WO1995029751A1 - Materiau inorganique composite poreux, notamment sous forme de membrane, et procede d'obtention d'un tel materiau - Google Patents

Materiau inorganique composite poreux, notamment sous forme de membrane, et procede d'obtention d'un tel materiau Download PDF

Info

Publication number
WO1995029751A1
WO1995029751A1 PCT/FR1995/000552 FR9500552W WO9529751A1 WO 1995029751 A1 WO1995029751 A1 WO 1995029751A1 FR 9500552 W FR9500552 W FR 9500552W WO 9529751 A1 WO9529751 A1 WO 9529751A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
porous
solid phase
molecular sieve
inorganic
Prior art date
Application number
PCT/FR1995/000552
Other languages
English (en)
Inventor
Anne Giroir-Fendler
Anne Julbe
John D. F. RAMSAY
Jean-Alain Dalmon
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to DE29521398U priority Critical patent/DE29521398U1/de
Publication of WO1995029751A1 publication Critical patent/WO1995029751A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/24Use of template or surface directing agents [SDA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/64Synthesis on support in or on refractory materials

Definitions

  • the present invention relates to composite, inorganic and porous materials, as used or proposed for constituting membranes, and in particular porous membranes of permeation.
  • the invention is concerned with materials based on molecular sieves, generally comprising:
  • an inorganic substrate of a porous nature for example a ceramic such as an alumina;
  • an inorganic solid phase with a porous crystalline structure, of the molecular sieve type, for example a synthetic zeolitic material, attached and bonded to said substrate, to coat the latter in a way, considered then as a simple support.
  • a porous crystalline structure of the molecular sieve type, for example a synthetic zeolitic material
  • Such composite materials essentially have the properties of the molecular sieves which they incorporate, which can be controlled, in a manner known per se, for example:
  • hydrophobicity / hydrophilicity characteristics of the microporous system, in particular pore size and shape, incorporation of active metals, for example platinum or silver, and catalytic activity due to alkali or alkaline earth ions,
  • porous composite inorganic materials in the form of membranes, for which the inorganic substrate of porous nature has at least one surface external and apparent, flat or curved, on which is bound a layer of molecular sieve constituting an added mineral solid phase.
  • an intermediate medium in the form of a homogeneous soil, containing dispersed and homogeneous precursors of a molecular sieve, for example silica, alumina and soda, generally water, in the case of a zeolitic material , and optionally a structuring agent for crystallization, or "template", in general a weak organic base;
  • a molecular sieve for example silica, alumina and soda
  • water in the case of a zeolitic material
  • template optionally a structuring agent for crystallization, or "template", in general a weak organic base
  • This obtaining protocol must generally be repeated several times, to obtain a molecular sieve phase in several layers, or according to the desired thickness, and free from defects.
  • a porous composite inorganic material comprising an inorganic substrate of porous nature, for example a ceramic of the alumina type, and an outer layer, deposited or hung on the apparent surface of the substrate, of mineral solid phase, with a porous crystalline structure, of the molecular sieve type, for example a zeolite, said layer being bonded to the substrate without an intergranular binding matrix.
  • an inorganic substrate of porous nature for example a ceramic of the alumina type
  • an outer layer deposited or hung on the apparent surface of the substrate, of mineral solid phase, with a porous crystalline structure, of the molecular sieve type, for example a zeolite, said layer being bonded to the substrate without an intergranular binding matrix.
  • the mode of synthesis chosen for the formation of the zeolite, in relation to the size of the pores of the substrate, is opposed to any significant penetration into the latter of the zeolitic phase; -
  • the zeolitic phase obtained does not, moreover, directly present the required properties, in particular in terms of continuity, and the hydrothermal synthesis step must be repeated several times, for example.
  • a molecular sieve comprising, in addition to the latter, an intergranular bonding matrix between the crystallites of the sieve, for example an alumina y.
  • Such a material is not likely to constitute a permeation membrane, controlled or limited by the sieve.
  • heterogeneous materials in terms of thickness, composition, crystallinity, and shape of the grains in the thickness of the material.
  • the attachment of the molecular sieve, in a layer or thin film, to the surface of the porous substrate remains limited, which can lead to the detachment of the porous crystalline phase from the substrate, in certain applications, for example at relatively high temperature.
  • the molecular sieve in layers remains present with various defects, fractures or cracks, which somehow ruin the performance of the sieves to reveal the properties and limits of the porous substrate.
  • the present invention proposes to remedy all these drawbacks.
  • the molecular sieve continuously and homogeneously fills the internal porous volume of the substrate; in other words, there is practically no or little molecular sieve outside the porous network of the substrate, or on the porous substrate.
  • This molecular sieve constitutes in situ at least one substantially continuous phase, without an intergranular bonding matrix, the interconnected crystals of which fill practically at least part of the volume. porous substrate.
  • the filling rate of the internal pore volume of the substrate is sufficient for any permeation of a fluid through the composite material obtained to be controlled or limited only by the internal solid phase synthesized in situ.
  • the molecular sieve only fills part of the pore volume, in this case the layer or layers whose pore diameter is adapted to the conditions of synthesis of the molecular sieve (in particular composition of the solution, temperature and duration of the hydrothermal treatment), and allows sufficient confinement of the oligomeric species, without however limiting too much the diffusion of these species, and thus allow their growth to form a continuous phase.
  • the molecular sieve integrated according to the invention within the substrate can be characterized by several analysis techniques, such methods confirming the existence of the sieve in the substrate in the form of a continuous phase.
  • the analysis of the molecular sieve can be done with the techniques known as SEM ("Scanning electron microscopy"), EDX ("Energy dispersive X-ray”).
  • SEM scanning electron microscopy
  • EDX Electronic X-ray
  • NMR analysis of 29 Si makes it possible to detect the presence and to estimate the degree of crystallinity of the silicon species in the macroporous alumina substrate. The details of the method are described in "High Resolution Solid-State NMR of Silicates and Zeolites", by G. Engelhardt and D. Michel, Wiley (1987).
  • the porous texture of the composite material can also be determined by porosi etrie with mercury and by isothermal adsorption of nitrogen.
  • the filling according to the invention therefore results in a reduction in size and possibly a disappearance of the pores from the substrate.
  • the calcination changes little, if at all, the porous structure obtained after hydrothermal synthesis. This indicates increased thermal stability of the internal molecular sieve phase.
  • Another method applicable for the characterization of the molecular sieve within the porous substrate is the determination of the permeability of the composite material obtained with nitrogen.
  • Such measurements can be carried out before and after in situ synthesis of the molecular sieve. It is observed in particular that the porous substrate has, before in situ synthesis, a high permeability which increases linearly with pressure, in accordance with a Poiseuille flow mechanism in large pores. After in situ synthesis of the molecular sieve, the permeability is reduced and its behavior is no longer typical of the Poiseuille diet.
  • the present invention is applicable to any mineral solid phase, with a porous crystalline structure, in particular a zeolitic material proper, since said phase can be synthesized within the starting porous inorganic substrate, under the same conditions and with the same results as those defined above.
  • the internal porous solid phase can also be a molecular sieve other than a zeolitic material proper, chosen from the aluminum ino-phosphates (ALPO), silicoaluminates (SAPO), and gallophosphates (GAPO), for example cloverite.
  • APO aluminum ino-phosphates
  • SAPO silicoaluminates
  • GAPO gallophosphates
  • the average pore diameter of the starting substrate is between a maximum diameter, beyond which the internal solid phase synthesized is no longer continuous, and a minimum diameter, below which the porous internal volume of the substrate remains substantially empty of any internal solid phase.
  • maximum and minimum values of the average pore diameter can be determined by a person skilled in the art, by routine tests, as a function of the substrates and molecular sieves selected.
  • the average pore diameter of the starting substrate is between 5 n and 10 ⁇ m, and in particular between 0.1 ⁇ m and 1 ⁇ m.
  • the present invention is ultimately the filling rate of the internal pore volume with the solid phase synthesized in situ, which determines the permeation regime of the composite material finally obtained.
  • This permeation regime can be easily controlled.
  • the inorganic substrate is intrinsically mechanically resistant. It is also resistant to relatively high temperatures, for example above 150 ° C., and / or relatively inert with respect to any chemical attack, for example corrosion in the oxidative phase.
  • Such an inorganic substrate can be chosen from ceramic materials, for example aluminas, silicas, zirconia, titanium oxides, glasses, metals, for example aluminum, steel, and sintered carbon.
  • the starting porous inorganic substrate may comprise pores of the meso or macro-pore type.
  • the internal mineral solid phase, or molecular sieve is a zeolitic material.
  • these zeolitic materials have an ordered and porous crystal structure, such as aluminosilicates, in which there is a large quantity of cavities or pores of determined diameter. This characteristic allows their use as molecular sieves, since the pores prevent the passage of molecules of a size greater than the diameter of these first.
  • zeolites are used in various applications such as the separation of complex fluids, or in catalytic processes, etc.
  • these zeolitic materials have pores with a diameter of the order of 3 x 10 ⁇ 10 m to 10 x 10 ⁇ 10 m.
  • Their chemical composition can vary according to the envisaged applications, but in general, they consist of a Si ⁇ 2 network in which one substitutes some of the Si atoms for bi-, tri- or tetravalent ions such as Be, Al, B, Ga, Fe, Ti or Ge, or a combination thereof.
  • substitution with a bivalent or trivalent ion there will also be cations such as those of Na, K, Ca, NH 4 or H, present in the structure.
  • zeolites having pores of small diameter such as NaA, CaA, and erionite
  • zeolites with medium-sized pores such as ZSM-5, ZSM-11, ZSM-22, ZSM-23, ZS -48, ZSM-12 and beta zeolite
  • zeolites with large pores such as zeolite L, ZSM-4 (omega), NaX, NaY, CaY, REY, US-Y, ZSM-20 and mordenite.
  • the zeolitic materials also include aluminosilicates containing positive cations, and having a rigid three-dimensional structure of tetrahedra of Si ⁇ 4 and AIO 4 , in which the tetrahedrons are crosslinked by covalent bond of the oxygen atoms, and in which the ratio of the total number atoms of silica and aluminum with those of oxygen is 1: 2.
  • the electro-valence of the tetrahedrons is supplemented by the addition of cations in the crystal matrix, for example alkali or alkaline-earth cations.
  • the ratio between Al and these cations, such as Ca 2+ , Sr 2+ , Na + , K + or Li + is equal to 1.
  • these cations can be exchanged in part or entirely with other cations by the way conventional ion exchange, in order to vary the properties of the aluminosilicate chosen.
  • the spaces between the tetrahedra are occupied by water molecules, before dehydration.
  • the Si / Ai atomic ratio can vary depending on the desired zeolite; for example, in some zeolites, the upper limit for Si is undefined.
  • An example of such a zeolite is ZSM-5, in which the Si / Ai atomic ratio is at least equal to 12.
  • the zeolitic material is chosen from the following zeolites, NaA, CaA, erionite, ZSM-5, ZSM-11, ZSM-22, ZSM-23, ZSM-48, ZSM- 12, beta zeolite, L zeolite, ZSM-4 (omega), NaX, NaY, CaY, REY, US-Y, ZSM-20, mordenite or zeolites A, X, Y, ZK-5, ZK-4, ZSM-35, ZSM-38 or silicalite.
  • silicalite will be used as the zeolite.
  • the porous composite inorganic material can belong to, or be integrated into an inorganic structure comprising several layers, themselves inorganic and porous.
  • a structure includes:
  • An inactive layer for example of support, constituted by an inorganic support of a porous nature, and substantially empty of any internal porous mineral solid phase, namely of molecular sieve; - And at least one active layer of a porous composite inorganic material, as defined above, and consisting essentially of a porous inorganic substrate, and an internal solid phase of molecular sieve.
  • the structure defined above may comprise several active layers of porous composite inorganic materials according to the invention, differing from one another for example by their respective mean pore diameters, the porous inorganic substrate of the different active layers remaining the same.
  • the average pore diameter of an inactive layer is less than the minimum diameter of the starting substrate of the active layer, below which the internal pore volume of said substrate remains substantially empty of any internal solid phase, namely molecular sieve, as defined above.
  • the inactive layer avoids or limits the development of the molecular sieve, outside the asymmetric structure, on the apparent surface (s), by playing in a way the role of a shield, vis-à-vis the internal solid phase of molecular sieve.
  • the average pore diameter of an inactive layer of the structure defined above can be greater than the maximum diameter of the starting substrate of the active layer, beyond which the internal solid phase of the substrate of said active layer is no longer continuous.
  • the inactive layer plays for example the role of a support layer of the active layer.
  • one or more active layers are arranged between two inactive layers, one of support, whose average pore diameter is greater than the maximum diameter mentioned above, and the other of the shield type. , whose average pore diameter is less than the aforementioned minimum diameter.
  • the different layers can be in contact with each other, or separated from each other by permeable inserts.
  • the shape of a material or a structure according to the invention can vary depending on the application envisaged. Mention will in particular be made of structures in the form of thin plates, tubes, poly-tubes, hollow fibers, honeycombs, convex or concave plates, or plates having a variable profile, or any other shape.
  • the structure is in the form of a tube, a plate or a disc, the external visible surface and the internal visible surface respectively constituting an input interface and an output interface, or vice versa, for a fluid passing through said structure.
  • Another preferred embodiment of the invention consists of a membrane for gas or liquid filtration, gas separation, reverse osmosis, or pervaporation, comprising a composite material according to the definition given above.
  • an internal solid phase consisting of a zeolitic material
  • the process for obtaining the porous composite inorganic material is produced, from an inorganic substrate of porous nature, in the following general manner:
  • An intermediate medium is first prepared, containing, in a dispersed and homogeneous manner, zeolitic precursors
  • the intermediate medium is then brought into contact, according to a hydrothermal process, with the substrate, without intergranular bonding material, whereby a zeolitic material is deposited and bonded to said substrate, without intergranular bonding matrix;
  • the substrate is washed, dried and calcined with the zeolitic material.
  • the intermediate medium used in the process is a homogeneous liquid, capable of penetrating into and impregnating the substrate, and it contains oligomers of a mineral species based on silicon, such as silica or silicate.
  • This liquid no longer has the conventional composition of a zeolite precursor sol, since it contains small silica oligomers in solution, and no longer colloids.
  • These oligomers have easy access to the porous structure of the substrate, due to their small size, of the order of a nanometer; this size is much smaller than that of the precursors of a colloidal silica solution, above ten nanometers, and which are therefore excluded from such porous substrates.
  • the intermediate medium is a basic medium containing a weak organic base, as a structuring agent for crystallization, and to the exclusion of any strong mineral base.
  • the weak organic base can be a tetraal yl ammonium hydroxide, such as tetrapropylated ammonium hydroxide (TPAOH) or tetramethylated ammonium hydroxide (TMAOH).
  • the molar ratio between the mineral species based on silicon and the weak organic base is between 0.25 and 4, and preferably between 1 and 2.
  • This ratio as well as the non-use of a strong mineral base, makes it possible to have an oligomeric soil and not a colloidal soil. This type of soil is not at all conventional for obtaining a growth of zeolites (powder) in the soil.
  • the intermediate medium can be subjected to an aging or maturing step, for example for several days, before being brought into contact with the substrate.
  • this step allows a restructuring or reorganization of the species in the intermediate environment, favorable to the formation of precursors of the zeolitic structure.
  • a zeolitic material constituted by silicalite at least one of the following operating parameters is preferred:
  • the ripening time is from 1 hour to 100 hours, preferably from 15 hours to 72 hours;
  • the hydrothermal synthesis temperature is between 150 ° C and 220 ° C, and preferably from 180 ° C to 200 ° C, and on the other hand, the duration of hydrothermal synthesis is understood between 12 noon to 120 hours, preferably between 24 hours and 96 hours; (3) the calcination temperature is from 300 ° C to 900 ° C, preferably from 400 ° C to 500 ° C; the calcination atmosphere can be oxidizing or not.
  • FIG. 1 represents a schematic view of a multi-layer structure, composite, inorganic and porous, according to the present invention, based on alumina a and; this structure has the shape of a tube.
  • Figure 2 shows an electron micrograph of a cross section of the structure illustrated in Figure 1, before synthesis of the molecular sieve, namely zeolite.
  • FIG. 4 represents an NMR spectrum of 29 Si (solid state) of the silicalite in the porous support, after hydrothermal synthesis according to the invention.
  • Figure 5 shows a picture similar to that of Figure 2, after in situ synthesis of the zeolite, including calcination.
  • the macroporous support used in this example was multi-layered and supplied by the departments Céramiques
  • Figure 1 shows a microscopic cross-section of the structure according to Figure 1, before in situ synthesis of the zeolite, in which the different layers 1 to 4 can be identified.
  • the alumina layer 1, assigned to the inactive support of the active layers 2 and 3, will remain, after in situ synthesis, substantially empty of internal solid phase of molecular sieves;
  • the active layers 2 and 3 of alumina a serving as porous substrates are filled at least partially, after synthesis in situ, with the zeolitic material;
  • the layer 4 of alumina y, forming the internal interface of the tube serves as a "shield" against any formation of zeolitic material outside the structure multi-layered; this layer 4 can be subsequently removed, for example after washing with nitric acid.
  • the synthesis of the zeolitic membrane according to Figure 1 was carried out from a solution of oligomeric silica species, which had been prepared by dissolving 12 g of finely divided silica (Aerosil 380) in 100 ml of a solution of tetrapropylated ammonium hydroxide (TPAOH; 1.0 mol / dm " 3 ).
  • TPAOH tetrapropylated ammonium hydroxide
  • This solution was then subjected to an aging period of 100 hours. During this period , there was a restructuring and a reorganization of the oligomeric species in solution, as was confirmed by the NMR analysis of 29 Si (liquid state). This restructuring is represented by
  • FIG 3 in which the reference numbers Q1, Q2, Q3, and Q4 correspond to the different components of the solution.
  • the components Q1 and Q2 represent species with a high hydroxylation rate, and therefore little oligomeric structure, while the components Q3 and Q4 correspond to more structured species.
  • the Q4 component has a highly oligomeric structure with -Si-O-Si type bonds similar to those found in soils or silica suspensions commonly used for the preparation of zeolites, but which cannot be resolved by NMR analysis of 29 Si (liquid state).
  • the second step consisted in the hydrothermal treatment of the oligomeric solution after it was brought into contact with the multi-layer composite structure according to Figure 1; that is to say the latter was immersed in the oligomeric solution, and the two introduced into a tubular PTFE reactor placed in an oven at 180 ° C for 100 hours. Under these conditions, practically no solid material synthesized outside the multilayer structure has been observed. In this intermediate state, it is possible to verify that the composite structure has zero permeability, due to the presence of the structuring agent in the porous network of said structure. This checks the absence of defect in the material thus prepared. This shows that according to the invention a single hydrothermal synthesis step may be sufficient to form a continuous zeolitic phase within the porous substrate. And the calcination then makes it possible to remove the structuring agent, and to obtain the composite material according to the invention.
  • This step is therefore followed by washing and drying of the composite structure obtained.
  • the zeolitic structure obtained was analyzed using SEM, EDX and 29 Si NMR techniques to determine its nature.
  • the two pictures according to Fig. 2 and Fig.5 respectively, show sectional views of the tube, before and after synthesis of the zeolite. It will be noted that a more finely divided structure, in this case zeolite, fills the entire intergranular space of layers 2 and 3.
  • the distribution of the zeolite phase in the macroporous structure of alumina has been determined by EDX measurements of a cross section of the multi-layer structure, according to the method described in Applied Catalysis, 96, (1993), page 83.
  • This method makes it possible to measure the atomic ratio Si / Ai in the different layers of the multilayer structure after synthesis of the zeolite.
  • This ratio is approximately constant in layers 2 and 3.
  • it is much lower in layer 1, in good agreement with the lack of filling of this layer (photos Fig. 2 and 5).
  • the crystallinity of the zeolite phase formed in the porous structure of ⁇ alumina of layers No. 2 and 3 was also determined by NMR of 29 Si, as shown in FIG. 4, and X-ray diffraction. These techniques have shown that after hydrothermal synthesis and calcination, we were in the presence of a silicalite type zeolite, well crystallized and free of aluminum. Isothermal adsorption of nitrogen at 77 K allows the texture of the silicalite phase to be determined.
  • the materials prepared according to the invention are calcined at 400 ° C and 700 ° C respectively, before being analyzed.
  • the isotherms have a type I character (according to the IUPAC definition), which indicates that the internal zeolitic phase has a microporous structure.
  • the total volume of the micropores determined from the volume of nitrogen adsorbed at the saturation point , is approximately equal to 0.01 cm 3 / g of the substrate. This low value indicates that only 3% of the multilayer structure of the composite membrane consists of the silicalite phase, which agrees with the results obtained elsewhere by mercury porosimetry, SEM, EDX and other analytical methods.
  • the aging period of the solution of oligomeric silica species is limited to 24 hours; - the hydrothermal treatment is carried out at 190 ° C, for 24 hours.
  • the support used in this example is a commercial product of the TechSep Company. It consists of a sintered carbon layer of 3 ⁇ m of average pore size and a layer based on Zr ⁇ 2 -Ti0 2 of 10 nm of average pore size.
  • This support was subjected to the same protocol as that described in Example 1, except for the duration of the hydrothermal synthesis which is here 20 hours.
  • the material obtained was characterized by SEM electron microscopy. This study indicates the presence of a zeolitic phase in the pores of the carbon layer as well as the absence of zeolitic material synthesized in and on the surface of the layer Zr ⁇ 2 ⁇ Ti0 2 .
  • the tube according to Figure 1 forming a membrane, prepared according to Example 1 was tested to determine its gas separation properties. These properties were studied by mixing the two isomers 2,2 dimethylbutane and n-hexane in a 1: 1 ratio and by introducing the mixture inside the tube prepared according to example 1.
  • the new porous inorganic composite materials according to the present invention prove to be particularly resistant, both mechanically and physico-chemically. They can in particular withstand, without substantial alteration or modification, particularly severe conditions of use, for example high temperatures, oxidizing media, or in the aqueous phase for example. It is in particular under these conditions of use that they provide performance and durability, compared with traditional composite materials, for which the phase with a porous crystalline structure constitutes a surface layer attached to a porous substrate.
  • the composite materials according to the present invention provides much better performance than that obtained with traditional catalysts in the same application, for example a dehydrogenation reaction of an organic substrate, oxidizing or not.
  • the materials according to the invention can be shaped into any shape or configuration appropriate to their applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Matériau inorganique composite poreux, comprenant un substrat inorganique de nature poreuse (2, 3), et une phase solide minérale (1), à structure cristalline poreuse, du type tamis moléculaire, par exemple une matière zéolithique, liée au substrat sans matrice de liaison intergranulaire, caractérisé en ce que, en combinaison: majoritairement, la phase solide minérale poreuse est obtenue par synthèse directement au sein du substrat et remplit de manière continue et homogène son volume interne poreux, avec un taux de remplissage dudit volume suffisant pour que toute perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne, et le diamètre moyen de pore du substrat de départ est compris entre un diamètre maximum, au-delà duquel la phase solide interne synthétisée n'est plus continue, et un diamètre minimum, en deçà duquel le volume interne poreux du substrat demeure substantiellement vide de toute phase solide interne.

Description

Matériau inorganique composite poreux, notamment sous forme de membrane, et procédé d'obtention d'un tel matériau La présente invention concerne les matériaux composites, inorganiques et poreux, tels qu'utilisés ou proposés pour constituer des membranes, et notamment des membranes poreuses de perméation.
Plus précisément, l'invention s'intéresse aux matériaux à base de tamis moléculaires, comprenant de manière générale :
- un substrat inorganique de nature poreuse, par exemple une céramique telle qu'une alumine ;
- et une phase solide minérale, à structure cristalline poreuse, du type tamis moléculaire, par exemple une matière zéolithique de synthèse, rapportée et liée audit substrat, pour enrober en quelque sorte ce dernier, considéré alors comme un simple support.
De tels matériaux composites possèdent pour l'essentiel les propriétés des tamis moléculaires qu'ils incorporent, lesquelles peuvent être contrôlées, de manière connue en soi, par exemple :
- en termes de sélectivité : hydrophobie/hydrophilie, caractéristiques du système microporeux, notamment taille et forme des pores, incorporation de métaux actifs, par exemple platine ou argent, et activité catalytique du fait d'ions alcalins ou alcalino-terreux,
Figure imgf000003_0001
- en termes de perméabilité : dimensions des canaux et coefficient de diffusion, etc.... On connaît déjà et on a décrit des matériaux inorganiques composites poreux, sous forme de membranes, pour lesquels le substrat inorganique de nature poreuse présente au moins une surface extérieure et apparente, plane ou courbe, sur laquelle est liée une couche de tamis moléculaire constituant une phase solide minérale rapportée. Ces matériaux sont obtenus, en général :
- en préparant un milieu intermédiaire, sous forme de sol homogène, contenant de manière dispersée et homogène des précurseurs d'un tamis moléculaire, par exemple silice, alumine et soude, en général de l'eau, dans le cas d'une matière zéolithique, et éventuellement un agent structurant de cristallisation, ou "template " , en général une base organique faible ;
- en mettant en contact, selon un processus hydrothermal, le milieu intermédiaire ou sol, avec le substrat inorganique poreux, moyennant quoi une matière cristalline poreuse se trouve déposée, sous la forme d'une phase solide, liée audit substrat, sans matrice de liaison intergranulaire ; - et en lavant, séchant et calcinant le substrat, pour obtenir le tamis moléculaire lié à ce dernier.
Ce protocole d'obtention doit en général être répété plusieurs fois, pour obtenir une phase de tamis moléculaire en plusieurs couches, ou selon l'épaisseur désirée, et exempte de défauts.
Conformément aux documents EP-A-0 511 739 et O-A-93 17781, on a proposé un matériau inorganique composite poreux, comprenant un substrat inorganique de nature poreuse, par exemple une céramique du type alumine, et une couche extérieure, déposée ou accrochée sur la surface apparente du substrat, de phase solide minérale, à structure cristalline poreuse, du type tamis moléculaire, par exemple une zéolithe, ladite couche étant liée au substrat sans matrice de liaison intergranulaire. Selon ces deux documents, il existe une pénétration partielle de la phase solide minérale, dans le substrat inorganique, limitée à l'accrochage superficiel de ladite phase sur ledit substrat, à l'exclusion de tout remplissage continu du volume interne dudit substrat avec ladite phase. Différentes preuves de cet accrochage superficiel sont d'ailleurs données dans ces deux documents :
- l'existence d'un film ou couche superficielle de zéolithe est soit montrée par microscopie électronique, soit par un dessin ;
- le mode de synthèse retenu pour la formation de la zéolithe, en relation avec la taille des pores du substrat, s'oppose à toute pénétration importante dans ce dernier de la phase zéolithique ; - la phase zéolithique obtenue ne présente d'ailleurs pas, directement, les propriétés requises, notamment en termes de continuité, et il faut répéter plusieurs fois l'étape de synthèse hydrothermale par exemple.
Conformément à la publication de Meng-Dong Jia et al, ayant pour titre "Ceramic zeolite composite membranes ; préparation, characterization and gas perméation " , parue dans les pages 15 à 26 du
N° 82 de 1993 du Journal of Membrane Science , on a décrit un matériau inorganique composite et poreux tel que défini précédemment, sous forme de membrane, dont le tamis moléculaire est sous forme polycristalline dense avec une structure tridimensionnelle, et ce sans matériau ou matrice de liaison intergranulaire. Dans leurs conclusions, les auteurs observent que la couche de tamis moléculaire présente différents défauts, apparaissant notamment lors de la calcination du "template " , de telle sorte que la perméation dans ladite membrane ne s'effectue pas seulement au travers de la couche de tamis moléculaire.
Le document US-C-4 699 892 présente un enseignement comparable à celui du document EP-A-0 511 739.
Conformément au document EP-0 180 200, on a proposé un matériau inorganique composite poreux, tel que défini précédemment, mais selon une autre voie, à savoir : - en partant d'un substrat inorganique poreux, dont les pores présentent des dimensions relativement importantes, par exemple une alumine α
- tant en revêtissant la surface externe et apparente du substrat, qu'en remplissant son volume interne, avec un tamis moléculaire comprenant, outre ce dernier, une matrice de liaison intergranulaire entre les cristallites du tamis, par exemple une alumine y.
Un tel matériau n'est pas susceptible de constituer une membrane de perméation, contrôlée ou limitée par le tamis.
Les matériaux et procédé décrits précédemment présentent différents inconvénients.
Ils constituent des matériaux hétérogènes, en termes d'épaisseur, de composition, de cristallinité, et de forme des grains dans l'épaisseur du matériau.
L'accrochage du tamis moléculaire, en couche ou film mince, sur la surface du substrat poreux demeure limitée, ce qui peut conduire au détachement de la phase cristalline poreuse du substrat, dans certaines applications, par exemple à température relativement élevée.
Le tamis moléculaire en couche demeure présenter différents défauts, fractures ou fissures, qui en quelque sorte ruinent les performances des tamis pour laisser apparaître les propriétés et limites du substrat poreux.
La présente invention se propose de remédier à tous ces inconvénients.
Conformément à la présente invention, et s'agissant d'une phase solide minérale, à structure cristalline poreuse, constituée par un tamis moléculaire, on a tout d'abord découvert que l'on pouvait former in situ, par nucléation et cristallisation confinée, ledit tamis, dans le substrat inorganique poreux, y compris dans ses pores, à la condition, d'une part d'utiliser un milieu intermédiaire très particulier, à savoir un liquide homogène, comprenant des oligomères d'au moins une espèce minérale appartenant à la composition du tamis moléculaire que l'on veut synthétiser, par exemple silice ou silicate pour une matière zéolithique, et d'autre part, d'imprégner et faire pénétrer ce liquide dans et au sein du substrat.
Avec de tels précurseurs zéolithiques, non cristallins, et en solution, il devient possible, lors du processus hydrothermal, de former un tamis moléculaire continu dans le volume interne du substrat, notamment à l'intérieur des pores de ce dernier, et ce, sans aucune matrice de liaison intergranulaire.
Au cours du procédé selon la présente invention, de manière caractéristique, interviennent des phénomènes physico-chimiques permettant la croissance interne du tamis moléculaire. Sans que le déposant soit limité dans la portée de ses droits par l'explication ci-après, ces phénomènes pourraient être basés sur un effet de confinement des oligomères dans les pores. Ce confinement favorise en définitive la nucléation et la croissance in situ du tamis moléculaire. Par ailleurs, selon ce même procédé, les différents additifs, et notamment l'agent structurant de cristallisation ("template ") sont éliminés facilement lors du processus de séchage/calcinâtion, et en particulier en préservant la continuité du tamis moléculaire interne.
De cette manière, une fois le procédé d'obtention terminé, majoritairement (en poids) et pour l'essentiel, voire en totalité, le tamis moléculaire remplit de manière continue et homogène le volume interne poreux du substrat ; en d'autres termes, il n'existe pratiquement pas ou peu de tamis moléculaire à l'extérieur du réseau poreux du substrat, ou sur le substrat poreux. Ce tamis moléculaire constitue in situ au moins une phase substantiellement continue, sans matrice de liaison intergranulaire, dont les cristaux interconnectés remplissent pratiquement au moins une partie du volume poreux du substrat. Et le taux de remplissage du volume poreux interne du substrat est suffisant pour que toute perméation d'un fluide au travers du matériau composite obtenu soit contrôlée ou limitée uniquement par la phase solide interne synthétisée in situ.
Dans le cas d'un substrat poreux asymétrique, à plusieurs couches de porosités respectivement différentes, tel que représenté et décrit ci-après par référence à la figure 1, le tamis moléculaire ne remplit qu'une partie du volume poreux, en l'occurrence la ou les couches dont le diamètre des pores est adapté aux conditions de synthèse du tamis moléculaire (notamment composition de la solution, température et durée du traitement hydrothermal) , et permet un confinement suffisant des espèces oligomériques, sans toutefois limiter trop la diffusion de ces espèces, et pour permettre ainsi leur croissance pour former une phase continue.
Le tamis moléculaire intégré selon l'invention au sein du substrat peut être caractérisé par plusieurs techniques d'analyse, de telles méthodes confirmant l'existence du tamis dans le substrat sous la forme d'une phase continue.
Par exemple, l'analyse du tamis moléculaire peut se faire avec les techniques dites SEM ("Scanning électron microscopy") , EDX ("Energy dispersive X-ray") . En particulier, pour les matières zéolithiques, l'analyse par RMN du 29Si (MASNMR) permet de détecter la présence et d'estimer le degré de cristallinité des espèces siliciées dans le substrat macroporeux d'alumine . Les détails de la méthode sont décrits dans "High Resolution Solid-State NMR of Silicates and Zeolites", de G. Engelhardt et D. Michel, Wiley (1987).
La texture poreuse du matériau composite (support macroporeux plus phase interne de tamis moléculaire) peut également être déterminée par porosi étrie à mercure et par adsorption isotherme d'azote. Selon l'invention et après synthèse du tamis moléculaire, des changements importants de la taille des pores sont effectivement observés. Ces changements correspondent à la formation de tamis moléculaire, dont les cristaux recouvrent les grains du support macroporeux. Le remplissage selon l'invention se traduit donc par une diminution de taille et éventuellement une disparition des pores du substrat. La calcination ne change que peu, ou pas du tout, la structure poreuse obtenue après synthèse hydrothermale. Ceci indique une stabilité thermique accrue de la phase interne de tamis moléculaire.
Une autre méthode applicable pour la caractérisation du tamis moléculaire au sein du substrat poreux est la détermination de la perméabilité du matériau composite obtenu à l'azote. De telles mesures peuvent être effectuées avant et après synthèse in situ du tamis moléculaire. On observe notamment que le substrat poreux présente avant synthèse in situ une perméabilité importante qui augmente linéairement avec la pression, en accord avec un mécanisme d'écoulement de Poiseuille dans les pores de grande taille. Après synthèse in situ du tamis moléculaire, la perméabilité est réduite et son comportement n'est plus typique du régime de Poiseuille . Ces mesures sont importantes parce qu'elles indiquent que le tamis moléculaire interne est pratiquement sans défaut.
La présente invention est applicable à toute phase solide minérale, à structure cristalline poreuse, notamment une matière zéolithique proprement dite, dès lors que ladite phase peut être synthétisée au sein du substrat inorganique poreux de départ, dans les mêmes conditions et avec les mêmes résultats que ceux définis précédemment.
La phase solide poreuse interne peut aussi être un tamis moléculaire autre qu'une matière zéolithique proprement dite, choisi parmi les alu ino-phosphates (ALPO) , les silicoaluminates (SAPO) , et les gallophosphates (GAPO) , par exemple la clovérite.
Mais, selon l'invention, il est essentiel que le diamètre moyen de pore du substrat de départ soit compris entre un diamètre maximum, au-delà duquel la phase solide interne synthétisée n'est plus continue, et un diamètre minimum, en-deçà duquel le volume interne poreux du substrat demeure substantiellement vide de toute phase solide interne. Ces valeurs maximum et minimum du diamètre moyen de pore sont déterminables par l'homme du métier, par des essais de routine, en fonction des substrats et tamis moléculaires retenus. S'agissant par exemple d'une matière zéolithique constituant la phase solide interne, par exemple d'une silicalite, le diamètre moyen de pore du substrat de départ est compris entre 5 n et 10 μm, et notamment entre 0,1 μm et 1 μm.
Selon la présente invention, c'est en définitive le taux de remplissage du volume poreux interne avec la phase solide synthétisée in situ, qui détermine le régime de perméation du matériau composite finalement obtenu.
Ce régime de perméation peut être aisément contrôlé.
On peut tout d'abord établir ou connaître le régime d'écoulement, d'une part du substrat poreux de départ, et d'autre part du tamis moléculaire en tant que tel, puis établir le régime d'écoulement du matériau poreux composite, pour retrouver un régime différent ou similaire à celui du tamis moléculaire, selon que ce dernier ne remplit pas ou remplit, sous forme solide continue, le substrat poreux.
Quant au remplissage avec le tamis moléculaire, on peut rechercher, par tous moyens d'analyse appropriés tels que la microscopie SEM, EDX, la présence et quantité dudit tamis au sein du substrat poreux, par exemple en établissant le rapport Si/Ai pour une zéolithe selon l'épaisseur du substrat, par exemple dans le cas de silicalite déposée dans une alumine poreuse.
Le substrat inorganique est intrinsèquement résistant mécaniquement. Il est aussi résistant aux températures relativement élevées, par exemple supérieures à 150°C, et/ou relativement inerte par rapport à toute agression chimique, par exemple une corrosion en phase oxydante.
Un tel substrat inorganique peut être choisi parmi les matériaux céramiques, par exemple des alumines, des silices, des zircones, des oxydes de titane, les verres, les métaux, par exemple l'aluminium, l'acier, et le carbone fritte.
Le substrat inorganique poreux de départ peut comporter des pores du type méso ou macro-pores.
Avantageusement, la phase solide minérale interne, ou tamis moléculaire, est une matière zéolithique.
En général, ces matières zéolithiques présentent une structure cristalline ordonnée et poreuse, telle que les aluminosilicates, dans lesquels il existe une grande quantité de cavités ou pores de diamètre déterminé. Cette caractéristique permet leur utilisation en tant que tamis moléculaires, puisque les pores empêchent le passage de molécules d'une dimension supérieure au diamètre de ces premiers. Ainsi, les zéolithes sont utilisées dans diverses applications telles que la séparation de fluides complexes, ou dans des procédés catalytiques, etc..
Typiquement, ces matières zéolithiques ont des pores de diamètre de l'ordre de 3 x 10~10 m à 10 x 10~10 m. Leur composition chimique peut varier en fonction des applications envisagées, mais en général, elles consistent en un réseau de Siθ2 dans lequel on substitue certains des atomes Si a des ions bi-, tri- ou tétravalents tels que les ions de Be, Al, B, Ga, Fe, Ti ou Ge, ou une combinaison de ceux-ci. Dans le cas d'une substitution par un ion bivalent ou trivalent, il y aura également des cations tels que ceux de Na, K, Ca, NH4 ou H, présents dans la structure. On peut citer par exemple des zéolithes ayant des pores de petit diamètre, tels que la NaA, la CaA, et l'érionite ; des zéolithes ayant des pores de taille moyenne telles que la ZSM-5, la ZSM-11, la ZSM-22, la ZSM-23, la ZS -48, la ZSM-12 et la zéolithe béta ; et des zéolithes ayant des pores de grand diamètre tels que la zéolithe L, la ZSM-4 (oméga) , la NaX, la NaY, la CaY, la REY, la US-Y, la ZSM-20 et la mordénite. Les matières zéolithiques comprennent également des aluminosilicates contenant des cations positifs, et ayant une structure rigide tridimensionnelle de tétraèdres de Siθ4 et AIO4, dans laquelle les tétraèdres sont réticulés par liaison covalente des atomes d'oxygène, et dans laquelle le rapport du nombre total des atomes de silice et d'aluminium avec ceux d'oxygène est de 1:2. L'électro-valence des tétraèdres est complétée par l'ajout de cations dans la matrice cristalline, par exemple des cations alcalins ou alcalino-terreux. Le rapport entre Al et ces cations, tels que Ca2+, Sr2+, Na+, K+ ou Li+ est égal à 1. Ainsi, on peut échanger ces cations en partie ou entièrement avec d'autres cations par la voie classique d'échange d'ions, afin de varier les propriétés de l'aluminosilicate choisi. Les espaces entre les tétraèdres sont occupés par des molécules d'eau, avant la déshydratation.
Le rapport atomique Si/Ai peut varier selon la zéolithe recherchée ; par exemple, dans certaines zéolithes, la limite supérieure pour Si est non définie. Un exemple d'une telle zéolithe est la ZSM-5, dans laquelle le rapport atomique Si/Ai est au moins égal à 12.
Avantageusement, la matière zéolithique est choisie parmi les zéolithes suivantes, la NaA, la CaA, l'érionite, la ZSM-5, la ZSM-11, la ZSM-22, la ZSM-23, la ZSM-48, la ZSM-12, la zéolithe béta, la zéolithe L, la ZSM-4 (oméga), la NaX, la NaY, la CaY, la REY, la US-Y, la ZSM-20, la mordénite ou encore les zéolithes A, X, Y, ZK-5, ZK-4, ZSM-35, ZSM-38 ou de la silicalite. De préférence, on utilisera comme zéolithe la silicalite.
Selon un mode d'exécution particulièrement intéressant de la présente invention, le matériau inorganique composite poreux, défini précédemment de manière générale, peut appartenir, ou être intégré dans une structure inorganique comportant plusieurs couches, elles-mêmes inorganiques et poreuses. A cette fin, une telle structure comprend :
- une couche inactive, par exemple de support, constituée par un support inorganique de nature poreuse, et substantiellement vide de toute phase solide minérale poreuse, interne, à savoir de tamis moléculaire ; - et au moins une couche active d'un matériau inorganique composite poreux, tel que défini précédemment, et constitué pour l'essentiel par un substrat inorganique poreux, et une phase solide interne de tamis moléculaire. La structure définie précédemment peut comprendre plusieurs couches actives de matériaux inorganiques composites poreux selon l'invention, différant les unes des autres par exemple par leurs diamètres moyens de pore respectifs, le substrat inorganique poreux des différentes couches actives demeurant le même.
Préférentiellement, le diamètre moyen de pore d'une couche inactive est inférieur au diamètre minimum du substrat de départ de la couche active, en deçà duquel le volume poreux interne dudit substrat demeure substantiellement vide de toute phase solide interne, à savoir de tamis moléculaire, tel que défini précédemment. Dans ce cas, la couche inactive évite ou limite le développement du tamis moléculaire, à l'extérieur de la structure asymétrique, sur la ou ses surfaces apparentes, en jouant en quelque sorte le rôle d'un bouclier, vis-à-vis de la phase solide interne de tamis moléculaire. Le diamètre moyen de pore d'une couche inactive de la structure définie précédemment peut être supérieur au diamètre maximum du substrat de départ de la couche active, au delà duquel la phase solide interne du substrat de ladite couche active n'est plus continue. Dans ce cas, la couche inactive joue par exemple le rôle d'une couche de support de la couche active.
Selon le mode préféré d'exécution de l'invention, une ou plusieurs couches actives sont disposées entre deux couches inactives, l'une de support, dont le diamètre moyen de pore est supérieur au diamètre maximum précité, et l'autre du type bouclier, dont le diamètre moyen de pore est inférieur au diamètre minimum précité.
Dans la structure multi-couches définie précédemment, les différentes couches peuvent être au contact les unes des autres, ou séparées les unes des autres par des intercalaires perméables.
La forme d'un matériau ou d'une structure selon l'invention peut varier selon l'application envisagée. On citera notamment des structures en forme de plaques minces, de tubes, de poly-tubes, de fibres creuses, de nids d'abeille, de plaques convexes ou concaves, ou de plaques ayant un profil variable, ou toute autre forme. De préférence, la structure est sous la forme d'un tube, d'une plaque ou d'un disque, dont la surface apparente externe et la surface apparente interne constituent respectivement une interface d'entrée et une interface de sortie, ou inversement, pour un fluide traversant ladite structure. Un autre mode préféré de l'invention consiste en une membrane de filtration de gaz ou de liquide, de séparation de gaz, d'osmose inverse, ou pervaporation, comprenant un matériau composite selon la définition donnée ci-dessus. Dans le cas d'une phase solide interne constituée par une matière zéolithique, le procédé d'obtention du matériau inorganique composite poreux s'effectue, à partir d'un substrat inorganique de nature poreuse, de la manière générale suivante :
- on prépare d'abord un milieu intermédiaire, contenant, de manière dispersée et homogène, des précurseurs zéolithiques ;
- on met ensuite en contact, selon un processus hydrothermal, le milieu intermédiaire avec le substrat, sans matériau de liaison intergranulaire, moyennant quoi une matière zéolithique se trouve déposée et liée audit substrat, sans matrice de liaison intergranulaire ;
- et enfin, on lave, sèche et calcine le substrat avec la matière zéolithique.
Selon l'invention, le milieu intermédiaire utilisé dans le procédé est un liquide homogène, susceptible de pénétrer dans et imprégner le substrat, et il contient des oligomères d'une espèce minérale à base de silicium, telle que silice ou silicate. Ce liquide n'a plus la composition classique d'un sol précurseur de zéolithes, puisqu'il contient des oligomères de silice de petite taille en solution, et non plus des colloïdes. Ces oligomères ont un accès aisé à la structure poreuse du substrat, en raison de leur petite taille, de l'ordre du nanomètre ; cette taille est bien inférieure à celle des précurseurs d'une solution de silice colloïdale, au-dessus d'une dizaine de nanomètres, et qui de ce fait se trouvent exclus de tels substrats poreux. De préférence, le milieu intermédiaire est un milieu basique contenant une base organique faible, à titre d'agent structurant de cristallisation, et à l'exclusion de toute base minérale forte. Par exemple, la base organique faible peut être un hydroxyde d'ammonium tetraal ylé, tel que l'hydroxyde d'ammonium tetrapropylé (TPAOH) ou tetraméthylé (TMAOH) .
Avantageusement, le rapport molaire entre l'espèce minérale à base de silicium et la base organique faible est compris entre 0,25 et 4, et préférentiellement entre 1 et 2. Ce rapport ainsi que la non utilisation d'une base minérale forte, permet d'avoir un sol oligomerique et non un sol colloïdal. Ce type de sol n'est pas du tout classique pour obtenir une croissance de zéolithes (en poudre) dans le sol.
En effet, dans des conditions hydrothermales classiques (180°C, pendant plusieurs heures) , on n'obtient quasiment pas de zéolithe dans l'autoclave en l'absence de tout substrat poreux. Par contre, la présence d'un tel substrat permet de générer une croissance zéolithique à l'intérieur des pores, par un effet de confinement des oligomères dans des cavités restreintes. La taille optimale des pores favorisant la croissance des cristaux dans le substrat est adaptée aux conditions expérimentales, telles que la composition du sol, la température et la durée du traitement hydrothermal.
Par ailleurs, le milieu intermédiaire peut être soumis à une étape de vieillissement ou mûrissement, par exemple pendant plusieurs jours, avant d'être mis au contact du substrat.
On constate que cette étape permet une restructuration ou réorganisation des espèces dans le milieu intermédiaire, favorable à la formation de précurseurs de la structure zéolithique. A titre d'exemple, s'agissant d'une matière zéolithique constituée par de la silicalite, au moins l'un des paramètres opératoires suivants est préféré :
(1) le temps de mûrissement, est de 1 heure à 100 heures, préférentiellement de 15 heures à 72 heures ;
(2) en combinaison, d'une part la température de synthèse hydrothermale est comprise entre 150° C et 220° C, et préférentiellement de 180° C à 200° C, et d'autre part, la durée de synthèse hydrothermale est comprise entre 12 heures à 120 heures, préférentiellement entre 24 heures et 96 heures ; (3) la température de calcination est comprise de 300° C à 900°C, préférentiellement de 400° C à 500° C ; l'atmosphère de calcination peut être oxydante ou non. L'invention sera mieux comprise à l'aide des exemples suivants, qui ne limitent aucunement la portée de l'invention, et en se référant aux Figures 1 à 5. La Figure 1 représente une vue schématique d'une structure multi-couches, composite, inorganique et poreuse, selon la présente invention, à base d'alumines a et ; cette structure a la forme d'un tube.
La Figure 2 représente un cliché en microscopie électronique d'une section transversale de la structure illustrée par la Figure 1, avant synthèse du tamis moléculaire, à savoir de la zéolithe.
La Figure 3 représente un spectre de RMN du 29Si
(état liquide) d'une solution d'espèces oligomériques de silice (ou milieu intermédiaire selon le procédé selon l'invention), après vieillissement, en vue d'une synthèse hydrothermale selon l'invention.
La Figure 4 représente un spectre de RMN du 29Si (état solide) de la silicalite dans le support poreux, après synthèse hydrothermale selon l'invention.
La Figure 5 représente un cliché similaire à celui de la Figure 2, après synthèse in situ de la zéolithe, dont calcination.
EXEMPLE 1
Le support macroporeux utilisé dans cet exemple était multi-couches et fourni par la Société des Céramiques
Techniques, et avait au départ la forme d'un tube de 150 mm de long et de 10 mm de diamètre externe. Il consistait selon la Figure 1 en trois couches concentriques 1 à 3 d'alumine α avec une couche mince 4 d'alumine comme couche intérieure. Ces couches avaient les dimensions données dans le tableau 1 ci-dessous et illustrées schematiquement par la Figure 1. La Figure 2 montre une vue microscopique en section transversale de la structure selon Figure 1, avant synthèse in situ de la zéolithe, dans lequel les différentes couches 1 à 4 peuvent être identifiées.
TABLEAU 1
Couche Epaisseur (μm) Diamètre des pores (μm)
N° 1 2000 12 Al203α
N° 2 40 0 , 8 Al203α
N° 3 20 0 , 2 Al203α
N° 4 3 0 , 005 A12037
Conformément à l'invention :
- la couche 1 d'alumine , affectée au support inactif des couches actives 2 et 3, restera, après synthèse in situ, substantiellement vide de phase solide interne de tamis moléculaires ;
- les couches actives 2 et 3 d'alumine a servant de substrats poreux, sont remplies au moins partiellement, après synthèse in situ, avec la matière zéolithique ;
- et la couche 4 d'alumine y, formant l'interface interne du tube, sert de "bouclier" vis-à-vis de toute formation de matière zéolithique à l'extérieur de la structure multi-couches ; cette couche 4 peut être ultérieurement éliminée, par exemple après lavage à l'acide nitrique.
La synthèse de la membrane zéolithique selon Figure 1 a été effectuée à partir d'une solution d'espèces de silice oligomériques, laquelle avait été préparée en dissolvant 12 g de silice finement divisée (Aerosil 380) dans 100 ml d'une solution d'hydroxyde d'ammonium tetrapropylé (TPAOH ; 1.0 mol/dm"3). Le rapport molaire de Si02/TPAOH dans cette solution oligomerique était de 2:1. Cette solution était ensuite soumise à une période de vieillissement de 100 heures. Pendant cette période, il y a eu une restructuration et une réorganisation des espèces oligomériques en solution, ainsi que cela avait été confirmé par l'analyse par RMN du 29Si (état liquide). Cette restructuration est représentée par la
Figure 3, dans laquelle les numéros de référence Ql, Q2, Q3, et Q4 correspondent aux composants différents de la solution. Les composants Ql et Q2 représentent des espèces ayant un taux d'hydroxylation élevé, et donc peu de structure oligomerique, tandis que les composants Q3 et Q4 correspondent à des espèces plus structurées. En particulier, le composant Q4 comporte une structure hautement oligomerique avec des liaisons du type -Si-O-Si semblables à celles qu'on trouve dans des sols ou des suspensions de silice couramment utilisées pour la préparation de zéolithes, mais qui ne peuvent être résolus par l'analyse RMN du 29Si (état liquide) .
La deuxième étape consistait en le traitement hydrothermal de la solution oligomerique après sa mise en contact avec la structure composite multi-couches selon Figure 1 ; c'est-à-dire cette dernière était immergée dans la solution oligomerique, et les deux introduits dans un réacteur tubulaire en PTFE placé dans une étuve à 180° C pendant 100 heures. Dans ces conditions, il n'a pratiquement pas été observé de matériau solide synthétisé en dehors de la structure multi-couches. Dans cet état intermédiaire, il est possible de vérifier que la structure composite a une perméabilité nulle, due à la présence de l'agent structurant dans le réseau poreux de ladite structure. On contrôle ainsi l'absence de défaut dans le matériau ainsi préparé. Ceci montre que selon l'invention une seule étape de synthèse hydrothermale peut suffire pour former une phase zéolithique continue au sein du substrat poreux. Et la calcination permet ensuite d'éliminer l'agent structurant, et d'obtenir le matériau composite selon l'invention.
Cette étape est donc suivie du lavage et du séchage de la structure composite obtenue.
Après la synthèse, la structure zéolithique obtenue a été analysée au moyen des techniques SEM, EDX et RMN du 29Si afin de déterminer sa nature. Les deux clichés selon Fig. 2 et Fig.5 respectivement, présentent des vues en coupe du tube, avant et après synthèse de la zéolithe. On notera qu'une structure plus finement divisée, en l'occurrence de la zéolithe, remplit tout l'espace intergranulaire des couches N° 2 et 3. La distribution de la phase de zéolithe dans la structure macroporeuse d'alumine a a été déterminée par des mesures EDX d'une section transversale de la structure multi-couches, d'après la méthode décrite dans Applied Catalysis, 96, (1993), page 83. Cette méthode permet de mesurer le rapport atomique Si/Ai dans les différentes couches de la structure multi- couches après synthèse de la zéolithe. Ce rapport est approximativement constant dans les couches N° 2 et 3. Il est par contre beaucoup plus faible dans la couche N° 1, en bon accord avec l'absence de remplissage de cette couche (clichés Fig. 2 et 5) . Il devient très faible lorsqu'on analyse la couche de surface (couche N° 4) , ce qui démontre que l'on n'a pas dans cet exemple de formation de zéolithe en dehors du réseau poreux du substrat des couches N° 2 et 3 (il a en effet été observé par ailleurs que lorsqu'il y avait croissance de zéolithe sur l'interface interne du tube, le rapport Si/Ai devenait alors très grand) .
La cristallinité de la phase de zéolithe formée dans la structure poreuse d'alumine α des couches N° 2 et 3 a également été déterminée par RMN du 29Si, ainsi que représentée par la Figure 4, et diffraction des rayons X. Ces techniques ont montré qu'après synthèse hydrothermale et calcination, on était en présence d'une zéolithe de type silicalite, bien cristallisée et exempte d'aluminium. L'adsorption isothermique d'azote à 77 K permet la détermination de la texture de la phase de silicalite. En général, les matériaux préparés selon l'invention sont calcinés à 400°C et 700°C respectivement, avant d'être analysés. On observe que les isothermes ont un caractère de type I (suivant la définition IUPAC) , ce qui indique que la phase interne zéolithique a une structure microporeuse. A titre d'exemple, pour un substrat poreux asymétrique, à plusieurs couches, tel que représenté et décrit par référence à la figure 1, on note que le volume total des micropores, déterminé à partir du volume d'azote adsorbé au point de saturation, est approximativement égal à 0,01 cm3/g du substrat. Cette valeur faible indique que seulement 3 % de la structure multi-couches de la membrane composite sont constitués par la phase de silicalite, ce qui concorde avec les résultats obtenus par ailleurs par porosimétrie au mercure, SEM, EDX et d'autres méthode analytiques.
La présence de cette phase microporeuse dans le réseau macroporeux de la structure multi-couches a été confirmée par porosimétrie au mercure, qui ne met plus en évidence que la couche de diamètre de pore de 12 μm.
L'ensemble de ces données indique qu'il y a eu synthèse d'un matériau zéolithique de type silicalite à l'intérieur de la structure multi-couches macroporeuse, et préférentiellement dans la couche N° 3 de plus faible taille de pore (0,2 μm) . L'absence quasi-totale de matériau synthétisé en dehors du tube selon Figure 1 suggère que des effets de confinement dans le support favorisent un processus de germination locale de la zéolithe.
EXEMPLE 2
On part du même substrat ou support macroporeux que celui selon Exemple 1, et représenté à la Figure 1. On met en oeuvre le même procédé que celui explicité et défini dans l'Exemple 1, en modifiant seulement les paramètres suivants :
- la période de vieillissement de la solution d'espèces de silice oligomériques est limitée à 24 heures ; - le traitement hydrothermal s'effectue à 190 °C, pendant 24 heures.
Dans ces conditions, il n'est pas observé de phase de tamis moléculaire continue, à l'extérieur du support macroporeux. Et l'analyse par SEM révèle comme précédemment, la présence d'une silicalite dans les couches N° 2 et 3 du support macroporeux.
EXEMPLE 3
Le support utilisé dans cet exemple est un produit commercial de la Société TechSep . Il est constitué d'une couche de carbone fritte de 3 μm de taille moyenne de pore et d'une couche à base de Zrθ2-Ti02 de 10 nm de taille moyenne de pore.
Ce support a été soumis au même protocole que celui décrit dans l'Exemple 1, à l'exception de la durée de la synthèse hydrothermale qui est ici de 20 heures.
Le matériau obtenu a été caractérisé par microscopie électronique SEM. Cette étude indique la présence d'une phase zéolithique dans les pores de la couche carbone ainsi que l'absence de matière zéolithique synthétisée dans et en surface de la couche Zrθ2~Ti02.
EXEMPLE 4
Le tube selon Figure 1 formant membrane, préparé selon l'Exemple 1 a été testé pour déterminer ses propriétés de séparation gazeuse. Ces propriétés ont été étudiées en mélangeant les deux isomères 2,2 diméthylbutane et n-hexane en rapport l:1 et en introduisant le mélange à l'intérieur du tube préparé selon l'exemple 1.
L'analyse a montré que le perméat contenait entre 97 % et 99,5 % de n-hexane suivant la température de l'expérience. Ce résultat suggère que la membrane à base de zéolithe selon l'invention, et notamment à base de silicalite, est exempte de défauts.
Les nouveaux matériaux inorganiques composites poreux selon la présente invention s'avèrent particulièrement résistants, tant au plan mécanique qu'au plan physico-chimique. Ils peuvent en particulier supporter, sans altération ou modification substantielle, des conditions d'utilisation particulièrement sévères, par exemple hautes températures, milieux oxydants, ou en phase aqueuse par exemple. C'est en particulier dans ces conditions d'utilisation qu'ils apportent performance et durabilité, par rapport aux matériaux composites traditionnels, pour lesquels la phase à structure cristalline poreuse constitue une couche superficielle accrochée sur un substrat poreux.
Ces matériaux peuvent être associés à des matières actives en matière de catalyse, ou être modifiés pour constituer eux-mêmes des catalyseurs, par exemple par échange d'ions de la zéolithe. Dans ces applications catalytiques, les matériaux composites selon la présente invention apportent de bien meilleures performances que celles obtenues avec des catalyseurs traditionnels dans la même application, par exemple une réaction de déshydrogénation d'un substrat organique, oxydante ou non. Les matériaux selon l'invention peuvent être mis en forme selon toutes formes ou configurations appropriées à leurs applications.
Les applications des matériaux selon l'invention sont diverses et variées, et on citera notamment : - la séparation de gaz et liquides complexes ;
- les réacteurs catalytiques avec membranes ;
- les électrodes sélectives à base de zéolithes ;
- les capteurs chimiques, sélectifs en taille et forme ;
- les capteurs d'humidité, d'hydrocarbure ; - les détecteurs de gaz carbonique ;

Claims

REVENDICATIONS
1) Matériau inorganique composite poreux, comprenant un substrat inorganique de nature poreuse, et une phase solide minérale, à structure cristalline poreuse, du type tamis moléculaire, par exemple une matière zéolithique, liée au substrat sans matrice de liaison intergranulaire, caractérisé en ce que, en combinaison :
- majoritairement, la phase solide minérale poreuse est obtenue par synthèse directement au sein du substrat et remplit de manière continue et homogène son volume interne poreux, avec un taux de remplissage dudit volume suffisant pour que toute perméation d'un fluide au travers dudit matériau composite soit contrôlée ou limitée uniquement par ladite phase solide interne ;
- et le diamètre moyen de pore du substrat de départ est compris entre un diamètre maximum, au-delà duquel la phase solide interne synthétisée n'est plus continue, et un diamètre minimum, en deçà duquel le volume interne poreux du substrat demeure substantiellement vide de toute phase solide interne.
2) Matériau selon la revendication 1, caractérisé en ce que le diamètre moyen de pore du substrat de départ est compris entre 5 nm et 10 μm, et notamment entre 0,1 μm et 1 μm.
3) Matériau selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le substrat est choisi parmi les matériaux suivants, à savoir céramiques, dont silices, alumines et zircones, les verres, les métaux, par exemple le titane, l'aluminium et l'acier, et le carbone fritte.
4) Matériau selon la revendication 1, caractérisé en ce que le substrat inorganique de départ comporte des pores du type macropores ou mésopores. 5) Matériau selon la revendication 1, caractérisé en ce que la phase solide interne est une matière zéolithique choisie parmi les zéolithes suivantes, à savoir silicalite, érionite, mordénite, ZSM, A et Y.
6) Matériau selon la revendication 1, caractérisé en ce que la phase solide interne est un tamis moléculaire choisi parmi les aluminophosphates (ALPO) , les silicoaluminophosphates (SAPO) , et les gallophosphates (GAPO) , par exemple la clovérite.
7) Structure inorganique composite poreuse, caractérisée en ce qu'elle comprend : - une couche inactive, constituée par un support inorganique de nature poreuse, substantiellement vide de toute phase solide minérale poreuse et interne ;
- et au moins une couche active d'un matériau inorganique composite poreux selon l'une quelconque des revendications 1 à 6.
8) Structure selon la revendication 7, caractérisée en ce qu'elle comprend deux couches actives ayant des substrats de départ respectivement différents, notamment par leurs diamètres moyens de pores respectifs. 9) Structure selon la revendication 7, caractérisée en ce que le diamètre moyen de pore de la couche inactive est supérieur au diamètre maximum du substrat de départ de la couche active, défini selon la revendication 1. 10) Structure selon la revendication 7, caractérisée en ce que le diamètre moyen de pore de la couche inactive est inférieur au diamètre minimum du substrat de départ de la couche active, défini selon la revendication 1. 11) Structure selon les revendications 7, 9 et 10, caractérisée en ce que la couche active est disposée entre deux couches inactives, à savoir l'une selon la revendication 9 et l'autre selon la revendication 10.
12) Procédé d'obtention d'un matériau inorganique composite poreux, à partir d'un substrat inorganique de nature poreuse, selon lequel : - on prépare un milieu intermédiaire, contenant de manière dispersée et homogène des précurseurs d'un tamis moléculaire ;
- selon un processus hydrothermal, on met en contact le milieu intermédiaire avec le substrat, sans matériau de liaison intergranulaire, moyennant quoi une matière cristalline poreuse se trouve déposée, sous la forme d'une phase solide interne liée audit substrat, sans matrice de liaison intergranulaire ; - on lave, sèche et calcine le substrat avec la matière cristalline poreuse ; caractérisé en ce que le milieu intermédiaire est un liquide homogène, susceptible de pénétrer dans et imprégner le substrat, et comprend des oligomères d'au moins une espèce minérale appartenant à la composition moléculaire du tamis moléculaire à synthétiser.
13) Procédé selon la revendication 12, caractérisé en ce que le milieu intermédiaire basique contient une base organique faible, à titre d'agent structurant de cristallisation, et à l'exclusion de toute base minérale forte.
14) Procédé selon la revendication 13, selon lequel le tamis moléculaire est une matière zéolithique, caractérisé en ce que le rapport molaire entre l'espèce minérale à base de silicium et la base organique est compris entre 0,25 et 4, et préférentiellement entre 1 et 2.
15) Procédé selon la revendication 12, caractérisé en ce que le milieu intermédiaire est soumis à une étape de vieillissement, avant d'être mis au contact du substrat.
PCT/FR1995/000552 1994-04-29 1995-04-27 Materiau inorganique composite poreux, notamment sous forme de membrane, et procede d'obtention d'un tel materiau WO1995029751A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29521398U DE29521398U1 (de) 1994-04-29 1995-04-27 Anorganischer poröser Verbundwerkstoff, insbesondere in Form einer Membran

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9405562A FR2719238B1 (fr) 1994-04-29 1994-04-29 Matériau inorganique composite poreux, notamment sous forme de membrane, et procédé d'obtention d'un tel matériau.
FR94/05562 1994-04-29

Publications (1)

Publication Number Publication Date
WO1995029751A1 true WO1995029751A1 (fr) 1995-11-09

Family

ID=9462940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000552 WO1995029751A1 (fr) 1994-04-29 1995-04-27 Materiau inorganique composite poreux, notamment sous forme de membrane, et procede d'obtention d'un tel materiau

Country Status (3)

Country Link
DE (1) DE29521398U1 (fr)
FR (1) FR2719238B1 (fr)
WO (1) WO1995029751A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000287A1 (fr) * 1998-06-29 2000-01-06 Exxon Chemical Patents Inc. Macrostructures de materiau poreux inorganique et leur procede de preparation
FR2786710A1 (fr) * 1998-12-04 2000-06-09 Ceramiques Tech Soc D Membrane comprenant un support poreux et une couche d'un tamis modeculaire et son procede de preparation
US6387269B1 (en) 1998-07-27 2002-05-14 Bayer Aktiengesellschaft Membrane for separating fluids
EP1230972A1 (fr) * 2001-02-07 2002-08-14 Institut Francais Du Petrole Procédé de préparation de membranes zéolithiques supportées par cristallisation contrôlées en température
US6565826B2 (en) * 1999-12-06 2003-05-20 Haldor Topsoe A/S Method of preparing zeolite single crystals
US6620402B2 (en) * 1999-12-06 2003-09-16 Haldor Topsoe A.S Method of preparing zeolite single crystals with straight mesopores
US6787023B1 (en) 1999-05-20 2004-09-07 Exxonmobil Chemical Patents Inc. Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use
US6811684B2 (en) 1999-05-20 2004-11-02 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process and catalyst useful therein
US6887814B2 (en) 2002-01-24 2005-05-03 Haldor Topsoe A/S Process for the immobilization of a homogeneous catalyst, and catalytic material
US6908604B2 (en) * 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6926882B2 (en) 2000-01-05 2005-08-09 Exxonmobil Chemical Patents Inc. Porous inorganic macrostructure materials and process for their preparation
US7591947B2 (en) 2003-12-24 2009-09-22 Corning Incorporated Porous membrane microstructure devices and methods of manufacture
CN109081356A (zh) * 2018-10-12 2018-12-25 安徽工程大学 一种在管状多孔载体内壁生长致密无缺陷分子筛膜的方法
US11344850B2 (en) 2017-10-27 2022-05-31 Michael Tsapatsis Nanocomposite membranes and methods of forming the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055611A1 (de) * 2000-11-09 2002-05-23 Creavis Tech & Innovation Gmbh Zeolithmembrane, Verfahren zu deren Herstellung und die Verwendung der Zeolithmembrane
DE10055612A1 (de) * 2000-11-09 2002-05-29 Creavis Tech & Innovation Gmbh Membran, die als trennative Schicht eine Schicht aus Kristallen mit Molekularsiebeigenschaften aufweist,Verfahren zu deren Herstellung und die Verwendung einer solchen Zeolith-Membran
DE102004052976A1 (de) * 2004-10-29 2006-05-04 Sortech Ag Verfahren zur Herstellung eines mit einer Zeolith-Schicht beschichteten Substrats
FR2919205B1 (fr) * 2007-07-24 2011-08-12 Inst Francais Du Petrole Membranes zeolithique supportees de type structural fau, leur procede de preparation et leurs applications.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019263A (en) * 1990-06-05 1991-05-28 Mobil Oil Corp. Membrane composed of a pure molecular sieve
EP0511739A1 (fr) * 1991-03-29 1992-11-04 Ngk Insulators, Ltd. Films synthétiques ayant des corps de cristaux de zéolites, procédés pour leur fabrication ainsi que leur utilisation
WO1993017781A1 (fr) * 1992-03-12 1993-09-16 Worcester Polytechnic Institute Formation de membranes de zeolite a partir de sols
WO1993019840A1 (fr) * 1992-03-27 1993-10-14 The British Petroleum Company Plc Procede de depot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019263A (en) * 1990-06-05 1991-05-28 Mobil Oil Corp. Membrane composed of a pure molecular sieve
EP0511739A1 (fr) * 1991-03-29 1992-11-04 Ngk Insulators, Ltd. Films synthétiques ayant des corps de cristaux de zéolites, procédés pour leur fabrication ainsi que leur utilisation
WO1993017781A1 (fr) * 1992-03-12 1993-09-16 Worcester Polytechnic Institute Formation de membranes de zeolite a partir de sols
WO1993019840A1 (fr) * 1992-03-27 1993-10-14 The British Petroleum Company Plc Procede de depot

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569400B1 (en) 1998-06-29 2003-05-27 Exxon Mobil Chemical Patents Inc. Process for production of macrostructures of a microporous material
US7378076B2 (en) 1998-06-29 2008-05-27 Exxonmobil Chemical Patents Inc. Process for production of macrostructures of a microporous material
US7094390B2 (en) 1998-06-29 2006-08-22 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6949239B2 (en) 1998-06-29 2005-09-27 Exxonmobil Chemical Patents Inc. Process for production of macrostructures of a microporous material
AU751641B2 (en) * 1998-06-29 2002-08-22 Exxonmobil Chemical Patents Inc Macrostructures of porous inorganic material and process of their preparation
WO2000000287A1 (fr) * 1998-06-29 2000-01-06 Exxon Chemical Patents Inc. Macrostructures de materiau poreux inorganique et leur procede de preparation
US6387269B1 (en) 1998-07-27 2002-05-14 Bayer Aktiengesellschaft Membrane for separating fluids
US6472016B1 (en) 1998-12-04 2002-10-29 Societe Des Ceramiques Techniques Membrane comprising a porous carrier and a layer of a molecular sieve and its preparation
FR2786710A1 (fr) * 1998-12-04 2000-06-09 Ceramiques Tech Soc D Membrane comprenant un support poreux et une couche d'un tamis modeculaire et son procede de preparation
WO2000033948A1 (fr) * 1998-12-04 2000-06-15 Societe Des Ceramiques Techniques Membrane comprenant un support poreux et une couche d'un tamis moleculaire et son procede de preparation
US6908604B2 (en) * 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6787023B1 (en) 1999-05-20 2004-09-07 Exxonmobil Chemical Patents Inc. Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use
US6811684B2 (en) 1999-05-20 2004-11-02 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process and catalyst useful therein
US7026264B2 (en) 1999-05-20 2006-04-11 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process and catalyst useful therein
US6620402B2 (en) * 1999-12-06 2003-09-16 Haldor Topsoe A.S Method of preparing zeolite single crystals with straight mesopores
US6565826B2 (en) * 1999-12-06 2003-05-20 Haldor Topsoe A/S Method of preparing zeolite single crystals
US6926882B2 (en) 2000-01-05 2005-08-09 Exxonmobil Chemical Patents Inc. Porous inorganic macrostructure materials and process for their preparation
US6932959B2 (en) 2000-01-05 2005-08-23 Exxonmobil Chemical Patents Inc. Porous inorganic macrostructure materials and process for their preparation
EP1230972A1 (fr) * 2001-02-07 2002-08-14 Institut Francais Du Petrole Procédé de préparation de membranes zéolithiques supportées par cristallisation contrôlées en température
US6887814B2 (en) 2002-01-24 2005-05-03 Haldor Topsoe A/S Process for the immobilization of a homogeneous catalyst, and catalytic material
US7591947B2 (en) 2003-12-24 2009-09-22 Corning Incorporated Porous membrane microstructure devices and methods of manufacture
US11344850B2 (en) 2017-10-27 2022-05-31 Michael Tsapatsis Nanocomposite membranes and methods of forming the same
CN109081356A (zh) * 2018-10-12 2018-12-25 安徽工程大学 一种在管状多孔载体内壁生长致密无缺陷分子筛膜的方法
CN109081356B (zh) * 2018-10-12 2021-04-20 安徽工程大学 一种在管状多孔载体内壁生长致密无缺陷分子筛膜的方法

Also Published As

Publication number Publication date
DE29521398U1 (de) 1997-02-20
FR2719238B1 (fr) 1996-05-31
FR2719238A1 (fr) 1995-11-03

Similar Documents

Publication Publication Date Title
WO1995029751A1 (fr) Materiau inorganique composite poreux, notamment sous forme de membrane, et procede d'obtention d'un tel materiau
JP5324067B2 (ja) ゼオライト膜の製造方法
CA2278995C (fr) Membrane pour separer des fluides
EP1230972B1 (fr) Procédé de préparation de membranes zéolithiques supportées par cristallisation contrôlées en température
AU698909B2 (en) Molecular sieve layers and processes for their manufacture
Vroon et al. Preparation and characterization of thin zeolite MFI membranes on porous supports
EP1144099B1 (fr) Membrane comprenant un support poreux et une couche d'un tamis moleculaire et son procede de preparation
JP6325450B2 (ja) ゼオライト膜の再生方法
JP4204273B2 (ja) Ddr型ゼオライト膜複合体及びその製造方法
JP2000507909A (ja) モレキュラーシーブフィルムの調製方法
US10933382B2 (en) Supported zeolite membranes
JP7247193B2 (ja) 支持ゼオライトフィルム、および製造するための方法
JP6861273B2 (ja) ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
CA2364431A1 (fr) Couches de tamis moleculaires cristallins et leur procede de fabrication
JP2010158665A (ja) Ddr型ゼオライト膜配設体の製造方法
JP3764309B2 (ja) ゼオライト膜製膜方法
JP4759724B2 (ja) ゼオライト膜及びその製造方法
US20090318282A1 (en) Zeolite-Like Membranes from Nano-Zeolitic Particles
JP2007533432A5 (fr)
JP4728122B2 (ja) ガス分離体、及びその製造方法
JP2010180080A (ja) ゼオライト膜の製造方法
Lee et al. Synthesis and gas permeation properties of highly b-oriented MFI silicalite-1 thin membranes with controlled microstructure
JP2008521738A (ja) ゼオライト膜およびその製造方法
Salomón et al. Synthesis of a mordenite/ZSM-5/chabazite hydrophilic membrane on a tubular support. Application to the separation of a water–propanol mixture
JP2008018387A (ja) 多孔質基材への種結晶塗布方法

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase