WO1995029393A1 - Vorrichtung zur messung der lichtstreuung an partikeln - Google Patents

Vorrichtung zur messung der lichtstreuung an partikeln Download PDF

Info

Publication number
WO1995029393A1
WO1995029393A1 PCT/EP1995/001521 EP9501521W WO9529393A1 WO 1995029393 A1 WO1995029393 A1 WO 1995029393A1 EP 9501521 W EP9501521 W EP 9501521W WO 9529393 A1 WO9529393 A1 WO 9529393A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiver
scattered light
housing
light sources
Prior art date
Application number
PCT/EP1995/001521
Other languages
English (en)
French (fr)
Inventor
Gerhard Lorenz
Original Assignee
Lorenz Messgerätebau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lorenz Messgerätebau filed Critical Lorenz Messgerätebau
Priority to CA002188454A priority Critical patent/CA2188454C/en
Priority to US08/732,307 priority patent/US5841534A/en
Priority to DE59502179T priority patent/DE59502179D1/de
Priority to JP07527355A priority patent/JP3138278B2/ja
Priority to PL95316852A priority patent/PL177975B1/pl
Priority to EP95917354A priority patent/EP0756703B1/de
Priority to AU23457/95A priority patent/AU689583B2/en
Priority to DK95917354T priority patent/DK0756703T3/da
Priority to KR1019960705927A priority patent/KR100329546B1/ko
Publication of WO1995029393A1 publication Critical patent/WO1995029393A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the carrier medium with the particles can also be introduced into the housing through one of the openings.
  • the device works in the forward direction of the light beam, ie from the receiver wi
  • the scattered light emitted in the forward direction at a relatively small angle to the axis of the light beam is recorded.
  • the intensity of the scattered light generated on a particle depends on the angle.
  • the size of the particles plays an important role here. For particles that are significantly larger than the wavelength of the light beam, almost all scattered light is emitted in the forward direction. Backward scattering practically does not take place. The greatest intensity is determined at relatively small angles of the scattered light to the forward direction of the light beam. For particles whose size is comparable to the wavelength, there is forward scattering and a comparatively less intensive backward scattering. However, the scattered light cone in the forward direction is shorter and wider than the scattered light cone of particles whose diameter is significantly larger than the wavelength.
  • the known device works with a single light source and its light beam of a fixed wavelength, the angle at which the receiver is arranged relative to the direction of the light beam also being fixed. The known device is therefore more or less useful for different sizes or size distribution of the particles. The measurement accuracy is not sufficient in many cases.
  • the invention has for its object to provide a method and an apparatus with which the density, the size and / or the size distribution of the particles suspended in a carrier medium can be determined, and this despite the use of simply constructed elements with a high accuracy over a relative large range of different diameters and concentrations of the particles.
  • the device should therefore be simple in construction and inexpensive to manufacture.
  • the receiver is housed inside the housing, it is directed in the direction of the central axis of the stretched detection chamber into a black hole behind the scattered light center. Soiling of the wall of the housing, a light source that does not focus its light rays exclusively on the scattering center and incomplete absorption of the light rays after emerging from the scattering center are uncritical in the new device. This allows the use of inexpensive components, in particular in the housing and the light source. - render reflected scattered light radiation is solved without using many diaphragms.
  • the carrier medium with the particles can also be introduced into the housing through one of the openings.
  • the device works in the forward direction of the light beam, ie the scattered light emitted in the forward direction at a relatively small angle to the axis of the light beam is received by the receiver.
  • the intensity of the scattered light generated on a particle depends on the angle.
  • the size of the particles plays an important role here. For particles that are significantly larger than the wavelength of the light beam, almost all scattered light is emitted in the forward direction. Backward scattering practically does not take place. The greatest intensity is determined at relatively small angles of the scattered light to the forward direction of the light beam. For particles whose size is comparable to the wavelength, there is forward scattering and a comparatively less intensive backward scattering. However, the scattered light cone in the forward direction is shorter and wider than the scattered light cone of particles whose diameter is significantly larger than the wavelength.
  • the known device works with a single light source and its light beam of a fixed wavelength, the angle at which the receiver is arranged relative to the direction of the light beam also being fixed. The known device is therefore more or less useful for different sizes or size distribution of the particles. The measurement accuracy is not sufficient in many cases.
  • the invention has for its object to provide a method and an apparatus with which the density, the size and / or the size distribution of the particles suspended in a carrier medium can be determined, and this despite the use of simply constructed elements with a high accuracy over a relative large range of different diameters and concentrations of the particles.
  • the device should therefore be simple in construction and inexpensive to manufacture.
  • the receiver is housed inside the housing, it is directed in the direction of the central axis of the stretched detection chamber into a black hole behind the scattered light center. Soiling of the wall of the housing, a light source that does not focus its light rays exclusively on the scattering center and incomplete absorption of the light rays after emerging from the scattering center are uncritical in the new device. This allows the use of inexpensive components, in particular in the housing and the light source.
  • the receiver arranged within the housing is not necessarily a photosensor that converts the scattered light into a normally electrical signal, but is necessarily only the device that collects the scattered light to be converted into the signal.
  • This device for collecting the scattered light and thus the receiver in the narrower sense of the invention can also be, for example, the entry surface of a light guide which guides the collected scattered light to a photosensor arranged outside the housing.
  • the elongated detection chamber is preferably axially or rotationally symmetrical to its central axis. Ideally, it is round and is then delimited by a tubular section with a round cross-section as a housing, as a result of which the new device can be produced inexpensively.
  • the diaphragm arrangement according to the invention can also be optical diaphragms, i. H. Lenses.
  • lenses are neither necessary nor preferred as part of the diaphragm arrangement, since they unnecessarily increase the structural complexity of the new device.
  • the invention builds on the known knowledge of not only using light rays from a single light source, but light rays from several light sources and pulsing them successively in time, ie for a fixed period of time, at separate or a common scattered light center.
  • relatively simple light sources can be used in the new device, which are very inexpensive and which in turn do not require a lens / diaphragm combination.
  • These multiple light sources or their light beams are preferably only one Assigned receiver, it being possible to implement different relative arrangements between the light beams of each individual light source and the axis of the receiver.
  • Forward scatter as well as backward scatter can be detected.
  • the scattered light pulses on the particle or particles thus occurring one after the other are recorded, stored and evaluated by the common receiver, it being important to record the assignment of the light pulse between the respective light source and the respective scattered light pulse. It is thus possible to record the respective scattered light in different angular relations.
  • individual relationships between the light sources and the receiver can be selected. With completely unknown particle size and unknown size distribution, all light sources should be operated. Practically the entire angular range can thus be covered, and it is possible, as it were, to build a universal scattered light measuring device which combines the advantages of the various previously known individual scattered light measuring devices which measure either in certain forward ranges or in certain backward ranges.
  • Light rays from monochromatic light can be used, for example laser diodes.
  • the temporal course of the pulsed light rays preferably takes place quickly in comparison with the flow velocity of the carrier medium the particles through the scattered light center. In this way it becomes possible to send a whole series of light rays onto a particle and to pick up the scattered light pulses from this one particle.
  • their spatial and temporal spacing with regard to the sequence of the light beams is preferably matched to the flow velocity with the carrier medium with the particles through the detection chamber.
  • a multiplicity of light beams from light sources in association with a single receiver can be used in a manner known per se, wherein different relative arrangements in the space between light source and receiver can be implemented in a simple manner.
  • the receiver now in turn only takes up a part of the scattered light that arises in the scattered light center, ie. H.
  • the field of view angle of the receiver detects a narrow solid angle range of the scattered light emitted from the scattered light center.
  • the light sources can be arranged not only in a plurality, but also in different angles to the axis of the receiver, if this appears meaningful for the respective application. It is also possible to build a universal device in which only a part of the light sources realized or all light sources can be used. In particular, monochromatic light sources are provided, which emit pulsed light beams of different wavelengths. Here too, the control device can make a selection of the use of the light sources which are meaningful for the respective application.
  • laser diodes or light-emitting diodes can be provided as light sources.
  • a combination of both light sources can also be meaningful in certain applications.
  • two common receivers can also be provided, which are directed opposite one another at the scattered light center, so that they can receive the scattered light of a single light source which arises in the scattered light center in the forward direction on the one hand and in the backward direction on the other hand. Both receivers look - in opposite directions - in the direction of the axis and thus at the same time into a black hole.
  • Vagabonding scattered light radiation and / or reflected light radiation can normally not have a disadvantageous effect on the accuracy even with two receivers, provided that it is not currently being reflected by the opposite receiver.
  • the number of light sources required can be halved in the case of the two receivers aligned with one another.
  • the scattered light can also be recorded simultaneously with the two receivers, although the two pulses must of course be differentiated and generally also processed further separately.
  • FIG. 1 shows a schematic arrangement of the light source relative to the receiver in the detection chamber
  • FIG. 2 shows a first actual relative arrangement of several light sources to the receiver in the detection chamber
  • FIG. 3 shows a second schematic arrangement of several light sources relative to the receiver in the detection chamber
  • FIG. 2 shows a schematic arrangement of several light sources relative to two receivers in the detection chamber
  • FIG. 3 shows a block diagram of an evaluation device in connection with the device according to FIG. 3 for implementing a smoke detector
  • FIG. 4 shows a block diagram for realizing an aerosol photometer for filter testing
  • FIG. 5 shows a block diagram for a universal scattered light measuring device.
  • a tubular housing 1 is shown in FIG. 1, the wall of which delimits an elongated detection chamber in the radial direction to the central axis of the detection chamber.
  • a carrier medium in which the particle 3 is suspended flows through the tubular housing 1 parallel to the central axis in the direction of the arrow 14.
  • a receiver 4 is arranged coaxially to the central axis of the detection chamber, so that its axis 5 is directed towards the scattered light center 2.
  • the receiver 4 is accommodated in a receiver housing 6, in which diaphragms 7 facing the scattered light center 2 are arranged in order to limit the face of the receiver provided at the other end of the receiver housing 6 in such a way that the wall of the housing 1 is not detected. If only one or two diaphragms are shown distributed over the receiver housing in FIGS. 2 to 7, the restriction of the field of view of the receiver to a narrow area around the central axis of the detection chamber also applies here.
  • the receiver 4 is assigned a single light source 9, the light rays of which intersect the field of view of the receiver 4 in the scattered light center 2.
  • 4 light sources 8 and 9 are provided, the light rays of which cut the field of view of the receiver 4 into four scattered light centers 2 and 2 '.
  • a multiplicity of light sources are provided over the circumference of the tubular housing 1, the light rays of which are directed towards a common scattered light center 2.
  • E ⁇ ⁇ are provided two light sources 8, whose axes of the light rays directed towards the scattered light center 2 are arranged perpendicular to the axis 5 of the receiver 4 and to the axis of the tubular housing 1.
  • Two further light sources 9 are provided at an acute angle for the backward scattered light measurement; This means that the receiver 4 receives scattered light pulses from the backward scattering at an acute angle, relative to the direction of the light rays emitted by the light sources 9 onto the scattered light center 2.
  • Further light sources can also be arranged distributed over the wall of the tubular housing 1, which also serve to detect the backward scattered light.
  • two further light sources 11 are provided, which receive part of the forward scattered light.
  • the axis of the light rays emitted by the light sources 11 onto the scattered light center 2 forms a further angle in the forward direction with the axis 5 of the receiver 4.
  • Further light sources can also be provided on this page. These also serve to detect the forward scattered light. It goes without saying that the intensity of the scattered light reaching the receiver 4 can be increased for each scattered light angle by increasing the number of light sources 8, 9 or 11. For each An angle or angular range can be arranged in a plurality of light sources of either the same or different wavelengths rotationally symmetrical to the axis 5 of the receiver 4.
  • the housing 1 is formed by a tube section 13, through which the carrier medium with the particles suspended therein flows in the direction of an arrow 14.
  • a plurality of respective light sources 8, 9 or 11 are arranged along the wall or over the circumference of the tube section 13 in the respective plane can.
  • the axis 5 of the receiver 4 also forms the central axis of the detection chamber delimited by the pipe section 13.
  • the light sources 8, 9, 11 are directed to separate or a common scattered light center 2.
  • the light sources 8, 9, 11 are switched on or off in a specified order in order to generate light pulses onto the scattered light centers 2 and scattered light pulses from the scattered light centers 2 to be able to record and evaluate the receiver 4.
  • the elements of the device shown in FIGS. 1 to 3 include an evaluation device, not shown, which is arranged downstream of the receiver 4.
  • an evaluation device not shown, which is arranged downstream of the receiver 4.
  • a relatively slow switch is sufficient as part of the evaluation device, with which certain combinations of the light sources 8, 9, 11 can also be switched on.
  • a scattered light measurement can be carried out in which only the light sources 8 are switched on.
  • a scattered light measurement in the forward direction can be carried out take place when only the light sources 11 are operated.
  • only the light sources 9 are operated. Combinations of the light sources can also be selected and operated in this way.
  • Figure 4 shows a modified arrangement.
  • the light sources 11 are missing.
  • One receiver 4 measures the scattered light from the light sources 9 in the reverse direction, the other receiver 4 in the forward direction.
  • the receivers 4 look in the direction of the axis 5, that is to say they are directed into a black hole, so that the accuracy of the measurement is not impaired by stray scattered light radiation and / or light rays reflected in the housing.
  • FIG. 3 using the example of a smoke detector, an associated control device 15 and essential parts of an evaluation device 16 are shown and illustrated.
  • the control device 15 has a power supply part 17 and an associated automatic switch 18, which has a switch 19 with which the light sources 8 for a 90 ° measurement or further light sources 12 for a 20 ° forward measurement alternatively via corresponding lines 20 and 21 are switched on.
  • the receiver 4 is connected via a line 22 to an amplifier 23, from which a line 24 leads to an automatic switch 25, which is part of the evaluation device 16.
  • the automatic switch 25 also has a switch 26 for switching the received scattered light pulses.
  • a limit indicator 28 connected via a line 27 is matched to the 90 "spread.
  • a line 29 leads to one Limit indicator 30, which is oriented to the 20 ° forward scatter.
  • Lines 31 and 32 lead from the relevant limit indicators 28 and 30 to an alarm device 33 in order to report the smoke that is generated in the event of a fire.
  • a line 34 connects the two automatic switching devices 18 and 25 and provides for a corresponding synchronization, so that the light beams emitted by the light sources 8 and 12 can be assigned to the relevant scattered light pulses received by the receiver 4.
  • the two automatic switching devices 18 and 25 permanently switch back and forth between the light sources 8 and 12, for example at a frequency of 1 Hz.
  • the fine particle area of the air pollution is determined via the scattered light impulses of light rays from the light sources 8.
  • FIG. 6 illustrates the use of the device as an aerosol photo eter for filter testing.
  • only light sources 11 are provided here, the light rays of which are directed at an angle of 45 ° to the scattered light center.
  • light traps 35 are realized on the housing 1.
  • the control device 15 has a power supply 17 for the light sources, which are fed via lines 36. from Amplifier 23 of evaluation device 16 leads a line 37 to a digital volt 38 and a line 39 to a recorder 40.
  • the light sources 11 are used, which are arranged as monochromatic light sources and are arranged radially symmetrically on the circumference of the housing 1 with respect to the tube axis, which at the same time forms the axis 5 of the receiver 4. Although only two light sources 11 are shown, it is understood that their number is greater than two and the light sources 11 are provided distributed over the circumference of the tubular housing 1.
  • laser diodes can be used as light sources.
  • the light sources 11 are focused on the common scattered light center 2 and generate a high luminance, with which even a low aerosol concentration behind the filter test specimen can be reliably verified.
  • the permeability of the filter is determined as the ratio of the aerosol concentration in front of and behind the filter.
  • the light traps 35 are provided in order to avoid interference light due to light reflection on the walls of the housing 1.
  • FIG. 7 illustrates an example of a universal scattered light measuring device.
  • a plurality of light sources 8, 9, 10, 11, 12 are again provided, it being possible for the angles to be changed compared to the exemplary embodiment according to FIG. 3.
  • the light rays of all light sources are directed onto a scattered light center 2.
  • the scattered light pulses in the direction of the axis 5 are caught by the receiver 4.
  • the control device 15 has the power supply part 17, a multiplexer 41 and a pulse generator 42, which are connected to one another and to the Light sources 8, 9, 10, 11, 12 are connected by cables in the obvious manner.
  • the evaluation device 16 includes a microprocessor 43 and an A / D converter 44, which is connected to the receiver 4.
  • a data line 45 connects the multiplexer 41 to the microprocessor 43.
  • the scattered light pulses can be recorded in both forward and backward scattering in order to use them to determine the size and the size distribution of the particles.
  • the angular ranges shown are each equipped with two monochromatic light sources 8, 9, 10, 11 or 12.
  • the light sources emit light rays of different wavelengths. Although only two light sources, e.g. B. light sources 8, are shown, further light sources 8 are provided, which are arranged radially symmetrically to the axis of the pipe sections 13.
  • the carrier medium with the particles flows in the direction of arrow 14 through the pipe section 13.
  • the scattered light pulses reach the receiver 4 in the direction of the axis 5, the angle of the field of view of which is restricted to the vicinity of the axis of the pipe section 13.
  • the pulse generator 42 Upon request by the microprocessor 43, the pulse generator 42 delivers a pulse, the pulse width of which determines the respective operating time of the light sources 8, 9, 10, 11 or 12. With the aid of the multiplexer 41, the microprocessor 43 selects those light sources which should be switched on during the pulse duration.
  • the light sources currently switched on illuminate the particles 3 located in the scattering center 2, which scatter the light.
  • the scattered light pulses are converted by the receiver 4 into electrical pulses, the width of which is determined by the switch-on time and the switch-on time of the light sources.
  • the scattered light pulses are amplified with an amplifier. The height of the pulse is a measure of the scattered light intensity.
  • the A / D converter 44 supplies the digital value of the pulse height to the microprocessor 43, which at the same time is designed as a memory.
  • the microprocessor 43 simultaneously switches on all light sources during a pulse duration, that belong to the same angular range, for example all light sources 8 or all light sources 9. It is also possible to select light sources that have the same wavelength.
  • the microprocessor 43 switches on other light sources of the same scattering angle range with different wavelengths, e.g. B. Other light sources 8.
  • a switchover from the light sources 8 to the light sources 9 can take place, with some light sources 9 with a first wavelength being switched on again and then other light sources 9 with different wavelengths.
  • the heights of the scattered light pulses are stored in each case.
  • the microprocessor 43 thus stores the scattered light pulses from the respective light sources, which are arranged at the respective angles. After all light sources have been run through, it calculates the size or the size distribution of the particles with the aid of scattered light theory and outputs the result. The cyclical sequence can then be repeated.
  • the pulse sequence of the cyclic sequence is very large in relation to the duration of the particle 3 in the scattered light center 2. This means that a large number of scattered light pulses can be queried and stored by a particle 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Eine Vorrichtung zur Messung der Lichtstreuung an in einem Trägermedium suspendierten Partikeln (3) zur Ermittlung der Dichte, der Größe oder der Größenverteilung der Partikel weist mindestens eine Lichtquelle (8), die Lichtstrahlen auf ein Streulichtzentrum (2) in dem Trägermedium mit den darin suspendierten Partikeln (3) richtet, einen Empfänger (4) für einen Teil des im Streulichtzentrum entstehenden Streulichts und eine dem Empfänger (4) nachgeordnete Auswerteeinrichtung auf. Gemäß der Erfindung ist eine gestreckt ausgebildete Detektionskammer vorgesehen, die in radialer Richtung zu ihrer Mittelachse von der Wandung eines Gehäuses (1) begrenzt wird, wobei das Gehäuse (1) zugleich eine Leitung für das durchströmende Trägermedium mit den Partikeln (3) bildet. Die bzw. jede Lichtquelle (8) ist an der Wandung des Gehäuses (13) angeordnet und auf die Mittelachse der Detektionskammer ausgerichtet, so daß das Streulichtzentrum (2) in einem Bereich um die Mittelachse der Detektionskammer ausgebildet wird. Der Empfänger (4) ist mit seiner Achse (5) koaxial zu der Mittelachse der Detektionskammer ausgerichtet, wobei dem Empfänger (4) eine Blendenanordnung (6, 7) derart zugeordnet ist, daß der Gesichtsfeldwinkel des Empfängers (4) nicht die das Streulichtzentrum (2) umgebende Wandung des Gehäuses (1) erfaßt.

Description

render reflektierter Streulichtstrahlung gelöst wird, ohne daß viele Blenden eingesetzt werden. Das Trägermedium mit den Partikeln kann zugleich durch eine der Öffnungen in das Gehäuse eingebracht werden.
Weitere Vorrichtungen wurden von Bol, Roth und Wurzbacher "Erfassung und Untersuchung kolloider Luft- und Abwasser¬ verunreinigungen durch Streulichtmessung11, veröffentlicht in Batellebericht 1969, Seiten 23 - 29, beschrieben. Dabei wird eine einzige Lichtquelle in Form eines Lasers eingesetzt, dessen Lichtstrahl durch eine Linsen/Blenden-Kombination auf ein Streulichtzentrum gerichtet wird. Das Streulichtzentrum wird quer unter 90° von dem mit den Partikeln beladenen Trägermedium durchströmt. Der Lichtstrahl wird in einer Lichtfalle aufge¬ fangen. Über Umlenkspiegel und weitere Linsen und Blenden wird das im Streulichtzentrum an dem Partikel entstehende Streulicht über Umlenkspiegel einem Empfänger zugeführt, der als Sekundär¬ elektronenvervielfacher ausgebildet ist. Mit dieser bekannten Vorrichtung kann die Größe der in dem Trägermedium suspendierten Partikel bestimmt werden. Die Vorrichtung arbeitet in Vorwärts¬ richtung des Lichtstrahls, d. h. von dem Empfänger wird das in Vorwärtsrichtung in einem relativ kleinen Winkel zu der Achse des Lichtstrahles abgestrahlte Streulicht aufgenommen. Die Intensität des an einem Partikel entstehenden Streulichts ist winkelabhängig. Hier spielt die Größe der Partikel eine wesent¬ liche Rolle. Für Partikel, die wesentlich größer als die Wellen¬ länge des Lichtstrahles sind, wird fast alles Streulicht in Vorwärtsrichtung ausgesandt. Rückwärtsstreuung findet praktisch nicht statt. Die größte Intensität wird bei relativ kleinen Winkeln des Streulichts zur Vorwärtsrichtung des Lichtstrahles festgestellt. Für Partikel, deren Größe vergleichbar mit der Wellenlänge ist, findet eine Vorwärtsstreuung und eine vergleichsweise weniger intensive Rückwärtsstreuung statt. Der Streulichtkegel in Vorwärtsrichtung ist jedoch kürzer und breiter als der Streulichtkegel von Partikeln, deren Durchmesser wesentlich größer als die Wellenlänge ist. Für Partikel, deren Durchmesser schließlich wesentlich kleiner als die Wellenlänge des Lichtstrahles ist, gilt schließlich, daß das Streulicht mit gleicher Intensität in alle Raumrichtungen ausgestrahlt wird. Die bekannte Vorrichtung arbeitet mit einer einzigen Lichtquelle und deren Lichtstrahl feststehender Wellenlänge, wobei der Winkel, in welchem der Empfänger relativ zur Richtung des Licht¬ strahles angeordnet ist, ebenfalls festliegt. Die bekannte Vor¬ richtung ist für unterschiedliche Größen oder Größenverteilung der Partikel daher mehr oder weniger brauchbar. Die Meßgenauig¬ keit ist in vielen Fällen nicht hinreichend.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung bereitzustellen, mit dem die Dichte, die Größe und/oder die Größenverteilung der in einem Trägermedium suspendierten Partikel ermittelt werden können, und dies trotz Verwendung einfach aufgebauter Elemente mit einer hohen Genauigkeit über einen relativ großen Bereich unterschiedlicher Durchmesser und Konzentrationen der Partikel. Die Vorrichtung soll also einfach aufgebaut und preiswert herstellbar sein.
Erfindungsgemäß wird dies mit den Merkmalen des Patentanspruchs 1 erreicht. Dabei wird unter Anwendung einfachster baulicher Maßnahmen ein Einfluß vagabundierender Streustrahlung in der Detektionskammer auf das Meßergebnis unterbunden. Der Empfänger ist zwar innnerhalb des Gehäuses untergebracht, doch ist er in Richtung der Mittelachse der gestreckt ausgebildeten Detektions¬ kammer quasi in ein schwarzes Loch hinter dem Streulichtzentrum gerichtet. So sind bei der neuen Vorrichtung eine Verschmutzung der Wandung des Gehäuses, eine Lichtquelle, die ihre Licht¬ strahlen nicht ausschließlich auf das Streuzentrum bündelt, und eine nicht vollständige Absorption der Lichtstrahlen nach dem Austritt aus dem Streuzentrum unkritisch. Dies läßt die Verwendung kostengünstiger Bauelemente insbesondere bei dem Gehäuse und der Lichtquelle zu. - render reflektierter Streulichtstrahlung gelöst wird, ohne daß viele Blenden eingesetzt werden. Das Trägermedium mit den Partikeln kann zugleich durch eine der Öffnungen in das Gehäuse eingebracht werden.
Weitere Vorrichtungen wurden von Bol, Roth und Wurzbacher "Erfassung und Untersuchung kolloider Luft- und Abwasser¬ verunreinigungen durch Streulichtmessung", veröffentlicht in Batellebericht 1969, Seiten 23 - 29, beschrieben. Dabei wird eine einzige Lichtquelle in Form eines Lasers eingesetzt, dessen Lichtstrahl durch eine Linsen/Blenden-Kombination auf ein Streulichtzentrum gerichtet wird. Das StreulichtZentrum wird quer unter 90° von dem mit den Partikeln beladenen Trägermedium durchströmt. Der Lichtstrahl wird in einer Lichtfalle aufge¬ fangen. Über Umlenkspiegel und weitere Linsen und Blenden wird das im Streulichtzentrum an dem Partikel entstehende Streulicht über Umlenkspiegel einem Empfänger zugeführt, der als Sekundär¬ elektronenvervielfacher ausgebildet ist. Mit dieser bekannten Vorrichtung kann die Größe der in dem Trägermedium suspendierten Partikel bestimmt werden. Die Vorrichtung arbeitet in Vorwärts¬ richtung des Lichtstrahls, d. h. von dem Empfänger wird das in Vorwärtsrichtung in einem relativ kleinen Winkel zu der Achse des Lichtstrahles abgestrahlte Streulicht aufgenommen. Die Intensität des an einem Partikel entstehenden Streulichts ist winkelabhängig. Hier spielt die Größe der Partikel eine wesent¬ liche Rolle. Für Partikel, die wesentlich größer als die Wellen¬ länge des Lichtstrahles sind, wird fast alles Streulicht in Vorwärtsrichtung ausgesandt. Rückwärtsεtreuung findet praktisch nicht statt. Die größte Intensität wird bei relativ kleinen Winkeln des Streulichts zur Vorwärtsrichtung des Lichtstrahles festgestellt. Für Partikel, deren Größe vergleichbar mit der Wellenlänge ist, findet eine Vorwärtεstreuung und eine vergleichsweise weniger intensive Rückwärtsstreuung statt. Der Streulichtkegel in Vorwärtsrichtung ist jedoch kürzer und breiter als der Streulichtkegel von Partikeln, deren Durchmesser wesentlich größer als die Wellenlänge ist. Für Partikel, deren Durchmesser schließlich wesentlich kleiner als die Wellenlänge des Lichtstrahles ist, gilt schließlich, daß das Streulicht mit gleicher Intensität in alle Raumrichtungen ausgestrahlt wird. Die bekannte Vorrichtung arbeitet mit einer einzigen Lichtquelle und deren Lichtstrahl feststehender Wellenlänge, wobei der Winkel, in welchem der Empfänger relativ zur Richtung des Licht¬ strahles angeordnet ist, ebenfalls festliegt. Die bekannte Vor¬ richtung ist für unterschiedliche Größen oder Größenverteilung der Partikel daher mehr oder weniger brauchbar. Die Meßgenauig¬ keit ist in vielen Fällen nicht hinreichend.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung bereitzustellen, mit dem die Dichte, die Größe und/oder die Größenverteilung der in einem Trägermedium suspendierten Partikel ermittelt werden können, und dies trotz Verwendung einfach aufgebauter Elemente mit einer hohen Genauigkeit über einen relativ großen Bereich unterschiedlicher Durchmesser und Konzentrationen der Partikel. Die Vorrichtung soll also einfach aufgebaut und preiswert herstellbar sein.
Erfindungsgemäß wird dies mit den Merkmalen des Patentanspruchs 1 erreicht. Dabei wird unter Anwendung einfachster baulicher Maßnahmen ein Einfluß vagabundierender Streustrahlung in der Detektionskammer auf das Meßergebnis unterbunden. Der Empfänger ist zwar innnerhalb des Gehäuses untergebracht, doch ist er in Richtung der Mittelachse der gestreckt ausgebildeten Detektions¬ kammer quasi in ein schwarzes Loch hinter dem Streulichtzentrum gerichtet. So sind bei der neuen Vorrichtung eine Verschmutzung der Wandung des Gehäuses, eine Lichtquelle, die ihre Licht¬ strahlen nicht ausschließlich auf das Streuzentrum bündelt, und eine nicht vollständige Absorption der Lichtstrahlen nach dem Austritt aus dem Streuzentrum unkritisch. Dies läßt die Verwendung kostengünstiger Bauelemente insbesondere bei dem Gehäuse und der Lichtquelle zu. - Der innerhalb des Gehäuses angeordnete Empfänger ist nicht unbedingt ein das Streulicht in ein normalerweise elektrisches Signal umwandelnder Photosensor, sondern zwingend nur die das in das Signal umzuwandelnde Streulicht sammelnde Einrichtung. Diese Einrichtung zum Sammeln des Streulichts und damit der Empfänger im engeren Sinne der Erfindung kann beispielsweise auch die Eintrittsfläche eines Lichtleiters sein, der das gesammelte Streulicht zu einem außerhalb des Gehäuses angeordneten Photosensor leitet.
Die gestreckt ausgebildete Detektionskammer ist vorzugsweise achsen- oder rotationssymmetrisch zu ihrer Mittelachse ausgebildet. Im Idealfall ist sie rund und wird dann von einem im Querschnitt runden Rohrabschnitt als Gehäuse begrenzt, wodurch sich die neue Vorrichtung preiswert herstellen läßt.
Die erfindungsgemäße Blendenanordnung kann auch optische Blenden, d. h. Linsen, umfassen. Linsen sind als Bestandteil der Blendenanordnung jedoch weder erforderlich noch bevorzugt, da sie den baulichen Aufwand der neuen Vorrichtung unnötig erhöhen.
Bevorzugte Auεführungsformen der neuen Vorrichtung sind in den Unteransprüchen beschrieben.
In einer Weiterentwicklung baut die Erfindung auf der bekannten Erkenntnis auf, nicht nur Lichtstrahlen von einer einzigen Lichtquelle, sondern Lichtstrahlen von mehreren Lichtquellen zu verwenden und diese zeitlich nacheinander gepulst, d. h. für eine festgelegte Zeitdauer, auf getrennte oder ein gemeinsames Streulichtzentrum zu richten. Dafür können bei der neuen Vorrichtung relativ einfach ausgebildete Lichtquellen Verwendung finden, die sehr preiswert sind und die ihrerseits keine Linsen- /Blenden-Kombination benötigen. Diesen mehreren Lichtquellen bzw. deren Lichtstrahlen ist vorzugsweise nur ein einziger Empfänger zugeordnet, wobei es möglich ist, unterschiedliche Relativanordnungen zwischen den Lichtstrahlen jeder einzelnen Lichtquelle und der Achse des Empfängers zu realisieren.
Es kann sowohl die VorwärtsStreuung wie auch die Rückwärts¬ streuung erfaßt werden. Die somit zeitlich nacheinander entstehenden Streulichtimpulεe an dem oder den Partikeln werden von dem gemeinsamen Empfänger aufgenommen, abgespeichert und ausgewertet, wobei es darauf ankommt, die Zuordnung des Licht- impulεes zwischen der jeweiligen Lichtquelle und dem jeweiligen Streulichtimpuls festzuhalten. Damit ist es möglich, in verεchiedenen Winkelrelationen daε jeweilige Streulicht aufzu¬ nehmen. Je nach Anwendungεfall können einzelne Relationen zwiεchen den Lichtquellen und dem Empfänger auεgewählt werden. Bei völlig unbekannter Partikelgröße und unbekannter Größenver¬ teilung εollten alle Lichtquellen betrieben werden. Damit kann praktisch der gesamte Winkelbereich abgedeckt werden, und es ist möglich, gleichsam ein Universal-Streulicht eßgerät zu bauen, welcheε die Vorteile der verεchiedenen biεher bekannten Individual-Streulichtmeßgeräte kombiniert, die entweder in beεtimmten Vorwärtεbereichen oder in bestimmten Rückwärts¬ bereichen mesεen.
Von besonderem Vorteil ist eε, wenn dabei Lichtεtrahlen auε unterschiedlichen Winkeln und/oder unterschiedlicher Wellen¬ längen auf die getrennten Streulichtzentren bzw. das gemeinsame Streulichtzentrum gerichtet werden. Es versteht sich, daß auch hier die Streulichtimpulse zeitlich nacheinander verεetzt von dem gemeinεamen Empfänger aufgenommen werden.
Eε können Lichtεtrahlen auε monochromatiεchem Licht verwendet werden, also beispielsweise Laserdioden.
Der zeitliche Verlauf der gepulsten Lichtεtrahlen erfolgt bei einem gemeinεamen Streulichtzentrum vorzugεweise schnell im Vergleich zu der Strömungsgeschwindigkeit des Trägermediumε mit den Partikeln durch das Streulichtzentrum. Auf diese Weise wird es möglich, eine ganze Serie von Lichtstrahlen auf einen Partikel zu schicken und die Streulichti pulεe von dieεem einen Partikel aufzunehmen.
Bei mehreren Streulichtzentren εind deren räumlicher und zeitlicher Abεtand hinεichtlich der Abfolge der Lichtstrahlen vorzugsweise auf die Strömungsgeεchwindigkeit mit des Träger¬ mediums mit den Partikeln durch die Detektionskammer abgestimmt.
Mit der neuen Vorrichtung iεt εo in an εich bekannter Weiεe eine Vielzahl von Lichtεtrahlen von Lichtquellen in Zuordnung zu einem einzigen Empfänger nutzbar, wobei unterεchiedliche Relativanordnungen im Raum zwiεchen Lichtquelle und Empfänger in einfacher Weise verwirklicht werden können. Der Empfänger nimmt nun wiederum nur einen Teil des im Streulichtzentrums entεtehenden Streulichts auf, d. h. der Geεichtεfeldwinkel deε Empfängerε erfaßt einen engen Raumwinkelbereich deε auε dem Streulichtzentrum emittierten Streulichtε.
Die Lichtquellen können nicht nur in einer Mehrzahl, εondern auch in unterεchiedlichen Winkeln zu der Achεe deε Empfängerε angeordnet εein, wenn dieε für den jeweiligen Anwendungεfall εinnvoll erscheint. Es ist auch möglich, eine Universal¬ vorrichtung zu bauen, bei der wahlweise nur ein Teil der verwirklichten Lichtquellen oder auch alle Lichtquellen genutzt werden können. Eε εind inεbeεondere monochromatische Licht¬ quellen vorgesehen, die gepulste Lichtεtrahlen unterschiedlicher Wellenlängen aussenden. Auch hierbei kann durch die Steuer¬ einrichtung eine Auswahl der Nutzung der Lichtquellen erfolgen, die für den jeweiligen Anwendungsfall εinnvoll sind.
Als Lichtquellen können insbeεondere Laεerdioden oder Leuchtdioden vorgeεehen εein. Auch eine Kombination beider Lichtquellen kann bei beεtimmten Anwendungεfallen εinnvoll εein. In der gestreckt auεgebildeten Detektionεkammer können auch zwei gemeinεame Empfänger vorgeεehen sein, die einander entgegen¬ gesetzt auf daε Streulichtzentrum gerichtet sind, εodaß εie daε im Streulichtzentrum entstehende Streulicht einer einzigen Lichtquelle in Vorwärtsrichtung einerseitε und in Rückwärtε- richtung andererseits aufnehmen können. Beide Empfänger schauen - zwar einander entgegengerichtet - in Richtung der Achse und damit gleichεam in ein εchwarzeε Loch. Vagabundierende Streulichtstrahlung und/oder reflektierte Lichtstrahlung kann sich auch bei zwei Empfängern normalerweise nicht nachteilig auf die Genauigkeit auswirken, sofern sie nicht gerade von dem jeweils gegenüberliegenden Empfänger reflektiert wird. Die Anzahl der notwendigen Lichtquellen kann bei den zwei gegen¬ einander ausgerichteten Empfängern halbiert werden. Die Aufnahme des Streulichts kann mit den beiden Empfängern auch gleichzeitig erfolgen, wobei beide Impulse freilich unterschieden werden müsεen und in der Regel auch getrennt weiterverarbeitet werden.
Die Erfindung wird anhand von Auεführungsbeispielen der neuen Vorrichtung weiter erläutert und beschrieben. Es zeigt:
Figur 1 eine schematiεierte Relativanordnung der Lichtquelle zu dem Empfänger in der Detektionεkammer;
Figur 2 eine erεte εche atiεierte Relativanordnung mehrerer Lichtquellen zu dem Empfänger in der Detektionskammer;
Figur 3 eine zweite schematiεierte Relativanordnung mehrerer Lichtquellen zu dem Empfänger in der Detektionεkammer;
Figur 2 eine εchematiεierte Relativanordnung mehrerer Licht¬ quellen zu zwei Empfängern in der Detektionεkammer;
Figur 3 ein Blockschaltbild einer Auswerteeinrichtung in Verbindung mit der Vorrichtung gemäß Figur 3 zur Realisierung eines Rauchmelders; Figur 4 ein Blockschaltbild zur Realisierung eines Aerosol¬ photometers für die Filterprüfung und
Figur 5 ein Blockschaltbild für ein Universal-Streulicht- meßgerät.
In Figur 1 ist ein rohrförmiges Gehäuse 1 dargestellt, desεen Wandung eine gestreckt ausgebildete Detektionskammer in radialer Richtung zu der Mittelachse der Detektionskammer begrenzt. Auf der Mittelachεe der Detektionskammer befindet sich ein Streu¬ lichtzentrum 2 befindet, in dessen Mittelpunkt oder irgendwo innerhalb deε Streulichtzentrumε 2 εich ein Partikel 3 befinden möge. Ein Trägermedium, in dem das Partikel 3 suspendiert ist, durchströmt das rohrförmige Gehäuse 1 parallel zu der Mittel¬ achεe in Richtung des Pfeils 14.
Koaxial zu der Mittelachse der Detektionεkammer iεt ein Empfänger 4 angeordnet, εo daß seine Achse 5 auf daε Streulicht¬ zentrum 2 gerichtet iεt. Der Empfänger 4 ist in einem Empfänger¬ gehäuse 6 aufgenommen, in welchem dem Streulichtzentrum 2 zugekehrt Blenden 7 angeordnet sind, um das Gesichtεfeld deε am anderen Ende deε Empfängergehäuεeε 6 vorgesehenen Empfängers entsprechend so zu beεchränken, daß eε die Wandung deε Gehäuεes 1 nicht erfaßt. Wenn in den Figuren 2 biε 7 nur eine oder zwei Blenden über das Empfängergehäuse verteilt wiedergegeben εind, εo gilt auch hier die Beεchränkung des Gesichtsfelds des Empfängers auf einen engen Bereich um die Mittelachse der Detektionεkammer.
Dem Empfänger 4 ist gemäß Figur 1 eine einzige Lichtquelle 9 zugeordnet, deren Lichtstrahlen das Gesichtsfeld des Empfängerε 4 in dem Streulichtzentrum 2 schneiden.
Gemäß Figur 2 sind 4 Lichtquellen 8 und 9 vorgesehen, deren Lichtstrahlen das Gesichtεfeld deε Empfängerε 4 in vier Streulichtzentren 2 und 2' εchneiden. Dabei ist der Winkel zwiεchen den Lichtεtrahlen der Lichtquellen 9, die daε Geεichtsfeld in den Streulichtzentren 2 schneiden, und der Achse des Sensorε jeweilε gleich ebenεo wie der Winkel zwischen den Lichtεtrahlen der Lichtquellen 8, die daε Geεichtsfeld in den Streulichtzentren 2' schneiden.
Gemäß Figur 3 iεt in Zuordnung zu dem einzigen Empfänger 4 über den Umfang deε rohrförmigen Gehäuεeε 1 verteilt eine Vielzahl von Lichtquellen vorgeεehen, deren Lichtεtrahlen auf ein gemeinεameε Streulichtzentrum 2 gerichtet εind. Eε εind zwei Lichtquellen 8 vorgesehen, deren auf das Streulichtzentrum 2 gerichtete Achsen der Lichtεtrahlen senkrecht zu der Achse 5 des Empfängers 4 und zu der Achse des rohrförmigen Gehäuses 1 angeordnet sind. Zwei weitere Lichtquellen 9 εind in einem spitzen Winkel für die Rückwärtsstreulichtmesεung vorgeεehen; dieε bedeutet, daß der Empfänger 4 Streulichtimpulεe der Rückwärtεεtreuung in einem εpitzen Winkel aufnimmt, relativ zu der Richtung der von den Lichtquellen 9 auf das Streulicht¬ zentrum 2 ausgeεandten Lichtεtrahlen. Eε können weitere Lichtquellen über die Wandung des rohrförmigen Gehäuseε 1 verteilt angeordnet εein, die ebenfalls der Erfassung des rückwärtsgerichteten Streulichts dienen. Gleichsam auf der anderen Seite der durch die Ebene der Lichtstrahlen der Lichtquellen 9 aufgespannten Ebene sind zwei weitere Licht¬ quellen 11 vorgesehen, die einen Teil des Vorwärtεεtreulichtes empfangen. Dies bedeutet, daß die Achse der von den Lichtquellen 11 auf das Streulichtzentrum 2 ausgesandten Lichtεtrahlen in Vorwärtεrichtung mit der Achse 5 deε Empfängers 4 einen weiteren Winkel bildet. Es können auch auf dieser Seite weitere Lichtquellen vorgeεehen εein. Dieεe dienen ebenfallε der Erfaεεung deε Vorwärtεεtreulichteε. Es versteht sich, daß die Intensität deε zu dem Empfänger 4 gelangenden Streulichtε für jeden Streulichtwinkel dadurch erhöht werden kann, daß die Anzahl der Lichtquellen 8, 9 oder 11 erhöht wird. Für jeden Winkel bzw. Winkelbereich lassen sich eine Vielzahl von Lichtquellen entweder gleicher oder verεchiedener Wellenlänge rotationεεymmetriεch zu der Achεe 5 des Empfängers 4 anordnen.
Das Gehäuse 1 ist, wie dargelegt, von einem Rohrabschnitt 13 gebildet, welcher in Richtung eines Pfeiles 14 von dem Träger¬ medium mit den darin εchwebenden Partikeln durchεtrömt wird. Obwohl in den Figuren 2 und 3 nur jeweils zwei Lichtquellen 8, 9 oder 11 dargestellt sind, versteht es sich, daß entlang der Wandung oder über den Umfang des Rohrabεchnitteε 13 in der jeweiligen Ebene eine Mehrzahl von jeweiligen Lichtquellen 8, 9 oder 11 angeordnet sein können. Die Achse 5 des Empfängers 4 bildet zugleich die Mittelachse der von dem Rohrabεchnitt 13 begrenzten Detektionskammer. Die Lichtquellen 8, 9, 11 sind auf getrennte oder ein gemeinsames Streulichtzentrum 2 gerichtet. Dabei werden zumindest bei unterschiedlichen Lichtquellen oder unterεchiedlichen Winkeln der Lichtεtrahlen zu der Achεe 5 deε Empfängerε 4 die Lichtquellen 8, 9, 11 in einer feεtgelegten Reihenfolge ein- bzw. ausgeschaltet, um Lichtimpulse auf die Streulichtzentren 2 zu erzeugen und Streulichtimpulse von den Streulichtzentren 2 auf den Empfänger 4 aufnehmen und auswerten zu können.
Zu den in den Figuren 1 bis 3 dargeεtellten Elementen der Vorrichtung gehört eine nicht dargestellte Auεwerteeinrichtung, die dem Empfänger 4 nachgeordnet iεt. Im einfachεten Fall, wenn mit der Vorrichtung die Konεtanz der Partikelkonzentration oder der Größenverteilung der Partikel in dem Trägermedium zu über¬ wachen iεt, z. B. in der Funktion alε Rauchmelder, oder wenn die Vorrichtung zur Meεεung der Abεcheideleistung von Schwebstoff- Filtern benutzt wird, genügt ein relativ träger Umεchalter alε Beεtandteil der Auεwerteeinrichtung, mit dem auch bestimmte Kombinationen der Lichtquellen 8, 9, 11 eingeschaltet werden können. Es kann inεoweit eine Streulichtmeεsung durchgeführt werden, bei der nur die Lichtquellen 8 eingeschaltet sind. Eε kann alternativ eine Streulichtmessung in Vorwärtsrichtung erfolgen, wenn nur die Lichtquellen 11 betrieben werden. Bei einer Streulichtmeεεung in Rückwärtεrichtung werden nur die Lichtquellen 9 betrieben. Auch Kombinationen der Lichtquellen können ausgewählt und so betrieben werden.
Figur 4 zeigt eine modifizierte Anordnung. Es sind hier zwei Empfänger 4 mit ihren Empfängergehäusen 6 in symmetriεcher Anordnung gegeneinandergeεtellt vorgeεehen, wobei beide Empfän¬ ger 4 auf ein gemeinεames Streulichtzentrum 2 gerichtet sind. Im Vergleich zu der Anordnung nach Figur 3 fehlen die Lichtquellen 11. Der eine Empfänger 4 mißt daε Streulicht der Lichtquellen 9 in Rückwärtsrichtung, der andere Empfänger 4 in Vorwärts¬ richtung. Man erkennt, daß sich zwar die Anzahl der Emfänger 4 verdoppelt, jedoch Lichtquellen einsparen laεεen, inεbeεondere dann, wenn eine Mehrzahl von Lichtquellen unter unterεchied- lichen Winkeln vorgeεehen εind. Auch hier εchauen die Empfänger 4 in Richtung der Achse 5, εind also gleichsam in ein schwarzeε Loch hinein gerichtet, εodaß die Genauigkeit der Meεεung durch vagabundierende Streulichtεtrahlung und/oder im Gehäuεe reflektierte Lichtεtrahlen nicht beeinträchtigt wird.
In Figur 3 iεt am Beiεpiel eineε Rauchmelderε eine zugehörige Steuereinrichtung 15 εowie wesentliche Teile einer Auswerte¬ einrichtung 16 dargeεtellt und verdeutlicht. Die Steuerein¬ richtung 15 weiεt einen Stromversorgungsteil 17 und eine damit verbundene Umschaltautomatik 18 auf, die einen Schalter 19 besitzt, mit dem alternativ die Lichtquellen 8 für eine 90°- Meεεung oder weitere Lichtquellen 12 für eine 20°-Vorwärts- meεεung über entεprechende Leitungen 20 und 21 eingeεchaltet werden. Der Empfänger 4 iεt über eine Leitung 22 mit einem Verεtärker 23 verbunden, von dem eine Leitung 24 zu einer Umεchaltautomatik 25 führt, die Beεtandteil der Auεwerte¬ einrichtung 16 iεt. Auch die Umεchaltautomatik 25 beεitzt einen Schalter 26 zum Schalten der empfangenen Streulichtimpulεe. Ein über eine Leitung 27 angeεchloεεener Grenzwertmelder 28 iεt auf die 90"-Streuung abgestimmt. Eine Leitung 29 führt zu einem Grenzwertmelder 30, der auf die 20°-Vorwärtεstreuung ausge¬ richtet ist. Leitungen 31 und 32 führen von den betreffenden Grenzwertmeldern 28 bzw. 30 zu einer Alarmeinrichtung 33, um im Brandfalle den entstehenden Rauch zu melden. Eine Leitung 34 verbindet die beiden Umschaltautomatiken 18 und 25 und sorgt für eine entsprechende Synchronisierung, so daß die Zuordnung der von den Lichtquellen 8 bzw. 12 ausgeεandten Lichtεtrahlen zu den vom Empfänger 4 empfangenen betreffenden Streulichtimpulεen vorgenommen werden kann. In dieεem Auεführungεbeiεpiel εchalten die beiden Umεchaltautomatiken 18 und 25 beispielεweise mit einer Frequenz von 1 Hz zwischen den Lichtquellen 8 und 12 permanent hin und her. Über die Streulichtimpulse von Licht¬ εtrahlen aus den Lichtquellen 8 wird der Feinpartikelbereich der Luftverschmutzung bestimmt. Bei einem beginnenden Schwelbrand beispielεweiεe werden sehr feine Rauche erzeugt, bei denen der Grenzwertmelder 28 anspricht und inεoweit die Alarmeinrichtung 33 auεlöεt. Wenn dagegen beide Grenzwertmelder 28 und 30 gleichzeitig anεprechen, kann über die Alarmeinrichtung 33 ein andereε Alar εignal auεgeεteuert werden, weil über die Streu- lichtimpulεe der Lichtεtrahlen auε den Lichtquellen 12 auf das Vorhandensein im Durchmesser größerer Partikel geschlosεen werden kann, die von einer anderen Staubquelle εtammen können, die nicht infolge eineε Brandeε aufgetreten iεt. Inεoweit iεt eε möglich, zwiεchen verschiedenen Quellen der Stäube zu unterscheide .
Figur 6 verdeutlicht die Anwendung der Vorrichtung alε Aeroεol- photo eter für die Filterprüfung. Eε εind hier in Verbindung mit der Vorrichtung gemäß Figur 1 lediglich Lichtquellen 11 vorge¬ εehen, deren Lichtεtrahlen unter einem Winkel von 45° auf daε Streulichtzentrum gerichtet sind. In entsprechender Relativan¬ ordnung sind Lichtfallen 35 am Gehäuse l verwirklicht. Die Steuereinrichtung 15 weist eine Stromversorgung 17 für die Lichtquellen auf, die über Leitungen 36 gespeiεt werden. Vom Verstärker 23 der Auswerteeinrichtung 16 führt eine Leitung 37 zu einem Digital-Volt eter 38 und eine Leitung 39 zu einem Schreiber 40.
Mit dieser Vorrichtung gemäß Figur 6 kann z. B. eine Filter¬ prüfung mit einem Teεtaeroεol durchgeführt werden. Als Testaero¬ sol kann z. B. Paraffinölnebel mit bekannter Partikelgrößenver¬ teilung und definiertem Brechungsindex eingesetzt werden. Daher hat daε Photometer lediglich die Aufgabe, die Konzentration des Aerosolε zu beεtimmen. Hierzu werden die Lichtquellen 11 benutzt, die alε monochromatische Lichtquellen angeordnet sind und radialsymmetrisch auf dem Umfang des Gehäuses 1 zu der Rohrachse, die zugleich die Achse 5 deε Empfängerε 4 bildet, angeordnet εind. Obwohl nur zwei Lichtquellen 11 dargestellt sind, versteht es sich, daß ihre Anzahl größer als zwei iεt und die Lichtquellen 11 über den Umfang des rohrförmigen Gehäuseε 1 verteilt vorgeεehen sind. Wegen der hohen Lichtintensität können Laserdioden als Lichtquellen verwendet werden. Die Lichtquellen 11 sind auch hier auf daε gemeinεame Streulichtzentrum 2 fokuεεiert und erzeugen eine hohe Leuchtdichte, mit der auch eine geringe Aeroεolkonzentration hinter dem Filterprüfling εicher nachgewieεen werden kann. Bei der Filterprüfung wird der Durchlaßgrad deε Filterε alε das Verhältnis der Aerosolkonzen¬ tration vor und hinter dem Filter bestimmt. Um Störlicht durch Lichtreflexion an den Wänden des Gehäuses l zu vermeiden, εind die Lichtfallen 35 vorgesehen.
Figur 7 verdeutlicht ein Auεführungεbeiεpiel eineε univerεellen Streulichtmeßgeräteε. Auch hierbei εind wieder mehrere Licht¬ quellen 8, 9, 10, 11, 12 vorgeεehen, wobei die Winkel gegenüber dem Auεführungεbeiεpiel gemäß Figur 3 geändert εein können. Die Lichtεtrahlen sämtlicher Lichtquellen sind auf ein Streulicht¬ zentrum 2 gerichtet. Die Streulichtimpulεe in Richtung der Achεe 5 werden mit dem Empfänger 4 aufgefangen. Die Steuereinrichtung 15 weiεt das Stromversorgungεteil 17, einen Multiplexer 41 und einen Impulsgenerator 42 auf, die miteinander sowie mit den Lichtquellen 8, 9, 10, 11, 12 in der ersichtlichen Weise durch Leitungen verbunden εind. Zu der Auswerteeinrichtung 16 gehört ein Mikroprozessor 43 sowie ein A/D-Wandler 44, der mit dem Empfänger 4 verbunden ist. Eine Datenleitung 45 verbindet den Multiplexer 41 mit dem Mikroprozessor 43.
Mit diesem univerεellen Streulichtmeßgerät können die Streu¬ lichtimpulεe in Vorwärts- wie auch in Rückwärtsstreuung aufge¬ nommen werden, um diese zur Bestimmung der Größe und der Größenverteilung der Partikel zu nutzen. Die aufgezeigten Winkelbereiche sind jeweils mit zwei monochromatischen Licht¬ quellen 8, 9, 10, 11 oder 12 bestückt. Die Lichtquellen εenden Lichtεtrahlen unterschiedlicher Wellenlänge aus. Obwohl nur jeweilε zwei Lichtquellen, z. B. Lichtquellen 8, dargeεtellt εind, εind weitere Lichtquellen 8 vorgeεehen, die radialεymme- triεch zu der Achεe deε Rohrabεchnitteε 13 angeordnet sind. Das Trägermedium mit den Partikeln strömt in Richtung des Pfeiles 14 durch den Rohrabschnitt 13. Die Streulichtimpulεe gelangen in Richtung der Achse 5 auf den Empfänger 4, desεen Gesichtεfeld- winkel auf den Nahbereich um die Achεe des Rohrabschnittes 13 eingeschränkt ist. Der Impulεgenerator 42 liefert auf Anforde¬ rung durch den Mikroprozeεεor 43 einen Impulε, dessen Impuls¬ breite die jeweilige Einschaltdauer der Lichtquellen 8, 9, 10, 11 oder 12 bestimmt. Mit Hilfe deε Multiplexerε 41 wählt der Mikroprozessor 43 diejenigen Lichtquellen aus, die während der Impulsdauer eingeschaltet sein εollen. Die momentan eingeεchal- teten Lichtquellen beleuchten die im Streuzentrum 2 befindlichen Partikel 3, die daε Licht εtreuen. Die Streulichtimpulεe werden von dem Empfänger 4 in elektriεche Impulse umgewandelt, deren Breite von der Einschaltzeit der Einschaltdauer der Lichtquellen bestimmt wird. Die Streulichtimpulse werden mit einem Verstärker verstärkt. Die Höhe der Impulεe iεt ein Maß für die Streulicht- intenεität. Der A/D-Wandler 44 liefert den digitalen Wert der Impulεhöhe zum Mikroprozeεεor 43, der gleichzeitig alε Speicher auεgebildet iεt. Auf dieεe Weiεe εchaltet der Mikroprozeεεor 43 während einer Impulsdauer gleichzeitig alle Lichtquellen ein, die zu dem selben Winkelbereich gehören, beispielεweiεe alle Lichtquellen 8 oder alle Lichtquellen 9. Dabei können auch solche Lichtquellen ausgewählt werden, die gleiche Wellenlänge besitzen. Beim nächsten Impuls εchaltet der Mikroprozeεεor 43 andere Lichtquellen deε gleichen Streuwinkelbereichε mit anderen Wellenlängen ein, z. B. andere Lichtquellen 8. Bei dem darauf folgenden Impuls kann ein Umschaltung von den Lichtquellen 8 auf die Lichtquellen 9 erfolgen, wobei zunächst wieder einige Licht¬ quellen 9 mit einer ersten Wellenlänge eingeεchaltet werden und dann andere Lichtquellen 9 mit anderen Wellenlängen. Eε werden jeweilε die Höhen der Streulichtimpulεe abgeεpeichert. In einer zyklischen Folge speichert somit der Mikroprozessor 43 die Streulichtimpulse der jeweiligen Lichtquellen, die in den jeweiligen Winkeln angeordnet sind, ab. Er berechnet, nachdem alle Lichtquellen durchlaufen sind, die Größe bzw. die Größen¬ verteilung der Partikel mit Hilfe der Streulichttheorie und gibt das Ergebnis aus. Sodann kann sich die zyklische Folge wieder¬ holen. Die Impulsfolge der zyklischen Folge ist sehr groß im Verhältnis zur Aufenthaltεdauer der Partikel 3 im Streulicht¬ zentrum 2. Dieε bedeutet, daß von einem Partikel 3 eine Vielzahl von Streulichtimpulεen abgefragt und gespeichert werden können.
B E Z U G S Z E I C H E N L I S T E
1 Gehäuεe
2 Streulichtzentrum
3 Partikel
4 Empfänger
5 Achεe
6 Empfängergehäuεe
7 Blende
8 Lichtquelle
9 Lichtquelle
10 Lichtquelle
11 Lichtquelle
12 - Lichtquelle
13 Rohrabεchnitt
14 Pfeil
15 Steuereinrichtung
16 Auεwerteeinrichtung
17 Stromverεorgungsteil
18 Umschaltautomatik
19 Schalter
20 Leitung
21 Leitung
22 Leitung
23 Verstärker
24 Leitung
25 Umschaltautomatik
26 Schalter
27 Leitung
28 Grenzwertmelder
29 Leitung
30 Grenzwertmelder
31 Leitung
32 Leitung 33 Alarmeinrichtung
34 Leitung
35 Lichtfalle
36 Leitung
37 Leitung
38 Digital-Voltmeter
39 Leitung
40 Schreiber
41 Multiplexer
42 Impulεgenerator
43 Mikroprozessor
44 A/D-Wandler
45 Datenleitung

Claims

P A T E N T A N S P R Ü C H E
1. Vorrichtung zur Mesεung der Lichtεtreuung an in einem Trägermedium εuspendierten Partikeln (3) zur Ermittlung der Dichte, der Größe oder der Größenverteilung der Partikel, mit mindestenε einer Lichtquelle (8, 9, 10, 11, 12), die Licht¬ εtrahlen auf ein Streulichtzentrum (2) in dem Trägermedium mit den darin suspendierten Partikeln (3) richtet, mit einem Empfänger (4) für einen Teil deε im Streulichtzentrum entεtehenden Streulichts und mit einer dem Empfänger (4) nach- geordneten Auswerteeinrichtung (16), dadurch gekennzeichnet, daß eine gestreckt ausgebildete Detektionskammer vorgesehen ist, die in radialer Richtung zu ihrer Mittelachse von der Wandung eines Gehäuεeε (1) begrenzt wird, wobei daε Gehäuεe (1) zugleich eine Leitung für das durchströmende Trägermedium mit den Partikeln (3) bildet, daß die bzw. jede Lichtquelle (8, 9, 10, 11, 12) an der Wandung des Gehäuseε (13) angeordnet und auf die Mittelachεe der Detektionskammer ausgerichtet ist, so daß das Streulichtzentrum (2) in einem Bereich um die Mittelachεe der Detektionεkammer auεgebildet wird und daß der Empfänger (4) mit seiner Achse (5) koaxial zu der Mittelachse der Detektionεkammer auεgerichtet iεt, wobei dem Empfänger (4) eine Blendenanordnung (6, 7) derart zugeordnet iεt, daß der Gesichtsfeldwinkel des Empfängerε (4) nicht die das Streulichtzentrum (2) umgebende Wandung des Gehäuεeε (1) erfaßt.
2. Vorrichtung nach Anεpruch 1, dadurch gekennzeichnet, daß der Geεichtεfeldwinkel deε Empfängerε (4) nur einen engen Bereich um die Mittelachse der Detektionεkammer erfaßt.
3. Vorrichtung nach Anεpruch 1 oder 2, dadurch gekennzeichnet, daß die Blendenanordnung ein geεtreckt auεgebildeteε Empfänger- gehäuεe (6) und mehrere Blenden (7) aufweiεt, wobei der Empfänger an einem Ende deε Empfängergehäuεes (6) und die Blenden (7) über das Empfängergehäuse (6) bis zu desεen anderem Ende verteilt angeordnet εind.
4. Vorrichtung nach einem der Anεprüche l biε 3, dadurch gekennzeichnet, daß daε Gehäuεe 1 von einem Rohrabεchnitt (13) gebildet wird.
5. Vorrichtung nach einem der Ansprüche l bis 4, dadurch gekennzeichnet, daß mehrere über die Wandung des Gehäuseε (1) verteilt angeordnete Lichtquellen (8, 9, 10, 11, 12) vorgesehen sind.
6. Vorrichtung nach Anεpruch 5, dadurch gekennzeichnet, daß mindeεtenε zwei Lichtquellen (8, 9, 10, 12) in unterεchiedlichen Winkeln zu der gemeinεamen Achεe (5) der Detektionεkammer und deε Empfängerε (4) auεgerichtet εind.
7. Vorrichtung nach Anεpruch 5 oder 6, dadurch gekennzeichnet, daß mindeεtenε zwei Lichtquellen (8, 9, 10, 11, 12) auf ein gemeinεameε Streulichtzentrum (2) hin ausgerichtet sind.
8. Vorrichtung nach einem der Ansprüche 1 biε 7, dadurch gekennzeichnet, daß mindeεtenε zwei monochromatische Licht¬ quellen (8, 9, 10, 11, 12) vorgesehen sind, die Lichtstrahlen mit unterεchiedlichen Wellenlängen auεεenden.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Lichtquellen (8, 9, 10, 11, 12) gepulεte Lichtεtrahlen auεsenden und daß eine Steuereinrichtung (15) für den zeitlichen Ablauf der gepulsten Lichtstrahlen nacheinander und die Zuordnung zu den zugehörigen Signalen deε Empfängers (4) vorgesehen ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Lichtquellen (8, 9, 10, 11, 12) Laserdioden oder Leuchtdioden vorgeεehen εind.
PCT/EP1995/001521 1994-04-22 1995-04-21 Vorrichtung zur messung der lichtstreuung an partikeln WO1995029393A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA002188454A CA2188454C (en) 1994-04-22 1995-04-21 Device for measuring light scatter by particles
US08/732,307 US5841534A (en) 1994-04-22 1995-04-21 Apparatus for determining the density, size or size distribution of particles
DE59502179T DE59502179D1 (de) 1994-04-22 1995-04-21 Vorrichtung zur messung der lichtstreuung an partikeln
JP07527355A JP3138278B2 (ja) 1994-04-22 1995-04-21 粒子による光散乱を測定する装置
PL95316852A PL177975B1 (pl) 1994-04-22 1995-04-21 Fotometryczne urządzenie do wyznaczania parametrów zawiesiny cząstek stałych
EP95917354A EP0756703B1 (de) 1994-04-22 1995-04-21 Vorrichtung zur messung der lichtstreuung an partikeln
AU23457/95A AU689583B2 (en) 1994-04-22 1995-04-21 Device for measuring light scatter by particles
DK95917354T DK0756703T3 (da) 1994-04-22 1995-04-21 Anordning til måling af lysspredningen ved partikler
KR1019960705927A KR100329546B1 (ko) 1994-04-22 1995-04-21 입자에있어빛의산란을측정하는장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4414166.1 1994-04-22
DE4414166A DE4414166C1 (de) 1994-04-22 1994-04-22 Verfahren und Vorrichtung zur Messung der Lichtstreuung an Partikeln

Publications (1)

Publication Number Publication Date
WO1995029393A1 true WO1995029393A1 (de) 1995-11-02

Family

ID=6516220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/001521 WO1995029393A1 (de) 1994-04-22 1995-04-21 Vorrichtung zur messung der lichtstreuung an partikeln

Country Status (13)

Country Link
US (1) US5841534A (de)
EP (1) EP0756703B1 (de)
JP (1) JP3138278B2 (de)
KR (1) KR100329546B1 (de)
AT (1) ATE166153T1 (de)
AU (1) AU689583B2 (de)
CA (1) CA2188454C (de)
CZ (1) CZ292359B6 (de)
DE (2) DE4414166C1 (de)
DK (1) DK0756703T3 (de)
ES (1) ES2119431T3 (de)
PL (1) PL177975B1 (de)
WO (1) WO1995029393A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788082A3 (de) * 1996-01-05 1997-10-15 Pittway Corp Feuermeldesystem mit Unterscheidung von Rauchpartikeln
WO2008006578A1 (de) 2006-07-12 2008-01-17 Hochschule Für Technik Und Wirtschaft Des Saarlandes Vorrichtung und verfahren zur unterscheidung von nebelarten
US20210156800A1 (en) * 2018-05-11 2021-05-27 Carrier Corporation Multi-point detection system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586193B2 (en) * 1996-04-25 2003-07-01 Genicon Sciences Corporation Analyte assay using particulate labels
BR9710836A (pt) * 1996-04-25 2000-10-24 Spectrametrix Inc Ensaio de analitos usando marcas em partìculas
DE19718875C1 (de) * 1997-05-03 1998-10-29 H & W Optical Instr Gmbh Verfahren zur Bestimmung der in einem gasförmigen oder flüssigen Trägermedium enthaltenen Partikel
US6118531A (en) * 1997-05-03 2000-09-12 Hertel; Martin Method for identifying particles in a gaseous or liquid carrier medium
DE19724228A1 (de) * 1997-06-03 1998-12-10 Holger Dyja Verfahren und Vorrichtung zur Messung der Größenverteilung, optischen Eigenschaften und/oder Konzentration von Partikeln
DE19955362B4 (de) * 1999-11-17 2004-07-08 Wagner Alarm- Und Sicherungssysteme Gmbh Streulichtdetektor
AUPQ553800A0 (en) * 2000-02-10 2000-03-02 Cole, Martin Terence Improvements relating to smoke detectors particularily duct monitored smoke detectors
AU2008202548B2 (en) * 2000-02-10 2010-06-17 Siemens Schweiz Ag Improvements Relating to Smoke Detectors Particularly Ducted Smoke Detectors
AU2001275475A1 (en) * 2000-06-12 2001-12-24 Genicon Sciences Corporation Assay for genetic polymorphisms using scattered light detectable labels
DE10066246A1 (de) * 2000-09-22 2005-10-06 Robert Bosch Gmbh Streulichtrauchmelder
EP1488208A4 (de) * 2001-02-23 2008-05-28 Invitrogen Corp Verfahren zur bereitstellung eines erweiterten dynamikbereichs in analytentests
JP4659293B2 (ja) * 2001-08-10 2011-03-30 アサヒビール株式会社 ビールの劣化への振とうの影響を評価する方法
US7564365B2 (en) * 2002-08-23 2009-07-21 Ge Security, Inc. Smoke detector and method of detecting smoke
WO2004019294A2 (en) * 2002-08-23 2004-03-04 General Electric Company Rapidly responding, false detection immune alarm signal producing smoke detector
DE102004047417B4 (de) * 2003-09-29 2007-01-04 Gebauer, Gerd, Dr. Makromolekül- und Aerosoldiagnostik in gasförmiger und flüssiger Umgebung
KR20070093153A (ko) * 2003-10-23 2007-09-17 테렌스 콜 마틴 하우징을 덕트 위에 마운팅하기 위한 방법
US20050141843A1 (en) * 2003-12-31 2005-06-30 Invitrogen Corporation Waveguide comprising scattered light detectable particles
DE102006005574B4 (de) * 2006-02-06 2010-05-20 Johann Wolfgang Goethe-Universität Frankfurt am Main Meßvorrichtung zur Bestimmung der Größe, Größenverteilung und Menge von Partikeln im nanoskopischen Bereich
US8477186B2 (en) * 2009-04-06 2013-07-02 Sumco Corporation Apparatus for removing reflected light
DE102011082942A1 (de) * 2011-09-19 2013-03-21 Siemens Aktiengesellschaft Detektion in einem Gas enthaltener Partikel
DE102011119431C5 (de) 2011-11-25 2018-07-19 Apparatebau Gauting Gmbh Streustrahlungsbrandmelder und Verfahren zur automatischen Erkennung einer Brandsituation
JP6233711B2 (ja) * 2014-04-25 2017-11-22 パナソニックIpマネジメント株式会社 粒子測定装置
DE102014014797A1 (de) 2014-10-10 2015-09-17 Apparatebau Gauting Gmbh Streustrahlungsbrandmelder
CN106950158A (zh) 2015-12-09 2017-07-14 福特全球技术公司 具有粉尘传感器的机动车辆和用于减少机动车辆的粉尘再悬浮或粉尘排放的方法
DE102018125494A1 (de) * 2018-10-15 2020-04-16 Bombardier Transportation Gmbh Rauchmelder zum streckenweisen Detektieren von Rauch, sowie Fahrzeug aufweisend einen Rauchmelder
RU2709436C1 (ru) * 2019-02-27 2019-12-17 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Устройство определения задымления в лабораторной электропечи
KR20210012259A (ko) * 2019-07-24 2021-02-03 삼성전자주식회사 미세먼지 측정 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3334545A1 (de) * 1983-09-23 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Optischer rauchmelder
EP0463795A1 (de) * 1990-06-23 1992-01-02 Kidde Fire Protection Limited Rauchpartikeldetektor
JPH04260197A (ja) * 1991-02-15 1992-09-16 Matsushita Electric Works Ltd 光電式煙感知器
WO1993008461A1 (en) * 1991-10-14 1993-04-29 I.E.I. Pty. Ltd. Improvements relating to a sampling chamber for a pollution detector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2108707A1 (de) * 1971-02-24 1972-09-07 Portscht R Rauchdetektor nach dem Streulichtprinzip bei zwei Wellenlängen
DE2951459C2 (de) * 1979-12-20 1984-03-29 Heimann Gmbh, 6200 Wiesbaden Optische Anordnung für einen Rauchmelder nach dem Lichtstreuungsprinzip
NZ209185A (en) * 1983-08-12 1988-07-28 Martin Terence Cole Light absorber with annular grooves
US4906978A (en) * 1986-12-24 1990-03-06 Cerberus Ag Optical smoke detector
DE3831654A1 (de) * 1988-09-17 1990-03-22 Hartwig Beyersdorf Optischer rauchmelder
JPH081482Y2 (ja) * 1990-11-17 1996-01-17 株式会社堀場製作所 粒度分布測定装置
GB2259763B (en) * 1991-09-20 1995-05-31 Hochiki Co Fire alarm system
GB9417484D0 (en) * 1993-09-07 1994-10-19 Hochiki Co Light scattering type smoke sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3334545A1 (de) * 1983-09-23 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Optischer rauchmelder
EP0463795A1 (de) * 1990-06-23 1992-01-02 Kidde Fire Protection Limited Rauchpartikeldetektor
JPH04260197A (ja) * 1991-02-15 1992-09-16 Matsushita Electric Works Ltd 光電式煙感知器
WO1993008461A1 (en) * 1991-10-14 1993-04-29 I.E.I. Pty. Ltd. Improvements relating to a sampling chamber for a pollution detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 48 (P - 1477) 29 January 1993 (1993-01-29) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764142A (en) * 1995-09-01 1998-06-09 Pittway Corporation Fire alarm system with smoke particle discrimination
EP0788082A3 (de) * 1996-01-05 1997-10-15 Pittway Corp Feuermeldesystem mit Unterscheidung von Rauchpartikeln
EP1251471A2 (de) * 1996-01-05 2002-10-23 Pittway Corporation Feuermeldesystem mit Unterscheidung von Rauchpartikeln
EP1251471A3 (de) * 1996-01-05 2003-03-26 Pittway Corporation Feuermeldesystem mit Unterscheidung von Rauchpartikeln
WO2008006578A1 (de) 2006-07-12 2008-01-17 Hochschule Für Technik Und Wirtschaft Des Saarlandes Vorrichtung und verfahren zur unterscheidung von nebelarten
US20210156800A1 (en) * 2018-05-11 2021-05-27 Carrier Corporation Multi-point detection system
US11598722B2 (en) * 2018-05-11 2023-03-07 Carrier Corporation Multi-point detection system

Also Published As

Publication number Publication date
EP0756703B1 (de) 1998-05-13
CZ307596A3 (cs) 1998-01-14
CA2188454C (en) 2001-08-28
AU2345795A (en) 1995-11-16
JPH10511452A (ja) 1998-11-04
DK0756703T3 (da) 1998-10-07
KR970702485A (ko) 1997-05-13
PL177975B1 (pl) 2000-02-29
EP0756703A1 (de) 1997-02-05
PL316852A1 (en) 1997-02-17
DE4414166C1 (de) 1995-12-07
ES2119431T3 (es) 1998-10-01
DE59502179D1 (de) 1998-06-18
US5841534A (en) 1998-11-24
CZ292359B6 (cs) 2003-09-17
JP3138278B2 (ja) 2001-02-26
AU689583B2 (en) 1998-04-02
CA2188454A1 (en) 1995-11-02
KR100329546B1 (ko) 2002-08-08
ATE166153T1 (de) 1998-05-15

Similar Documents

Publication Publication Date Title
WO1995029393A1 (de) Vorrichtung zur messung der lichtstreuung an partikeln
DE2929170C2 (de) Meßeinrichtung zur Ermittlung des Fluoreszenz-Emissionsspektrums von Partikeln
DE69631714T2 (de) Vorrichtung zur optischen Untersuchung eines Fluids, insbesondere zur hämatologischen Analyse
DE69738627T2 (de) Gasdetektor
DE602005002625T2 (de) System und verfahren für mehrfach-laserauslösung
DE3034903C2 (de)
DE202017007509U1 (de) Optisches System zur Sammlung von Entfernungsinformationen in einem Feld
DE69535012T2 (de) Verfahren und Vorrichtung zur Messung der Konzentration von absorbierenden Bestandteilen in einem streuenden Medium
DE102015207289A1 (de) Partikelsensorvorrichtung
EP0116321A2 (de) Infrarot-Spektrometer
DE2202969A1 (de) Vorrichtung fuer die Fernanalyse von Gasen
DE2101358A1 (de) Fotoanalysevorrichtung
DE2431107A1 (de) Geraet zum ermitteln der dichte und groesse von in einem insbesondere fluessigen medium suspendierten kleinen teilchen
EP1173747A2 (de) Anordnung zur optischen auswertung eines gegenstandsarrays
DE2660947C2 (de) Fotoanalysegerät zur gleichzeitigen optischen Messung einer Anzahl von Eigenschaften eines in einer Suspension enthaltenen Systems kleiner Teilchen
WO1998023944A1 (de) Fluoreszenzkorrelationsspektroskopiemodul für ein mikroskop
EP1160719A2 (de) Sensor für die Echtheitserkennung von Signets auf Dokumenten
DE4033187A1 (de) Strahlungs- und empfangsvorrichtung fuer einen faseroptischen sensor
DE10350918B3 (de) Vorrichtung und Verfahren zur Messung der Transmission eines Objekts
DE2727927C3 (de) Vorrichtung zur getrennten Erfassung von Lichtstrahlen
EP1039289A2 (de) Verfahren und Einrichtung zur Bestimmung der Geschwindigkeit und der Grösse von Partikeln
DE69633890T2 (de) Vorrichtung zur Messung interner Information in streuenden Medien
DE3137835C2 (de)
DE2727664A1 (de) Kuevettenpositioniereinrichtung
DE3315456C2 (de) Vorrichtung zur Bestimmung von Partikelgrößen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BY CA CN CZ FI HU JP KR PL RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV1996-3075

Country of ref document: CZ

Ref document number: 2188454

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019960705927

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995917354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08732307

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995917354

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1996-3075

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1995917354

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1996-3075

Country of ref document: CZ