WO1995015420A1 - Dispositif de commande d'excavation lineaire pour pelle hydraulique - Google Patents

Dispositif de commande d'excavation lineaire pour pelle hydraulique Download PDF

Info

Publication number
WO1995015420A1
WO1995015420A1 PCT/JP1994/002017 JP9402017W WO9515420A1 WO 1995015420 A1 WO1995015420 A1 WO 1995015420A1 JP 9402017 W JP9402017 W JP 9402017W WO 9515420 A1 WO9515420 A1 WO 9515420A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
vehicle body
laser
angle
control device
Prior art date
Application number
PCT/JP1994/002017
Other languages
English (en)
French (fr)
Inventor
Yoshinao Haraoka
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29955393A external-priority patent/JP3389303B2/ja
Priority claimed from JP6010828A external-priority patent/JPH07216930A/ja
Priority claimed from JP01078594A external-priority patent/JP3226406B2/ja
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to US08/648,107 priority Critical patent/US5713144A/en
Priority to KR1019960702803A priority patent/KR100202203B1/ko
Priority to EP95902281A priority patent/EP0731221A4/en
Publication of WO1995015420A1 publication Critical patent/WO1995015420A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present invention relates to a linear excavation control device of a hydraulic power shovel, and in particular, linear excavation is performed by controlling a bucket tip portion to linearly move using a laser beam as a reference. And a linear excavation control device.
  • the laser transmitter installed on the ground surface to be excavated, the laser receiver mounted on the body of the hydraulic power shovel, and the position of receiving the laser beam from the laser transmitter by the laser receiver
  • the controller was equipped with a controller that detects the height of the vehicle body and controls the excavation depth of the bucket.
  • Such a linear excavation control device detects the height of a vehicle body using a laser beam, controls the height of the bucket tip based on the vehicle body height and a set excavation depth, and moves the bucket tip using a laser beam.
  • Straight excavation is performed according to the set gradient, that is, moved parallel to the laser beam, and is mainly used for excavating trenches and slopes for burying pipes.
  • the above linear excavation control device has a Since it is mounted vertically on the vehicle body, as shown in Fig. 1, when the angle of the laser beam b oscillated by the laser oscillator a to the horizontal is set large, the laser beam travels only a short distance L on the vehicle body c. There was a problem that the receiver d entered the area where the laser beam b could not be received, and the distance for straight excavation became shorter.
  • the above-described straight excavation control device has no problem when the vehicle body excavates while traveling without turning even when the laser beam is inclined with respect to the horizontal, but when the vehicle body is excavated while turning, There was a problem that an error occurred in the excavation depth.
  • the bucket when the body turns when the laser beam is inclined with respect to the horizontal, the bucket also turns, and the height of the bucket tip relative to the laser beam changes. Since the height is the same, the command for the height of the bucket tip before and after the turn is also the same, and as a result, the excavation by the above-mentioned change in the height of the bucket tip with respect to the laser beam is performed. An error occurs in the depth.
  • the above-mentioned straight excavation control device has no problem when the vehicle body excavates while excavating the excavation site inclined in the direction of excavation by the bucket.
  • the excavated surface of the baguette is oblique to the horizontal in a direction perpendicular to the excavation direction.
  • the vehicle when digging an excavation site that is inclined in a direction perpendicular to the direction of excavation by the bucket, or when there is unevenness in that direction, the vehicle will move horizontally in the direction perpendicular to the direction of excavation by the bucket. And the baguette is also horizontal with respect to the direction perpendicular to the drilling direction. Due to the inclination, the bucket tip (the excavation edge) is oblique to the horizontal in the direction perpendicular to the excavation direction.
  • the bucket has a predetermined width in the direction orthogonal to the excavation direction, and excavates continuously by the bucket width by moving the bucket in the direction orthogonal to the bucket width direction and excavating. Therefore, if the vehicle body is in a horizontal position, the bucket tip will be horizontal in the width direction and the excavation surface will be horizontal in the bucket width direction, but the vehicle body will tilt and the bucket tip will be orthogonal to the excavation direction. In other words, if the direction of the excavation is oblique to the bucket width direction, the excavated surface will be oblique to the horizontal in the packet width direction.
  • the straight excavation distance can be increased even when the angle of the laser beam with respect to the horizontal is large.
  • Excavation depth can be the same, and even when excavating an excavation site inclined in a direction perpendicular to the direction of excavation by the bucket, or when there is unevenness in that direction, the bucket excavation surface It is an object of the present invention to provide a hydraulic excavator linear excavation control device capable of always excavating horizontally in the width direction. Disclosure of the invention
  • a laser transmitter installed on a surface of an excavation target, a laser receiver mounted on a vehicle body of a hydraulic power shovel, and a laser receiver
  • a controller is provided for controlling the excavation posture of the bucket according to the light receiving position of the laser from the laser transmitter, and adjusts at least one of the tilt of the laser receiver and the excavation state of the bucket.
  • a hydraulic power shovel straight excavation control device is provided as a first specific mode of the above configuration,
  • the laser light receiver can be tilted according to the angle of the laser light with respect to the horizontal, so that the laser light receiver can receive the laser light even when the angle of the laser light with respect to the horizontal becomes large. Difficult to enter the area, can extend the straight excavation distance.
  • a detecting means for detecting an inclination angle of the laser light receiver is provided, and the controller is provided with a function of correcting laser light receiving position data based on an inclination angle detection signal from the detecting means. Is preferred.
  • the detecting means is an inclinometer or a potentiometer.
  • the vehicle body includes a boom, an arm, and a bucket, and is rotatably attached to the traveling body.
  • a boom angle sensor for detecting an angle of the boom; an arm angle sensor for detecting an angle of the arm; a bucket angle sensor for detecting an angle of the bucket; and a swivel for detecting a turning angle of the vehicle body Equipped with an angle sensor,
  • a hydraulic excavator linear excavation control device having a function of outputting an operation command over each actuation of the boom, arm and bucket so as to keep the height constant.
  • the height of the bucket tip is corrected according to the turning angle and the angle between the laser light and the horizontal, so that the laser light is inclined with respect to the horizontal.
  • the excavation depth based on the laser beam can be made the same.
  • the turning angle of the vehicle is calculated based on the detected value of the turning angle sensor before turning and the detected value after turning.
  • the vehicle body is attached to the traveling body so as to be tiltable in the baguette width direction.
  • a linear excavation control device for a hydraulic shovel wherein the controller has a function of operating the tilting means so as to level the vehicle body based on a detection signal from the left and right inclinometer is provided.
  • the controller has a function of operating the tilting means so as to level the vehicle body based on a detection signal from the left and right inclinometer.
  • the tilting means includes a tilt cylinder mounted between the vehicle body and the traveling body, and a switching valve for supplying pressure oil to the tilt cylinder. It is preferable that the controller switches the switching valve in response to a left-right inclination signal from the left-right inclinometer.
  • FIG. 1 is an explanatory diagram showing a defect in the conventional example.
  • FIG. 2 is a front view showing the entire first embodiment of the hydraulic excavator straight excavation control apparatus according to the present invention.
  • FIG. 3 is a front view showing the mounting structure of the laser receiver of the first embodiment.
  • FIG. 4 is a plan view of FIG.
  • FIG. 5 is a side view of FIG.
  • FIG. 6 is a control circuit diagram of the first embodiment.
  • FIG. 7 is a diagram showing a change in the laser receiving position when the laser receiver is tilted.
  • FIG. 8 is a diagram showing a light-receivable traveling range when the laser receiver is tilted.
  • FIG. 9 is a front view showing the entire second embodiment of the present invention.
  • FIG. 10 is a control circuit diagram of the second embodiment.
  • FIG. 11 is an explanatory diagram showing a state where the bucket is turned in the second embodiment.
  • FIG. 12 is a plan view of FIG.
  • FIG. 13 is a front view showing the entire third embodiment of the present invention.
  • FIG. 14 is a diagram showing a connection structure between the vehicle body and the traveling body according to the second embodiment.
  • FIG. 15 is a control circuit diagram of the third embodiment.
  • FIG. 16 is an explanatory diagram showing a state where the traveling body of the third embodiment is inclined.
  • a boom 2 is provided on a vehicle body 1 attached to a traveling body 51 so that the boom can be turned up and down by a boom cylinder 3, and an arm 4 is turned on the boom 2 by an arm cylinder 5.
  • a bucket 6 is provided on the arm 4 so that the bucket 6 can be turned up and down by a bucket cylinder 7 to constitute a hydraulic power bell.
  • the vehicle body 1 is provided with a front and rear inclinometer 8, a left and right inclinometer 9, and a laser receiver 10 for receiving laser light.
  • Boom angle sensor at the pivot of boom 2 1 1 has an arm angle sensor 12 at the pivot point of arm 4 and a bucket angle sensor 13 at the pivot point of bucket 6 .
  • Laser oscillator 14 is installed at the excavation site Then, the laser light A of the laser oscillator 14 is received by the laser receiver 10.
  • the vehicle body 1 has a frame body 30, a driver's cab 31 on one side in front of the frame body 30, and a battery case 32 on the other side in front of the frame body 30.
  • the fuel tank 33 and the hydraulic oil tank 34 are mounted after the battery case 32, and the boom mounting frame 35 is mounted at the front left and right intermediate part of the frame body 30.
  • An engine, etc. is mounted on the rear of 30 c.
  • the side of the frame body 30 on the side opposite to the operator's cab 31 on the front side 30 a is mounted on the laser receiver mount 36 with bolts 37 on the side 30 a It is.
  • the laser receiver 10 is mounted on a housing 38, and a lower mounting portion 39 of the housing 38 swings on a bracket 40 of the laser receiver mounting body 36 in the front-rear direction on a horizontal axis 41. It is movably connected.
  • An upper mounting portion 42 of the housing 38 can be fixed to a guide body 45 at a desired position by a bolt 43 and a nut 44. That is, the guide body 45 is fixed to the laser receiver mounting body 36 by a stay 46, and has an arc-shaped guide groove 47 centered on the horizontal axis 41.
  • the shaft portion 3 is slidable along the guide groove 47, and the housing 38 is swung to a desired position while the nut 44 is loosened, and the nut 44 is moved. Upper part by tightening
  • the mounting portion 42 is fastened and fixed to the guide body 45.
  • the housing 38 can be swung back and forth about the horizontal axis 41 by loosening the nuts 44, and can be fixed at any swing position by tightening the nuts 43.
  • the laser receiver 10 can be tilted back and forth with respect to the vertical.
  • a protective member 49 is attached to the side surface 30a near the front of the frame body 30 via a bracket 48, whereby the laser receiver 10 collides with an obstacle. There is not to be.
  • signals from the front and rear inclinometer 8, the left and right inclinometer 9, the boom angle sensor 11 and the arm angle sensor 12 and the bucket angle sensor 13 are calculated by the arithmetic circuit of the controller 20 as shown in FIG. It is input to the automatic excavation control circuit 22 in 21 and is calculated in the same way as before.
  • the automatic excavation control circuit 22 outputs a control instruction to the control circuit 23 based on the calculation result, and the control circuit 23 outputs the electromagnetic proportional control valves 24, 2 for the boom, the arm, and the bucket.
  • a control current is output to 5, 26 to extend and retract the boom cylinder 3, arm cylinder 5, and bucket cylinder 7 to control the height of the tip of the bucket 6 and move it linearly. Ditch excavation is carried out.
  • the laser receiver 10 detects the displacement of the laser receiver 10 with respect to the laser light A, that is, the displacement of the height of the vehicle body 1 by receiving the laser light A, and outputs the detection signal to the arithmetic circuit 21. Is input to the vehicle height displacement calculation circuit 27. Based on the detection signal, the vehicle front-rear inclination angle detection signal from the front-rear inclinometer 8 and the left-right inclinometer 9, the vehicle The height displacement amount is calculated and fed back to the automatic excavation control circuit 22 to correct the control command, and the cutting edge position based on the command value is displayed on the -cutting edge position display section 2 ⁇ .
  • the light receiving position C when the laser receiver 10 is tilted with respect to the light receiving position ⁇ when the laser receiver 10 is vertical is shifted by ⁇ ⁇ ⁇ ⁇ due to the tilt angle S.
  • the inclination angle 0 of the receiver 10 is measured by an inclinometer, and the inclination angle 6 is calculated by the inclination angle input switch 29 as shown in Fig. 6. Input to 27 and correct the height of the laser light received by the laser light receiver 10 to the light reception height when the laser light receiver is vertical to obtain the body height.
  • a potentiometer 50 for detecting the rotation angle of the horizontal axis 41 that supports the housing 38 provided with the laser receiver 10 is provided.
  • the above correction may be performed by inputting the output signal of the laser 50 to the controller 20 as the inclination angle of the laser light receiver 10.
  • the trouble of actually measuring the inclination angle of the laser light receiver 10 and the trouble of inputting it can be omitted, and the inclination angle of the laser light receiver 10 can be accurately input to the controller 20 without error. .
  • the laser receiver 10 can be tilted according to the angle of the laser beam A to the horizontal, even if the angle of the laser beam A to the horizontal increases, the laser receiver 10 can Receives light A It becomes difficult to enter the area that cannot be done. Therefore, as shown in FIG. 8, the possible traveling distance of the vehicle body 1 can be increased to increase the length L 1, and the straight excavation distance can be increased.
  • a vehicle body 102 is mounted on a traveling body 101 so as to be pivotable, and a boom 103 can be turned up and down on the vehicle body 102 with a bump cylinder 104. Arm 105 on the boom 103 so that it can rotate up and down with the arm cylinder 106, and a bucket 107 on the arm 105.
  • a hydraulic shovel is provided so as to be able to rotate up and down with the cylinder 108.
  • the vehicle body 102 has a front / rear inclinometer 109, a left / right inclinometer 101, a laser receiver 11 1 for receiving laser light, and a turning angle sensor 11 for detecting the turning angle of the vehicle body 102. Two are provided.
  • a boom angle sensor 113 is provided at the pivot point of the boom 103, a arm angle sensor 114 is provided at the pivot point of the arm 105, and a bucket is provided at the pivot point of the bucket 107.
  • G. Angle sensors 1 and 15 are provided respectively.
  • a laser oscillator 116 is installed at the excavation site, and the laser light A from the laser oscillator 116 is received by the laser receiver 111.
  • the signals of the front and rear inclinometer 109, the left and right inclinometer 110, the boom angle sensor 113, the arm angle sensor 114, and the bucket angle sensor 115 are shown in FIG.
  • the automatic excavation control circuit 1 12 outputs a control command to the control circuit 1 23 based on the calculation result, and the control circuit 1 2 3 controls the electromagnetic proportional control valves 1 2 4 for the boom arm and the baguette.
  • 1 25, 1 26 to output a control current to extend and retract the boom cylinder 104, the arm cylinder 106, and the bucket cylinder 108, to make the bucket tip Excavation is performed by controlling the height of 107a and moving it linearly.
  • the laser light receiver 111 detects the displacement of the laser light receiver 111 relative to the laser light A, that is, the displacement of the height of the vehicle body 102 by receiving the laser light A, and outputs the signal as described above.
  • Input to the displacement amount calculation circuit 1 27 of the body height in the calculation circuit 1 2 1, and the vehicle body tilt angle detected by the front and rear inclinometer 1 09 and the vehicle left and right tilt detected by the left and right inclinometer 1 1 1 1 Calculates the height displacement of the car body 102 based on the angle and feeds it to the automatic excavation control circuit 122 to correct the control finger and correct the bucket tip 10 0 7
  • the height of a is corrected and the excavation depth based on the command value is displayed on the display unit 128.
  • the excavation depth is always the same with respect to the laser beam A, so the excavation can be performed in parallel with the laser beam A.
  • the solid line is shown in Fig. 11 and Fig. 12.
  • the bucket 107 is also turned. The vertical distance between the bucket tip 107a and the laser beam A changes by L '.
  • a bucket tip height displacement amount calculation circuit 129 is provided in the calculation circuit 12 1 of the controller 12 0, and the rotation angle sensor 11 2 Calculates the bucket tip height displacement based on the turning angle and the angle between the laser beam A and the horizontal, and feeds back the value to the automatic excavation control circuit 122 to correct the control order. Correct the height of the baguette tip.
  • is the angle of the laser beam ⁇ with the horizontal
  • L'l is the travel distance of the baguette 107 with respect to the longitudinal direction of the vehicle when turning
  • the angle of the laser beam A with the horizontal is set and input in advance. ing.
  • L'l L'2-(cos / 3 x L'2).
  • L'2 is the length from the pivot center 102a to the bucket tip 107a, and depends on the boom length, arm length, bucket length and each angle. It is calculated by calculating the length of the boom, arm, and knuckle in the front and rear direction of the vehicle, and adding the distance from the boom pivot point to the turning center 102a.
  • / 3 is the turning angle of the vehicle body 102, and is detected by the difference between the detection value of the turning angle sensor 111 before the vehicle body turning and the detection value after the vehicle body turning.
  • the height displacement of the bucket tip calculated in this way is added to the value of the bucket tip height before turning to obtain the baggage tip height when the vehicle body 102 turns.
  • the excavation depth from the laser beam A can be the same even when the vehicle body 102 is turned.
  • the bucket tip Since the height of 107a is corrected according to the turning angle and the angle between the laser beam A and the horizontal, the body 102 is turned when the laser beam A is inclined with respect to the horizontal. Even when drilling, the drilling depth based on the laser beam can be made the same.
  • a pair of left and right crawler belts 202 and 202 are attached to the left and right sides of the traveling body 201, and the vehicle body 203 is mounted on the traveling body 201.
  • a pair of left and right tilt cylinders 205 is connected between the vehicle body 203 and the traveling body 201 so as to be tiltable left and right by a pinch 204.
  • a boom 206 is provided on the vehicle body 203 so as to be able to turn up and down by a boom cylinder 200, and an arm 209 is turned up and down by an arm cylinder 209 on the boom 206.
  • a bucket 210 is provided on the arm 208 so that the bucket 210 can be turned up and down by a bucket cylinder 211 to form a hydraulic shovel.
  • the vehicle body 203 is provided with a front-back inclinometer 2 12, a left-right inclinometer 2 13, and a laser receiver 2 14 for receiving laser light.
  • a boom angle sensor 2 15 is at the pivot point of the boom 206
  • an arm angle sensor 2 16 is at the pivot point of the arm 208
  • a bucket angle is at the pivot point of the bucket 210.
  • Degree sensors 2 17 are provided respectively.
  • a laser oscillator 218 is installed at the excavation site, and the laser light A of the laser oscillator 218 is received by the laser receiver 218.
  • the control circuit of this embodiment will be described with reference to FIG.
  • the front and rear inclinometer 2 12, the left and right inclinometer 2 13, the boom angle sensor 2 15, the arm angle sensor 2 16, and the baguette angle sensor 2 17 As shown in Fig. 15, the signal is input to the automatic digging control circuit 222 in the arithmetic circuit 221 of the controller 220, and based on the boom angle, arm angle and bucket angle, Similarly, the height of the bucket tip is calculated with reference to a predetermined position of the vehicle body 203.
  • the automatic excavation control circuit outputs a control command to the control circuit 223 based on the calculation result, and the control circuit 223 outputs a control current to an electromagnetic proportional control valve (not shown) for a boom, an arm, and a bucket.
  • an electromagnetic proportional control valve (not shown) for a boom, an arm, and a bucket.
  • Excavation is performed by moving linearly to the 3 side.
  • the laser light receiver 214 detects the displacement of the laser light receiver 214 relative to the laser light A, that is, the height displacement of the vehicle body 203 by receiving the laser light A, and calculates the signal based on the signal.
  • the height of the bucket tip is set with reference to a direction perpendicular to the bucket excavation direction at the bucket tip, that is, the center in the bucket width direction.
  • the discharge pressure oil of the hydraulic pump 230 is supplied to the extension chamber 205 a and the contraction chamber 205 b of the tilting cylinder 205 by a switching valve 231, and is controlled by the switching valve 2311.
  • 2 3 1 is held in the neutral position X, and when the first and second solenoids 2 3 2 and 2 3 3 are energized, hydraulic oil flows into the extension chamber 2 0 5 a.
  • the first position Y is for supplying pressure
  • the second position Z is for supplying pressurized oil to the shrinkage chamber 205b.
  • the first and second solenoids 2 32, 2 33 of the switching valve 2 31 are controlled by energization from an energization control circuit 226 of the controller 220.
  • the energization control circuit 226 energizes the first and second solenoids 232 and 233 in response to a right tilt signal and a left tilt signal from the manual tilt lever 227, and the power is supplied to the first and second solenoids 233 and 233.
  • the energization control circuit 226 detects the horizontal tilt detected by the left and right inclinometer 213. Based on the angle, power is supplied to the first and second solenoids 23, 23 and 23 to level the vehicle body 203 and level the excavated surface. At this time, the inclination angle (absolute inclination angle) of the vehicle body 203 with respect to the horizontal before the correction is displayed on the display unit 25.
  • the bucket 210 may have a predetermined height as described above even if the central portion 210a of the bucket 210 has a predetermined height.
  • the end 210b of the width direction becomes lower than the center 210a by L ", and when the bucket 210 is moved in the direction perpendicular to the width direction and excavated, The bucket width direction of the excavation surface E is oblique to the horizontal.
  • the vehicle body 203 is tilted downward to the right. Then, a rightward-downward tilt detection signal is input from the left and right inclinometer 2 13 to the control port 220, and the energization control circuit 222 then tilts the vehicle body 203 to the left side. 1 ⁇ Since the power is supplied to the second solenoids 2 3 2 and 2 3 3, the vehicle body 203 is tilted to the left by the left and right tilt cylinders 205. When the vehicle body 203 becomes horizontal, the right-downward inclination detection signal is no longer input to the controller 220 from the left and right inclinometers 21 3, whereby the energization control circuit is turned off. 2 2 6 does not energize the first and second solenoids 2 3 2 and 2 3 3, and sets the switching valve 2 3 1 to the neutral position X.
  • the vehicle body 203 can be arbitrarily operated by operating the manual tilt lever 227. It can be set to the posture of the inclination angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Description

明細書 油圧式パワーシ ョベルの直線掘削制御装置 技術分野
この発明は、 油圧式パワーシ ョ ベルの直線掘削制御装置に関 し 特にバケツ ト先端部をレーザ光を基準と して用いて直線移動させ るよう に制御するこ とによ り直線掘削が行われるよう に した直線 掘削制御装置に関する。 背景技術
油圧式パワーシ ョベルの直線掘削制御装置と しては、 例えば特開 平 3 — 2 9 5 9 3 3号公報に記載のものが知られている。
これは、 掘削対象地表面に設置したレーザ発信器と、 油圧式パ ヮ一シ ョ ベルの車体に取付けたレーザ受光器と、 こ の レーザ受光 器による上記レーザ発信器からのレーザ光の受光位置によって車 体高さを検出 してバケツ 卜の掘削深さを制御するコ ン ト ロ一ラを 備えて成るものであった。
かかる直線掘削制御装置は、 レーザ光によって車体高さを検出 し、 その車体高さ と設定掘削深さに基づいてバケ ツ ト先端部の高 さを制御して該バケツ ト先端部をレーザ光による設定勾配に合わ せて即ちレーザ光と平行に移動させて直線掘削するよ う にしてお り、 主と して管埋設用の溝や法面を掘削するために用いられてい る。
しかしながら、 上記直線掘削制御装置は、 そのレーザ受光器が 車体に垂直に取付けてあるので、 図 1 に示すよう にレーザ発振器 a よ り発振される レーザ光 b の水平に対する角度を大き く 設定し た場合、 車体 cが短い距離 Lだけ走行しだけでレーザ受光器 dが レーザ光 bを受光できない領域に入って しまい、 直線掘削できる 距離が短かく なつてしまう という問題があつた。
また、 上記直線掘削制御装置は、 レーザ光が水平に対して傾斜 していても車体が旋回せずに走行しながら掘削する場合には問題 がないが、 車体を旋回して掘削する場合には掘削深さに誤差が生 ずるという問題があつた。
つま り、 レーザ光が水平に対して傾斜している場合に車体を旋 回するとバケツ ト も旋回し、 バケツ ト先端部のレーザ光に対する 高さが変化するが、 レーザ光によ り検出 した車体高さは同一であ るから、 旋回前と旋回後のバケツ ト先端部の高さについての指令 も同一となり、 その結果前述のバケツ ト先端部のレーザ光に対す る高さの変化分だけ掘削深さに誤差が生じてしまう。
さ らに、 上記直線掘削制御装置は、 バケッ トによる掘削方向に 傾斜した掘削対象地を車体が走行しながら掘削する場合には問題 がないが、 バケツ トによる掘削方向と直交な方向において傾斜し た掘削対象地を掘削する場合などにはバゲ ッ トによる掘削面が掘 削方向に直交な方向において水平に対して斜めとなる という問題 があつた。
つま り、 バケツ トによる掘削方向と直交する方向に傾斜した掘 削対象地を掘削する場合や、 その方向に凹凸がある場合等には車 体がバケツ トによる掘削方向と直交な方向において水平に対して 傾斜し、 バゲッ ト も掘削方向と直交な方向において水平に対して 傾斜するので、 バケツ ト先端部 (掘削刃先) が掘削方向と直交す る方向において水平に対して斜めとなる。
換言すれば、 バケツ トは掘削方向と直交する方向に所定の幅を 有し、 バケツ トをバケツ ト幅方向と直交する方向に移動して掘削 するこ とでバケツ ト幅分だけ連続して掘削するので、 車体が水平 姿勢であれば、 バケツ ト先端部が幅方向に水平となって掘削面が バケツ ト幅方向に水平となるが、 車体が傾斜してバケツ ト先端部 が掘削方向と直交する方向つま りバケツ ト幅方向に斜めとなると 掘削面がパケッ ト幅方向において水平に対して斜めとなる。
この発明は、 レーザ光の水平に対する角度が大き く なつても直線 掘削距離を長く でき、 レーザ光が水平に対して傾斜している場合 に車体を旋回して掘削しても レーザ光を基準とする掘削深さを同 一にでき、 さ らにバケツ トによる掘削方向と直交する方向に傾斜 した掘削対象地を掘削する場合やその方向に凹凸がある場合でも バケツ トによる掘削面をバケ ツ 卜幅方向において常に水平に して 掘削できるよう に した、 油圧式パヮーシ ョベルの直線掘削制御装 置を提供することを目的とするものである。 発明の開示
上記の目的を達成するために、 本発明の主たる態様によれば、 掘削対象地表面に設置したレーザ発信器と、 油圧式パワーシ ョ ベルの車体に取付けたレーザ受光器と、 該レーザ受光器による前 記レーザ発信器からのレーザの受光位置によってバケツ 卜による 掘削姿勢を制御するコン ト ローラを備え、 前記レーザ受光器の傾 き及び該バケツ トによる掘削状態の少な く と も一方を調整するよ うにした、 油圧式パワーシ ョ ベルの直線掘削制御装置が提供され 上記構成の第 1 の具体的態様と して、
前記レーザ受光器を垂直に対 して傾斜可能に したの油圧式パ ヮーシ ョベルの直線掘削制御装置が提供される。
この構成によれば、 レーザ受光器をレーザ光の水平に対する角 度に応じて傾斜させるこ とができるから、 レーザ光の水平に対す る角度が大き く なつても レーザ受光器がレーザ光を受光できない 領域に入り難く 、 直線掘削距離を長くできる。
尚、 上記構成において、 前記レーザ受光器の傾斜角を検出する 検出手段を備え、 前記コ ン ト ローラに前記検出手段からの傾斜角 検出信号により レーザ光受光位置データを補正する機能を持たせ るのが好ま しい。
また、 前記検出手段を傾斜計またはポテンシ ョ メ ータ とするの が望ま しい ,
上記構成の第 2の具体的態様と して、
前記車体はブーム, アーム及びバケツ トを備え且つ走行体に旋 回自在に取り付けられており、
前記ブームの角度を検出するブーム角度セ ンサと、 前記アーム の角度を検出するアーム角度センサと、 前記バケツ 卜の角度を検 出するバケツ ト角度センサと、 前記車体の旋回角度を検出する旋 回角度センサを備え、
前記コ ン トローラが、 前記ブーム角度セ ンサとアーム角度セ ン ザとバケツ ト角度センサからの検出信号によって前記車体の基準 位置に対するバケツ ト先端部の高さを演算する機能と、 前記レー ザ受光器のレーザ受光位置の変化によって前記車体の高さ変位量 を検出する機能と、 前記旋回角度センサからの検出信号と レーザ 光の水平となす角度に基づいて車体旋回時のバケ ツ ト先端部の レーザ光に対する高さ変位量を演算する機能と、 前記車体の高さ 変位量と車体旋回時の前記バケツ ト先端部の高さ変位量に基づい て前記バケツ ト先端部のレーザ光に対する高さを常に一定とすべ く前記ブーム, アーム及びバケツ 卜の各ァクチユエ一夕に動作指 令を出力する機能を有する、 油圧シ ョ ベルの直線掘削制御装置が 提供される。
上記構成によれば、 車体を旋回した時にはバケツ ト先端部の高 さが、 その旋回角度と レーザ光の水平となす角度に応じて補正さ れるから、 レーザ光が水平に対して傾斜している場合に車体を旋 回して掘削しても、 レーザ光を基準とする掘削深さを同一にでき る。
尚、 上記構成において、 前記旋回角度セ ンサの車体旋回前の検出 値と車体旋回後の検出値よ り車体旋回角度を演算するよう にする のが好ま しい。
上記構成の第 3の具体的態様と して、
前記車体は走行体に対してバゲッ ト幅方向に傾動自在に取り付 けられており、
前記車体を傾動する傾動手段と、 前記車体の傾動角度を検出す る左右傾斜計を備え、
前記コン ト ローラが、 前記左右傾斜計からの検出信号によ り前 記車体を水平とするよう に前記傾動手段を作動させる機能を有す る、 油圧シ ョベルの直線掘削制御装置が提供される。 上記構成によれば、 走行がバケツ 卜幅方向に傾斜すると自動的 に車体が傾動して水平姿勢となるから、 バケツ トによる掘削面の バケツ ト幅方向の傾きを常に水平にして掘削できる。
尚、 上記構成において、 前記傾動手段が、 前記車体と前記走行 体との間に取り付けられた傾動用シ リ ンダと、 該傾動用シ リ ンダ に圧油を供給する切換弁とから構成され、 前記左右傾斜計からの 左右傾斜信号によ り前記コ ン ト ローラが前記切換弁を切換えるよ うにするのが好ま しい。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定するこ とを意図する ものではなく 、 単 に説明及び理解を容易とするものである。
図中、
図 1 は、 従来例における不具合を示す説明図である。
図 2 は、 本発明による油圧シ ョ ベルの直線掘削制御装置の第 1 実施例の全体を示す正面図である。
図 3 は、 上記第 1実施例のレーザ受光器の取付構造を示す正面 図である。
図 4は、 図 3の平面図である。
図 5 は、 図 3の側面図である。
図 6 は、 上記第 1実施例の制御回路図である。
図 7は、 レーザ受光器を傾けた場合のレーザ受光位置の変化を 示す図である。 図 8は、 レーザ受光器を傾けた場合の受光可能走行範囲を示す 図である。
図 9は、 本発明の第 2実施例の全体を示す正面図である。
図 1 0は、 上記第 2実施例の制御回路図である。
図 1 1 は、 上記第 2実施例においてバケ ツ トを旋回した状態を 示す説明図である。
図 1 2は、 図 1 1 の平面図である。
図 1 3は、 本発明の第 3実施例の全体を示す正面図である。 図 1 4 は、 上記第 2実施例の車体と走行体の連結構造を示す図 である。
図 1 5 は、 上記第 3実施例の制御回路図である。
図 1 6 は、 上記第 3実施例の走行体が傾斜した状態を示す説明 図である。 発明を実施するための好適な態様
以下に、 本発明の好適実施例による油圧シ ョベルの直線掘削制 御装置を添付図面を参照しながら説明する。
まず、 本発明の第 1実施例について説明する。
図 2 に示すよう に、 走行体 5 1 に取り付けられた車体 1 にブー ム 2をブームシ リ ンダ 3で上下回動し得るよう に設け、 そのブー ム 2 にアーム 4をアームシリ ンダ 5で上下回動し得るよう に設け そのアーム 4 にバケツ ト 6 をバケツ ト シ リ ンダ 7で上下回動し得 るよう に設けて油圧式パヮーシ ョベルを構成している。 車体 1 に は前後傾斜計 8、 左右傾斜計 9、 レーザ光を受光する レーザ受光 器 1 0 が設けてある。 ブーム 2 の回動支点にブーム角度セ ンサ 1 1 が、 アーム 4の回動支点にアーム角度センサ 1 2が、 バケ ツ ト 6 の回動支点にバケツ ト角度センサ 1 3がそれぞれ設けてある , 掘削対象地にはレーザ発振器 1 4が設置され、 このレーザ発振器 1 4のレーザ光 Aを前記レーザ受光器 1 0で受光するよう に して める。
次に、 前記レーザ受光器 1 0 の取付け構造を、 図 3乃至図 5 に 基づいて説明する。
車体 1 は、 フ レーム本体 3 0を備え、 フ レーム本体 3 0 の前寄 りの一側部に運転室 3 1 を、 フ レーム本体 3 0 の前寄りの他側部 にバッテリケース 3 2を、 そのバッテリ ケース 3 2 の後に燃料夕 ンク 3 3及び作動油タ ンク 3 4 をそれぞれ取付ける と共に、 フ レーム本体 3 0の前寄り左右中間部にブーム取付用フ レーム 3 5 を取付け、 フ レーム本体 3 0 の後部にエンジン等を取付けて成る c その フ レーム本体 3 0 の前寄 り の運転室 3 1 と反対側の側面 3 0 aにはレーザ受光器取付体 3 6がボルト 3 7で取付けてある。 前記レーザ受光器 1 0 は、 ハウジング 3 8 に取付けられ、 こ の ハウジング 3 8の下部取付部 3 9が前記レーザ受光器取付体 3 6 のブラケッ ト 4 0 に横軸 4 1 で前後方向に揺動自在に連結してあ る。 前記ハウジング 3 8の上部取付部 4 2がボル ト 4 3 とナツ ト 4 4でガイ ド体 4 5 に所望位置で固定され得るよう になっている。 即ち、 ガイ ド体 4 5 はステー 4 6 でレーザ受光器取付体 3 6 に固 着され、 かつ前記横軸 4 1 を中心とする円弧状のガイ ド溝 4 7 を 有し、 前記ボル ト 4 3の軸部はそのガイ ド溝 4 7 に沿って摺動自 在となっていて、 ナツ ト 4 4 を弛めた状態で前記ハウジング 3 8 を所望位置まで揺動させ、 ナツ ト 4 4 を締め込むこ とによ り上部 取付部 4 2をガイ ド体 4 5 に締結固定するようになっている。
このように、 ナツ ト 4 4 を弛める こ とでハウジング 3 8を横軸 4 1 を中心と して前後に揺動できる し、 ナツ ト 4 3 を締付ける こ とで任意の揺動位置で固定できるから、 レーザ受光器 1 0 を垂直 に対して前後に傾斜できる。
尚、 前記フ レーム本体 3 0 の前部寄り の側面 3 0 a にはブラ ケッ ト 4 8を介して保護部材 4 9が取付けられ、 これによ り レー ザ受光器 1 0が障害物と衝突しないようにある。
次に、 本実施例の制御回路の一例を図 6 に基づいて説明する。 前記前後傾斜計 8 、 左右傾斜計 9 、 ブー ム角度セ ンサ 1 1 - アーム角度センサ 1 2、 バケツ ト角度センサ 1 3 の信号は、 図 6 に示すように、 コ ン トローラ 2 0 の演算回路 2 1 内の自動掘削制 御回路 2 2 に入力されて従来と同様に演算される。 自動掘削制御 回路 2 2では演算結果に基づいて制御指合を制御回路 2 3 に出力 し、 その制御回路 2 3 よ りブーム用、 アーム用、 バケツ ト用の電 磁比例制御弁 2 4 , 2 5 , 2 6 に制御電流を出力 してブームシ リ ンダ 3 、 ァ一ムシリ ンダ 5、 バケツ ト シリ ンダ 7を伸縮させてバ ケッ ト 6 の先端部の高さを制御し且つ直線的に移動させる こ とに より溝掘削を行なう。
一方、 前記レーザ受光器 1 0 は レーザ光 Aを受光する こ とで レーザ光 Aに対する レーザ受光器 1 0 の変位即ち車体 1 の高さの 変位を検出 し、 その検出信号を前記演算回路 2 1 内の車体高さ変 位量演算回路 2 7 に入力する。 車体高さ変位量演算回路 2 7 は、 前記検出信号と前後傾斜計 8からの車体前後傾斜角度検出信号及 び左右傾斜計 9から車体左右傾斜角度検出信号に基づいて車体 1 の高さ変位量を演算して自動掘削制御回路 2 2 にフ ィ ー ドバッ ク して制御指令を補正すると共に、 その指令値に基づく 刃先位置を -刃先位置表示部 2 δに表示する。
次に、 レーザ受光器 1 0を垂直に対して傾斜した時の補正動作 を説明する。
図 7 に示すように、 レーザ受光器 1 0が垂直の時の受光位置 Β に対してレーザ受光器 1 0が傾斜した時の受光位置 Cは、 その傾 斜角 Sによって Ηだけずれるので、 レーザ受光器 1 0 の傾斜角 0 を傾斜計によって実測し、 その傾斜角 6を図 6 に示すよう に傾斜 角入力スィ ッ チ 2 9 でコ ン ト ローラ 2 0 の車体高さ変位量演算回 路 2 7 に入力してレーザ受光器 1 0 による レーザ受光高さをレー ザ受光器が垂直の時の受光高さに補正して車体高さを求める。
例えば、 その補正式は、 実際の レーザ受光高さ ÷ C O S 0 = レーザ受光器が垂直の時に受光高さとなる。
尚、 図 5の仮想線で示すよう に、 レーザ受光器 1 0 を備えたハ ウジング 3 8を支承する横軸 4 1 の回転角を検出するポテンシ ョ メータ 5 0を設け、 このポテンシ ョ メ ータ 5 0 の出力信号をレー ザ受光器 1 0 の傾斜角と してコ ン ト ローラ 2 0 に入力 して上記補 正を行う ようにしても良い。
このようにすれば、 レーザ受光器 1 0の傾斜角を実測する手間と、 入力する手間が省略できる し、 レーザ受光器 1 0 の傾斜角を誤り なく正確にコン トロ一ラ 2 0に入力できる。
かく して、 レーザ受光器 1 0 をレーザ光 Aの水平に対する角度 に応じて傾斜させることができるから、 レーザ光 Aの水平に対す る角度が大き く なつても、 レーザ受光器 1 0がレーザ光 Aを受光 できない領域に入り難く なる。 従って、 図 8 に示すよ う に、 車体 1 の可能走行距離を L 1を長く できて直線掘削距離を長く でき る , 換言すれば、 レーザ光 Aの水平に対する角度の調節範囲を大き く できる。
次に、 第 2実施例について説明する。
図 9 に示すように、 走行体 1 0 1 に車体 1 0 2 を旋回自在に設 け、 この車体 1 0 2 にブーム 1 0 3 をブ一ムシ リ ンダ 1 0 4で上 下回動 し得るよ う に設け、 そのブーム 1 0 3 にアーム 1 0 5 を ァ一ムシ リ ンダ 1 0 6で上下回動し得るよう に設ける と共に、 そ のアーム 1 0 5 にバケツ ト 1 0 7をバケツ ト シ リ ンダ 1 0 8で上 下回動し得るよう に設けて油圧シ ョベルを構成している。 、 その 車体 1 0 2 には前後傾斜計 1 0 9、 左右傾斜計 1 0 1 、 レーザ光 を受光する レーザ受光器 1 1 1 、 車体 1 0 2 の旋回角度を検出す る旋回角センサ 1 1 2が設けてある。 ブーム 1 0 3 の回動支点に はブーム角度センサ 1 1 3が、 アーム 1 0 5 の回動支点にはァ一 ム角度センサ 1 1 4が、 バケツ ト 1 0 7の回動支点にはバケツ ト 角度センサ 1 1 5がそれぞれ設けてある。 掘削対象地にはレーザ 発振器 1 1 6が設置され、 このレーザ発振器 1 1 6からのレーザ 光 Aを前記レーザ受光器 1 1 1で受光するようになっている。
次に、 本実施例の制御回路の一例を図 1 0に基づいて説明する。 前記前後傾斜計 1 0 9、 左右傾斜計 1 1 0、 ブーム角度セ ンサ 1 1 3、 アーム角度セ ンサ 1 1 4 、 バケ ツ ト角度セ ンサ 1 1 5 の 信号は、 図 1 0 に示すよ う に、 コ ン ト ローラ 1 2 0 の演算回路 1 2 1 内の自動掘削制御回路 1 2 2 に入力されて従来と同様にバ ケッ ト先端部の高さを車体 1 0 2 の所定位置を基準と して演算さ れる。 自動掘削制御回路 1 1 2 は、 演算結果に基づいて制御指令 を制御回路 1 2 3 に出力 し、 その制御回路 1 2 3 よ り ブーム用 アーム用、 バゲッ ト用の電磁比例制御弁 1 2 4 , 1 2 5 , 1 2 6 に制御電流を出力 してブーム シ リ ンダ 1 0 4 、 アーム シ リ ンダ 1 0 6 、 バケ ツ ト シ リ ンダ 1 0 8 を伸縮させてバケ ツ ト先端部' 1 0 7 aの高さを制御し且つ直線的にに移動させるこ とによ り掘 削を行なう。
一方、 前記レーザ受光器 1 1 1 は、 レーザ光 Aを受光する こ と でレーザ光 Aに対する レーザ受光器 1 1 1 の変位即ち車体 1 0 2 の高さの変位を検出 し、 その信号を前記演算回路 1 2 1 内の車体 高さの変位量演算回路 1 2 7 に入力し、 前後傾斜計 1 0 9で検出 された車体前後傾斜角度及び左右傾斜計 1 1 で検出された車体左 右傾斜角度に基づいて車体 1 0 2 の高さ変位量を演算して自動掘 削制御回路 1 2 2 にフ ィ 一 ドノくッ ク して制御指合を補正 してバ ケッ ト先端部 1 0 7 aの高さを補正すると共に、 その指令値に基 づく掘削深さを表示部 1 2 8 に表示する。
以上の様に掘削制御する こ とで掘削深さがレーザ光 Aを基準と して常に同一深さとなるから、 レーザ光 Aと平行に掘削できるが、 図 1 1 と図 1 2 に実線で示すよう に車体 1 0 2がレーザ光 Aと平 行となった姿勢で走行体 1 0 1 を停止して仮想線で示すよう に車 体 1 0 2を旋回すると、 バケツ ト 1 0 7 も旋回し、 バケツ ト先端 部 1 0 7 a とレーザ光 Aとの垂直方向距離が L 'だけ変化する。
これに対してレーザ受光器 1 1 1 のレーザ受光位置は変位しな いからバケツ ト先端部高さの指令値が変化せず、 レーザ光 Aに対 する掘削深さが前記 L 'だけ異なって誤差となる。 そこで、 図 1 0に示すよう に、 コ ン ト ローラ 1 2 0の演算回路 1 2 1 にバケツ ト先端部高さ変位量演算回路 1 2 9を設け、 旋回 角度セ ンサ 1 1 2で検出 した旋回角度と レーザ光 Aの水平となす 角度に基づいてバケツ ト先端部高さ変位量を演算し、 その値を自 動掘削制御回路 1 2 2 にフ ィ ー ドバッ ク して制御指合を補正し バゲッ 卜先端部高さを補正する。
つま り、 バケツ ト先端部の高さ変位量、 即ち図 1 1 における誤 差 L'は L '= t a n a x L Ί となる。 但し、 αはレーザ光 Αの水平 となす角度、 L'l は旋回した時の車体前後方向に対するバゲッ ト 1 0 7の移動距離であり、 前記レーザ光 Aの水平となす角度 は あらかじめ設定入力されている。
バゲッ ト移動距離 L'lは、 L'l = L'2- ( c o s /3 x L'2 ) と なる。 但 し、 L '2 は旋回中心 1 0 2 a か らバケ ツ ト先端部 1 0 7 aまでの長さであり、 ブーム長さ、 アーム長さ、 バケツ ト 長さ と各角度によ りその時のブーム、 アーム、 ノくケ ッ 卜の車体前 後方向の長さ を演算 し、 その値にブーム枢着点か ら旋回中心 1 0 2 aまでの距離を加算する こ とで求められる。 また、 /3は車 体 1 0 2の旋回角度であり、 旋回角度センサ 1 1 1 の車体旋回前 の検出値と車体旋回後の検出値の差により検出される。
このよう にして演算したバケ ツ ト先端部の高さ変位量を旋回前 のバケツ 卜先端部高さの値に加算して、 車体 1 0 2が旋回した時 のバゲッ ト先端部高さとする。
これによ り、 車体 1 0 2を旋回しても レーザ光 Aからの掘削深 さを同一にできる。
か く して、 車体 1 0 2 を旋回 し た時に はバケ ツ ト 先端部 1 0 7 a の高さが、 その旋回角度と レーザ光 Aの水平となす角度 に応じて補正されるから、 レーザ光 Aが水平に対して傾斜してい る場合に車体 1 0 2を旋回して掘削 しても レーザ光を基準とする 掘削深さを同一にできる。
次に、 第 3実施例について説明する。
図 1 3 と図 1 4 に示すよう に、 走行体 2 0 1 の左右両側には左 右一対の履帯 2 0 2 , 2 0 2が取付けられ、 この走行体 2 0 1 に 車体 2 0 3がピンチ 2 0 4で左右傾動自在に連結され、 この車体 2 0 3 と走行体 2 0 1 との間に左右一対の傾動用シ リ ンダ 2 0 5 が連結されている。
前記車体 2 0 3 にブーム 2 0 6をブームシ リ ンダ 2 0 7で上下 回動し得るように設け、 そのブーム 2 0 6 にアーム 2 0 8をァ一 ムシ リ ンダ 2 0 9 で上下回動 し得る よ う にに設け、 そのアーム 2 0 8にバケツ ト 2 1 0をバケツ ト シ リ ンダ 2 1 1 で上下回動し 得るように設けて油圧シ ョベルを構成している。 その車体 2 0 3 には前後傾斜計 2 1 2、 左右傾斜計 2 1 3 、 レーザ光を受光する レーザ受光器 2 1 4が設けてある。 ブーム 2 0 6 の回動支点には ブーム角度センサ 2 1 5が、 アーム 2 0 8 の回動支点にはアーム 角度センサ 2 1 6が、 バケツ ト 2 1 0 の回動支点にはバケツ ト角 度センサ 2 1 7がそれぞれ設けてある。 掘削対象地にはレーザ発 振器 2 1 8が設置され、 こ の レーザ発振器 2 1 8 の レーザ光 Aを 前記レーザ受光器 2 1 4で受光するようにしてある。
次に、 本実施例の制御回路の一例を図 1 5 に基づいて説明する。 前記前後傾斜計 2 1 2 、 左右傾斜計 2 1 3 、 ブーム角度セ ンサ 2 1 5 、 アーム角度セ ンサ 2 1 6 、 バゲ ッ ト角度セ ンサ 2 1 7 の 信号は、 図 1 5 に示すよ う に、 コ ン ト ローラ 2 2 0 の演算回路 2 2 1 内の 自動掘削制御回路 2 2 2 に入力 されてブーム角度 アーム角度、 バケツ ト角度に基づいて従来と同様にバケツ ト先端 部の高さを車体 2 0 3の所定位置を基準と して演算される。 自動 掘削制御回路は、 演算結果に基づいて制御指令を制御回路 2 2 3 に出力し、 その制御回路 2 2 3 よ りブーム用、 アーム用、 バケツ ト用の図示しない電磁比例制御弁に制御電流を出力 してブーム シ リ ンダ 2 0 7、 アームシ リ ンダ 2 0 9、 バケツ ト シ リ ンダ 2 1 1 を伸縮させてバケツ ト先端部の高さを制御し且つバケツ 卜 2 1 0 を車体 2 0 3側に直線的に移動させることによ り掘削を行なう。 一方、 前記レーザ受光器 2 1 4 は、 レーザ光 Aを受光するこ と でレーザ光 Aに対する レーザ受光器 2 1 4 の変位即ち車体 2 0 3 の高さ変位を検出 し、 その信号を前記演算回路 2 2 1 内の車体高 さ変位量演算回路 2 2 4 に入力 し、 前後傾斜計 2 1 2 で検出され た車体前後傾斜角度に基づいて車体 2 0 3 の高さ変位量を演算し て自動掘削制御回路 2 2 2 にフ ィ ー ドバッ ク して制御指合を補正 してバケツ ト先端部の高さを補正する と共に、 その指令値に基づ いて掘削深さを表示部 2 2 5 に表示する。
尚、 以上の説明においてバケツ ト先端部の高さはバケツ ト先端 部におけるバケツ ト掘削方向と直交する方向つま りバケツ ト幅方 向の中央部を基準と して設定される。
前記傾動用シ リ ンダ 2 0 5 の伸び室 2 0 5 a、 縮み室 2 0 5 b には油圧ポンプ 2 3 0 の吐出圧油が切換弁 2 3 1 によ り供給制御 され、 この切換弁 2 3 1 は中立位置 Xに保持され、 第 1 , 第 2 ソ レノイ ド 2 3 2 , 2 3 3 に通電される と、 伸び室 2 0 5 a に圧油 を供給する第 1位置 Y、 縮み室 2 0 5 b に圧油を供給する第 2位 ΐί Zとなる。
前記切換弁 2 3 1 の第 1 · 第 2 ソ レノ イ ド 2 3 2 , 2 3 3 はコ ン トローラ 2 2 0の通電制御回路 2 2 6からの通電によ り制御さ れる。 この通電制御回路 2 2 6 は、 手動傾斜レバー 2 2 7 よ りの 右傾斜信号、 左傾斜信号によ って第 1 , 第 2 ソ レノ ィ ド 2 3 2 , 2 3 3 に通電して一方の切換弁 2 3 1 を第 1位値 Y、 他方の切換 弁 2 3 1 を第 2位置 Ζに して、 一方の傾動用シ リ ンダ 2 0 5 を伸 ばし、 且つ他方の傾動用シ リ ンダ 2 0 5 を縮めて車体 2 0 3 を左 右に傾動する。
前記コ ン ト ローラ 2 2 0 に自動水平制御スィ ツチ 2 2 8 よ り 自 動水平制御信号を入力する と、 前記通電制御回路 2 2 6 は左右傾 斜計 2 1 3で検出された左右傾斜角度に基づいて第 1 , 第 2 ソ レ ノイ ド 2 3 2, 2 3 3 に通電して車体 2 0 3 を水平に し、 掘削面 を水平とする。 この時、 車体 2 0 3 の補正前の水平に対する傾斜 角度 (絶対傾斜角度) が表示器 2 2 5に表示される。
例えば、 図 1 6 に示すよう に、 水平に対して右下り に傾斜した 掘削対象地 Dの場合には、 車体 2 0 3 は水平に対して右下り に傾 斜し、 バケツ ト 2 1 0の先端部も幅方向において水平に対して右 下りに傾斜するので、 バケツ ト 2 1 0 の幅方向中央部 2 1 0 aを 前述のように所定の高さ と しても、 バケツ ト 2 1 0 の幅方向の一 端部 2 1 0 bが中央部 2 1 0 a よ り も L "だけ低く なり、 この状態 でバケツ 卜 2 1 0を幅方向と直交する方向に移動して掘削する と、 その掘削面 Eのバケッ ト幅方向は水平に対して斜めとなる。
しかしながら、 本実施例によれば、 車体 2 0 3 が右下り に傾斜 すると、 左右傾斜計 2 1 3 よ り右下り傾斜検知信号がコ ン ト 口一 ル 2 2 0 に入力され、 それによ つて通電制御回路 2 2 6 が車体 2 0 3を左側に傾動すべく 第 1 · 第 2 ソ レノ イ ド 2 3 2 , 2 3 3 に通電制御するので、 左右の傾動用シ リ ンダ 2 0 5 によって車体 2 0 3が左側に傾動する。 そ して、 車体 2 0 3が水平となる と左 右傾斜計 2 1 3 よ り右下り傾斜検知信号がコ ン ト ロ一ラ 2 2 0 に 入力されなく なり、 これによつて通電制御回路 2 2 6 が第 1 · 第 2 ソ レノ イ ド 2 3 2 , 2 3 3 に通電しな く なつて切換弁 2 3 1 を 中立位置 Xとする。
かく して、 レーザ光 Aを基準と して掘削深さを一定と して掘削 する際に車体 2 0 3が左右に傾斜しても常に水平姿勢に自動的に 補正されるので、 バケツ トによる掘削面のバケツ ト幅方向の傾き を常に水平にして掘削できる。
また、 自動水平制御スィ ッチ 2 2 7 よ り 自動水平姿勢制御信号 をコ ン ト ローラ 2 2 0 に入力 しなければ、 手動傾斜レバー 2 2 7 を操作するこ とで車体 2 0 3 を任意の傾斜角度の姿勢にする こ と ができる。
なお、 本発明は例示的な実施例について説明 したが、 開示した 実施例に関 して、 本発明の要旨及び範囲を逸脱する こ とな く 、 種々の変更、 省略、 追加が可能である こ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施例に限定される もので はなく 、 請求の範囲に記載された要素によって規定される範囲及 びその均等範囲を包含するものと して理解されなければならない。

Claims

請求の範囲
1 . 掘削対象地表面に設置 した レーザ発信器 と 、 油圧式パワー ショベルの車体に取付けたレーザ受光器と、 該レーザ受光器によ る前記レーザ発信器からのレーザ光の受光位置によってバケツ ト による掘削姿勢を制御するコ ン ト ローラを備え、 前記レーザ受光 器の傾き及び該バケツ トによる掘削姿勢の少な く と も一方を調整 するようにした、 油圧式パワーシ ョベルの直線掘削制御装置。
2 . 前記レーザ受光器を垂直に対して傾斜可能にした、 請求の範 囲第 1項に記載の油圧式パワーショベルの直線掘削制御装置。
3 . 前記レーザ受光器の傾斜角を検出する検出手段を備え、 前記 コン ト ローラに前記検出手段からの傾斜角検出信号によ り レーザ 光受光位置データを補正する機能を持たせた、 請求の範囲第 2項 に記載の油圧式パワーショベルの直線掘削制御装置。
4 . 前記検出手段を傾斜計と した、 請求の範囲第 3項に記載の油 圧式パワーシ ョベルの直線掘削制御装置。
5 . 前記検出手段をポテンショ メ ータと した、 請求の範囲第 3項 に記載の油圧式パワーショベルの直線掘削制御装置。
6 . 前記車体はブーム, アーム及びパケッ トを備え且つ走行体に 旋回自在に取り付けられており、
前記ブームの角度を検出するブーム角度セ ンサと、 前記アーム の角度を検出するアーム角度センサと、 前記バケツ 卜の角度を検 出するバケツ ト角度セ ンサと、 前記車体の旋回角度を検出する旋 回角度センサを備え、
前記コ ン ト ローラが、 前記ブーム角度セ ンサとアーム角度セ ン ザとバケツ ト角度セ ンサか らの検出信号によ って前記車体の基準 位置に対するバケツ ト先端部の高さを演算する機能と、 前記レー ザ受光器のレーザ受光位置の変化によって前記車体の高さ変位量 を検出する機能と、 前記旋回角度センサからの検出信号と レーザ 光の水平となす角度に基づいて車体旋回時のバケ ツ ト先端部の 5 レーザ光に対する高さ変位量を演算する機能と、 前記車体の高さ 変位量と車体旋回時の前記バケツ ト先端部の高さ変位量に基づい て前記バゲッ ト先端部のレーザ光に対する高さを常に一定とすべ
, く前記ブーム, アーム及びバケツ 卜の各ァクチユエ一夕に動作指 合を出力する機能を有する、 請求の範囲第 1項に記載の油圧シ ョ 0 ベルの直線掘削制御装置。
7 . 前記旋回角度セ ンサの車体旋回前の検出値と車体旋回後の検 出値よ り車体旋回角度を演算するよう に した、 請求の範囲第 6項 に記載の油圧ショベルの直線掘削制御装置。
8 . 前記車体は走行体に対してバケツ ト幅方向に傾動自在に取り 5 付けられており、
前記車体を傾動する傾動手段と、 前記車体の傾動角度を検出す る左右傾斜計を備え、
前記コ ン トローラが、 前記左右傾斜計からの検出信号によ り前 記車体を水平とするよう に前記傾動手段を作動させる機能を有す 0 る、 請求の範囲第 1項に記載に油圧シ ョベルの直線掘削制御装置。
9 . 前記傾動手段が、 前記車体と前記走行体との間に取り付けら れた傾動用シ リ ンダと、 該傾動用シ リ ンダに圧油を供給する切換 弁とから構成され、 前記左右傾斜計からの左右傾斜信号によ り前 記コン ト ローラが前記切換弁を切換えるよう に した、 請求の範囲5 第 8項に記載の油圧ショベルの直線掘削制御装置。
PCT/JP1994/002017 1993-11-30 1994-11-30 Dispositif de commande d'excavation lineaire pour pelle hydraulique WO1995015420A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/648,107 US5713144A (en) 1993-11-30 1994-11-30 Linear excavation control apparatus for a hydraulic power shovel
KR1019960702803A KR100202203B1 (ko) 1993-11-30 1994-11-30 유압식 파워셔블의 직선 굴삭 제어 장치
EP95902281A EP0731221A4 (en) 1993-11-30 1994-11-30 LINEAR EXCAVATION CONTROL DEVICE FOR HYDRAULIC EXCAVATOR

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP29955393A JP3389303B2 (ja) 1993-11-30 1993-11-30 油圧式パワーショベルの直線掘削制御装置
JP5/299553 1993-11-30
JP6010828A JPH07216930A (ja) 1994-02-02 1994-02-02 油圧ショベルの直線掘削制御装置
JP6/10785 1994-02-02
JP01078594A JP3226406B2 (ja) 1994-02-02 1994-02-02 油圧ショベルの直線掘削制御装置
JP6/10828 1994-02-02

Publications (1)

Publication Number Publication Date
WO1995015420A1 true WO1995015420A1 (fr) 1995-06-08

Family

ID=27279086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002017 WO1995015420A1 (fr) 1993-11-30 1994-11-30 Dispositif de commande d'excavation lineaire pour pelle hydraulique

Country Status (4)

Country Link
US (1) US5713144A (ja)
EP (1) EP0731221A4 (ja)
KR (1) KR100202203B1 (ja)
WO (1) WO1995015420A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938671A (zh) * 2013-04-10 2014-07-23 常州华达科捷光电仪器有限公司 一种挖掘机引导系统及引导方法
CN115387426A (zh) * 2022-08-29 2022-11-25 三一重机有限公司 作业机械的控制方法、装置、设备及作业机械

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9323298D0 (en) * 1993-11-11 1994-01-05 Mastenbroek & Co Ltd J Improvements in and relating to excavating apparatus
DE19730233A1 (de) * 1997-07-15 1999-01-21 M S C Mes Sensor Und Computert Verfahren und Vorrichtung zur automatisierten Baggersteuerung
US5953838A (en) * 1997-07-30 1999-09-21 Laser Alignment, Inc. Control for hydraulically operated construction machine having multiple tandem articulated members
SE9704398L (sv) * 1997-11-28 1998-12-14 Spectra Precision Ab Anordning och förfarande för att bestämma läget för bearbetande del
US6152238A (en) 1998-09-23 2000-11-28 Laser Alignment, Inc. Control and method for positioning a tool of a construction apparatus
US6377872B1 (en) * 1999-07-02 2002-04-23 Bae Systems Information And Electronic Systems Integration Inc Apparatus and method for microwave imaging and excavation of objects
ATE448365T1 (de) 2000-05-05 2009-11-15 Leica Geosystems Gr Llc Lasergesteuerte baumaschine
US6470251B1 (en) 2000-08-31 2002-10-22 Trimble Navigation Limited Light detector for multi-axis position control
JP4512283B2 (ja) * 2001-03-12 2010-07-28 株式会社小松製作所 ハイブリッド式建設機械
US7293376B2 (en) * 2004-11-23 2007-11-13 Caterpillar Inc. Grading control system
US20060124323A1 (en) * 2004-11-30 2006-06-15 Caterpillar Inc. Work linkage position determining system
US7168174B2 (en) * 2005-03-14 2007-01-30 Trimble Navigation Limited Method and apparatus for machine element control
US20080000111A1 (en) * 2006-06-29 2008-01-03 Francisco Roberto Green Excavator control system and method
US7970519B2 (en) * 2006-09-27 2011-06-28 Caterpillar Trimble Control Technologies Llc Control for an earth moving system while performing turns
US7975410B2 (en) * 2008-05-30 2011-07-12 Caterpillar Inc. Adaptive excavation control system having adjustable swing stops
EP2435717B1 (en) * 2009-05-29 2019-05-08 Volvo Construction Equipment AB A hydraulic system and a working machine comprising such a hydraulic system
JP5059953B2 (ja) * 2011-02-22 2012-10-31 株式会社小松製作所 油圧ショベルの作業可能範囲表示装置とその制御方法
GB2497729A (en) * 2011-12-14 2013-06-26 Ihc Engineering Business Ltd Trench Cutting Apparatus and Method
US8943702B2 (en) * 2012-04-30 2015-02-03 Caterpillar Inc. Guard for sensor apparatus in tilting arrangement
US8914199B2 (en) * 2012-10-05 2014-12-16 Komatsu Ltd. Excavating machine display system and excavating machine
JP5624101B2 (ja) * 2012-10-05 2014-11-12 株式会社小松製作所 掘削機械の表示システム、掘削機械及び掘削機械の表示用コンピュータプログラム
KR101493361B1 (ko) 2013-02-08 2015-02-16 김진선 굴삭기 버켓의 이동경로 추적제어시스템과 추적제어방법
JP7001350B2 (ja) * 2017-02-20 2022-01-19 株式会社小松製作所 作業車両および作業車両の制御方法
CN110446816B (zh) * 2017-08-09 2023-01-20 住友建机株式会社 挖土机、挖土机的显示装置及挖土机的显示方法
JP7275498B2 (ja) 2018-08-23 2023-05-18 コベルコ建機株式会社 作業機械
KR102687696B1 (ko) * 2018-10-03 2024-07-22 스미도모쥬기가이고교 가부시키가이샤 쇼벨
US11580837B2 (en) * 2020-04-19 2023-02-14 Pedro Pachuca Rodriguez Head orientation training devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282804A (en) * 1975-12-29 1977-07-11 Komatsu Mfg Co Ltd Leveling device for power shovel
JPS56105030A (en) * 1980-01-22 1981-08-21 Komatsu Ltd Automatic controller for working machine
JPS61191729A (ja) * 1985-02-18 1986-08-26 Hitachi Constr Mach Co Ltd ロ−リングシヨベルの揺動制御装置
JPS61270421A (ja) * 1985-05-24 1986-11-29 Sumitomo Heavy Ind Ltd 油圧シヨベルの平面掘削・整形制御装置
JPH03187420A (ja) * 1988-11-14 1991-08-15 Spectra Physics Inc 掘削機の掘削深さのレーザ制御
JPH04161525A (ja) * 1990-10-22 1992-06-04 Komatsu Ltd 油圧式パワーショベルの直線自動掘削制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997071A (en) * 1975-08-14 1976-12-14 Laserplane Corporation Method and apparatus for indicating effective digging depth of a backhoe
US4034490A (en) * 1975-11-03 1977-07-12 Laserplane Corporation Automatic depth control for endless chain type trencher
US4028822A (en) * 1976-04-20 1977-06-14 Laserplane Corporation Manually operable depth control for trenchers
US4050171A (en) * 1976-05-12 1977-09-27 Laserplane Corporation Depth control for endless chain type trencher
US4129224A (en) * 1977-09-15 1978-12-12 Laserplane Corporation Automatic control of backhoe digging depth
DE2851942C2 (de) * 1978-12-01 1983-08-18 Friedrich Wilh. Schwing Gmbh, 4690 Herne Bagger
US4244123A (en) * 1979-03-26 1981-01-13 Germain Lazure Guidance device for drain tile laying machine
DE3032821A1 (de) * 1980-08-30 1982-04-15 Friedrich Wilh. Schwing Gmbh, 4690 Herne Loeffelbagger, insbesondere mit einer parallelfuehrung des auf einen vorgegebenen schnittwinkel eingestellten loeffels sowie einer anordnung zur kontrolle der stellung der schuerfeinrichtung des baggers zur schuerfsohle
DE3506326C1 (de) * 1985-02-22 1986-08-21 Harms, Paul G., 6253 Hadamar Tiefenmessvorrichtung fuer einen Bagger
JP2889945B2 (ja) * 1990-04-13 1999-05-10 株式会社小松製作所 レーザ光を用いた油圧式パワーショベルの直線掘削制御方法
US5528498A (en) * 1994-06-20 1996-06-18 Caterpillar Inc. Laser referenced swing sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282804A (en) * 1975-12-29 1977-07-11 Komatsu Mfg Co Ltd Leveling device for power shovel
JPS56105030A (en) * 1980-01-22 1981-08-21 Komatsu Ltd Automatic controller for working machine
JPS61191729A (ja) * 1985-02-18 1986-08-26 Hitachi Constr Mach Co Ltd ロ−リングシヨベルの揺動制御装置
JPS61270421A (ja) * 1985-05-24 1986-11-29 Sumitomo Heavy Ind Ltd 油圧シヨベルの平面掘削・整形制御装置
JPH03187420A (ja) * 1988-11-14 1991-08-15 Spectra Physics Inc 掘削機の掘削深さのレーザ制御
JPH04161525A (ja) * 1990-10-22 1992-06-04 Komatsu Ltd 油圧式パワーショベルの直線自動掘削制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0731221A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938671A (zh) * 2013-04-10 2014-07-23 常州华达科捷光电仪器有限公司 一种挖掘机引导系统及引导方法
CN115387426A (zh) * 2022-08-29 2022-11-25 三一重机有限公司 作业机械的控制方法、装置、设备及作业机械
CN115387426B (zh) * 2022-08-29 2023-11-28 三一重机有限公司 作业机械的控制方法、装置、设备及作业机械

Also Published As

Publication number Publication date
KR100202203B1 (ko) 1999-06-15
EP0731221A1 (en) 1996-09-11
EP0731221A4 (en) 1997-12-29
KR960706595A (ko) 1996-12-09
US5713144A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
WO1995015420A1 (fr) Dispositif de commande d'excavation lineaire pour pelle hydraulique
KR102488448B1 (ko) 쇼벨
KR101759409B1 (ko) 작업차량 및 작업차량의 제어 방법
JP5406902B2 (ja) 土工作業機械の進行方向を制御する方法及び装置
US4926948A (en) Method and apparatus for controlling motorgrader cross slope cut
US7222444B2 (en) Coordinated linkage system for a work vehicle
KR101779525B1 (ko) 작업 차량 및 틸트 각도의 취득 방법
KR20190087617A (ko) 작업 차량 및 작업 차량의 제어 방법
JP3929039B2 (ja) スイング式油圧ショベルのスイング制御装置
JPH0953253A (ja) 建設機械の領域制限掘削制御の掘削領域設定装置
EP2045174B1 (en) System and method for controlling automatic leveling of heavy equipment
CN114207223A (zh) 控制系统、作业车辆的控制方法以及作业车辆
JPH07216930A (ja) 油圧ショベルの直線掘削制御装置
WO2022162795A1 (ja) 油圧ショベル
JP2003041614A (ja) バケット式掘削機
JP3226406B2 (ja) 油圧ショベルの直線掘削制御装置
JP3389303B2 (ja) 油圧式パワーショベルの直線掘削制御装置
WO2021192020A1 (ja) 建設機械
WO2024171607A1 (ja) 作業機械
JP7134149B2 (ja) 建設機械
WO2020255622A1 (ja) 作業機械および作業機械の制御方法
JP2549955Y2 (ja) バックホーにおける掘削深さ検出装置
JP2907684B2 (ja) バックホウ
KR20220086672A (ko) 작업 기계의 제어 시스템, 작업 기계, 및 작업 기계의 제어 방법
JPH01178622A (ja) バケット角度制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08648107

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995902281

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995902281

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995902281

Country of ref document: EP