WO1996001992A1 - Analyse de gaz complexe - Google Patents

Analyse de gaz complexe Download PDF

Info

Publication number
WO1996001992A1
WO1996001992A1 PCT/DE1995/000610 DE9500610W WO9601992A1 WO 1996001992 A1 WO1996001992 A1 WO 1996001992A1 DE 9500610 W DE9500610 W DE 9500610W WO 9601992 A1 WO9601992 A1 WO 9601992A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensors
sensor array
array according
contact
Prior art date
Application number
PCT/DE1995/000610
Other languages
German (de)
English (en)
Inventor
Klaus Steiner
Ulrich Hoefer
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1996001992A1 publication Critical patent/WO1996001992A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array

Definitions

  • the invention relates to a sensor array with metal oxide semiconductor gas sensors, wherein, at least in part, the sensors have different dimensions in relation to the other sensors.
  • Metal oxide semiconductor gas sensors are known and are used in many areas for the detection of particles in air.
  • Sn0 2 sensors are precisely defined resistance elements that are operated discretely (conductivity sensors).
  • the sensors are constructed in such a way that contact electrodes are applied directly to an inert carrier.
  • the sensors are active Layer is sputtered polycrystalline Sn0 2 , for example, which is then deposited on the contact electrodes.
  • An integrated heater is usually provided for setting the working temperature, e.g. on the
  • a thin SiO 2 layer is provided, for example, which can be applied directly, for example on the substrate.
  • Gas reactions on or on the surface are specifically used promoter catalysts. Sensors modified in this way are used for a large number of gases.
  • FIG. 1 and FIG. 2 show such sensors, the sensor-active layer consisting of an SnO 2 material.
  • Such sensors are used in particular for the detection of gases such as CO x , NO x , CH 4 , C 2 H 5 OH, H 2 and NH 3 .
  • metal oxide gas sensors described above lies in the thermodynamic stability of the active layers up to high temperatures and in the simple manufacture of the sensors by standard methods such as thin-film technologies.
  • metal oxide gas sensors can be influenced by catalysts and dopants in their preferred gas reactions. It is precisely the combination of technical stability and simple processing that qualify metal oxide gas sensors for expenditures in which large quantities that can be produced inexpensively are required. These include special areas, such as continuous workplace and household monitoring as well as environmental analysis.
  • the metal oxide gas sensors described above are mixed gas sensors, the selectivity in the analysis of complex gas mixtures is insufficient. In the most favorable case, only preferred gas reactions can also be generated by specific surface and / or volume modifications.
  • sensor arrays are an arrangement of several sensors, different sensor-active layers being used here.
  • sensor arrays with differently modified sensors with regard to their surfaces should make a more complex gas analysis possible. Accordingly, e.g. For a gas atmosphere consisting of 4 gases, at least four gas sensors with different preferred gas reactions are used in order to be able to carry out a corresponding quantitative gas analysis.
  • gas atmosphere consisting of 4 gases
  • gas sensors with different preferred gas reactions are used in order to be able to carry out a corresponding quantitative gas analysis.
  • such sensors can only be produced with an unreasonably high outlay and that these sensors, since they are also mixed gas sensors, have an insufficient selectivity.
  • a sensor array in that the dimensions of the sensors differ. It has been shown that preferred gas reactions then occur even using a uniform sensor material, for example Sn0 2 . It is essential in the solution according to the invention that, at least in part of the sensors, there is a different contact distance L to neighboring sensors and / or that a different area of the sensor-active layer and / or a different contact interface A between the contact and the sensor-active layer is present.
  • a preferred embodiment of the invention proposes that the thickness of the sensor-active layer is additionally varied, so that the selectivity can be improved again.
  • Another preferred embodiment relates to the variation of the size of the contact pad and the variation of the passivation window. These measures also contribute to a further increase in the selectivity.
  • the sensor array proposed according to the invention is particularly characterized in that its geometry can be implemented in one structuring step. Additional work steps for volume and surface modification are no longer necessary or only to a limited extent. As a result, complex sensor arrays can now be produced in just a few steps the.
  • the sensor arrays according to the invention are therefore characterized in that not only complex gas mixtures can be analyzed, but particularly in that the manufacture is very simple and inexpensive.
  • FIG. 4 shows a sensor array according to FIG. 3 mounted for measurement
  • Fig. 5 measurement results related to a CO measurement.
  • Single sensors known in the art consist of a mechanical carrier 2, which is a silicon substrate here.
  • a mechanical carrier 2 which is a silicon substrate here.
  • an integrated heater 8 in the sensor 1 according to FIG. 1 on the back of the substrate 2 sensorically active layer 6 is sputtered polycrystalline SnO 2 , which is deposited directly on the contact electrodes 3, 4, here platinum and tantalum electrodes.
  • the electrodes 3, 4 are electrically passivated to the substrate by an SiO 2 layer 7.
  • a thin tantalum bonding agent is installed between the electrodes 3, 4 and 8 and the passivation view 7 for the adhesion of the electrodes 3, 4. 1, the sensitive layer 6 is additionally coated with a catalyst layer 5, which may also contain promoters.
  • the sensor 1 according to FIG. 2 differs only in that here the heater 8 is arranged on the same side as the sensitive layer 6. In this case, an additional passivation layer 9 is then necessary.
  • the array consists of four contact zones, each having six contact pads.
  • the integrated heater and the catalytic converter are not shown in FIG. 1, since it is not necessary for understanding the invention.
  • the structure of an element corresponds in principle to that described in FIGS. 1 and 2.
  • the sensor array consists of four rows of individual sensors arranged in parallel, six sensors being arranged in each row.
  • the sensor-active layer is designed in the form of a strip that is guided in a row over all sensors.
  • the contact distance L varies in a row, starting from 10 ⁇ m (gap 1) up to 500 ⁇ m (gap 5).
  • the sensor-active surface varies, namely in such a way that a differently wide strip is provided in each row.
  • the change in the sensor-active area is also associated with a change in the contact interface between the sensor-active area and the individual contact pad.
  • the contact interface is identified, for example, in FIG. 3 by the symbol A in the first row. This makes it clear that the contact interface A can change both in the individual rows and in a single row because the strip of the sensor-active surface is not completely guided over a single contact pad.
  • the contact is a platinum contact and the sensitive layer is a Sn0 2 layer.
  • the layout of the sensor array presented here is exemplary.
  • the invention here encompasses all variants in which at least the contact distance L and / or the contact interface A and / or the sensor-active surface varies, at least in part of the sensors.
  • the invention thus also encompasses all arrangements if at least more than 3 sensors are provided.
  • the upper limit (number) of sensors is only due to technical reasons and can be 1,000,000. It is also possible for different individual sensors to be picked out and then bridged again to form a circuit.
  • the contact geometry ie the size of the contact pads, is the same in all cases. According to the invention, however, this is also possible since the size of the contact pads changes, as does the thickness of the sensitive layer.
  • the thickness of the sensor-active layer can be in a range from 0.01 ⁇ m to 10 ⁇ m and the area of the contact pads in the range from 1 ( ⁇ m) 2 to 1 (mm) 2 .
  • the invention encompasses all metal oxide semiconductor gas sensors, in particular those described in FIGS. 1 and 2.
  • Particularly preferred sensor-active materials are those according to claims 11-14.
  • FIG. 4 now shows how the sensor array according to FIG. 3 is mounted for measurement.
  • the sensor array 10 as described above in FIG. 3, is glued onto a glass cuboid 11.
  • the construction then remains in an air-circulating oven for some time at the elevated temperature to harden the adhesive.
  • the wires of the heater are then connected to the base pins 12 to 23 and the bond wires are attached.
  • the sample is electrically connected to the measuring device via the 12 base pins 12 to 23, in that the pins are led out of the measuring chamber in a gas-tight manner.
  • Pins 12 and 14 are connected to the heater, pins 13, 15, 17 and 19 are applied to the contact pads and pins 18 and 20 are connected to temperature sensors.
  • the invention basically comprises sensor structures as are already known from the prior art, here in particular from P 43 34 410.
  • the invention thus also includes all sensor modifications with regard to the choice of material. It is also independent of the design of the sensor array described above possible that more complex designs are used. In particular, these can be: transistors (e.g.
  • resistor constructed as a field effect transistor FET
  • Hall crosses diodes
  • capacitors inductors
  • circuits e.g. bridge circuit for differential measurement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

L'invention concerne une mosaïque de détecteurs comportant des détecteurs de gaz à semi-conducteurs à oxyde métallique, fonctionnant comme des résistances. Chaque détecteur comprend une électrode de contact (plot de contact) montée sur un substrat, sur laquelle est appliqué, par dépôt chimique, une couche à effet détecteur. Au moins une partie des détecteurs présentent un intervalle de contact L différent des plots de contact par rapport aux autres détecteurs, et/ou la surface de la couche à effet détecteur présente un dimensionnement différent, et/ou il existe une zone limitrophe de contact A différente entre le contact et la couche à effet détecteur.
PCT/DE1995/000610 1994-07-11 1995-05-05 Analyse de gaz complexe WO1996001992A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944424342 DE4424342C1 (de) 1994-07-11 1994-07-11 Sensorarray
DEP4424342.1 1994-07-11

Publications (1)

Publication Number Publication Date
WO1996001992A1 true WO1996001992A1 (fr) 1996-01-25

Family

ID=6522807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000610 WO1996001992A1 (fr) 1994-07-11 1995-05-05 Analyse de gaz complexe

Country Status (2)

Country Link
DE (1) DE4424342C1 (fr)
WO (1) WO1996001992A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019638A1 (de) * 2004-04-22 2005-11-17 Siemens Ag FET-basierter Sensor zur Detektion von insbesondere reduzierenden Gasen, Herstellungs- und Betriebsverfahren
US7198766B1 (en) 1999-11-05 2007-04-03 Nippon Shokubai Co., Ltd. Method for production of acrylic acid and apparatus for production of acrylic acid
US7459732B2 (en) 2005-03-31 2008-12-02 Micronas Gmbh Gas-sensitive field-effect transistor with air gap
US7553458B2 (en) 2001-03-05 2009-06-30 Micronas Gmbh Alcohol sensor using the work function measurement principle
US7707869B2 (en) 2004-04-22 2010-05-04 Micronas Gmbh FET-based gas sensor
US7772617B2 (en) 2005-03-31 2010-08-10 Micronas Gmbh Gas sensitive field-effect-transistor
US7946153B2 (en) 2004-04-22 2011-05-24 Micronas Gmbh Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors
US7992426B2 (en) 2004-04-22 2011-08-09 Micronas Gmbh Apparatus and method for increasing the selectivity of FET-based gas sensors
GB2520251A (en) * 2013-11-12 2015-05-20 Emma Newton Hand held device for the detection of trace gases
US10132769B2 (en) 2016-07-13 2018-11-20 Vaon, Llc Doped, metal oxide-based chemical sensors
CN110476059A (zh) * 2017-03-31 2019-11-19 盛思锐股份公司 用于测量气体浓度的传感器
US10802008B2 (en) 2017-02-28 2020-10-13 Vaon, Llc Bimetal doped-metal oxide-based chemical sensors
US11203183B2 (en) 2016-09-27 2021-12-21 Vaon, Llc Single and multi-layer, flat glass-sensor structures
US11275051B2 (en) 2016-03-23 2022-03-15 Vaon, Llc Metal oxide-based chemical sensors
US11467138B2 (en) 2016-09-27 2022-10-11 Vaon, Llc Breathalyzer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710456C1 (de) * 1997-03-13 1998-08-13 Fraunhofer Ges Forschung Dünnschicht-Gassensor
DE19718584C1 (de) * 1997-05-05 1998-11-19 Fraunhofer Ges Forschung Sensor zur Detektion von oxidierenden und/oder reduzierenden Gasen oder Gasgemischen
DE19841814A1 (de) * 1998-09-12 2000-03-16 Sandler Helmut Helsa Werke Filtereinrichtung mit Adsorptionsfilter, Verfahren zum Betrieb einer Filtereinrichtung sowie Verwendung einer Filtereinrichtung und Verwendung eines Sensorarray-Detektors
DE10144900B4 (de) 2001-09-12 2005-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Metalloxid-Halbleitergassensors
EP2833127A1 (fr) * 2013-07-30 2015-02-04 Sensirion AG Agencement de capteur résistif intégré, chaque capteur comprenant une couche sensible d'oxyde métalique avec une longeur différente entre les électrodes
GB2575803A (en) * 2018-07-23 2020-01-29 Sumitomo Chemical Co Semiconductor gas sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527258A1 (fr) * 1991-08-14 1993-02-17 Siemens Aktiengesellschaft Matrice de détecteurs de gaz pour la détection des composants individuels dans un mélange de gaz
WO1994010559A2 (fr) * 1992-10-26 1994-05-11 THE UNITED STATES OF AMERICA, as represented by UNITED STATES DEPARTMENT OF COMMERCE Ensembles micro-usines a temperature controlee utilises pour la fabrication et l'utilisation de capteurs chimiques
EP0603945A1 (fr) * 1992-12-23 1994-06-29 ENIRICERCHE S.p.A. Capteur de gaz basé sur des oxides semi-conducteurs pour la détermination des hydrocarbures gazeux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527258A1 (fr) * 1991-08-14 1993-02-17 Siemens Aktiengesellschaft Matrice de détecteurs de gaz pour la détection des composants individuels dans un mélange de gaz
WO1994010559A2 (fr) * 1992-10-26 1994-05-11 THE UNITED STATES OF AMERICA, as represented by UNITED STATES DEPARTMENT OF COMMERCE Ensembles micro-usines a temperature controlee utilises pour la fabrication et l'utilisation de capteurs chimiques
EP0603945A1 (fr) * 1992-12-23 1994-06-29 ENIRICERCHE S.p.A. Capteur de gaz basé sur des oxides semi-conducteurs pour la détermination des hydrocarbures gazeux

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198766B1 (en) 1999-11-05 2007-04-03 Nippon Shokubai Co., Ltd. Method for production of acrylic acid and apparatus for production of acrylic acid
US7553458B2 (en) 2001-03-05 2009-06-30 Micronas Gmbh Alcohol sensor using the work function measurement principle
DE102004019638A1 (de) * 2004-04-22 2005-11-17 Siemens Ag FET-basierter Sensor zur Detektion von insbesondere reduzierenden Gasen, Herstellungs- und Betriebsverfahren
US7707869B2 (en) 2004-04-22 2010-05-04 Micronas Gmbh FET-based gas sensor
US7946153B2 (en) 2004-04-22 2011-05-24 Micronas Gmbh Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors
US7992426B2 (en) 2004-04-22 2011-08-09 Micronas Gmbh Apparatus and method for increasing the selectivity of FET-based gas sensors
US7459732B2 (en) 2005-03-31 2008-12-02 Micronas Gmbh Gas-sensitive field-effect transistor with air gap
US7772617B2 (en) 2005-03-31 2010-08-10 Micronas Gmbh Gas sensitive field-effect-transistor
GB2520251A (en) * 2013-11-12 2015-05-20 Emma Newton Hand held device for the detection of trace gases
US11275051B2 (en) 2016-03-23 2022-03-15 Vaon, Llc Metal oxide-based chemical sensors
US10132769B2 (en) 2016-07-13 2018-11-20 Vaon, Llc Doped, metal oxide-based chemical sensors
US11009475B2 (en) 2016-07-13 2021-05-18 Vaon, Llc Doped, metal oxide-based chemical sensors
US11203183B2 (en) 2016-09-27 2021-12-21 Vaon, Llc Single and multi-layer, flat glass-sensor structures
US11467138B2 (en) 2016-09-27 2022-10-11 Vaon, Llc Breathalyzer
US10802008B2 (en) 2017-02-28 2020-10-13 Vaon, Llc Bimetal doped-metal oxide-based chemical sensors
CN110476059A (zh) * 2017-03-31 2019-11-19 盛思锐股份公司 用于测量气体浓度的传感器

Also Published As

Publication number Publication date
DE4424342C1 (de) 1995-11-02

Similar Documents

Publication Publication Date Title
WO1996001992A1 (fr) Analyse de gaz complexe
DE4423289C1 (de) Gassensor für reduzierende oder oxidierende Gase
EP1623217B1 (fr) Capteur pour detecter des particules
DE3504401C2 (fr)
EP1483571B1 (fr) Capteur de gaz a microstructures avec commande des proprietes de sensibilite aux gaz par application d'un champ electrique
EP0781993B1 (fr) Capteur de gaz
DE2933971C2 (de) Gassensor hoher Empfindlichkeit und Stabilität zum Nachweis und zur Messung des Verunreinigungsgehaltes von Luft auf der Basis von Metalloxidhalbleitern
DE19544303A1 (de) Vorrichtung und Verfahren zur Steuerung der Selektivität von gassensitiven chemischen Verbindungen über exteren Potentiale
EP3822624B1 (fr) Élément capteur capacitif permettant de déterminer au moins une propriété d'un milieu fluide dans au moins une chambre de mesure et procédé pour fabriquer l'élément de capteur
EP1583957B1 (fr) Transistor a effet de champ isfet et procede pour produire un transistor a effet de champ isfet
DE4334410C3 (de) Dünnschicht-Gassensor
DE60004843T2 (de) Aus metalloxid bestehender chemischer gassensor und zugehöriges herstellungsverfahren
EP1425573A1 (fr) Detecteur de gaz chrome-titane-oxyde-semi-conducteur et procede permettant de le produire
EP1103808B1 (fr) Capteur de gaz
DE19924083C2 (de) Leitfähigkeitssensor zur Detektion von Ozon
DE3151891C2 (fr)
DE19718584C1 (de) Sensor zur Detektion von oxidierenden und/oder reduzierenden Gasen oder Gasgemischen
WO2006122875A1 (fr) Ensemble de circuits pour faire fonctionner un reseau de capteurs de gaz
EP1602924A2 (fr) Dispositif et procédé pour detecter des composés organiques volatiles
DE10315190A1 (de) Gassensor
DE19606272C2 (de) Halbleiter-Gassensor
WO2020109008A1 (fr) Dispositif de détection de gaz, et procédé servant à sa fabrication et à son fonctionnement
DE10219726A1 (de) Verfahren zur Herstellung eines brückenartigen Halbleiter-Gassensors, sowie Halbleiter-Gassensor mit Brückenstruktur
EP2141491A1 (fr) Capteur de gaz
DE10308799A1 (de) Gassensor und Verfahren zur Detektion von Kohlenwasserstoffen, insbesondere im Abgas von Kraftfahrzeugen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase