WO1996008200A1 - Einrichtung zur messung mechanischer eigenschaften von biologischem gewebe - Google Patents

Einrichtung zur messung mechanischer eigenschaften von biologischem gewebe Download PDF

Info

Publication number
WO1996008200A1
WO1996008200A1 PCT/EP1995/003546 EP9503546W WO9608200A1 WO 1996008200 A1 WO1996008200 A1 WO 1996008200A1 EP 9503546 W EP9503546 W EP 9503546W WO 9608200 A1 WO9608200 A1 WO 9608200A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mechanical properties
tissue
measuring
sensor
Prior art date
Application number
PCT/EP1995/003546
Other languages
English (en)
French (fr)
Inventor
Erwin Petter
Jörg-Uwe MEYER
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to JP8509887A priority Critical patent/JPH10505763A/ja
Publication of WO1996008200A1 publication Critical patent/WO1996008200A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure

Definitions

  • the invention relates to a device for measuring mechanical properties of biological tissue according to claims 1 and 2.
  • Mechanical properties are often measured in industry.
  • An actuator causes the test object to vibrate (sometimes at several points). The vibration is then measured at the same or different points.
  • An electromagnetic oscillator is usually used as an actuator and an accelerometer as a sensor. The analysis is used to test the mechanical behavior of the test object during operation.
  • Accelerometers are still around 0.5 g.
  • the sensor thus influences the measurement results.
  • DE-OS 21 57 825 it is known in connection with the detection of the motor activity of test animals to evaluate changes in impedance of a resonance circuit, which are caused by the relative movement between animals marked with a metallic object and a coil of the resonance circuit.
  • biological tissue is vibrated by means of a magnet in order to test the mechanical properties.
  • a device for determining visco-elastic properties of the skin in which the mechanical excitation takes place by means of a magnet and a coil system.
  • a reflector 10 serves as the sensor, the movement of which is evaluated opto-electronically.
  • the object of the invention is to provide a device for measuring mechanical properties of biological tissue, in which the measurement results are not influenced by the measuring device. According to the invention this is solved by the device according to claims 1 and 2. Advantageous refinements are characterized in the subclaims.
  • the actuator and the sensor are of the smallest mass ( ⁇ 0.1 g), so that it is possible to use them in places which are unreachable for the conventional actuators and sensors. Because the mass of the actuator and sensor is so small, they hardly influence the measurement of the dynamic mechanical properties.
  • the new measuring system consists of two parts. A part is brought into connection with the measurement object and either consists of
  • the second part consists of a coil system which is inductively coupled to the first part. It is therefore brought into spatial proximity to the first part.
  • the coil system is used in a shell core made of ferrite or iron powder.
  • the magnet and the foils can be so small that they only weigh a few milligrams.
  • Soft magnetic materials have the advantage that they are easier to structure than permanent magnets.
  • the geometry can be chosen freely. Permanent magnets, on the other hand, must have a certain length-width ratio to ensure stability.
  • measurements can also be carried out using a soft magnetic non-conductive film, the impedance of the coil system being changed only by the magnetic polarization generated in the film.
  • a conductive foil made of non-magnetic material can then be added to the soft magnetic foil, whether it is conductive or not, for example by means of adhesion or gluing.
  • the measuring effect is caused both by the soft magnetic film (magnetic polarization or eddy currents) and by the conductive film (eddy currents only).
  • Fig. 1 shows the measuring system for measuring the mechanical properties of
  • Fig. 2 shows the measuring system applied to an eye pressure measurement
  • Fig. 3 shows the new measuring system built into an endoscope.
  • Fig. 1 shows a block diagram of a measuring system for measuring the mechanical properties of tissue, wherein the object to be measured is only indicated schematically.
  • the device 1 consisting of a coil system and a device for the electrical application of the coil system, excites a device 2 for oscillation, which is attached to the object to be measured, the tissue, e.g. glued or over a gel.
  • the device 2 here consists of a small magnet 4 and a conductive film 3, which according to. the figure is circular, the magnet being arranged in the center of the film.
  • the conductive film 3 takes over the more or less strong vibrations of the tissue and these vibrations are determined by means of an impedance measurement.
  • the signals are transferred to an evaluation device, e.g. a computer, given and evaluated there. Since the state of health of the tissue influences its elasticity, the vibration of the tissue can be measured via the vibrations forced by the magnet 4 via the conductive film 3.
  • Fig. 2 shows schematically the measuring system for an eye pressure measurement.
  • the device 2 is implanted in a contact shell 6, so that the doctor can easily attach it to the eye to be examined.
  • a contact shell 6 so that the doctor can easily attach it to the eye to be examined.
  • a soft magnetic material for example a film 5, which may or may not be conductive. If it is a non-conductive film, a conductive film can also be applied to the film 5. Under certain circumstances, a soft magnetic conductive film can even be applied directly to the eye.
  • Fig. 3 shows the measuring system installed in an endoscope 7, the film 5 being arranged at the end of the endoscope, the part of which is placed on the tissue. The magnet and a conductive foil 3 can also be used here.
  • the permanent magnet or the soft magnetic film represents the actuator, which is excited to oscillate by means of a coil.
  • the measurement object is set in vibration.
  • a film made of conductive material serves as a sensor, which influences the impedance of a coil system and thus allows conclusions to be drawn about the movement of the mechanically excited tissue under investigation.
  • the vibrating foil modulates the impedance of the coil system due to the eddy currents induced in the foil and, in the case of the soft magnetic foil, due to the magnetic polarization generated in the foil.
  • the frequency with which the impedance is measured In order to induce eddy currents, the frequency with which the impedance is measured must be correspondingly high.
  • the impedance of the coil system In order to measure the amplitude and phase of the vibration, the impedance of the coil system must be measured. The impedance is measured using a carrier wave. Various alternatives are available here. Frequency modulation occurs when the measuring coil system is the frequency-determining element of an oscillator. Amplitude modulation occurs when the measuring coil is installed in a measuring bridge that is supplied with a constant voltage.
  • FM demodulation is generally carried out in the form of a PLL circuit.
  • Amplitude demodulation can easily be performed using a rectifier and a low pass filter. However, it is better to use the supply voltage of the bridge as a reference signal and then to measure the amplitude and phase of the measurement signal using a two-phase lock-in amplifier.
  • the now demodulated carrier wave of the measuring coil is fed into a further lock-in amplifier, the reference of which is the excitation signal. Because the lock-in amplifier only measures the system's response to the excitation signal, it is possible to filter out artifacts and drift.
  • the system is automated.
  • a computer controls the excitation frequency and reads the phase and the amplitude of the vibration from the lock-in amplifier.
  • the system independently measures the amplitude and phase at several excitation frequencies so that a mechanical transfer function can be derived.
  • the computer can save and display the measured data. This function can be used to calculate mechanical parameters using certain algorithms.
  • Pressure measurement can often not be carried out directly in biomedicine because the invasiveness prohibits placing a pressure sensor in the liquid to be measured. Therefore, the pressure measurement must use alternative, less invasive Methods are made. So it is not possible to measure the intraocular pressure directly, continuously and non-invasively (invasive measurements have already been carried out [Y. Bburglund, L. Rosengren, B. Hök, and B. Svedbergh: Passive Silicon transensor intended for biomedical, remote pressure monitoring ". Sensors and Actuators A21, pp. 58-61 (1990) 1. Various approaches have been taken to measure the eye pressure continuously, non-invasively by means of indirect methods.
  • the method described above can be used here, which is a new indirect method for continuous eye pressure measurement.
  • the mechanical properties of the outside of the eye are influenced by the eye pressure. If you measure these properties, you can derive a conclusion about the intraocular pressure.
  • the advantages of the new process are very noticeable.
  • the components of the measuring system that are brought onto the object to be measured can be integrated in a contact shell (lens). This is possible because no wire connections are required and because the components can be miniaturized very well.

Abstract

Die Erfindung betrifft eine Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe mit einer Einrichtung (1) zur Erzeugung eines Magnetfeldes mittels eines Spulensystems, einer Einrichtung (2) zur mechanischen Erregung des Gewebes mittels eines Permanentmagneten (4) als Aktor und einer leitfähigen Folie (3) als Sensor.

Description

BESCHREIBUNG
Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe
Die Erfindung betrifft eine Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe nach den Ansprüchen 1 und 2.
Stand der Technik
Messungen von mechanischen Eigenschaften (Elastizität, Reibung, Resonanzen) werden in der Industrie häufig vorgenommen. Ein Aktor bringt das Meßobjekt zum Schwingen (manchmal an mehreren Stellen). An denselben oder an anderen Stellen wird dann die Schwingung gemessen. Als Aktor wird meistens ein elektromagnetischer Schwinger benutzt und als Sensor ein Beschleunigungsaufnehmer. Die Analyse dient dazu, das mechanische Verhalten des Meßobjektes im Betrieb zu testen.
Auch in der Biomedizin ist es sinnvoll, mechanische Eigenschaften von Gewebe zu bestimmen [D.E. Thompson, H. Mg. Hussein, and R.Q Perritt: Point impedance characterization of soft tissues in vivo". In: Bioengineering and the skin. ed. R.Marks, P.A. Payne, MTP Press England (198DJ. Die in der Industrie angewandten Methoden sind jedoch oft nicht einsetzbar. Das zu messende Gewebe ist nicht immer leicht zugänglich bzw. die Abmessungen von der zu testenden Struktur sind so klein, daß es nicht möglich ist, einen Beschleunigungsaufnehmer darauf aufzubringen: die kleinsten
Beschleunigungsaufnehmer sind immer noch zirka 0,5 g schwer. Damit beeinflußt der Aufnehmer die Meßergebnisse. Aus DE-OS 21 57 825 ist es im Zusammenhang mit dem Nachweisen der motorischen Tätigkeit von Versuchstieren bekannt, Impedanzänderungen eines Resonanzkreises auszuwerten, die durch die Relativbewegung zwischen mit einem metallischen Gegenstand markierten Tieren und einer Spule des Resonanzkreises hervorgerufen werden. Beim Anmeldungsgegenstand wird dagegen biologisches Gewebe mittels eines Magneten in Schwingung versetzt, um so die mechanischen Eigenschaften zu prüfen.
Aus DE 34 33 699 A 1 ist weiterhin eine Vorrichtung zur Bestimmung visko- elastischer Eigenschaften der Haut bekannt, bei der die mechanische Erregung mittels eines Magneten und eines Spulensystems erfolgt. Als Sensor dient ein Reflektor 10, dessen Bewegung opto-elektronisch ausgewertet wird.
Aufgabe der Erfindung ist es, eine Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe zu schaffen, bei der die Meßergebnisse nicht durch die Meßvorrichtung beeinflußt werden. Erfindungsgemäß wird dies durch die Einrichtung nach Anspruch 1 und 2 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.
Gelöste Aufgabe, Vorteile der neuen Erfindung
Es wurde ein neues Verfahren entwickelt, das Vorteile in der biomedizintechnischen Anwendung bietet. Der Aktor und der Sensor sind bei dem Verfahren nach Anspruch 5 von kleinster Masse ( < 0, 1 g), so daß es möglich ist, sie an Stellen einzusetzen, die für die herkömmlichen Aktoren und Sensoren unerreichbar sind. Weil die Masse des Aktors und Sensors so klein ist, beeinflussen sie die Messung der dynamischen mechanischen Eigenschaften kaum.
Sensor und Aktor werden auf dem Meßobjekt angebracht, es werden keine Drahtverbindungen zwischen Sensor bzw. Aktor und dem übrigen Teil des Meßsystems benötigt. Drahtverbindungen stören die Messung und können in biologischen Anwendungen eine Infektionsgefahr mit sich bringen. Grundzüge des Lösungsweges
Das neue Meßsystem besteht aus zwei Teilen. Ein Teil wird in Verbindung mit dem Meßobjekt gebracht und besteht entweder aus
1 . einem Permanentmagneten und einer leitfähigen Folie (Abb.1 ) oder
2. einer weichmagnetischen, leitfähigen oder nicht leitfähigen Folie oder
3. einer weichmagnetischen Folie und einer leitfähigen nicht magnetischen Folie.
Der zweite Teil besteht aus einem Spulensystem, das induktiv mit dem ersten Teil gekoppelt ist. Es wird daher in eine räumliche Nähe zum ersten Teil gebracht. Um die Magnetfelder in eine definierte Richtung zu lenken wird das Spulensystem in einem Schalenkern aus Ferrit oder Eisenpulver eingesetzt.
Der Magnet und die Folien können so klein bemessen sein, daß sie nur noch wenige Milligramm wiegen. Weichmagnetische Materialien haben den Vorteil, daß sie besser zu strukturieren sind als Permanentmagnete. Außerdem kann die Geometrie frei gewählt werden. Permanentmagnete dagegen müssen ein bestimmtes Länge-Breite Verhältnis haben, um die Stabilität zu gewährleisten.
Wie unter 2. angeführt, kann auch mittels einer weichmagnetischen nicht- leitfähigen Folie gemessen werden, wobei die Impedanz des Spulensystems nur verändert wird durch die in der Folie erzeugte magnetische Polarisation.
Der weichmagnetischen Folie kann man dann, ob leitfähig oder nicht, eine leitfähige Folie aus nicht-magnetischem Material hinzufügen, z.B. darauf anbringen durch Adhäsion oder Kleben. Der Meßeffekt wird in diesem Fall sowohl von der weichmagnetischen Folie (magnetische Polarisation bzw. Wirbelströme) als auch von der leitfähigen Folie (nur Wirbelströme) verursacht. Beschreibung von Ausführungsbeispielen
Im folgenden soll die Erfindung kurz anhand der Abb. 1 - 3 erläutert werden.
Abb. 1 zeigt das Meßsystem zur Messung der mechanischen Eigenschaften von
Gewebe,
Abb. 2 zeigt das Meßsystem angewandt auf eine Augendruckmessung,
Abb. 3 zeigt das neue Meßsystem eingebaut in ein Endoskop.
Abb. 1 zeigt ein Blockschaltbild eines Meßsystems zur Messung der mechanischen Eigenschaften von Gewebe, wobei auch das Meßobjekt nur schematisch angedeutet ist. Die Einrichtung 1 , bestehend aus einem Spulensystem und einer Einrichtung zur elektrischen Beaufschlagung des Spulensystems, regt eine Einrichtung 2 zum Schwingen an, wobei diese auf dem Meßobjekt, dem Gewebe, angebracht ist, z.B. geklebt oder über ein Gel. Die Einrichtung 2 besteht hier aus einem kleinen Magneten 4 und einer leitenden Folie 3, die gem. der Abbildung kreisringförmig ausgebildet ist, wobei der Magnet im Zentrum der Folie angeordnet ist. Die leitende Folie 3 übernimmt die mehr oder weniger starken Schwingungen des Gewebes und diese Schwingungen werden mittels einer Impedanzmessung ermittelt. Über einen Lock-in Verstärker werden die Signale in ein Auswertegerät, z.B. einen Computer, gegeben und dort ausgewertet. Da der Gesundheitszustand des Gewebes dessen Elastizität beeinflußt, kann über die durch den Magneten 4 erzwungenen Schwingungen über die leitende Folie 3 das Maß der Schwingungen des Gewebes gemessen werden.
Abb. 2 zeigt schematisch das Meßsystem für eine Augendruckmessung. Hierfür wird z.B. die Einrichtung 2 in eine Kontaktschale 6 implantiert, so daß diese leicht vom Arzt auf dem zu untersuchenden Auge angebracht werden kann. In diesem Falle wird man keinen Permanentmagneten und eine leitfähige Folie verwenden sondern ein weichmagnetisches Material, z.B. eine Folie 5, die leitfähig oder auch nicht leitfähig sein kann. Wenn es sich um eine nichtleitfähige Folie handelt, kann eine leitfähige Folie auf der Folie 5 zusätzlich aufgebracht werden. Unter Umständen kann sogar eine weichmagnetische leitfähige Folie direkt auf dem Auge appliziert werden. Abb. 3 zeigt das in ein Endoskop 7 eingebaute Meßsystem, wobei an dem Ende des Endoskops, dessen Teil auf das Gewebe aufgesetzt wird, die Folie 5 angeordnet ist. Es kann hier auch der Magnet und eine leitfähige Folie 3 verwendet werden. Um diese eigentliche Meßeinrichtung 2 zu schützen und für den Einmalgebrauch als chirurgisches Instrument, empfiehlt es sich jedoch, zusätzlich die Teile 3, 4 oder 5 mit einer elastischen Folie 6 zu überziehen. Diese Folie 6 kann nach dem einmaligen Gebrauch abgezogen werden und durch eine neue elastische Folie ersetzt werden. In Abb. 3 ist zusätzlich nur die Erregerspule der Einrichtung 1 mit den Anschlußleitungen, die dann an die nicht dargestellten Meßgeräte, z.B. für die Impedanzmessung, bzw. Einrichtung für die Erregung der Spulen angeschlossen sind, dargestellt.
In den Abb. 2 und 3 sind jeweils nur die Einrichtung 2 bzw. in Abb. 3 zusätzlich noch die Spule der Einrichtung 1 dargestellt, jedoch nicht das ganze System wie in Abb. 1 .
Bei dem neuen Meßsystem stellt der Permanentmagnet bzw. die weichmagnetische Folie den Aktor dar, der mittels einer Spule zum Schwingen angeregt wird. Hierbei wird das Meßobjekt in Schwingung versetzt. Im Gegensatz zur Vorrichtung nach der DE 34 33 699 A 1 dient beim Anmeldungsgegenstand dagegen als Sensor eine Folie aus leitfähigem Material, die die Impedanz eines Spulensystems beeinflußt und damit Rückschlüsse auf die Bewegung des untersuchten, mechanisch erregten Gewebes zuläßt.
Die schwingende Folie moduliert die Impedanz des Spulensystems aufgrund der in der Folie induzierten Wirbelströme und, im Fall der weichmagnetischen Folie, aufgrund der in der Folie erzeugten magnetischen Polarisation. Um Wirbelströme zu induzieren, muß die Frequenz, mit der die Impedanz gemessen wird, entsprechend groß sein.
Um die Amplitude und die Phase der Schwingung zu messen, muß die Impedanz des Spulensystems gemessen werden. Die Impedanz wird mittels einer Trägerwelle gemessen. Hier bieten sich verschiedene Alternativen an. Frequenzmodulation tritt auf, wenn das Meßspulensystem das frequenzbestimmende Element eines Oszillators ist. Amplitudenmodulation tritt auf, wenn die Meßspule in eine Meßbrücke eingebaut wird, die mit einer konstanten Spannung versorgt wird.
Eine FM-Demodulation wird im allgemeinen in der Form eines PLL-Kreises ausgeführt. Amplitudendemodulation kann einfach mittels eines Gleichrichters und eines Tiefpaßfilters ausgeführt werden. Besser ist es aber, die Versorgungsspannung der Brücke als Referenzsignal zu benutzen und dann mittels eines zwei Phasen Lock-in Verstärkers Amplitude und Phase des Meßsignals zu messen.
Die nun demodulierte Trägerwelle der Meßspule wird in einen weiteren Lock-in Verstärker geführt, als dessen Referenz das Erregersignal dient. Weil der Lock-in Verstärker nur die Antwort des Systems auf das Erregersignal mißt, ist es möglich, Artefakte und Drift herauszufiltern.
Das System ist automatisiert. Ein Computer regelt die Erregerfrequenz und liest die Phase und die Amplitude der Schwingung von dem Lock-in Verstärker ein. Das System mißt selbständig Amplitude und Phase bei mehreren Erregerfrequenzen, so daß eine mechanische Übertragungsfunktion abzuleiten ist. Der Computer kann die gemessenen Daten speichern und darstellen. Aus dieser Funktion kann man mit bestimmten Algorithmen mechanische Parameter berechnen.
Weitere Ausführungsbeispiele
Mechanische Schwingungsuntersuchungen finden in der Biomedizin folgende Anwendungen:
- Druckmessung.
Druckmessung kann in der Biomedizin oft nicht direkt ausgeführt werden, weil die Invasivität es verbietet, einen Drucksensor in die zu messende Flüssigkeit zu bringen. Deshalb muß die Druckmessung mit alternativen, weniger invasiven Methoden vorgenommen werden. So ist es nicht möglich, den Augeninnendruck direkt, kontinuierlich und nicht-invasiv zu messen (invasive Messungen wurden bereits vorgenommen [Y. Bäcklund, L. Rosengren, B. Hök, and B. Svedbergh: Passive Silicon transensor intended for biomedical, remote pressure monitoring". Sensors and Actuators A21 , pp. 58-61 (1990)1. Verschiedene Ansätze sind gemacht worden, um mittels indirekten Methoden den Augendruck kontinuierlich, nicht-invasiv zu messen I Noninvasive, Continuous intraocular pressure monitor", US Patent 4,089,329 (1 978).l; I Miniature Transducer", US Patent 4,305,399 (1981 ).]; [G. Fenzl, U. Bartsch, M Rieder, v. Denffer, and G Bramm: System zur kontinuierlichen Langzeittonometrie mittels Haftlinsesensor'M Biomedizinische Technik Band 36 Ergänzungsband, pp.393-394 ( 1 991 ).]
Das oben beschriebene Verfahren kann hier eingesetzt werden, was eine neue indirekte Methode zur kontinuierlichen Augendruckmessung darstellt. Die mechanischen Eigenschaften der Außenseite des Auges werden durch den Augendruck beeinflußt. Wenn man diese Eigenschaften mißt, kann man daraus eine Aussage über den Augeninnendruck herleiten. Hier machen sich die Vorteile des neuen Verfahrens ganz deutlich bemerkbar. Die Komponenten des Meßsystems, die auf das Meßobjekt gebracht werden, können in einer Kontaktschale (-linse) integriert werden. Dies ist deshalb möglich, weil keine Drahtverbindungen benötigt werden und weil man die Komponenten sehr gut miniaturisieren kann.
- Diagnose von Krankheiten.
Es gibt einige Krankheiten, die die mechanischen Eigenschaften des Gewebes beeinflussen. Z.B. sind mechanische Eigenschaften von Krebsgeweben im allgemeinen unterschiedlich zu gesunden Geweben. Hautkrankheiten, (z. B. Skleroderma [P. Bjerring: Skin elasticity measured by dynamic admittance a new technique for mechanical measurements in patients with scleroderma". Acta Dermatologica Venerologica Suppl. 120, pp. 83-87.] ) ändern die mechanischen Eigenschaften der Haut. Auch hier kann das oben beschriebene Verfahren eingesetzt werden. Weil das System stark miniaturisiert werden kann, ist es möglich, das System in einem Endoskop einzubauen, was mit herkömmlichen mechanischen Meßmethoden nicht möglich ist, siehe Abb 3.
Bezugszeichenliste
1 Einrichtung (Spulensystem)
2 Einrichtung bestehend aus 3 leitende Folie und
4 Magnet 5 weichmagnetische Folie 6 Kontaktschale
7 Endoskop 8 Impedanzmessung 9 Lock-in Verstärker
10 Computer- System
1 1 Meßobjekt
12 Auge
13 elastische Folie

Claims

Patentansprüche
Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe mit einer Einrichtung (1) zur Erzeugung eines Magnetfeldes mittels eines Spulensystems, einer Einrichtung (2) zur mechanischen Erregung des Gewebes mittels eines Permanentmagneten als Aktor und einer leitfähigen Folie als Sensor.
2. Einrichtung zur Messung mechanischer Eigenschaften von biologischem
Gewebe mit einer Einrichtung (1) zur Erzeugung eines Magnetfeldes mittels eines Spulensystems und einer Einrichtung (2) zur mechanischen Erregung des Gewebes mittels einer Folie aus weichmagnetischem Material als Aktor, die zugleich als Sensor wirkt.
Einrichtung nach Anspruch 2,
dadurch gekennzeichnet.
daß eine leitfähige Folie auf der weichmagnetischen Folie angebracht ist, die zusätzlich die Impedanz des Spulensystems beeinflußt.
Einrichtung nach Anspruch 1 oder 2
dadurch gekennzeichnet,
daß die Masse von Aktor und Sensor weniger als 0.2 g, vorzugsweise weniger als 0,1 g, beträgt. Einrichtung nach Anspruch 1 oder 2
dadurch gekennzeichnet,
daß die gesamte Einrichtung Teil eines Endoskopes ist und die Folie als distaier Abschluß des Endoskopes ausgebildet ist.
Einrichtung nach Anspruch 5,
dadurch gekennzeichnet,
daß eine elastische Folie vorgesehen ist, die zwischen dem zu untersuchenden Gewebe und der Folie angeordnet ist.
7. Einrichtung nach Anspruch 1 oder 2
dadurch gekennzeichnet,
daß die Folie bzw. der Magnet in einer Kontaktlinse eingebettet wird, die eingesetzt wird, um Schwingungsmessungen an Augen vorzunehmen.
PCT/EP1995/003546 1994-09-16 1995-09-08 Einrichtung zur messung mechanischer eigenschaften von biologischem gewebe WO1996008200A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8509887A JPH10505763A (ja) 1994-09-16 1995-09-08 生物組織の機械的性質の測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4433104.5 1994-09-16
DE4433104A DE4433104C1 (de) 1994-09-16 1994-09-16 Einrichtung zur Messung mechanischer Eigenschaften von biologischem Gewebe

Publications (1)

Publication Number Publication Date
WO1996008200A1 true WO1996008200A1 (de) 1996-03-21

Family

ID=6528442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003546 WO1996008200A1 (de) 1994-09-16 1995-09-08 Einrichtung zur messung mechanischer eigenschaften von biologischem gewebe

Country Status (4)

Country Link
US (1) US5840041A (de)
JP (1) JPH10505763A (de)
DE (1) DE4433104C1 (de)
WO (1) WO1996008200A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017637A1 (fr) * 1998-09-23 2000-03-30 Digibio Procede et systeme pour produire une substance ou un signal ayant un effet coagulant ou anticoagulant
WO2000017638A1 (fr) * 1998-09-23 2000-03-30 Digibio Procede, systeme et dispositif pour produire a partir d'une substance des signaux, notamment des signaux electriques, caracteristiques de l'activite biologique et/ou chimique de ladite substance
US9421225B2 (en) 1998-09-23 2016-08-23 Digibio Method and system for producing a substance or a signal with a coagulating or anticoagulant effect

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830139A (en) * 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
DE19728069C1 (de) * 1997-07-01 1999-02-11 Acritec Gmbh Vorrichtung zur Messung des Augeninnendrucks
JP2000051156A (ja) * 1998-06-02 2000-02-22 Olympus Optical Co Ltd 触覚センサ信号処理装置
US6193656B1 (en) * 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
AU767526B2 (en) 1999-04-26 2003-11-13 Gmp Vision Solutions, Inc. Trabeculotomy device and method for treating glaucoma
US6579235B1 (en) * 1999-11-01 2003-06-17 The Johns Hopkins University Method for monitoring intraocular pressure using a passive intraocular pressure sensor and patient worn monitoring recorder
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US6447449B1 (en) * 2000-08-21 2002-09-10 Cleveland Clinic Foundation System for measuring intraocular pressure of an eye and a MEM sensor for use therewith
US6436059B1 (en) * 2000-09-12 2002-08-20 Claudio I. Zanelli Detection of imd contact and alignment based on changes in frequency response characteristics
US20050009004A1 (en) * 2002-05-04 2005-01-13 Jia Xu Apparatus including ion transport detecting structures and methods of use
US7968305B2 (en) * 2001-03-24 2011-06-28 Aviva Biosciences Corporation Biochips including ion transport detecting structures and methods of use
US20050058990A1 (en) * 2001-03-24 2005-03-17 Antonio Guia Biochip devices for ion transport measurement, methods of manufacture, and methods of use
US20060029955A1 (en) * 2001-03-24 2006-02-09 Antonio Guia High-density ion transport measurement biochip devices and methods
US20040146849A1 (en) * 2002-01-24 2004-07-29 Mingxian Huang Biochips including ion transport detecting structures and methods of use
ES2304438T3 (es) 2001-04-07 2008-10-16 Glaukos Corporation Stent de glaucoma para el tratamiento del glaucoma.
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7488303B1 (en) * 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
WO2002089699A2 (en) 2001-05-03 2002-11-14 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US7137952B2 (en) * 2001-06-29 2006-11-21 Ecole Polytechnique Federale De Lausanne-Service Des Relations Industrielles Intraocular pressure recording system
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
CN1642469A (zh) * 2002-03-28 2005-07-20 埃里克技术有限公司 力反馈眼压计
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US10123732B2 (en) 2002-04-22 2018-11-13 Geelux Holdings, Ltd. Apparatus and method for measuring biologic parameters
US8849379B2 (en) 2002-04-22 2014-09-30 Geelux Holdings, Ltd. Apparatus and method for measuring biologic parameters
US8328420B2 (en) 2003-04-22 2012-12-11 Marcio Marc Abreu Apparatus and method for measuring biologic parameters
KR20050006180A (ko) 2002-04-22 2005-01-15 마시오 마크 애브리우 생물학적 파라미터 측정 장치 및 방법
AU2003231300A1 (en) * 2002-05-04 2003-11-17 Aviva Biosciences Corporation Apparatus including ion transport detecting structures and methods of use
WO2004042152A1 (en) * 2003-07-24 2004-05-21 Yip, Hoi, Thong A piling device
US8172769B2 (en) 2003-08-08 2012-05-08 Virginia Commonwealth University Method and apparatus for monitoring intra ocular and intra cranial pressure
US7448269B2 (en) * 2003-08-12 2008-11-11 Northwestern University Scanning near field ultrasound holography
US8438927B2 (en) * 2003-08-12 2013-05-14 Northwestern University Scanning near field thermoelastic acoustic holography (SNFTAH)
US10227063B2 (en) 2004-02-26 2019-03-12 Geelux Holdings, Ltd. Method and apparatus for biological evaluation
CA2944254A1 (en) 2005-10-24 2007-05-03 Marcio Marc Abreu Apparatus and method for measuring biologic parameters
US20070236213A1 (en) * 2006-03-30 2007-10-11 Paden Bradley E Telemetry method and apparatus using magnetically-driven mems resonant structure
CA2668954C (en) 2006-11-10 2020-09-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
CN100448391C (zh) * 2007-01-23 2009-01-07 天津市索维电子技术有限公司 眼压监护装置
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
JP2017501847A (ja) 2013-10-11 2017-01-19 マーシオ マーク アブリュー 生体評価のための方法及び装置
WO2015106137A1 (en) 2014-01-10 2015-07-16 Marcio Marc Abreu Device for measuring the infrared output of the abreu brain thermal tunnel
AU2015204588A1 (en) 2014-01-10 2016-07-21 Marcio Marc Abreu Devices to monitor and provide treatment at an Abreu brain tunnel
US10238847B2 (en) 2014-01-22 2019-03-26 Geelux Holdings, Ltd. Devices and methods for transdermal drug delivery
US11872018B2 (en) 2015-03-10 2024-01-16 Brain Tunnelgenix Technologies Corp. Devices, apparatuses, systems, and methods for measuring temperature of an ABTT terminus
US20210145621A1 (en) * 2015-10-07 2021-05-20 Fiomet Ventures, Inc. Smart Custom Orthotic
CN115023175A (zh) * 2020-01-28 2022-09-06 智能隐形眼镜公司 用于眼内压远程光学监测的可穿戴设备和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061777A2 (de) * 1981-03-31 1982-10-06 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Einrichtung zum Messen des Augeninnendrucks
DE3433699A1 (de) * 1983-09-13 1985-03-21 L'oreal, Paris Vorrichtung zur "in vivo" bestimmung visko-elastischer eigenschaften der haut
US4840183A (en) * 1987-08-13 1989-06-20 Tdk Corporation Electrocardiograph

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2157825A1 (de) * 1970-12-18 1972-05-31 Fara Ab Vorrichtung zum selektiven Nachweis der Lage und Bewegungen von metallischen und nichtmetallischen Objekten
FR2161129A5 (de) * 1971-11-15 1973-07-06 Duroux Jean
US4089329A (en) * 1976-03-18 1978-05-16 University Of Utah Research Institute Noninvasive, continuous intraocular pressure monitor
US4305399A (en) * 1978-10-31 1981-12-15 The University Of Western Australia Miniature transducer
US4727330A (en) * 1985-01-07 1988-02-23 Conductivity Diagnostics Research Method and apparatus for measuring the electrical conductivity of a subject
US4646754A (en) * 1985-02-19 1987-03-03 Seale Joseph B Non-invasive determination of mechanical characteristics in the body
DE4227367A1 (de) * 1992-08-19 1994-02-24 Wolfgang Daum Chirurgische Tastsonde

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061777A2 (de) * 1981-03-31 1982-10-06 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Einrichtung zum Messen des Augeninnendrucks
DE3433699A1 (de) * 1983-09-13 1985-03-21 L'oreal, Paris Vorrichtung zur "in vivo" bestimmung visko-elastischer eigenschaften der haut
US4840183A (en) * 1987-08-13 1989-06-20 Tdk Corporation Electrocardiograph

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOOVAERTS ET AL.: "A transducer for detection of fetal breating movements", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 36, no. 4, NEW YORK, US, pages 471 - 478 *
KRASILNIKOV ET AL.: "Applications of the electromagnetic transducers to medical diagnosis", INTERNATIONAL CONFERENCE ON BIOMEDICAL TRANSDUCERS, PARIS,FR, pages 63 - 67 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017637A1 (fr) * 1998-09-23 2000-03-30 Digibio Procede et systeme pour produire une substance ou un signal ayant un effet coagulant ou anticoagulant
WO2000017638A1 (fr) * 1998-09-23 2000-03-30 Digibio Procede, systeme et dispositif pour produire a partir d'une substance des signaux, notamment des signaux electriques, caracteristiques de l'activite biologique et/ou chimique de ladite substance
US6541978B1 (en) 1998-09-23 2003-04-01 Digibio Method, system and device for producing signals from a substance biological and/or chemical activity
US9421225B2 (en) 1998-09-23 2016-08-23 Digibio Method and system for producing a substance or a signal with a coagulating or anticoagulant effect

Also Published As

Publication number Publication date
US5840041A (en) 1998-11-24
DE4433104C1 (de) 1996-05-02
JPH10505763A (ja) 1998-06-09

Similar Documents

Publication Publication Date Title
WO1996008200A1 (de) Einrichtung zur messung mechanischer eigenschaften von biologischem gewebe
EP0001127B1 (de) Aus einem Geber für mechanische Schwingungen veränderbarer Frequenz und einem Schwingungsaufnehmer bestehende Einrichtung zur Bestimmung der mechanischen Eigenfrequenz von BlutgefäBen oder Sehnen im Körper
DE2935118C2 (de)
DE69924290T2 (de) Verfahren und sensoren zur drahtlosen messung physiologischer variablen
US5246008A (en) Method for monitoring a patient for rejection reactions to an implanted heart
DE69726447T2 (de) Implantierbares medizinisches gerät mit beschleunigungssensor
DE60023036T2 (de) Vorrichtung zum in-vivo-messen von druck und druckschwankugen im oder am knochen
DE60219905T2 (de) System und verfahren zum feststellen der loslösung einer implantiebaren medizinischen vorrichtung
EP1181892B1 (de) Gerät zur elektromechanischen Stimulation und Prüfung des Gehörs
DE60018262T2 (de) Verfahren zur Erzeugung eines Impedanzspektrums, das für eine Probe einer Körpersubstanz charakteristisch ist
EP1722682B1 (de) Gerät zur oszillometrischen analyse der atemwegimpedanz
EP0420177A1 (de) Vorrichtung zur drahtlosen Messung einer lokalen physikalischen Grösse
DE4001179A1 (de) Verfahren und vorrichtung zur nichteindringenden druckmessung
EP2946730A1 (de) Verfahren zur vermessung des atemvorgangs eines patienten während einer magnetresonanzuntersuchung, messanordnung und magnetresonanzeinrichtung
EP0459388A1 (de) Vorrichtung zur Erzeugung von Tastreizen durch Vibration eines auf die Haut eines Menschen aufzusetzenden Stössels
DE2941363C2 (de) Gerät zur Bestimmung von Eigenschaften lebender Gewebe
Saha et al. A non-invasive technique for detecting stress waves in bone using the piezoelectric effect
DE102006051032A1 (de) System und Verfahren zur Bestimmung des Verankerungszustandes implantierter Endoprothesen
EP2668472B1 (de) Zylinderförmige vorrichtung, pulswellengeschwindigkeitsmesssystem und verfahren zum messen einer pulswellengeschwindigkeit
WO1990000030A1 (de) Messonde zur lokalisierung von metallischen teilen im menschlichen oder tierischen körper
EP0246460B1 (de) Verfahren zur Messung elektrischer oder magnetischer Wechselfelder und Anordnung zur Durchführung des Verfahrens
DE4446346A1 (de) Verfahren und Vorrichtung zum Detektieren von Volumenänderungen von Elektrolyten in lebenden Körperteilen und Anwendung
DE2452578B2 (de) Anordnung zum Untersuchen des menschlichen Zahnhalteapparates
DE2944600A1 (de) Verfahren und geraet zum nachweis der bewegung von koerpergewebe
DE19821602C1 (de) Vibrationsmeßkopf zur Bestimmung der Beweglichkeit der Bestandteile des menschlichen Mittelohrapparates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995933352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08816996

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1995933352

Country of ref document: EP

122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase