WO1996001368A1 - Convertisseur d'energie eolienne a axe de rotation vertical - Google Patents

Convertisseur d'energie eolienne a axe de rotation vertical Download PDF

Info

Publication number
WO1996001368A1
WO1996001368A1 PCT/DE1994/000766 DE9400766W WO9601368A1 WO 1996001368 A1 WO1996001368 A1 WO 1996001368A1 DE 9400766 W DE9400766 W DE 9400766W WO 9601368 A1 WO9601368 A1 WO 9601368A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotation
wind
profile
section
Prior art date
Application number
PCT/DE1994/000766
Other languages
German (de)
English (en)
Inventor
Hans Erich Gunder
Heide Gunder
Original Assignee
Hans Erich Gunder
Heide Gunder
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE4319291A priority Critical patent/DE4319291C1/de
Application filed by Hans Erich Gunder, Heide Gunder filed Critical Hans Erich Gunder
Priority to PCT/DE1994/000766 priority patent/WO1996001368A1/fr
Publication of WO1996001368A1 publication Critical patent/WO1996001368A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/215Rotors for wind turbines with vertical axis of the panemone or "vehicle ventilator" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a rotor for a wind energy converter of the type specified in the preamble of claim 1.
  • DE-PS 892 130 describes a wind motor with a vertical axis of rotation of the rotor, in which the buoyancy effect of a body with a streamlined profile that moves quickly in the air stream is used for energy generation.
  • the streamlined shape of the profile cross section is to be understood to mean a shape in which the ratio of the thickness of the cross section to the length of the cross section behaves approximately as 1: 3 to 1:10; furthermore, one end should be more or less rounded, while the other end tapers; and finally the side lines of the cross section should be straight or slightly curved inwards or outwards.
  • the latter means that obviously a profile is meant here. which - in relation to its longitudinal axis - is symmetrical.
  • the declared aim of the subject matter according to DE-PS 892 130 is to significantly improve the efficiency in comparison with previously known wind motors mentioned in the introduction to the description of this document.
  • this publication states that the wind turbine blades would only ever be hit in such a way by the flow velocity resulting from the wind speed and peripheral speed that the resulting blowing direction results in an air force on the wing, which in each position of the wind turbine wing causes a moment which causes the same in the direction of the Rotational movement acting sense of rotation and therefore contribute to a further increase in speed.
  • the aforementioned DE-OS 28 16 026 already shows a rotor for a wind energy converter, as specified in the preamble of claim 1, namely a rotor which - for reasons of easy and automatic startup - at least three evenly over the circumference of the rotor distributed and arranged at an angle of attack to the tangent of the orbit.
  • Buoyant rotor blades which have an aerodynamically asymmetrical and unchangeable profile cross section.
  • the aim of the present invention is to improve a wind energy converter of the type mentioned at the outset to the extent that — with a consistently simple construction — a considerable improvement in efficiency can be achieved in comparison with known wind energy converters of this type.
  • the angle of attack f is understood to mean the angle between the chord of the profile cross section and the tangent of the circumferential circle.
  • a more or less large (positive) adjustment of the rotor blade to the tangent of the circulating circuit is appropriate to maximize the efficiency.
  • the person skilled in the art will first determine the high-speed number of the rotor, based on the performance to be achieved, for which the blade depth (for example 0.3 times the diameter of the circulating circle of the rotor blades) is an important factor Parameter is.
  • the achievable flow angles (angles between the chord of the profile cross section and the respective flow direction - in particular for the conditions on the windward side of the rotor) are determined; and finally a profile with such an asymmetrical profile cross-section is selected which always delivers positive moments, that is to say acting in the intended drive direction of the rotor, over the fluctuation range of the inflow angles - or at least over the largest part of a complete revolution.
  • an asymmetrical profile cross section which is well suited for the purposes of the present invention has.
  • the profile G ⁇ 557 of AVA Göttingen known from the relevant literature ("Results of the aerodynamic testing facility in Göttingen, 1st to 4th delivery"); the well-known Karmän-Trefftz profile, which corresponds approximately to the G ⁇ 387 profile of AVA Göttingen, could also (still) be used.
  • a further improvement in the efficiency of the wind energy converter can be achieved if one for the rotor blades - Basically known - multi-part profile is selected.
  • a multi-part profile can be, for example, one that is similar to the well-known Kellner-Bechereau profile or the Handley-Page profile.
  • the rotor blades of the wind energy converter according to the invention can be arranged in a straight line and parallel to the geometric axis of rotation of the rotor according to the proposal according to claim 3, or, as claimed in claim 4, can also be arranged curved to this.
  • the advantage achieved by the invention of a significantly better efficiency compared to known wind energy converters can in principle also be achieved with asymmetrical profile cross sections in which the buoyancy and torque applied during a rotation of the rotor may possibly return to zero over a smaller angle of rotation ⁇ walk or possibly turn slightly over a negligibly small part of the rotation of the rotor blade of 360 °; however, this does not change the basic mode of operation in the sense of the invention.
  • the integral of the force acting in the direction of rotation of the rotor should be as large as possible over a revolution corresponding to a 360 ° angle of rotation of the rotor.
  • the profile cross section and the angle of attack of the rotor blade are preferably selected such that the torque acting on the individual rotor blade does not change its direction over a complete revolution of the rotor.
  • Such a specification not only allows a relatively high energy yield to be expected, but also has the effect that vibrations of the rotor blade (as a result, in particular, of the influence of more or less continuously changing buoyancy forces on the rotor blade) can be kept low.
  • this torque should preferably be on are as high as possible and vary in strength as little as possible over one revolution of the rotor.
  • FIG. 2 shows the rotor according to FIG. 1 in a top view in section according to section line II-II in FIG. 1,
  • FIG. 3 shows another rotor according to the invention
  • Wind energy converter in a top view in section similar to the illustration in FIG. 2,
  • FIG. 4 shows another rotor according to the invention
  • Wind energy converter in a top view in section similar to the illustration in FIG. 2,
  • Figure 5 shows a symmetrical profile cross section for rotor blades on rotors for wind energy converters, as they belong to the prior art
  • FIG. 6 shows a characteristic field with a comparative representation of the torque coefficients that can be achieved with the profile cross sections of the rotor blades according to FIGS. 1 to 5 as a function of the angle of rotation of the respective rotor blade over a complete revolution of the respective rotor blade.
  • FIGS. 1 and 2 show a rotor 1 according to the invention of a wind energy converter which is not shown in any more detail and which, as is known per se, contains, for example, an electrical generator and electrical / electronic switching and / or regulating means in the region of its static part, which u. a. can also be used to influence the power consumption depending on the speed with regard to easy starting of the rotor and to limit the speed with regard to very high wind speeds.
  • the rotor 1 carries on a shaft 2 a concentric rotor disk 3. On the rotor disk 3, one end of the rotor blades 4 are attached, the other ends of which are attached to a rotor disk 5, which is also concentric with the shaft 2.
  • the geometric axis of rotation of the rotor 1 formed from the rotor disks 3 and 5 with rotor blades 4 and shaft 2 is denoted by 6.
  • FIG. 2 shows corresponding rotor blades 4 with a highly asymmetrical profile cross section;
  • a professional cross section has become known as G ⁇ 557 from the relevant literature ("Results of the Aerodynamic Research Institute in Göttingen - 1st to 4th Delivery", AVA Göttingen) as a so-called high lift profile.
  • the rotor blades 4 are arranged on the surface of the geometric axis of rotation 6 of the rotor 1 with the convexly curved surface regions pointing in the direction of the buoyancy and designated by 9.
  • chord of the profile cross section of the rotor blades 4, designated 10, is against the tangent of the circumferential circle, designated 11, with the radius 12 of the rotor blades 4 having a fixed one - that is, one during the Rotary movement of the rotor 1 unchanged - angle of attack of about 0 °.
  • other (positive) inflow angles for the profile cross section will result on the windward side than on the leeward side.
  • the - as a pure number dimensionless - "torque coefficient" (C), sometimes also referred to as “torque number”, represents a measure of the torque which results from the air force acting on the rotor blade with reference to - for the arithmetical treatment - appropriately selected reference axis; in the case of blades with a profile, cross sections corresponding to the rotor blades in question are, for practical reasons, the line perpendicular to the profile plane through the intersection of the chord of the pressure side of the blade or. of the rotor blade (chord) with the perpendicular tangent to its leading edge.
  • the angle of rotation-dependent torque coefficient is directly related to the torque acting on the shaft 2 of the rotor 1 of the wind energy converter.
  • FIG. 3 shows a rotor 13 with rotor blades 14 in a manner of representation corresponding to FIG. 2.
  • the rotor blades 14 are an extreme high-lift profile with a profile section divided into two parts. Such profile cross sections with subdivision are known, for example, as a Kellner-Bechereau profile or as a Handley page profile.
  • the rotor blades 14 are set at an angle j 3 of approximately + 9 ° with respect to the tangent 11 of the orbital circuit (angle between the chord of the rotor blade 14 designated by 20 and the tangent 11 of the orbital circuit); the convexly curved surface areas of the rotor blade 14 pointing in the direction of the buoyancy are collectively designated 19.
  • FIG. 6 shows in comparison the torque coefficients that can be achieved with the profile cross section of the rotor blade 14 according to FIG. 3 in the event that the rotor blades 14 are turned by approximately + 9 °.
  • FIG. 4 shows a possible limit case in the sense of the invention, a rotor 15 with rotor blades 16, the profile cross section of which is only slightly asymmetrical.
  • Figure 3 are in any case also the rotor blades 16 arranged in such a way to the geometric axis of rotation 6 of the rotor 15 between rotor disks 3, 5 that they face the convexly curved and designated 17 with the surface areas of the geometric axis of rotation 6 of the rotor 15 pointing in the direction of the lift this are arranged.
  • the profile cross section of the rotor blades 16 - assuming a tangential pitch (angle between the chord of the rotor blade 16 denoted by 21 and the tangent 11 of the circumferential circle of the rotor blades is therefore approximately 0 °) is the Rotor blades 16 - assigned characteristic curve for the torque coefficient can likewise be found in the diagram according to FIG. 6.
  • FIG. 5 shows a symmetrical profile cross section 18 with a profile chord 22 for rotor blades on rotors for wind energy converters, which thus runs centrally through the profile cross section of the rotor blade, as they belong to the known prior art, specifically for wind energy converters with such rotor blades whose profile cross section cannot be changed is.
  • the characteristic curve for the torque coefficient for this profile cross section can also be found in the diagram according to FIG. 6, specifically for an angle of attack Q of 0 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un rotor (1) de convertisseur d'énergie éolienne, dont l'axe de rotation se trouve dans un plan perpendiculaire à la direction du vent, axe qui est de préférence vertical. Pour qu'il soit possible d'atteindre un rendement élevé avec une structure simple, les pales du rotor (4) sont montées sur le rotor de manière à ce que leurs zones superficielles convexes (9), c'est-à-dire celles faisant face à la direction de la poussée verticale, soient orientées vers l'axe de rotation géométrique du rotor (6).
PCT/DE1994/000766 1993-06-11 1994-07-06 Convertisseur d'energie eolienne a axe de rotation vertical WO1996001368A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4319291A DE4319291C1 (de) 1993-06-11 1993-06-11 Rotor für einen Windenergiekonverter mit einer in einer zur Windrichtung senkrechten Ebene liegenden, vorzugsweise vertikal verlaufenden Drehachse des Rotors
PCT/DE1994/000766 WO1996001368A1 (fr) 1993-06-11 1994-07-06 Convertisseur d'energie eolienne a axe de rotation vertical

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4319291A DE4319291C1 (de) 1993-06-11 1993-06-11 Rotor für einen Windenergiekonverter mit einer in einer zur Windrichtung senkrechten Ebene liegenden, vorzugsweise vertikal verlaufenden Drehachse des Rotors
PCT/DE1994/000766 WO1996001368A1 (fr) 1993-06-11 1994-07-06 Convertisseur d'energie eolienne a axe de rotation vertical

Publications (1)

Publication Number Publication Date
WO1996001368A1 true WO1996001368A1 (fr) 1996-01-18

Family

ID=25926663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000766 WO1996001368A1 (fr) 1993-06-11 1994-07-06 Convertisseur d'energie eolienne a axe de rotation vertical

Country Status (2)

Country Link
DE (1) DE4319291C1 (fr)
WO (1) WO1996001368A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053908A1 (fr) * 2001-01-05 2002-07-11 Latekols, Sia Eolienne a axe vertical
EP2039929A1 (fr) * 2006-06-28 2009-03-25 Qiang Yan Procédé d'installation des pales et de la roue d'un aérogénérateur à axe vertical

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319291C1 (de) * 1993-06-11 1994-07-21 Hans Erich Gunder Rotor für einen Windenergiekonverter mit einer in einer zur Windrichtung senkrechten Ebene liegenden, vorzugsweise vertikal verlaufenden Drehachse des Rotors
DE102005049938B3 (de) * 2005-10-19 2007-03-01 Zeki Akbayir Rotor für eine Strömungsmaschine und eine Strömungsmaschine
DE102006003903A1 (de) * 2006-01-27 2007-08-02 Weißenberger, Dietmar Antriebsflügel für Windkraftanlagen mit vertikaler Rotorachse
CN100374716C (zh) * 2006-03-29 2008-03-12 严强 垂直轴风力发电机叶片安装方法
DE102008012587A1 (de) 2008-03-05 2009-09-10 Gerd Eisenblätter Gmbh Optimierter Rotor für eine Windkraftanlage und Windkraftanlage zur Montage auf einem Gebäude
IT1397762B1 (it) * 2009-07-31 2013-01-24 Atzeni Aerogeneratore con rotore a flusso interno libero
WO2011127420A1 (fr) * 2010-04-09 2011-10-13 Gift Technologies, Llc Surfaces portantes d'éolienne à éléments multiples et éoliennes intégrant celles-ci
AT510210B1 (de) * 2010-08-10 2012-09-15 Riegerbauer Hermann Vorrichtung zur umsetzung der energie eines strömenden mediums
FR3011285B1 (fr) * 2013-09-30 2018-03-16 Electricfil Automotive Rotor pour eolienne notamment a axe vertical
DE202017106237U1 (de) * 2017-10-16 2019-01-17 Georg Kunz Windkraftanlage zur Umwandlung von Windenergie in mechanische und elektrische Energie sowie Land- oder Wasserfahrzeug mit einer solchen Windkraftanlage als Antrieb

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR554160A (fr) * 1922-07-07 1923-06-06 Perfectionnements aux moteurs à vent
DE634948C (de) * 1934-02-28 1936-09-07 Carl Boettcher Windrad mit mehreren Gruppen von Treibschaufeln
FR2323032A1 (fr) * 1975-09-08 1977-04-01 Baumgartner Franklin Eolienne verticale
GB1518151A (en) * 1976-05-14 1978-07-19 Peck A Energy extracting machine
DE3018211A1 (de) * 1980-05-13 1981-11-26 Eisenwerke Kaiserslautern Entwicklungsgesellschaft mbH, 6750 Kaiserslautern Windrad
DE4319291C1 (de) * 1993-06-11 1994-07-21 Hans Erich Gunder Rotor für einen Windenergiekonverter mit einer in einer zur Windrichtung senkrechten Ebene liegenden, vorzugsweise vertikal verlaufenden Drehachse des Rotors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE892130C (de) * 1951-08-03 1953-10-05 Johann Dr-Ing Cassens Windmotor
DE2816026A1 (de) * 1978-04-13 1979-10-25 Univ Gakko Hojin Tokai Windkraftmaschine mit vertikaler achse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR554160A (fr) * 1922-07-07 1923-06-06 Perfectionnements aux moteurs à vent
DE634948C (de) * 1934-02-28 1936-09-07 Carl Boettcher Windrad mit mehreren Gruppen von Treibschaufeln
FR2323032A1 (fr) * 1975-09-08 1977-04-01 Baumgartner Franklin Eolienne verticale
GB1518151A (en) * 1976-05-14 1978-07-19 Peck A Energy extracting machine
DE3018211A1 (de) * 1980-05-13 1981-11-26 Eisenwerke Kaiserslautern Entwicklungsgesellschaft mbH, 6750 Kaiserslautern Windrad
DE4319291C1 (de) * 1993-06-11 1994-07-21 Hans Erich Gunder Rotor für einen Windenergiekonverter mit einer in einer zur Windrichtung senkrechten Ebene liegenden, vorzugsweise vertikal verlaufenden Drehachse des Rotors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053908A1 (fr) * 2001-01-05 2002-07-11 Latekols, Sia Eolienne a axe vertical
AU2002215254B2 (en) * 2001-01-05 2006-03-02 Entechnology Funds Llc Vertical axis wind turbine
CZ300294B6 (cs) * 2001-01-05 2009-04-15 Latekols Sia Vetrná turbína s vertikální osou
EA013527B1 (ru) * 2001-01-05 2010-06-30 Латеколс Сиа Ветровая турбина на вертикальном валу
EP2039929A1 (fr) * 2006-06-28 2009-03-25 Qiang Yan Procédé d'installation des pales et de la roue d'un aérogénérateur à axe vertical
EP2039929A4 (fr) * 2006-06-28 2013-04-03 Qiang Yan Procédé d'installation des pales et de la roue d'un aérogénérateur à axe vertical

Also Published As

Publication number Publication date
DE4319291C1 (de) 1994-07-21

Similar Documents

Publication Publication Date Title
DE577917C (de) Mit einem elektrischen Stromerzeuger gekuppeltes Windrad
EP3008331B1 (fr) Pale de rotor d'une éolienne et éolienne
EP1620646B1 (fr) Pale de rotor d'une installation a energie eolienne
DE69404179T2 (de) Windkraftmaschine
DE69301094T2 (de) Windturbine mit senkrechter Achse
EP2235365B1 (fr) Éolienne
DE102012206109B3 (de) Rotorblatt einer Windenergieanlage
DE102012100650A1 (de) Steuerbare Oberflächenmerkmale für Windkraftanlagenrotorblätter
DE102012100593A1 (de) Steuerbare Oberflächenmerkmale für Rotorblätter von Windkraftanlagen
EP2280163B1 (fr) Eolienne et pale de rotor d'une eolienne
EP3755899B1 (fr) Pale de rotor d'une installation éolienne comprenant une plaque de déviation de la couche limite
DE19963086C1 (de) Rotorblatt für eine Windenergieanlage
WO2012164045A1 (fr) Rotor d'éolienne comportant une pale courbée
WO1996001368A1 (fr) Convertisseur d'energie eolienne a axe de rotation vertical
DE3512420C1 (de) Windenenergiekonverter
WO1980000733A1 (fr) Moteur a vent
DE3018211C2 (de) Windrad
EP1387954B1 (fr) Eolienne a axe vertical
DE3505489A1 (de) Fluegel fuer eine windkraftanlage
DE19501036A1 (de) Radial durchströmter Windenergie-Konverter mit vertikaler Drehachse
DE102018117398A1 (de) Rotorblatt für eine Windenergieanlage und Windenergieanlage
DE2804919A1 (de) Windkonverter mit vertikaler achse
DE3730423A1 (de) Ruehrvorrichtung
DE2930062C2 (fr)
EP3969741B1 (fr) Pale de rotor et éolienne

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA