the value M% of% + Zr%).
- Fig. 7 (a) is a steel pipe
- Fig. 7 (b) is a drawing showing the procedure for collecting the creep rupture strength test pieces from the plate material.
- the eighth chart shows the relationship between the rupture time and the applied stress in the creep rupture test.
- Fig. 9 (a) is a steel pipe
- Fig. 9 (b) is a drawing showing the procedure for collecting creep rupture test pieces from welds of brazing material.
- FIG. 10 (a) shows a steel pipe
- Fig. 10 (b) shows a welded part of the plate.
- FIG. 6 is a diagram showing how to collect Charpy impact test pieces.
- FIG. 11 is a graph showing the relationship between the Ti% + Zr% values in the base material of the base material at 600 ° C. for 100,000 hours of linear extrapolation creep rupture rupture strength.
- FIG. 12 is a view showing the relationship between the value M% of (Ti% + Zr%) of M in the M 23 C 6 type carbide in the heat affected zone of welding and the toughness of the weld zone.
- C is necessary for maintaining the strength, but if less than 0.01%, it is not sufficient to secure the strength, and if it exceeds 0.30%, the weld heat-affected zone becomes significantly hardened, which causes cold cracking during welding.
- the range was 0.01 to 0.30%.
- Si is an important element for securing oxidation resistance and is a necessary element as a deoxidizing agent, but if it is less than 0.02%, it is insufficient, and if it exceeds 0.80%, the creep strength is lowered, so it is in the range of 0.02 to 0.80%. did.
- Mn is a necessary component not only for deoxidation but also for strength retention.
- the addition of 0.20% or more is necessary to obtain sufficient effects, and creep strength may decrease if exceeding 1.50%, so it should be in the range of 0.20 to 1.50%.
- Cr is an element essential for oxidation resistance, and at the same time, it combines with C to finely precipitate in the matrix matrix in the form of Cr 23 C, Cr, C, etc. It contributes to the rise. From the viewpoint of oxidation resistance, the lower limit is 0.5%, and the upper limit is 5.0 in consideration of securing sufficient toughness at room temperature.
- W is an element that significantly enhances creep strength by solid solution strengthening, and in particular, significantly enhances long-term creep strength at high temperatures of 500 ° C. or higher. . If the content exceeds 3.5%, a large amount of intermetallic compound precipitates around the grain boundaries and the toughness of the base material and the creep strength decrease significantly, so the upper limit was made 3.5%. If the content is less than 0.01%, the effect of solid solution strengthening is insufficient, so the lower limit was made 0.01%.
- the force â which is an element to enhance the high temperature strength by Mo solid solution strengthening, is less than 0.01%, the effect is insufficient. If it exceeds 1.00%, a large amount of precipitation of Mo 2 C type carbide, or Fe 2 Mo type metal
- the upper limit is set to 0.000% because the base material toughness may be significantly reduced when it is added simultaneously with W due to intermetallic compound precipitation.
- V is an element that significantly increases the high-temperature creep rupture strength of the steel whether it precipitates as a precipitate or dissolves in the matrix simultaneously with W.
- the content is less than 0.02%, precipitation precipitation due to V precipitates is insufficient.
- it exceeds 1.00% a V-based carbide or carbonitride cluster is formed to lower the toughness.
- the addition range was 0.02 to 1.00%.
- Nb improves the high temperature strength by precipitation as MX type carbides or carbonitrides, and also contributes to solid solution strengthening. If it is less than 0.01%, the effect of addition is not observed, and if it is added more than 0.50%, coarse precipitation occurs to lower the toughness, so the addition range is limited to 0.01 to 0.50%.
- N precipitates as solid solution, nitride, or carbonitride in matrix, and contributes to solution strengthening or precipitation strengthening mainly in the form of VN, NbN, or each carbonitride.
- the addition of less than 0.001% hardly contributes to strengthening, and the addition limit is set to 0.06% in consideration of the upper limit value that can be added to the molten steel according to the amount of added Cr up to 5%.
- Ti and Zr is the basis of the present invention, and the addition of these elements, together with the new specific manufacturing process, realizes the avoidance of âHAZ softeningâ.
- Ti and Zr have a very high affinity to C in the component systems of the invention steel Umate strong, solid solution in M as the constituent metal elements of M 23 C 6, to raise the decomposition temperature of the M 23 C 6 (redissolved temperature). Therefore, it is effective in preventing coarsening of M 23 C 6 in the âHAZ softeningâ region. Moreover, it prevents the solid solution of W and Mo in MC, and therefore does not generate the deficient phase of W and Mo around the precipitate.
- These elements may be added singly or in combination of two types, and the effect is already effective from at least 0.001%, and addition of 0.8% or more by itself generates coarse MX type carbides and deteriorates toughness. The addition range was 0.001 to 0.8%.
- P, S, and 0 are mixed as impurities in the steel of the present invention, P and S lower the strength and 0 is precipitated as an oxide to exhibit the effects of the present invention.
- the upper limit values are set to 0.03%, 0.01%, and 0.02%, respectively, to reduce the toughness.
- Ni and Co can be each contained in an amount of 0.2 to 5.0% depending on the application.
- Ni and Co are both strong austenite stabilizing elements, and in particular when adding a large amount of ferrite stabilizing elements such as Cr, W, Mo, Ti, Zr, Si, etc. It is necessary and useful to obtain the ground-based texture or their tempered structure. At the same time, Ni has the effects of improving the toughness and Co having the effect of improving the strength, and the effect is insufficient at 0.2% or less. When it is added over 5.0%, precipitation of coarse intermetallic compounds is observed. The addition range is 0.2 to 5.0% because it can not be avoided.
- the present invention provides a high-strength ferritic heat-resistant steel excellent in HAZ resistance resistance
- the steel of the present invention can be subjected to a manufacturing method and heat treatment according to the purpose of use.
- the effects of the present invention are not hindered at all.
- the metal component M of M 23 C 6 type carbide present in the welding heat affected zone ie, (Cr, Fe, Ti, Zr)
- the value of (Ti% + Zr%) needs to be 5 to 65, so that it is added for 10 minutes just before tapping in order to precipitate Zr in the form of appropriate carbides in the steel,
- the cooling after the solution heat treatment is temporarily stopped at 880 to 930 ° C, and the form of precipitation is controlled by holding the temperature for 5 to 60 minutes, and precipitation occurs during the subsequent tempering treatment, (Cr , Fe and T Zr) must be used as precipitation nuclei of M 23 C 6 containing M as the main component.
- the addition effect of Ti and Zr can be appropriately expressed for the first time, and the object of the present invention can be achieved. Even if it manufactures according to the conventional manufacturing process, the intended effect of the present invention can not be obtained. That is, control the value of (Ti% + Zr%) in the metal component M of M 23 C 6 type carbides present in the weld heat affected zone, that is, in (Cr, Fe, Ti, Zr) to 5-65. I can not do it.
- steels within the scope of the present invention are melted in a VIM (vacuum induction furnace), EF (electric furnace) and, if necessary, AOD (Ar oxygen blow decarburizing device), V0D (vacuum) (Exhaust oxygen blow decarburization device), LF (melted ladle ladle refining device) is selected and used, and it is manufactured using a continuous forming device or a conventional steel ingot forming device, and in the case of a continuous formed piece, up to 210 It is a slab with a cross section of X 1600, or a billet with a cross-sectional area smaller than that, and in the case of a conventional steel ingot forming apparatus, ingots of various sizes are formed and then It processed into the test piece of the size which does not disturb the later examination.
- VIM vacuum induction furnace
- EF electric furnace
- AOD Ar oxygen blow decarburizing device
- V0D vacuum
- LF melted ladle ladle refining device
- the fabricated slabs are cut into 2 to 5 m lengths and made into a 25.4 M1 thick plate, subjected to solution heat treatment under conditions of a maximum heating temperature of 1100 and a holding time of 1 hour, and in the subsequent cooling process, The cooling is stopped for a maximum of 24 hours at each temperature of 1080 ° C, 1030 ° C, 980 ° C, 930 ° C, 880 ° C and 830 ° C, and holding in the furnace at the same temperature is carried out.
- the form of precipitation of carbide was investigated using a transmission electron microscope with an X-ray micro area analyzer. Further, the obtained thick plate was subjected to tempering at 780 ° C. for 1 hour, and a V-type butt weld beveling with an open angle of 45 degrees shown in FIG. 1 was subjected to welding experiments.
- the welding was carried out by TIG welding, and the heat input conditions were selected to be 15000 cm, which is a general heat resistant ferritic steel.
- the welded joint sample was subjected to post-welding heat treatment at 650 ° C. for 6 hours, and a sample for transmission electron microscopy and a test piece for extraction residue analysis were taken from the HAZ portion according to the procedure shown in FIG.
- reference numeral 9 denotes a weld metal
- 10 denotes a weld heat affected zone
- 11 denotes a block for extract residue analysis
- 12 denotes a sampling position of a sample on a thin disk for transmission electron microscopy.
- FIG. 3 is a view showing the relationship between the addition time of Ti and Zr and the existence form of Ti and Zr as precipitates present in the heat affected zone after welding.
- Ti precipitates Zr becomes precipitation nuclei of M 23 C 6, to a solid solution in the configuration metals in element M M 23 C 6 is Ti, Zr is unless present as previously fine carbides
- oxygen must be added in a low oxygen state, ie, in V0D or LF, and 10 minutes before continuous formation.
- Electron microscopic observation of the precipitate size of Ti and Zr before welding revealed that the average size as carbide was about 0.15 // m.
- the average particle size of the precipitates in Fig. 3 is the effect of welding heat and the weld heat affected zone after the subsequent heat treatment after welding. It is a result regarding the precipitate in the inside.
- FIG. 4 is a view showing the relationship between the cooling stop temperature after solution heat treatment and the holding time thereof and the size of precipitated carbides.
- the manufacturing process in this case was limited to EF-LF-CC.
- the average size of precipitated carbides is smallest at cooling stop and holding temperatures of 880 ° C and 930 ° C, and reprecipitation can be confirmed in holding time of 5 minutes to 60 minutes, and the average size can be made the smallest.
- the composition of these carbides was an MX type carbide mainly composed of Ti and Zr, as revealed by the analysis with an X-ray micro area analyzer. Stop cooling after solution heat treatment at various temperatures, hold for 30 minutes, temper 750 ° C only for the air-cooled sample, and form precipitate after heat treatment after welding and welding, Fig. 5 shows the composition in relation to the cooling stop temperature.
- Fig. 5 shows the composition in relation to the cooling stop temperature.
- Was convex to the most fine precipitates form in the pretreatment tempering carbides become precipitation nuclei of M 23 C 6, finally M 23 as a solid solution with each other and M 23 C 6 precipitated during the tempering treatment tempering C It becomes 6 type carbide, and it is found that Ti and Zr are solid solution in the ratio of 5 to 65 in constituent metal element M
- Fig. 6 shows the values of Ti% + Zr% of the M 23 C 6 type carbides present in the weld heat affected zone, M% and the creep rupture strength of the weld heat affected zone and the creep rupture strength of the base metal It is a figure which shows the relationship of difference D-CRS (MPa). If the M% is between 5 and 65, the creep rupture strength of the weld heat affected zone decreases by up to 7 MPa as compared to the fracture strength of the base metal, and this difference is due to the base metal crevice -Since the deviation of the fracture strength data is within lOMPa, it is considered that the weld heat affected zone no longer exhibits the HAZ softening phenomenon caused by the deterioration of the precipitate.
- M 23 C 6 type carbide containing 5 to 65% of Ti and Zr in the constituent metal element M has a higher decomposition temperature than the usual Cr based M 23 C 6 and is affected by welding heat
- W and Mo it is difficult to aggregate and grow, and the chemical parent From the harmony and phase diagrams, it can be concluded that the above experimental results have been obtained that it is extremely difficult for W and Mo to form a solid solution in place of or in addition to Ti and Zr.
- the method of melting the steel of the present invention is not limited at all, and the process used may be determined in consideration of the chemical composition and cost of steel, such as a converter, induction furnace, furnace, electric furnace, etc.
- the iron making process should have a hopper to which Ti and Zr can be added, and at the same time, the ability to control the oxygen concentration in the molten steel low enough to precipitate 90% or more of these added elements as carbides.
- the present invention Improve the effectiveness of
- a solution heat treatment aiming at uniform solution dissolution of the eclectic material is essential in the pipe-making rolling process, and cooling stop retention is maintained in the cooling process.
- Facilities that can be heated specifically a furnace that can heat up to about 1000'C.
- Any other manufacturing process that is considered necessary or useful for manufacturing steel or steel products according to the present invention such as rolling, heat treatment, pipe making, welding, cutting, inspection, etc.
- the present invention can be applied, and this does not disturb the effect of the present invention.
- a steel pipe manufacturing process after being processed into a round billet or a square billet under the conditions which always include the manufacturing process of the present invention, it is hot.
- Method of forming into seam reservoirs and tubes by extrusion or various seamless rolling methods, hot rolling to thin plate, cold rolling and then electric resistance welding to form welded steel pipe, and TIG, MIG, SAW, LAS ER, EB welding can be applied alone or in combination to form a welded steel pipe.
- SR shrink rolling
- fixed rolling in hot or warm after each of the above methods, or various corrections It is also possible to carry out additional processes, and it is possible to expand the applicable dimensional range of the steel of the present invention.
- the steel according to the invention can furthermore also be provided in the form of thick plates and thin plates, which can be used in the form of various heat-resistant materials using the plates which have been subjected to the required heat treatment, It has no effect on the effects of the present invention.
- powder metallurgy methods such as HIP (hot isostatic pressing and sintering apparatus), CIP (cold isostatic pressing and forming apparatus) and sintering. After forming processing, required heat treatment can be applied to make products of various shapes.
- the product is processed through tempering (solution heat treatment) + tempering process, but in addition to this, re-tempering and normalizing processes can be performed alone or in combination. Yes and also useful. However, cooling stop and retention after solution heat treatment are essential.
- Example 1 The above steps may be appropriately selected and applied to the production process of the steel of the present invention.
- Example 2 The above steps may be appropriately selected and applied to the production process of the steel of the present invention.
- the steels of the present invention excluding Ti and Zr shown in Tables 1 to 4 are 300 ton, 120 ton, 60 ton, 1 ton, 300 kg, 100 kg and 50 kg, respectively, using a conventional blast furnace iron-bullet blowing method, VIM, EF or Able to melt using a laboratory vacuum melting facility, refine with Ar blowable LF facility with arc reheating facility or small reproduction test facility with equivalent capacity, Ti, Zr 10 minutes before start of construction
- the chemical composition was adjusted by adding one or more of the followings to make a scale.
- the obtained flakes are hot rolled to a thickness of 50 â and a thin plate of 12 mm, or processed into a round billet and hot extruded by an outer diameter of 74 mm, thickness A 10 mm tube was manufactured by seamless rolling to produce pipes with an outer diameter of 380 and a wall thickness of 50, respectively. Further, the thin plate was formed, welded and welded by an electric resistance welding to form an electric resistance welded steel pipe having an outer diameter of 280 mm and a thickness of 12 mm.
- D-CRS difference between the surface area of 550 ° C. 100,000 â crepe â break and â â (MPa)
- HAZCRS of 550 ° C for 100,000 hours â creep it3 â 4 break Sff3 â 43 â 4 (MPa)
- the creep property of the base material is a welded portion or parallel to the axial direction 2 of the steel pipe 1 as shown in FIG. 7 (a), or parallel to the rolling direction 4 of the plate 3 as shown in FIG. 7 (b).
- a creep test specimen of 6 diameter is cut out from a portion other than the weld heat affected zone, creep rupture strength is measured at 550 ° C., and the obtained data are extrapolated by straight line extrapolation to 100,000 hr creep rupture strength. I did.
- Fig. 8 shows the results of measurement of the creep rupture strength of the base metal up to 10,000 hours, together with the extrapolated straight line of the estimated rupture strength at 100,000 hours. It can be seen that the high temperature creep rupture strength of the steel of the present invention is higher than that of the conventional low alloy steel, 1 to 3% Cr-0.5 to 1% Mo steel.
- the creep characteristics of the welds are parallel to the axial direction 7 of the steel pipe as shown in FIG. 9 (a) or as shown in FIG. 9 (b).
- the creep rupture test pieces 5 were cut out, and the fracture strength measurement results at 550 ° C. were extrapolated linearly up to 100,000 hours and evaluated in comparison with the creep properties of the base material.
- âcreep breaking strengthâ shall mean an estimated 100% straight external rupture strength at 550 ° C. for the convenience of the description of the present invention.
- Specimens of the HAZ part are collected in the manner shown in Fig. 2 and extracted by the acid dissolution method and extracted and remaining after identification of M 23 C 6.
- the composition in M is analyzed by scanning X-ray micro area analyzer It was decided by The value of Ti% + Zr% at this time was expressed as M% and evaluated.
- the evaluation criteria are to be in the range of 5 to 65 based on the experimental results. That is, HAZ-CRS decreases when the M value is 5 or less or 65 or more.
- a toughness test was conducted to indirectly evaluate the behavior of precipitates in the HAZ part.
- Fig. 10 (a) As shown in Fig. 10 (a) as shown in the steel pipe or plate material in Fig. 10 (b), cut JIS No. 2 2 mm V notch shear test specimen 8 from the direction perpendicular to weld line 9, The welding position was set to weld bond 9, and the evaluation standard value was 50 J at 0 ° C, assuming heat-resistant material assembly conditions, as a representative of the highest hardening part.
- Table 2 shows D-CRS, HAZCRS, and M% among the chemical components and the evaluation results.
- the relationship between D-CRS and M% is as already shown in Fig.6.
- FIG. 11 is a view showing the relationship between the creep rupture strength of the base material and the Ti% + Zr% in the base material.
- the addition of excess Ti and Zr leads to coarsening of the precipitate, resulting in a decrease in creep rupture strength of the base material itself, and a subsequent decrease in impact value, both of which decrease.
- Fig. 12 shows the value M of Ti% + Zr% contained in M 23 C 6 in the weld heat affected zone. It is the figure which showed the relationship of% and the toughness of a welding heat affected zone. When the value of M% exceeds 65, it is understood that the precipitates coarsen and the toughness decreases and falls below the evaluation standard value of 50 J.
- the measured values of D-CRS, HAZCRS, and M% are shown in the form of numerical data in Table 2 and Table 4. Among the comparative steels shown in Table 5, although the chemical compositions of the No. 76 and No.
- D-CRS 55o D-CRS 55o. cio recruitment cree â t â i 3 â 4 â > gm and â â (M 3 â 4) HAZ CRS 55 o. ao â â â â â â o
- the present invention makes it possible to provide a flame-resistant heat-resistant steel which is excellent in HAZ softening resistance and exhibits high creep strength at high temperatures of 500 ° C. or higher, and contributes to the development of industry. There is something that makes you a dog.
Description
æ 现 æž é«åŒ·åºŠã ã§ã©ã€ ãç³»èç±éŒããã³ãã®è£œé æ¹æ³ æè¡åé
æ¬çºæã¯ã ãã§ã©ã€ åç³»èç±éŒã«é¢ãããã®ã§ããã æŽã«è©³ãã ã¯é«æž© ïŒ é«å§ç°å¢äžã§äœ¿çšãã㯠ãªãŒãç Žæ匷床ã«åªãã ãã€è H AZè»åç¹æ§ã«åªããã ãã©ã€ åç³»èç±éŒã«é¢ãããã®ã§ã ç¹ã«çå ç©ã®æ§æå
çŽ ã®ç±åœ±é¿ã«ããå€åãã³ã³ ãããŒã«ããããšã«ãã£ãŠ ã 匷床ããã³é±æ§ãæ¹åãããã®ã§ããã èæ¯æè¡
è¿å¹Žã ç«åçºé»ã〠ã©ã®ææ¥æ¡ä»¶ã¯é«æž©ã é«å§åãèããã äžéš ã§ã¯ 566 °Cã 3 1 6 ba rã§ææ¥ãããŠããã å°æ¥çã«ã¯ 649°Cã 352 ba r è¿ã®æ¡ä»¶ãæ³å®ãããŠããã 䜿çšããææã«ã¯æ¥µããŠéé
·ãªæ¡ä»¶ãš ãªã£ãŠããã
ç«åçºé»ãã© ã³ ãã«äœ¿çšãããèç±éŒã¯ã ãã®äœ¿çšãããéšäœã« ãã£ãŠæãããç°å¢ãç°ãªãã ããããéç±åšç®¡ã åç±åšç®¡ãšåŒã° ããã¡ ã¿ã«æž©åºŠã®é«ãéšäœã§ã¯é«æž©ã®èé£æ§ã 匷床ã«ç¹ã«åªããã© âã¹ãã〠ãç³»ææã ããã㯠9ã1 2 %ã® C rãå«æããã ã±ã©ã€ ã ç³»ã®ææãå€ã䜿çšãããã
è¿å¹Žã§ã¯æ°ãã« Wãé«æž©åŒ·åºŠåäžã«å¯äžãããããæ·»å ããæ°ã ãèç±éŒãç 究éçºã å®çšåãããŠããã çºé»ãã© ã³ ãã®é«å¹çå ã®éæã«å€§ã ãè²¢ç®ããŠããã äŸãã°ç¹éæ 63â 89644å·å
¬å ±ã ç¹ éæ 6 1â 231 1 39å·å
¬å ±ã ç¹éæ 62â 297435å·å
¬å ±çã«ã Wãåºæº¶åŒ· åå
çŽ ãš ããŠäœ¿çšããããšã§ã åŸæ¥ã® Moæ·»å åãã§ã©ã€ ãç³»èç±éŒ ã«æ¯èŒããŠé£èºçã«é«ã㯠ãªãŒã匷床ãéæã§ããã ã§ã©ã€ ãç³»è
ç±éŒã«é¢ããé瀺ãããã ãããã¯å€ãã®å Žåã çµç¹ãçŒãæ»ãã ã«ãã³ãµã€ ãåçžã§ããã èæ°Žèžæ°é
žåç¹æ§ã«åªããã ã§ã©ã€ ãéŒ ã®åªäœæ§ãšã é«åŒ·åºŠã®ç¹æ§ãçžä¿ã£ãŠã 次äžä»£ã®é«æž© · é«å§ç°å¢äž ã§äœ¿çšãããææãš ããŠæåŸ
ãããŠããã
ãŸãç«åçºé»ãã© ã³ ãã®é«å§åãå®çŸå¯èœãšãªãã ãããŸã§æ¯èŒ ç䜿çšæž©åºŠã®äœãã£ãéšäœã äŸãã°ç«çå£ç®¡ãããã¯ç±äº€æåšã èž æ°çºçåšã äž»èžæ°ç®¡çã®ææ¥æ¡ä»¶ãèé
·ãšãªãã åŸæ¥ã®ãããã 1 CréŒã 1. 25C réŒã 2. 25CréŒãšãã£ãå·¥æ¥èŠæ Œã«èŠå®ãããŠãããã ãªäœ Crå«æã ã©ã€ ãç³»èç±éŒãé©çšã§ããªã ãªãã€ã€ããã
ãã ãã趚å¢ã«å¯Ÿå¿ããŠã ãããäœåŒ·åºŠææã«ã" Wããã㯠Moã ç©æ¥µçã«æ·»å ããŠé«æž©åŒ·åºŠãæ¹åããéŒãæ°å€ãææ¡ãããŠããã ããªãã¡ç¹éæ 63â 18038å·å
¬å ±ã ç¹éå¹³ 4 â 268040å·å
¬å ±ã ç¹å
¬ å¹³ 6 â 2926å·å
¬å ±ã ç¹å
¬å¹³ 6 â 2927å·å
¬å ±ã«ã¯ããããã Wãäž»èŠ ãªåŒ·åå
çŽ ãš ã㊠1 ã 3 % Cræ·»å éŒã®é«æž©åŒ·åºŠãæ¹åããéŒãææ¡ ãããŠããã ããããåŸæ¥ã®äœ CréŒã«æ¯èŒããŠé«ãé«æž©åŒ·åºŠãæã ãŠããã
äžæ¹ã ããŠã©ã€ ãç³»ã®èç±éŒã¯ã ãªãŒã¹ãã〠ãåçžé åããã ã§ã©ã€ ã +çåç©æåºçžãžãšã ç±åŠçã®éã®å·åŽã«äŒŽã£ãŠçºçãã çžå€æ
ãéå·åŽçŸè±¡ãåãã ãã®çµæãš ããŠçãã倧éã®è»¢äœãå
å
ãããã«ãã³ãµã€ ãçµç¹ã ãã€ã〠ãçµç¹çã®ãã§ã©ã€ ãç³»ã®çµ ç¹ã ãã ã¯ãã®çŒãæ»ãçµç¹ã®é«ã匷床ãå©çšããŠããã åŸã£ãŠã ãã®çµç¹ãåã³ãªãŒã¹ãã〠ãåçžé åãŸã§åå ç±ããããããªç± å±¥æŽãåããå Žåã äŸãã°æº¶æ¥ç±åœ±é¿ãåããå Žåã«ãããŠã¯ã é« å¯åºŠã®è»¢äœãåã³è§£æŸãããŠããŸãã 溶æ¥ç±åœ±é¿éšã«ãããŠã å±éš çãªåŒ·åºŠã®äœäžãèµ·ããå Žåãããã ç¹ã«ã ãã±ã©ã€ ã ' ãªãŒã¹ã ã〠ãå€æ
ç¹ä»¥äžã«åå ç±ãããéšäœã®äžã§ã å€æ
ç¹è¿åã®æž©åºŠã äŸãã° 2. 25 % CréŒã«ãããŠã¯ 800ã 900°CçšåºŠãŸã§å ç±ãããŠã ç
æéã®ãã¡ã«åã³å·åŽãããéšäœã¯ã ãªãŒã¹ãã〠ãçµæ¶ç²ãåå ã«æé·ããªããã¡ã«å床ãã«ã ã³ãµã€ ãå€æ
ãããã¯ã¹ã£ã〠ãå€ æ
çã®ç¡æ¡æ£å€æ
ãèµ·ã ããŠçŽ°ç²çµç¹ãšãªãã ãããã ææ匷床ã æåºåŒ·åã«ãã£ãŠåäžãããäž»èŠãªå åã§ãã M 2 3 C 6 åçåç©ã¯ ã çæéã§ãå€æ
ç¹ä»¥äžã®æž©åºŠã«å ç±ããããšã ã¡é åã®æããé« ã Cã Nåºæº¶éã®ããã«ã 倧åãååºæº¶ããŠã㟠ãã ãããŠã M 2 3
C 6 åçåç©ã¯ 7ç²çã ãããã¯æ¥µããŠç²å€§ãªæªåºæº¶çåç©äžã«ã äž»ã«ç²å€§æåºããã
ãããã®æ©æ§ãè€åããŠäœçšããããšã«ããã 㯠ãªãŒã匷床ãå± éšçã«äœäžããçŸè±¡ã以é䟿å®çã« ã HAZè»åã ãšç§°ããã
æ¬çºæè
ãã¯ã åœè©²è»ååã«ã€ããŠè©³çŽ°ãªç 究ãéãã ãã®åŒ·åºŠ äœäžã¯ã 䞻㫠M 2 3 C 6 åçåç©ã®æ§æå
çŽ ã®å€åã«ããããšãèŠã ã ãã æŽãªãæ€èšã®çµæã é«åŒ·åºŠãã«ã ã³ãµã€ ãç³»èç±éŒã®ç¹ã«åº 溶匷åã«äžå¯æ¬ ã®å
çŽ ã§ãã Moããã㯠Wãã 該溶æ¥ç±åœ±é¿ãåã ãæäžã«ã M 2 3 C 6 äžã®æ§æéå±å
çŽ Mäžã«å€§éã«åºæº¶ãã 现ç²å ããçµç¹ã®ç²çäžã«æåºãã ãã®çµæãªãŒã¹ãã〠ãç²çè¿åã« Mo ããã㯠Wæ¬ ä¹çžãçæããŠã 㯠ãªäžã匷床ã®å±éšäœäžã«ã€ãªãã ããšãèŠãã ããã
åŸã£ãŠã 溶æ¥ç±åœ±é¿ã«ãã㯠ãªãŒã匷床ã®äœäžã¯ã èç±éŒã«ãšã€ ãŠèŽåœçã§ããã ç±åŠçã 溶æ¥æœå·¥æ³ã®æé©åçã®åŸæ¥æè¡ã§ã¯ã åé¡ç¹ãæ ¹æ¬çã«è§£æ±ºããããšã¯äžå¯èœã§ããã ãããã å¯äžã®è§£ 決çãšèããããã 溶æ¥éšãåã³å®å
šãªãŒã¹ãã〠ãåãã察çã® é©çšã¯ã çºé»ãã© ã³ åã®å»ºèšæœå·¥ããã»ã¹ãèæ
®ããã°äžå¯èœã§ã ãã åŸæ¥ã®èç±ãã«ã ã³ãµã€ åéŒãããã¯ã ã±ã©ã€ ãéŒã§ã¯ ã HAZ è»åã çŸè±¡ã䌎ã ããšã¯é¿ããããªãã
ãã®ããã WïŒ Moãæ·»å ããæ°ããäœ C rã ã±ã©ã€ ãç³»èç±éŒã¯ã æè§é«ãæ¯æ匷床ãæããªããã 溶æ¥ç±åœ±é¿éšã§ã¯æ¯æã«æ¯èŒããŠ
æ倧㧠30%ãã®åŒ·åºŠäœäžãå±éšçã«çãã åŸæ¥æè¡ãã匷床æ¹åå¹ æã®å°ãªãææãš ããŠäœçœ®ã¥ããããŠããã®ãçŸç¶ã§ããã çºæã®é瀺
æ¬çºæã¯äžèšã®ãããªåŸæ¥éŒã®æ¬ ç¹ã ããªãã¡ M23 C 6 åçåç© ã®å€è³ªã ç²å€§åã«èµ·å ãã溶æ¥ç±åœ±é¿éšã®å±éšè»ååçæãåé¿ã ããã M23 C 6 åçåç©ã®çµæå¶åŸ¡ããã³æåºãµã€ãºã®å¶åŸ¡ãå¯èœ ãšããããã«ã WïŒ Moæ·»å åã®æ°ãããã±ã©ã€ ãç³»èç±éŒãšãã®è£œ é æ¹æ³ã§ããã ç¹ã«ã Ti, Zrã®ãã¡ 1 çš®ãŸã㯠2çš®ãå«æãã ç¹å® ã®è£œé å·¥çšãçµã¿åãããããšã§ ã HAZè»åã åãçæããªãã é« åŒ·åºŠãã§ã©ã€ ãç³»èç±éŒãæäŸããããšãç®çãšãããã®ã§ããã æ¬çºæã¯ä»¥äžã®ç¥èŠã«åºã¥ããŠãªããããã®ã§ã ãã®èŠæšãšãã ãšããã¯ã 質éïŒ
ã§ã
C 0.0å 0.30%. Si ïŒ 0.02ã0.80%ã
Mn 0.20ã1.50%ã CrïŒ 0.50ã5.00%æªæºã
Mo 0.0å 1.50%ã W ïŒ 0.01ã3.50%ã
V 0.02ã1.00%ã NbïŒ 0.0å 0.50 ã
N 0.001 ã0.06%ãå«æãã å ããŠã
Ti 0.001 ã0.8 %ã ZrïŒ 0.001 ã0.8 %
ã® 1 çš®ãŸã㯠2çš®ãåç¬ã§ãããã¯è€åããŠå«æãã
P ïŒ 0.030%以äžã S ïŒ 0.010%以äžã 0 ïŒ 0.020%以äžã«å¶é ãã ãããã¯æŽã«
CoïŒ 0.2ã 5.0%ã Ni ïŒ 0.1ã 5.0%
ã® 1çš®ãŸã㯠2çš®ãå«æãã æ®éšã Feããã³äžå¯é¿ã®äžçŽç©ãã㪠ãã ã〠Tã Zrã®çåç©ãæ žãš ããŠã M23 C 6 åçåç©ãæåºãã ã ãã®åŸçžäºåºæº¶ã«ãã£ãŠ ïŒCrã Feã Tiã Zr) 23 C 6 ãäž»æåãšã ãçåç©ãšãªãã åèš ïŒCrã Feã Tiã Zr) äžã«å ãã ïŒTi% + Zr%
) ã®å€ã 5ã65ã§ããããšãç¹åŸŽãšããè HAZè»åç¹æ§ã«åªããã ã±ã©ã€ ãç³»èç±éŒã ããã³åèš ïŒCrã Feã Tiã Zr) äžã«å ãã ïŒTi % + Zr%) ã®å€ã 5ã65ãšãªãããã«ã TiïŒ ZrãåºéŒçŽåã® 10åé ã«æ·»å ãã ãã€åºæº¶åç±åŠçåŸã®å·åŽã 880ã 930°Cã«ãŠäžæåæ¢ ããŠå枩床㧠5ã60åä¿æããããšãç¹åŸŽãšããã è HAZè»åç¹æ§ ã«åªããã ã©ã€ ãç³»èç±éŒã®è£œé æ¹æ³ã§ããã å³é¢ã®ç°¡åãªèª¬æ
第 1 å³ã¯æº¶æ¥ç¶æã®çªãåããéå
圢ç¶ã瀺ãå³ã§ããã
第 2å³ã¯æº¶æ¥ç±åœ±é¿éšã®æåºç©åæè©Šéšçæ¡åèŠé ã瀺ãå³ã§ã ã
第 3å³ã¯ TiïŒ Zrã®æ·»å ææãšã Ti, Zrã®éŒäžã«ãããæåºç©ãš ã ãŠã®ååšåœ¢æ
ã®é¢ä¿ã瀺ãå³ã§ããã
第 4å³ã¯åºæº¶åç±åŠçåŸã®å·åŽäžæåæ¢æž©åºŠããã³ãã®ä¿ææé ãšæåºçåç©ã®å€§ããã®é¢ä¿ã瀺ãå³ã§ããã
第 5å³ã¯åºæº¶åç±åŠçåŸã®å·åŽäžæåæ¢æž©åºŠãšæº¶æ¥ç±åœ±é¿éšã®æ åºç©ã®åœ¢æ
ãšçµç¹ã®é¢ä¿ã瀺ãå³ã§ããã
第 6å³ã¯ 600°Cã 10äžæéçŽç·å€æ¿ã¯ ãªãŒãæšå®ç Žæ匷床ã®æ¯æ éšãšæº¶æ¥éšã®å·® Dâ CRS ãšæº¶æ¥ç±åœ±é¿éšäžã® M23 C 6 åçåç©äž M ã«å ãã ïŒTi% + Zr%) ã®å€ M%ã®é¢ä¿ã瀺ãå³ã§ããã
第 7 ( a ) å³ã¯éŒç®¡ã ããã³ç¬¬ 7 ( b ) å³ã¯æ¿æããã®ã¯ 㪠ãŒã ç Žæ匷床詊éšçæ¡åèŠé ã瀺ãå³ã§ããã
第 8 ã¯ã¯ ãªãŒãç Žæè©Šéšã®ç Žææéãšä»å å¿åã®é¢ä¿ã瀺ãå³ã§ ã®ãã
第 9 ( a ) å³ã¯éŒç®¡ã ããã³ç¬¬ 9 ( b ) å³ã¯æ³æã®æº¶æ¥éšãã㮠㯠ãªãŒãç Žæè©Šéšçæ¡åèŠé ã瀺ãå³ã§ããã
第 10 ( a ) å³ã¯éŒç®¡ã ããã³ç¬¬ 10 ( b ) å³ã¯æ¿æã®æº¶æ¥éšããã®
Charpyè¡æè©Šéšçæ¡åèŠé ã瀺ãå³ã§ããã
第 11å³ã¯æ¯æã® 600°Cã 10äžæéçŽç·å€æ¿ã¯ ãªãŒãæšå®ç Žæ匷床 ã®æ¯æäžã® Ti% + Zr%ã®å€ã®é¢ä¿ã瀺ãå³ã§ããã
第 12å³ã¯æº¶æ¥ç±åœ±é¿éšäžã® M23 C 6 åçåç©äž Mã«å ãã ïŒTi% + Zr%) ã®å€ M%ãšæº¶æ¥éšã®é±æ§ã®é¢ä¿ã瀺ãå³ã§ããã çºæãå®æœããããã®æè¯ã®åœ¢æ
以äžæ¬çºæã詳现ã«èª¬æããã
æåã«æ¬çºæã«ãããŠã åæåç¯å²ãåèšã®ããš ã éå®ããçç± ã以äžã«èª¬æããã
Cã¯åŒ·åºŠã®ä¿æã«å¿
èŠã§ãããã 0.01%æªæºã§ã¯åŒ·åºŠç¢ºä¿ã«äžå åã§ããã 0.30%è¶
ã®å Žåã«ã¯æº¶æ¥ç±åœ±é¿éšãèãã硬åãã æº¶æ¥ æäœæž©å²ãã®åå ãšãªãããã ç¯å²ã 0.01ã0.30%ãš ããã
Siã¯èé
žåæ§ç¢ºä¿ã«éèŠã§ã ãã€è±é
žå€ãšããŠå¿
èŠãªå
çŽ ã§ãã ãã 0.02%æªæºã§ã¯äžååã§ãã£ãŠã 0.80%è¶
ã§ã¯ã¯ ãªãŒã匷床ã äœäžãããã®ã§ 0.02ã0.80%ã®ç¯å²ãš ããã
Mnã¯è±é
žã®ããã®ã¿ã§ãªã匷床ä¿æäžãå¿
èŠãªæåã§ããã å¹æ ãååã«åŸãããã«ã¯ 0.20%以äžã®æ·»å ãå¿
èŠã§ããã 1.50%ãè¶
ããšã 㯠ãªãŒã匷床ãäœäžããå Žåãããã®ã§ã 0.20ã1.50%ã®ç¯ å² ã ã /ãã
Crã¯èé
žåæ§ã«äžå¯æ¬ ã®å
çŽ ã§ãã£ãŠã åæã« CãšçµåããŠã Cr 23 C , Cr, C çã®åœ¢æ
ã§æ¯æã ã 㪠ã ã¯ã¹äžã«åŸ®çŽ°æåºããã ãšã§ã¯ ãªãŒã匷床ã®äžæã«å¯äžããŠããã èé
žåæ§ã®èŠ³ç¹ããã äž é㯠0.5%ãš ãã äžéã¯ã 宀枩ã§ã®ååãªé±æ§ç¢ºä¿ãèæ
®ã㊠5.0
%æª? Ÿ㚠ããã
Wã¯åºæº¶åŒ·åã«ãã 㯠ãªãŒã匷床ãé¡èã«é«ããå
çŽ ã§ããã ç¹ ã« 500°C以äžã®é«æž©ã«ãããŠé·æéã®ã¯ ãªãŒã匷床ãèããé«ãã
ã 3.5%ãè¶
ããŠæ·»å ãããšéå±éååç©ãš ããŠç²çãäžå¿ã«å€§é ã«æåºãæ¯æé±æ§ã 㯠ãªãŒã匷床ãèããäœäžãããããã äžéã 3.5%ãš ããã ãŸãã 0.01%æªæºã§ã¯åºæº¶åŒ·åã®å¹æãäžååã§ã ãã®ã§äžéã 0.01%ãš ããã
Moãåºæº¶åŒ·åã«ããã é«æž©åŒ·åºŠãé«ããå
çŽ ã§ããå <ã 0.01%æª æºã§ã¯å¹æãäžååã§ããã 1.00%è¶
ã§ã¯ Mo2 Cåã®çåç©ã®å€§é æåºã ããã㯠Fe2Moåã®éå±éååç©æåºã«ãã£ãŠ Wãšåæã«æ·» å ããå Žåã«æ¯æé±æ§ãèããäœäžãããå Žåãããã®ã§äžéã 1. 00%ãš ããã
Vã¯æåºç©ãš ããŠæåºããŠãã Wãšåæã«ã ã 㪠ã ã¯ã¹ã«åºæº¶ã ãŠãã éŒã®é«æž©ã¯ ãªãŒãç Žæ匷床ãèããé«ããå
çŽ ã§ããã æ¬çº æã«ãããŠã¯ 0.02%æªæºã§ã¯ Væåºç©ã«ããæåºåŒ·åãäžååã§ã ãã éã« 1.00%ãè¶
ãããšã Vç³»çåç©ãããã¯ççªåç©ã®ã¯ã©ã¹ ã¿ãŒãçæããŠé±æ§äœäžããããããã«æ·»å ã®ç¯å²ã 0.02ã1.00% ãš ããã
Nb㯠MXåã®çåç©ã ããã ã¯ççªåç©ãš ããŠã®æåºã«ãã£ãŠé«æž© 匷床ãé«ãã ãŸãåºæº¶åŒ·åã«ãå¯äžããã 0.01%æªæºã§ã¯æ·»å å¹æ ãèªããããã 0.50%ãè¶
ããŠæ·»å ãããšã ç²å€§æåºãã é±æ§ãäœ äžãããã®ã§æ·»å ç¯å²ã 0.01ã0.50%ã«éã£ãã
Nã¯ã ã 㪠ã ã¯ã¹ã«åºæº¶ãããã¯çªåç©ã ççªåç©ãš ããŠæåºã ã 䞻㫠VNïŒ NbN ã ãããã¯ããããã®ççªåç©ã®åœ¢æ
ããšã€ãŠåºæº¶ 匷åã«ãæåºåŒ·åã«ãå¯äžããã 0.001%æªæºã®æ·»å ã§ã¯åŒ·åãžã® å¯äžã¯ã»ãšãã©ãªãã ãŸãæ倧 5 %ãŸã§ã® Cræ·»å éã«å¿ããŠæº¶éŒäž ã«æ·»å ã§ããäžéå€ãèæ
®ããŠæ·»å é床ã 0.06%ãš ããã
TiïŒ Zrã®æ·»å ã¯æ¬çºæã®æ ¹å¹¹ããªãéšåã§ããã ãŸãã«ãããã® å
çŽ ã®æ·»å ãã æ°ããç¹å®è£œé å·¥çšãšçžä¿ã£ãŠ ã HAZè»åã ã®åé¿ ãå®çŸããã TiïŒ Zrã¯æ¬çºæéŒã®æåç³»ã«ãã㊠Cãšã®èŠªååã極
ããŠåŒ·ãã M23 C 6 ã®æ§æéå±å
çŽ ãš ã㊠Mäžã«åºæº¶ãã M23 C 6 ã®å解枩床 ïŒååºæº¶æž©åºŠïŒ ãäžæãããã åŸã£ãŠã ã HAZè»åã å ã«ããã M 23 C 6 ã®ç²å€§åé»æ¢ã«æå¹ã§ããã ããã W, Moã® M C äžãžã®åºæº¶ã劚ãã åŸã£ãŠæåºç©åšå²ã® WïŒ Moã®æ¬ ä¹çžãçæ ããªãã ãããã®å
çŽ ã¯åç¬ã§ããã㯠2çš®ãè€åããŠæ·»å ããŠã ããã æäœ 0.001%ããæ¢ã«å¹æãããã åäœã§ 0.8%以äžã®æ·»å ã¯ç²å€§ãª MXåçåç©ãçæããŠé±æ§ãå£åãããããã ãã®æ·»å ç¯ å²ã 0.001ã0.8 %ãš ããã
P , S , 0ã¯æ¬çºæéŒã«ãããŠã¯äžçŽç©ãš ããŠæ··å
¥ããŠã ããã æ¬çºæã®å¹æãçºæ®ããäžã§ã PïŒ Sã¯åŒ·åºŠãäœäžããã 0ã¯é
žå ç©ãš ããŠæåºããŠé±æ§ãäœäžãããã®ã§ããããäžéå€ã 0.03%ã 0.01%ã 0.02%ãš ããã
以äžãæ¬çºæã®åºæ¬æåã§ãããã æ¬çºæã«ãããŠã¯ãã®ä»ã«çš éã«å¿ããŠã NiïŒ Coã®ãã¡ 1 çš®ãŸã㯠2çš®ããããã 0.2ã 5.0% å«æãããããšãã§ããã
Ni, Coã¯ãããã匷åãªãªãŒã¹ãã〠ãå®å®åå
çŽ ã§ããã ç¹ã« 倧éã®ãã±ã©ã€ ãå®å®åå
çŽ ã ããªãã¡ CrïŒ W, Mo, TiïŒ Zr, Siç ãæ·»å ããå Žåã«ãããŠã ãã€ã〠ãã ãã«ãã³ãµã€ ãçã®ãã±ã© 㣠ãç³»ã®çµç¹ã ãã ã¯ãããã®çŒãæ»ãçµç¹ãåŸãããã«å¿
èŠã§ã ãã ãã€æçšã§ããã åæã« Niã¯é±æ§ã®åäžã Coã¯åŒ·åºŠã®åäžã«ã ãããå¹æãããã 0.2%以äžã§ã¯å¹æãäžååã§ããã 5.0%ã è¶
ããŠæ·»å ããå Žåã«ã¯ç²å€§ãªéå±éååç©ã®æåºãé¿ããããªã ããã æ·»å ç¯å²ã 0.2ã 5.0%ãš ããã
å°ã æ¬çºæã¯è HAZè»åç¹æ§ã®åªããé«åŒ·åºŠã ã§ã©ã€ ãç³»èç±éŒ ãæäŸãããã®ã§ããã®ã§ã æ¬çºæéŒã¯äœ¿çšç®çã«å¿ãã補é æ¹æ³ ã ããã³ç±åŠçãæœãããšãå¯èœã§ããã ããã«ãã€ãŠæ¬çºæã®å¹ æã¯äœç劚ãããããã®ã§ã¯ãªãã
ãããã äžèš TiïŒ Zrã®æ·»å å¹æãé©åã«çºçŸãããããã«ã¯ã 溶 æ¥ç±åœ±é¿éšã«ååšãã M23 C 6 åçåç©ã®éå±æå Mäžã ããªãã¡ (Crã Feã Tiã Zr) äžã«å ãã ïŒTi% + Zr%) ã®å€ã 5ã65ãšãªã å¿
èŠããã£ãŠã ãã®ããã«ã°ïŒ ZrãéŒäžã§é©åãªçåç©ã®åœ¢ã§æåº ãããã¹ãã åºéŒçŽåã® 10åéã«æ·»å ãã ãã€åºæº¶åç±åŠçåŸã®å· åŽã 880ã 930°Cã«ãŠäžæåæ¢ããŠã å枩床㧠5ã60åä¿æããã ãšã§æåºåœ¢æ
ãå¶åŸ¡ãã åŸã®çŒãæ»ãåŠçæã«æåºããã ïŒCrã Fe ã T Zr) ã Mã®äž»æåãšãã M23 C 6 ã®æåºæ žãš ããŠå©çšããªã ãã°ãªããªãã ãŸãã 以äžã®è£œé ããã»ã¹ãé©çšããããšã«ãã£ãŠ ã åã㊠TiïŒ Zrã®æ·»å å¹æãé©åã«çºçŸãã æ¬çºæã®ç®çãéæã ããã®ã§ãã£ãŠã æ¬é¡çºæã®ç¯å²ã®ååŠæåã調æŽããææãåçŽ ã«åŸæ¥ã®è£œé å·¥çšããã£ãŠè£œé ããŠãæ¬çºæã®æå³ããå¹æã¯åŸã ããªãã ããªãã¡æº¶æ¥ç±åœ±é¿éšã«ååšãã M23C 6 åçåç©ã®éå± æå Mäžã ããªãã¡ ïŒCrã Feã Tiã Zr) äžã«å ãã ïŒTi% + Zr%) ã®å€ã 5ã65ã«å¶åŸ¡ããããšã¯ã§ããªãã
以äžã®è£œé å·¥çšããã³çåç©ã®çµæç¯å²ã¯ä»¥äžã«èšè¿°ããå®éšã« ãã£ãŠæ±ºå®ããã
Ti, Zrãé€ããŠã æ¬é¡çºæã®ç¯å²ã®éŒã VIM (ç空èªå°å ç±çïŒ ã EF (é»æ°çïŒ ã§æº¶è£œãã å¿
èŠã«å¿ã㊠AOD (Aré
žçŽ å¹ãè±ç粟é è£
çœ®ïŒ ã V0D (ç空ææ°é
žçŽ å¹ãè±çè£
çœ®ïŒ ã LF (溶éŒåé粟緎è£
çœ®ïŒ ãéžãã§äœ¿çš ãã é£ç¶éžé è£
眮ããã ã¯éåžžã®éŒå¡éžé è£
眮㫠ãŠéžé ãã é£ç¶éžé éžçã®å Žåã«ã¯æ倧 210 X 1600åªã®æé¢ãæã ãã¹ã©ãã ãããã¯ãã以äžã®æé¢ç©ãæãããã¬ã ããš ãã éåžž ã®éŒå¡éžé è£
眮ã«ããéžé ã§ã¯çš®ã
ã®å€§ããã®ã£ ã³ãŽã ããš ããåŸ ã«ç·é ããŠã åŸã®èª¿æ»ã«æ¯éã®ãªã倧ããã®è©Šéšçã«å å·¥ããã
Ti, Zrã¯ãããã VIMãŸã㯠EFã®æº¶è§£éå§æã 溶解äžã 溶解çµäº å 5åã A0DïŒ VOD, LFçã®è£œéå·¥çšéå§æã 補éå·¥çšçµäº 10åå
ã®åã
ã®ææã«æ·»å ããŠã æ·»å ææã®éžé åŸã®æåºç©çµæããã³åœ¢ ç¶ã«äžãã圱é¿ã調æ»ããã
éžé ããã¹ã©ã㯠2ã 5 mé·ãã«åæãã åã 25.4M1ã®åæ¿ãš ã ã æé«å ç±æž©åºŠ 1100ãŠã ä¿ææé 1 æéã®æ¡ä»¶ã§åºæº¶åç±åŠçãæœ ãã ãã®åŸã®å·åŽéçšã§ã 1080°CïŒ 1030°C, 980°CïŒ 930°C, 880 °CïŒ 830°Cã®å枩床ã«ãããŠæé· 24æéã®å·åŽåæ¢ã å枩床ã®çå
ä¿æãè¡ãã 空å·åŸã«æåºç©ã®æ®æž£æœåºåæãšãšãã«ã Xç·åŸ®å°éš åæè£
眮ä»ãééåé»åé¡åŸ®é¡ãçšããŠçåç©ã®æåºåœ¢æ
ã調æ»ã ãã æŽã«ã åŸãããåæ¿ã¯ 780°C㧠1 æéçŒãæ»ãåŠçãè¡ãã 第 1 å³ã«ç€ºãã éè§åºŠ 45床㮠Våçªãåãã溶æ¥éå
å å·¥ãæœããŠæº¶ æ¥å®éšã«äŸããã
溶æ¥ã¯ TIG溶æ¥ã«ãŠå®æœãã å
¥ç±æ¡ä»¶ã¯ã ã§ã©ã€ ãç³»èç±éŒã«äž è¬ç㪠15000 Jã cmãéžæããã 溶æ¥ããç¶æè©Šæ㯠650°C㧠6æ éã®æº¶æ¥åŸç±åŠçãæœãã ãã® HAZéšåãã第 2å³ã«ç€ºãèŠé ã§é éé»åé¡åŸ®é¡çšè©Šæããã³æœåºæ®æž£åæçšè©Šéšçãæ¡åããã ãã® å³ã§ã ç¬Šå· 9 ã¯æº¶æ¥éå±ã 1 0 ã¯æº¶æ¥ç±åœ±é¿éšã 1 1 ã¯æœåºæ®æž£å æçšãã ã ã¯è©Šéšçããã³ 1 2 ã¯ééé»åé¡åŸ®é¡çšèèåç€äžè©Šæ ã®æ¡åäœçœ®ã瀺ãã 第 3å³ã¯ TiïŒ Zrã®æ·»å ææãšã 溶æ¥åŸã®ç±åœ±é¿ éšã«ååšãã TiïŒ Zrã®æåºç©ãš ããŠã®ååšåœ¢æ
ã®é¢ä¿ã瀺ãå³ã§ã ãã TiïŒ Zrã®æåºç©ã M23C 6 ã®æåºæ žãšãªãã M23 C 6 ã®æ§æé å±å
çŽ Mäžã«åºæº¶ããããã«ã¯ TiïŒ Zrã¯ããããã埮现ãªçåç©ãš ããŠååšããŠããªããã°ãªããã ãã®ããã«ã¯é
žçŽ æ¿åºŠã®äœãç¶æ
ã ããªãã¡ V0Dããã 㯠LF粟éäžã§ã ãã€é£ç¶éžé 10ååã«æ·»å ã ãªããã°ãªããªãããšãåããã é»åé¡åŸ®é¡èŠ³å¯ã«ãã£ãŠã 溶æ¥å ã® TiïŒ Zrã®æåºç©ãµã€ãºã調æ»ãããšããã çåç©ãš ããŠã®å¹³åãµ ã£ãºã¯çŽ 0.15// mã§ããããšãå€æããã 第 3å³ã®æåºç©ã®å¹³åç² åŸã¯æº¶æ¥ç±åœ±é¿ãšãã®åŸã®æº¶æ¥åŸç±åŠçãåããåŸã®æº¶æ¥ç±åœ±é¿éš
äžã®æåºç©ã«é¢ããçµæã§ããã
第 4å³ã¯åºæº¶åç±åŠçåŸã®å·åŽåæ¢æž©åºŠããã³ãã®ä¿ææéãšæ åºçåç©ã®å€§ããã®é¢ä¿ã瀺ãå³ã§ããã ãã®å Žåã®è£œé å·¥çšã¯ EF â LFâCCã«éå®ããã æåºçåç©ã®å¹³åãµã€ãºã¯ã å·åŽåæ¢ããã³ ä¿æ枩床 880°Cãš 930°Cã«ãããŠæãå°ã ã ã ä¿ææé 5åã 60å ã«ãããŠåæåºã確èªã§ããŠã ãªããã€å¹³åãµã€ãºãæãå°ã ãã ãããšãã§ããã
ãªãã ãããã®çåç©ã®çµæ㯠Ti, Zrãäž»äœãšãã MXåçåç©ã§ ããããšãã Xç·åŸ®å°éšåæè£
眮ã«ããåæã§æãããšãªã£ãã çš® ã
ã®æž©åºŠã§åºæº¶åç±åŠçåŸã®å·åŽãåæ¢ãã 30åä¿æããåŸæŽã«ç©º å·ããè©Šæã®ã¿ã® 750°CçŒãæ»ãã æŽã«ã¯æº¶æ¥ããã³æº¶æ¥åŸç±åŠç ãæœããåŸã®æåºç©ã®åœ¢æ
ã çµæãå·åŽåæ¢æž©åºŠãšã®é¢ä¿ã«æŽçã ãã®ã第 5å³ã§ããã çŒãæ»ãåŠçåã§æã埮现ãªæåºåœ¢æ
ããšã€ ãçåç©ã¯ã M23C 6 ã®æåºæ žãšãªãã çŒãæ»ãåŠçäžã«æåºãã M23 C 6 ãšçžäºã«åºæº¶ããŠæçµçã« M23 C 6 åçåç©ãšãªãã æ§æ éå±å
çŽ Mäžã«ã¯ TiïŒ Zrã 5ã65ã®å²åã§åºæº¶ããŠããããšãåã o
第 6å³ã¯æº¶æ¥ç±åœ±é¿éšã«ååšãã M 23 C 6 åçåç©äžã«å ãã Ti % + Zr%ã®å€ M%ãšã 溶æ¥ç±åœ±é¿éšã®ã¯ ãªãŒãç Žæ匷床ãšæ¯æéšã® 㯠ãªãŒãç Žæ匷床ã®å·® Dâ CRS(MPa)ã®é¢ä¿ã瀺ãå³ã§ããã M%ã 5ã65ã®éã«ããã°æº¶æ¥ç±åœ±é¿éšã®ã¯ ãªäžãç Žæ匷床ã¯æ¯æéšã®ç Ž æ匷床ã«æ¯èŒããŠæ倧 7 MPa ããäœäžããã ãã®å·®ç°ã¯æ¯æã®ã¯ 㪠âãç Žæ匷床ã®ããŒã¿ã®åå·® lOMPa 以å
ã§ããã®ã§ã 溶æ¥ç±åœ±é¿éš ã¯ãã¯ãã æåºç©ã®å€è³ªã«èµ·å ãã HAZè»åçŸè±¡ã瀺ããªããšèã ãããã TiïŒ Zrãæ§æéå±å
çŽ Mäžã« 5ã65%å«æãã M23 C 6 å çåç©ã¯éåžžã® Crãäž»äœãšãã M23 C 6 ã«æ¯èŒããŠå解枩床ãé«ã ã 溶æ¥ç±åœ±é¿ãåããå Žåã§ãåéç²å€§åãã«ã ãã ãããååŠèŠª
ååããã³ç¶æ
å³ãã W , Moã T iïŒ Zrã«ä»£ãã£ãŠãããã¯æŽã«å ã ã€ãŠåºæº¶ããããšã極ããŠå°é£ã§ããããšãã äžèšã®å®éšçµæãã ãããããã®ãšçµè«ã§ããã
以äžã®çµæããã£ãŠã ç¹å®è£œé å·¥çšãã è«æ±é
ã«è¿°ã¹ãããšã決 å®ããã æ¬ç¹å®è£œé å·¥çšãé©çšããªããã°ã æ¬é¡çºæã®ååŠæå㯠è«æ±ã®ç¯å²ã®éŒãéåžžå·¥çšã§è£œé ããŠãã 溶æ¥ç±åœ±é¿éšã®çåç© M 2 3 C 6 ã®çµæãã è HAZè»åç¹æ§ãæãããã®ãšããããšã¯äžå¯èœ ã§ããã
æ¬çºæéŒã®æº¶è§£æ¹æ³ã¯å
šãå¶éããªãã 転çã èªå°å ç±çã ã¡ãŒ ã¯æº¶è§£çã é»æ°ççã éŒã®ååŠæåãšã³ã¹ ããåæ¡ããŠäœ¿çšããã» ã¹ã決å®ããã°ããã ãã ãã 補éå·¥çšã¯ T i , Zrãæ·»å ã§ãããã ããŒãåãã ããã溶éŒäžã®é
žçŽ æ¿åºŠããããæ·»å å
çŽ ã® 90 %ä»¥äž ãçåç©ãšããŠæåºã§ããçšåºŠã«ååäœãå¶åŸ¡ã§ããèœåããªãã ã°ãªããªãã åŸã£ãŠã 溶éŒäž 0 2 æ¿åºŠãäœæžããããã« Aræ°æ³¡å¹ã 蟌ã¿è£
眮ãã¢ãŒã¯å ç±ããã ã¯ãã©ãºãå ç±åšãè£
åãã LFããã ã¯ç空è±ã¬ã¹åŠçè£
眮ãé©çšããããšãæçã§ãã£ãŠã æ¬çºæã®å¹ æãé«ãããã®ã§ããã ãŸãã åŸé³ããå§å»¶å·¥çšãããã¯éŒç®¡ã補 é ããã«åœãã£ãŠã¯è£œç®¡å§å»¶å·¥çšã«ãããŠã¯æåºç©ã®åäžååºæº¶ã ç®çãšããåºæº¶åç±åŠçãå¿
é ã§ãã£ãŠã ãã®å·åŽéçšã«ãããŠå· åŽåæ¢ä¿æãå¯èœãªèšåã å
·äœçã«ã¯æé« 1000'CçšåºŠãŸã§å ç±å¯èœ ãªçãå¿
èŠãšããã ãã以å€ã®è£œé å·¥çšã å
·äœçã«ã¯å§å»¶ã ç±åŠç ã 補管ã 溶æ¥ã åæã æ€æ»çã®æ¬çºæã«ãã£ãŠéŒãŸãã¯éŒè£œåã補 é ããäžã§å¿
èŠãŸãã¯æçšãšèãããããããã補é å·¥çšã¯ã ãã ãé©çšããããšãã§ãã ããã«ãã€ãŠæ¬çºæã®å¹æã¯äœç劚ããã ããã®ã§ã¯ãªãã
ç¹ã«ã éŒç®¡ã®è£œé å·¥çšãšããŠã¯ã æ¬é¡çºæã®è£œé å·¥çšãå¿
ãå«ã æ¡ä»¶ã®äžã«ã äžžãã¬ã ããããã¯è§ãã¬ã ããžå å·¥ããåŸã«ã ç±é
æŒãåºãã ãããã¯çš®ã
ã®ã·ãŒã ã¬ã¹å§å»¶æ³ã«ãã£ãŠã·ãŒã ã¬ã¹ã ã€ãããã³ãã¥ãŒãã«å å·¥ããæ¹æ³ã èæ¿ã«ç±éå§å»¶ã å·éå§å»¶ã ãåŸã«é»æ°æµæ溶æ¥ã«ãã£ãŠé»çž«éŒç®¡ãšããæ¹æ³ã ããã³ T I G, M I G, SAW, LAS ER, EB溶æ¥ãåç¬ã§ã ãããã¯äœµçšããŠæº¶æ¥éŒç®¡ãš ããæ¹æ³ãé©çšã§ããŠã æŽã«ã¯ä»¥äžã®åæ¹æ³ã®åŸã«ç±éãããã¯æž© é㧠SR (çµãå§å»¶ïŒ ãªããã¯å®åœ¢å§å»¶ã æŽã«ã¯åçš®ç¯æ£å·¥çšãè¿œå å®æœããããšãå¯èœã§ããã æ¬çºæéŒã®é©çšå¯žæ³ç¯å²ãæ¡å€§ããã ãšãå¯èœã§ããã
æ¬çºæéŒã¯æŽã«ã åæ¿ããã³èæ¿ã®åœ¢ã§æäŸããããšãå¯èœã§ã ãã å¿
èŠãšãããç±åŠçãæœããæ¿ãçšããŠçš®ã
ã®èç±ææã®åœ¢ç¶ ã§äœ¿çšããããšãå¯èœã§ãã£ãŠã æ¬çºæã®å¹æã«äœç圱é¿ãäžã㪠ãã
å ããŠæŽã«ã H I P (ç±éçæ¹éæ°Žå§å å§çŒçµè£
çœ®ïŒ ã C I P (å·é çæ¹éæ°Žå§å å§æ圢è£
çœ®ïŒ ã çŒçµçã®ç²æ«å¶éæ³ãé©çšããããšã å¯èœã§ãã£ãŠã æ圢åŠçåŸã«å¿
é ã®ç±åŠçãå ããŠå皮圢ç¶ã®è£œå ãšããããšãã§ããã
以äžã®éŒç®¡ã æ¿ã å皮圢ç¶ã®èç±éšæã«ã¯ããããç®çã çšéã« å¿ããŠåçš®ç±åŠçãæœãããšãå¯èœã§ãã£ãŠã ãŸãæ¬çºæã®å¹æã ååã«çºæ®ããäžã§éèŠã§ããã
éåžžã¯çŒæº ïŒåºæº¶åç±åŠçïŒ +çŒãæ»ãå·¥çšãçµãŠè£œåãšããå Ž åãå€ããã ããã«å ããŠåçŒãæ»ãã çŒæºå·¥çšãåç¬ã§ã ããã ã¯äœµçš ããŠæœãããšãå¯èœã§ããã ãŸãæçšã§ããã ãã ãã åºæº¶ åç±åŠçåŸã®å·åŽåæ¢ããã³ä¿æã¯å¿
é ã§ããã
çªçŽ ãããã¯ççŽ å«æéãæ¯èŒçé«ãå Žåããã³ C o , N içã®ã©ãŒ ã¹ãã〠ãå®å®åå
çŽ ãå€ãå«æããå Žåã C råœéå€ãäœã ãªãå Ž åã«ã¯æ®çãªãŒã¹ãã〠ãçžãåé¿ããã¹ã 0 °C以äžã«å·åŽããã ããããæ·±å·åŠçãé©çšããããšãã§ããŠã æ¬çºæéŒã®æ©æ¢°çç¹æ§
ã®ååãªçºçŸã«æå¹ã§ããã
ææç¹æ§ã®ååãªçºçŸã«å¿
èŠãªç¯å²ã§ã 以äžã®å·¥çšã¯åã
ã®å·¥çš ãè€æ°åç¹°ãè¿ããŠé©çšããããšããŸãå¯èœã§ãã£ãŠã æ¬çºæã®å¹ æã«äœç圱é¿ãäžãããã®ã§ã¯ãªãã
以äžã®å·¥çšãé©å®éžæããŠã æ¬çºæéŒã®è£œé ããã»ã¹ã«é©çšãã ã°ããã å®æœäŸ
第 1è¡šã第 4è¡šã«ç€ºãã TiïŒ Zrãé€ãæ¬é¡çºæã®éŒãããã 300 ton ïŒ 120ton , 60ton ïŒ 1 ton , 300kg, 100kg, 50kgãéåžžã® é«çéäžè»¢çå¹éæ³ã VIM, EFãããã¯å®éšå®€ç空溶解èšåãçšã ãŠæº¶è£œãã ã¢ãŒã¯åå ç±èšåãä»åž¯ãã Arå¹ã蟌ã¿å¯èœãª LFèšåã ãã ã¯åçèœåãä»åž¯ããå°ååçŸè©Šéšèšåã«ãã£ãŠç²Ÿéãã éžé éå§ 10ååã« Ti, Zrã® 1 çš®ãŸã㯠2皮以äžãæ·»å ããŠååŠæåã調 æŽãã éžçãš ããã åŸãããéžçã¯ç±éå§å»¶ã«ãŠæ¿å 50é«ã®åæ¿ã ããã³ 12mmã®èæ¿ãšããåãã ããã ã¯äžžãã¬ã ãã«å å·¥ããŠç±éæŒ åºã«ãŠå€åŸ 74mmã èå 10mmã®ãã¥ãŒããã ã·ãŒã ã¬ã¹å§å»¶ã«ãŠå€åŸ 380åªã èå 50åªã®ãã€ãããããã補é ããã æŽã«èæ¿ã¯æ圢å ã§ããŠé»çž«æº¶æ¥ããŠå€åŸ 280mmã èå 12mmã®é»çž«éŒç®¡ãš ããã
9 I
M% äžã® M23C åç©äžã«å ãã ïŒTi%+Zr%) ã®å€ (%)
I I
LPZZ0IS6d£llDd
第 4 衚
D-CRS ïŒ 550°C10äž^ æ·ã¯ãªäžã^ç Žæ ã®è°¢æéšãš^ ^ã®å·® (MPa)
HAZCRSïŒ ã® 550°C10äžæé æ·ã¯ãªãŒã itÂŸç Ž SffŸŸ(MPa)
M éšäžã® M23C6èµåç©äžã«å ãã ïŒTi%+Zr%) ã®å€ïŒïŒ
)
å
šãŠã®æ¿ããã³ç®¡ã¯åºæº¶åç±åŠçãæœãã 880ã 930°Cã®æž©åºŠç¯ å²ã§äžæå·åŽãåæ¢ããŠçäž 5ã60åã®éä¿æããåŸã«ç©ºå·ãã æŽ ã« 750°C㧠1 æéçŒãæ»ãåŠçãå®æœããã
æ¿ã¯ç¬¬ 1 å³ãšå
šã åæ§ã®éå
å å·¥ã®åŸã«ã 管ã¯ç¬¬ 1 å³ãšåæ§ã®é å
ã管端ã«ã ååšæ¹åã«å å·¥ããŠã 管å士ã®ååšç¶æ溶æ¥ã TIGã ãã㯠SAW溶æ¥ã«ãŠå®æœããã 溶æ¥éšã¯ãããã 650°C㧠6æéã å±éšçã«è»åçŒé ïŒPWHT) ãå®æœããã
æ¯æã®ã¯ ãªãŒãç¹æ§ã¯ç¬¬ 7 ( a ) å³ã«ç€ºãããã«éŒç®¡ 1 ã®è»žæ¹å 2 ãšå¹³è¡ã«ãããã¯ç¬¬ 7 ( b ) å³ã«ç€ºãããã«æ¿æ 3ã®å§å»¶æ¹å 4 ãšå¹³è¡ã«ã 溶æ¥éšãããã¯æº¶æ¥ç±åœ±é¿éšä»¥å€ã®éšäœããçŽåŸ 6 è°ã® 㯠ãªãŒãè©Šéšç 5ãåãåºãã 550 °Cã«ãŠã¯ ãªãŒãç Žæ匷床ãæž¬å® ãã åŸãããããŒã¿ãçŽç·å€æ¿ã㊠10äžæéã®ã¯ ãªãŒãç Žæ匷床㚠ããã
第 8å³ã«ã¯æ¯æã®ã¯ ãªãŒãç Žæ匷床㮠1 äžæéãŸã§ã®æž¬å®çµæã ã 10äžæéæšå®ç Žæ匷床ã®å€æ¿çŽç·ãšäžç·ã«ç€ºããã æ¬çºæéŒã®é« 枩㯠ãªãŒãç Žæ匷床ã¯åŸæ¥ã®äœåééŒã 1ã 3 %Crâ 0.5 ã 1 %Mo éŒã«æ¯èŒããŠé«ãããšãåããã
溶æ¥éšã®ã¯ ãªãŒãç¹æ§ã¯ã 第 9 ( a ) å³ã«ç€ºãããã«éŒç®¡ã®è»žæ¹ å 7 ãšå¹³è¡ã«ãããã¯ç¬¬ 9 ( b ) å³ã«ç€ºãããã«ã 溶æ¥ç· 6 ãšçŽè§ æ¹å 7ããçŽåŸ 6 mmã®ã¯ ãªãŒãç Žæè©Šéšç 5ãåãåºãã 550°Cã« ãããç Žæ匷床枬å®çµæã 10äžæéãŸã§çŽç·å€æ¿ããŠæ¯æã®ã¯ ãªãŒ ãç¹æ§ãšæ¯èŒè©äŸ¡ããã 以éã ã㯠ãªãŒãç Žæ匷床ã ãšã¯ã æ¬çºæ ã®èšè¿°äžã®äŸ¿å®ãå³ãããã 550°Cã«ããã 10äžæéã®çŽç·å€æ·æš å®ç Žæ匷床ãæå³ãããã®ãšããã æ¯æãšæº¶æ¥éšã®ã¯ ãªãŒãçŽç·å€ æ·ç Žæ匷床æšå®å€ã®å·® ïŒæ¯æ㯠ãªäžãç Žææšå®åŒ·åºŠäž HAZ 㯠㪠ãŒã ç Žææšå®åŒ·åºŠïŒ D â CRS(MPa)ããã£ãŠã 溶æ¥éšã® ã HAZè»åã æµæ ã®ææšãš ããã Dâ CRS ã®å€ã¯è©Šéšçã®å§å»¶æ¹åã«å¯Ÿãã㯠ãªãŒã
ç Žæè©Šéšçæ¡åæ¹åã«è¥å¹²åœ±é¿ããããã®ã®ã äºåå®éšã«ãŠãã®åœ± é¿ã 5 MPa 以å
ã§ããããšãçµéšçã«å€æããŠããã åŸã£ãŠã Dâ CRS ã lOMPa 以äžã§ããå Žåã«ã¯ææã®è HAZè»åç¹æ§ã極ããŠè¯ 奜ã§ããããšãæå³ããã
HAZéšã®æåºç©ã¯ç¬¬ 2å³ã«ç€ºããèŠé ã§è©Šéšçãæ¡åãã é
žæº¶è§£ æ³ã§æœåºæ®æž£ãã M23 C 6 ãåå®ããåŸã«ãã® Mäžã®çµæãèµ°æ»å Xç·åŸ®å°éšåæè£
眮ã«ãã€ãŠæ±ºå®ããã ãã®ãšãã® Ti% + Zr%ã®å€ ã M%ãšè¡šãã è©äŸ¡ããã è©äŸ¡åºæºã¯å®éšçµæã«åºã¥ããŠã 5 ã65 ã®ç¯å²ã«ããããšã§ããã ããªãã¡ã Må€ã 5以äžãŸã㯠65以äžã® å Žåã§ã¯ã HAZ-CRS ãäœäžããã
HAZéšã®æåºç©ã®æåãéæ¥çã«è©äŸ¡ããããã«ã é±æ§è©Šéšãå® æœããã
第 10 ( a ) å³ã«ç€ºãããã«éŒç®¡ãããã¯ç¬¬ 10 ( b ) å³ã®æ¿æã«ç€º ãããã«ã 溶æ¥ç· 9 ãšçŽè§æ¹åãã JIS4å· 2 mmVã ããã·ã£ã«ã ãŒè¡éŒè©Šéšç 8ãåãåºãã ã ããäœçœ®ã溶æ¥ãã³ ã 9 ãš ãã æé« ç¡¬åéšã§ä»£è¡šããŠã ãã®è©äŸ¡åºæºå€ãã èç±ææã®çµç«æ¡ä»¶ãæ³å® ã㊠0 °Cã«ãããŠã 50 J ãš ããã
æ¯èŒã®ããã«ã ååŠæåã«ãããŠæ¬çºæã®ãããã«ã該åœããªã éŒãšã 補é æ¹æ³ã«ãããŠæ¬çºæã«è©²åœããªãéŒãåæ§ã®æ¹æ³ã§è©äŸ¡ ããã ååŠæåãšè©äŸ¡çµæã®ãã¡ Dâ CRS ïŒ HAZCRS, M%ã«ã€ã㊠衚 2 ã«ç€ºããã Dâ CRS ãš M%ã®é¢ä¿ã¯ç¬¬ 6å³ã§æ¢ã«ç€ºãããšãã ä¹ããã ã
第 11å³ã¯æ¯æã®ã¯ ãªäžãç Žæ匷床ãšæ¯æäžã® Ti% + Zr%ã®é¢ä¿ã 瀺ãå³ã§ããã éå°ã® TiïŒ Zrã®æ·»å ã¯æåºç©ã®ç²å€§åãæãã çµæ ãš ããŠæ¯æãã®ãã®ã®ã¯ ãªãŒãç Žæ匷床ãäœäžãã 次ã«è¡æå€ãäœ äžãã äž¡æ¹ãšãã«äœäžããã
第 12å³ã¯æº¶æ¥ç±åœ±é¿éšäžã® M 23 C 6 ã«å«ãŸãã Ti% + Zr%ã®å€ M
%ãšæº¶æ¥ç±åœ±é¿éšã®é±æ§ã®é¢ä¿ã瀺ããå³ã§ããã M%ã®å€ã 65ã è¶
ããå Žåã«ã¯æåºç©ãç²å€§åããŠé±æ§ã®äœäžãèµ·ã ãã è©äŸ¡åºæº å€ 50 Jãäžåãããšããããã Dâ CRS ïŒ HAZCRS, M%ã«ã€ããŠã¯ 枬å®å€ãæ°å€ããŒã¿ã®åœ¢ã§ç¬¬ 2è¡šããã³ç¬¬ 4è¡šã«äžäŸã瀺ããã 第 5è¡šã«ç€ºããæ¯èŒéŒã®ãã¡ã 76ïŒ 77çªéŒã¯ååŠæåãæ¬é¡çºæ ã®ç¯å²å
ã§ãã£ãã«ããããããã Tiãš Zrã溶解æããæ·»å ããŠã ãŸãã çµæãš ã㊠M%ã®å€ã 5æªæºãšãªã£ãŠè HAZè»åç¹æ§ãå£å ããäŸã 78, 79çªéŒã¯ TiïŒ Zrã®ããããååã«æ·»å ããªãã£ããã ã« M%ãäœäžãã è HAZè»åç¹æ§ ïŒD - C R Sã 1 0 MPa 以äžïŒ ã å£åããäŸã 80çªéŒã¯ Tiã®æ·»å éã 81çªéŒã¯ Zrã®æ·»å éããããã éå€ã§ãã£ãããã«ç²å€§ãª MCçåç© ïŒ80çªéŒã§ã¯ TiC ã 81çªéŒã§ã¯ ZrC ) ãå€æ°æåºãã 溶æ¥ç±åœ±é¿éšäžã® M23 C 6 ã®çµæå¶åŸ¡ã«å€±æ ãã è HAZè»åç¹æ§ãå£åããäŸã 82çªéŒã¯åºæº¶åç±åŠçåŸã®äžæ å·åŽåæ¢ãå®æœããªãã£ãããã« M23C 6 ã®çµæå¶åŸ¡ã«å€±æãã è HAZè»åç¹æ§ãå£åããäŸã 83çªéŒã¯åºæº¶åç±åŠçåŸã®äžæå·åŽå æ¢åŸã®ä¿ææéã 240åãšé·ãããããã«æåºç©ãç²å€§åãã M23 C e ã®çµæå¶åŸ¡ã«å€±æãã è HAZè»åç¹æ§ãå£åããäŸã 84çªéŒã¯ Wã®æ·»å éãäžååã§ã æ¯æéšã 溶æ¥éšå
±ã«ã¯ ãªãŒãç Žæ匷床ãäœ äžããäŸã 85çªéŒã¯ Wæ·»å éãè¶
éããŠããŸãã æ¯æã ç¶æãš ãã« ç²å€§ãªéå±éååç©ã倧éã«æåºãã çµæãš ããŠã¯ ãªãŒãç Žæ匷床 ãäœäžããäŸã 86çªéŒã¯ NbïŒ Vã®æ·»å éãäž¡æ¹ãšãäžè¶³ããŠã æ¯æ ã 溶æ¥éšå
±ã«ã¯ ãªãŒãç Žæ匷床ãäœäžããäŸã§ããã
第 5 è¡š O ã Ml ã Î MO w V IN IN 11 LT W) INI r U
76 0.085 0.321 0.414 1.26 0.56 1,56 0.056 0.066 0.044 0.008 <0.001 a 2i 205 0.016 0.0032 0.0156
77 0.091 0.303 0.500 1.24 0.58 1.50 0.067 0.064 0.045 ã 0.001 0.007 â 0.26 0.023 0.0007 0.0124
78 0.077 0.305 0.501 1.20 0.54 1.24 0.201 0.042 0.040 <0.001 <0.001 â â 0.011 0.0055 0.0008
79 0.061 0.305 0.505 1.25 0.53 1.80 0.210 0.085 0.039 ã 0.001 ã 0.001 405 1.17 0.009 0.0023 0.0153
80 0.085 0.315 0.552 1.24 1.05 1.81 0.211 0.232 0.038 0.964 0.223 0.008 0.0020 0.0122
81 0.084 0.225 0.606 1.24 LOO 2.52 0.205 0.310 0.042 0.151 L164 Z06 0.009 0.0018 0.0136
82 0.093 0.161 0.499 a26 1.09 Z2A 0.233 0.026 0.035 0.156 ã 0.001 a 16 0.023 0.0026 0.0051
83 0.245 0.351 0.487 Z45 0.89 87 0.501 0.099 0.075 0.557 0.068 0.29 0.015 0.0009 0.0061
84 0.166 0.055 0.503 a28 0.87 0.008 0.582 0.414 0.035 <0.001 0.054 0.010 0.0007 0.0126
85 0.187 0.056 0.506 0.53 6.48 0.274 0.401 0.076 0.563 ã 0.001 0.56 0.009 0.0004 0.0015
86 0.215 0.084 0.445 a lo 0.87 1.00 0.006 0.003 0.029 ã 0.001 0.033 0.28 0.23 0.009 0.0022 0.0018
第 6 衚
D-CRS 55oãcioå ã¯ãªãŒ^ t^iŸ^>gmãš^^ (MŸ) HAZCRS 55oãaoæçªèã¯ãªäž^ o
BASECRS 550°C10ç èŽãªäž^^^ (WŸ)
M% ^mw^.c,芳 ãå ãã m%+zr%) <m ( )
ç£æ¥äžã®å©çšå¯èœæ§
æ¬çºæã¯è HAZè»åç¹æ§ã«åªãã 500°C以äžã®é«æž©ã§é«ã¯ 㪠ãŒã 匷床ãçºæ®ããã Xã©ã€ åç³»èç±éŒã®æäŸãå¯èœãªã ããããã®ã§ ãã£ãŠã ç£æ¥ã®çºå±ã«å¯äžãããšãã極ããŠç¬ãªããã®ãããã
Claims
l . 質éïŒ
ã§ã
C ïŒ 0.0å 0.30%ã
Si ïŒ 0.02ã0.80%ã
Mn ïŒ 0.20ã1.50%ã
CrïŒ 0.50ã5.00%æªèš - æºã
o ïŒ 0.01ã1.50%ã
W ïŒ 0.01ã3.50%ã
ã®
V ïŒ 0.02ã1.00%ã
NbïŒ 0.01ã0.50%ã
N ïŒ 0.001 ã0.06%
ãå«æãã å ããŠã
Ti ïŒ 0.001 ã0.8 %ã
ZrïŒ 0.001 ã0.8 %
ã® 1 çš®ãŸã㯠2çš®ãåç¬ã§ãããã¯è€åããŠå«æãã
P ïŒ 0.030%以äžã
S ïŒ 0.010%以äžã
0 ïŒ 0.020%以äž
ã«å¶éãã æ®éšã Feããã³äžå¯é¿ã®äžçŽç©ãããªãã ã〠Tiã Zrã® çåç©ãæ žãš ããŠã M23 C 6 åçåç©ãæåºããã ãã®åŸçžäºåºæº¶ ã«ãã£ãŠ ïŒCrã Feã Tiã Zr) 23 C 6 ãäž»æåãšããçåç©ãšãªãã åèš ïŒCrã Feã Tiã Zr) äžã«å ãã ïŒTi% + Zr%) ã®å€ã 5 ã65㧠ããããšãç¹åŸŽãšããè HAZè»åç¹æ§ã«åªããã ãŠã©ã€ ãç³»èç±éŒ
2. 質éïŒ
ã§ã
C ïŒ 0.01ã0.30%ã
Si ïŒ 0.02ã0.80%ã
MnïŒ 0.20ã1.50%ã
CrïŒ 0.50ã5.00%æªæºã
oïŒ 0.0å 1.50%ã
W ïŒ 0.0å 3.50%ã
V ïŒ 0.02ã1.00%ã
NbïŒ 0.0å 0.50%ã
N ïŒ 0.001 ã0.06%
ãå«æãã å ããŠã
Ti ïŒ 0.001 ã0.8 %ã
ZrïŒ 0.001 ã0.8 %
ã® 1 çš®ãŸã㯠2çš®ãåç¬ã§ãããã¯è€åããŠå«æãã æŽã«ã
CoïŒ 0.2 ã 5.0%ã
Ni ïŒ 0.2 ã 5.0%ã
ã® 1çš®ãŸã㯠2çš®ãå«æãã
P ïŒ 0.030%以äžã
S ïŒ 0.010%以äžã
0 ïŒ 0.020%以äž
ã«å¶éãã æ®éšã Feããã³äžå¯é¿ã®äžçŽç©ãããªãã ã〠Tiã Zrã® çåç©ãæ žãšããŠã M23C 6 åçåç©ãæåºããã ãã®åŸçžäºåºæº¶ ã«ãã£ãŠ ïŒCrã Feã Tiã Zr) 23C e ãäž»æåãšããçåç©ãšãªãã åèš ïŒCrã Feã Tiã Zr) äžã«å ãã ïŒTi% + Zr%) ã®å€ã 5ã65㧠ããããšãç¹åŸµãšããè HAZè»åç¹æ§ã«åªãããã§ã©ã€ ãç³»èç±éŒ
3. è«æ±ã®ç¯å² 1 ãŸã㯠2ã®æåãæãã Ti, Zrããããã 0.001 ã0. 8 %ã®ç¯å²ã§åç¬ã§ãããã¯è€åããŠã åºé§çŽåã® 10åéã« æ·»å ãã éåžžã®éžé ã å§å»¶ãããã¯éé å·¥çšãçµãåŸã«ã åºæº¶åç±
åŠçåŸã®å·åŽã 880ã 930 °Cã«ãŠäžæåæ¢ããŠå枩床㧠5ã60åä¿ æããã ãšãç¹åŸŽãšãããã§ã©ã€ ãç³»èç±éŒã®è£œé æ¹æ³ã
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3336573B2 (ja) | é«åŒ·åºŠãã§ã©ã€ãç³»èç±éŒããã³ãã®è£œé æ¹æ³ | |
EP0688883B1 (en) | Martensitic heat-resisting steel having excellent resistance to haz softening and process for producing the steel | |
CN108367396B (zh) | éçŽ äœç³»èçé¢çšçæ¥ææãéçŽ äœç³»èçé¢çšçæ¥æ¥å€Žä»¥åéçŽ äœç³»èçé¢çšçæ¥æ¥å€Žçå¶é æ¹æ³ | |
KR100933114B1 (ko) | íëŒìŽížê³ ëŽìŽê° | |
EP1304394B1 (en) | Ferritic heat-resistant steel | |
EP0758025B1 (en) | High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition | |
KR20120053080A (ko) | ïœêž° í©êž ì í ë° ê·ž ì ì¡° ë°©ë² | |
CN111771007A (zh) | 奥æ°äœç³»äžéé¢çæ¥æ¥å€Ž | |
JP6515276B2 (ja) | é«åŒ·åºŠãã§ã©ã€ãç³»èç±éŒæ§é äœããã³ãã®è£œé æ¹æ³ | |
JP4254483B2 (ja) | é·å¯¿åœãªèç±äœåééŒæº¶æ¥éšæåã³ãã®è£œé æ¹æ³ | |
KR20220124238A (ko) | ì€ì€í ëìŽížê³ ì€í ìžëŠ¬ì€ ê°ì¬ | |
JP4044665B2 (ja) | 溶æ¥æ§ã«åªããïœïœæåºåŒ·ååäœççŽ ãã§ã©ã€ãç³»èç±éŒ | |
JP7485929B2 (ja) | äœåéèç±éŒãåã³äœåéèç±éŒã®è£œé æ¹æ³ | |
JP2001279391A (ja) | ãã§ã©ã€ãç³»èç±éŒ | |
JP3386266B2 (ja) | èïœïœïœè»åç¹æ§ã«åªãããã«ãã³ãµã€ãç³»èç±éŒããã³ãã®è£œé æ¹æ³ | |
JP3733902B2 (ja) | äœåéãã§ã©ã€ãç³»èç±éŒ | |
JP4542361B2 (ja) | è溶æ¥éšåç±å²ãæ§ã«åªãããã§ã©ã€ãç³»é»çž«ãã€ã©éŒç®¡ããã³è£œé æ³ | |
WO1996014443A9 (ja) | ||
JPH068487B2 (ja) | 溶æ¥ãã³ãéšéæ§ã®åªãããã§ã©ã€ãç³»èç±éŒ | |
JP3475621B2 (ja) | 溶æ¥éšã®é±æ§ã«åªããé«åŒ·åºŠãã§ã©ã€ãç³»èç±éŒ | |
JP7513888B2 (ja) | ç¶ç®ç¡éŒç®¡ | |
WO2021220912A1 (ja) | ãªãŒã¹ããã€ãç³»èç±éŒ | |
JP7502588B2 (ja) | é«ãšãã«ã®ãŒå¯åºŠããŒã 溶æ¥ç¶æã®æº¶æ¥éå±ãé«ãšãã«ã®ãŒå¯åºŠããŒã 溶æ¥ç¶æã溶æ¥æ§é äœãéŒç®¡ãé«ãšãã«ã®ãŒå¯åºŠããŒã 溶æ¥ç¶æçšéŒæåã³ãã®è£œé æ¹æ³ | |
JPH0218380B2 (ja) | ||
JP2023118054A (ja) | ãªãŒã¹ããã€ãç³»ã¹ãã³ã¬ã¹éŒåã³èæ°ŽçŽ æ§éšæ |