WO1995011660A1 - Verfahren zur herstellung von öl-in-wasser-emulsionen - Google Patents

Verfahren zur herstellung von öl-in-wasser-emulsionen Download PDF

Info

Publication number
WO1995011660A1
WO1995011660A1 PCT/EP1994/003457 EP9403457W WO9511660A1 WO 1995011660 A1 WO1995011660 A1 WO 1995011660A1 EP 9403457 W EP9403457 W EP 9403457W WO 9511660 A1 WO9511660 A1 WO 9511660A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
temperature
weight
emulsion
water
Prior art date
Application number
PCT/EP1994/003457
Other languages
English (en)
French (fr)
Inventor
Thomas Förster
Marcus Claas
Axel KÜHN
Rolf Wachter
Armin Wadle
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to JP7512391A priority Critical patent/JPH09504281A/ja
Priority to EP94930201A priority patent/EP0725619A1/de
Publication of WO1995011660A1 publication Critical patent/WO1995011660A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/21Emulsions characterized by droplet sizes below 1 micron

Definitions

  • the invention relates to a process for the preparation of oil-in-water emulsions containing special organic cosmetic active ingredients under conditions which lead to finely dispersed and long-term stable emulsions.
  • phase inversion means that the outer, aqueous phase becomes the inner phase at higher temperatures. This process is generally reversible, which means that the original type of emulsion is formed again on cooling. It is also known that the location of the phase inversion temperature depends on many factors, for example the type and phase volume of the oil component, the hydrophilicity and the structure of the emulsifier or the composition of the emulsifier system, compare, for example, K. Shinoda and H. Kunieda in Encyclopedia of Emulsion Technology, Volume I, P.
  • DE-A-38 19 193 discloses a process for producing low-viscosity O / W emulsions using phase inversion technology. This technique is applied to mixtures containing oil bodies, a nonionic emulsifier and a coemulsifier in an aqueous medium.
  • DE-A-41 40 562 discloses a process for producing O / W emulsions with particularly polar oil bodies by means of phase inversion technology.
  • Particularly polar oil bodies are understood to mean oils with a dipole moment above 1.96 D.
  • the technique of phase inversion is applied to mixtures containing the above-mentioned particularly polar oils, a nonionic emulsifier, possibly a coemulsifier, and an interface moderator, which is from the group of tocopherols, Guerbet alcohols with 16 to 20 carbon atoms or a steroid with 1 to 3 OH groups is selected.
  • the object of the present invention was to develop a process for the production of finely dispersed and long-term stable O / W emulsions containing an organic cosmetic active ingredient.
  • a method should be provided which is an active ingredient from the group of deodorant ingredients, perfume oils and sun protection factors.
  • O / W emulsions containing an organic cosmetic active ingredient are particularly finely divided and long-term stable if a mixture of oil, nonionic emulsifier and an organic cosmetic active ingredient is selected from the group the deodorants, perfume oils and light protection factors, heated within or above the phase inversion temperature range - or the emulsion is produced at this temperature - and then cools the emulsion to a temperature below the phase inversion temperature range and optionally further diluted with water.
  • the additional condition applies that the amount of the organic cosmetic active ingredient is 5 to 100% by weight of the amount of the oil.
  • the invention therefore relates to a process for the preparation of oil-in-water emulsions containing an organic cosmetic active ingredient, wherein
  • the process according to the invention has the advantage that particularly fine-particle emulsions are obtained which have excellent storage stability. Compared to the known prior art, e.g. B. DE-OS-38 19 193, the phase inversion temperature is also reduced, which is particularly beneficial in practice because of the associated energy savings. A further advantage is that the emulsions prepared by the process according to the invention are of low viscosity.
  • Suitable oil bodies (A) are both polar oil components with one or more ester groups in the molecule, but also mixtures of such polar oil components with smaller amounts of nonpolar hydrocarbons.
  • Particularly suitable polar oil components are mono- and diesters of the general formulas (I), (II) and (III)
  • R * is an alkyl group with 8 to 22 C atoms and R 2 is an alkyl group with 3 to 22 C atoms and R 3 is alkylene groups with 2 to 16 C atoms, with the proviso that the total number of C atoms in the compounds (I) to (III) is at least 11.
  • Oil bodies of the type of the mono- and diesters of the formulas (I), (II) and (III) are known as cosmetic and pharmaceutical oil components and as lubricants and lubricants.
  • the products that are liquid at room temperature (20 ° C) are of the greatest importance.
  • Monoesters (I) suitable as oil bodies are, for example, the isopropyl esters of fatty acids having 12 to 22 carbon atoms, such as, for example, isopropyl myristate, isopropyl palmitate, isopropyl stearate and isopropyl oleate.
  • Suitable monoesters are, for example, n-butyl stearate, n-hexyl laurate, n-decyl oleate, isoctyl stearate, isononyl palmitate, isononyl isononanoate, 2-ethylhexyl palmitate, 2-ethylhexyl laurate, 2-hexyl decyl stearate Octyldodecyl palmitate, oleyl oleate, olerlerucate, erucyl oleate and esters which are obtainable from technical aliphatic alcohol mixtures and technical aliphatic carboxylic acids, for example esters from saturated and unsaturated fatty alcohols with 12 to 22 carbon atoms and saturated and unsaturated fatty acids with 12 up to 22 carbon atoms, as they are accessible from animal and vegetable fats.
  • Naturally occurring monoester or wax ester mixtures such as those present in jojoba oil or
  • Suitable dicarboxylic acid esters (II) are e.g. Di-n-butyl adipate, di-n-butyl sebacate, di- (2-ethylhexyl) adipate, di- (2-hexyldecyl) succinate and di-isotridecylfugate.
  • Suitable diol esters (III) are e.g.
  • Esters of trihydric and polyhydric alcohols in particular vegetable triglycerides, e.g. Olive oil, almond oil, peanut oil, sunflower oil or the esters of pentaerythritol with e.g. Pelargonic acid or oleic acid.
  • vegetable triglycerides e.g. Olive oil, almond oil, peanut oil, sunflower oil or the esters of pentaerythritol with e.g. Pelargonic acid or oleic acid.
  • fatty acid triglycerides natural, vegetable oils, e.g. B. olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, but also the liquid proportions of coconut oil or palm kernel oil as well as mineral oils, such as. B. claw oil, the liquid portions of beef tallow or synthetic triglycerides, such as those obtained by esterifying glycerol with fatty acids containing 8 - 22 carbon atoms, e.g. B. Trigly- cerides from caprylic acid-capric acid mixtures, triglycerides from technical oleic acid or from palmitic acid-oleic acid mixtures are used.
  • natural, vegetable oils e.g. B. olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, but also the liquid proportions of coconut oil or palm kernel oil as well as mineral oils, such as. B. claw oil, the liquid portions of beef tallow or synthetic triglycerides
  • Such mono- and diesters and triglycerides are preferably suitable as oil components for the process according to the invention which are liquid at normal temperature of 20 ° C., but higher-melting fats and esters which correspond to the formulas given can also be used in such amounts be that the mixture of the oil components remains liquid at normal temperature.
  • the oil component can also contain hydrocarbon oils in minor amounts up to a maximum of 25% by weight, based on the oil component.
  • Suitable hydrocarbons are primarily paraffin oils and synthetically produced hydrocarbons, e.g. B. liquid polyolefins or defined hydrocarbons, for. B. alkylcyclohexanes such. B. the 1,3-di-isooctyl-cyclohexane.
  • Substances suitable as nonionic emulsifiers (B) are characterized by a lipophilic, preferably linear alkyl or acyl group and a hydrophilic group formed from low molecular weight glycol, glucose and polyol ethers.
  • the nonionic emulsifiers (B) are used in the O / W emulsions according to the invention in an amount of 0.5 to 30 parts by weight, preferably 3 to 20 parts by weight.
  • Particularly suitable nonionic emulsifiers (B) are ethylene oxide addition products onto fatty alcohols with 16 to 22 carbon atoms. Such products are commercially available.
  • the technical products are mixtures of homologous polyglycol ethers of the starting fatty alcohols, the average degree of ethylation of which corresponds to the molar amount of ethylene oxide added.
  • emulsifiers it is also possible to use ethylene oxide addition products on partial esters of a polyol having 3 to 6 carbon atoms and fatty acids having 14 to 22 carbon atoms.
  • Products of this type are produced, for example, by ethoxylating fatty acid partial glycerides or mono- and D-fatty acid esters of sorbitan, for example sorbitan monostearate or sorbitan sesquioleate.
  • the emulsifiers suitable for the process according to the invention should have an HLB value of 10 to 18.
  • the HLB value hydrophile-lipophile balance
  • L is the weight fraction of the lipophilic groups, i.e. H. the percentage of fatty alkyl or fatty acyl groups in the ethylene oxide adducts.
  • Preferred emulsifiers (B) are fatty alcohol polyglycol ethers (B1) of the general formula (IV)
  • R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 8 to 22 carbon atoms, preferably 12 to 22 carbon atoms and n an integer from 10 to 50, preferably from 10 to 30, and addition products from 4 to 20 moles of ethylene oxide to one or more fatty acid partial glycerides (B2).
  • Fatty acid partial glycerides (B2) of saturated or unsaturated fatty acids with 10 to 20 C atoms are technical mixtures of fatty acid mono-, di- and triglycerides which are esterified by 1 mole of glycerol with 1 to 2 moles of a (C ⁇ o- 2 ⁇ ) ⁇ ** rettTexre ° d it by transesterification tion of 1 mole of a (C ⁇ o_2 ⁇ ) "frettklaretr ⁇ 9LY cer '' d s ⁇ Z * B - from beef tallow, lard, palm oil, sunflower oil or soybean oil with 0.5 to 2 moles
  • Two types of partial glycerides are commercially available.
  • Partial glycerides of type I contain 35 to 60% monoglycerides, 35 to 50% diglycerides and 1 to 20% triglycerides. Partial glycerides of type II are obtained from those of type I by molecular distillation manufactures and contains 90 to 96% monoglycerides, 1 to 5% diglycerides and less than 1% triglycerides (see also: a) G. Schuster and W. Adams: Zeitschrift für Strukturtechnologie, 1979, volume 30 (6), p . 256-264; b) G. Schust r (ed.) "Emulsifiers for Food", Springer-Verlag, 1985). The fatty acid partial glycerides used according to the invention should contain 35 to 96% monoglycerides, 1 to 50% diglycerides and 0.1 to 20% triglycerides.
  • Addition products of 8 to 12 mol ethylene oxide onto saturated fatty alcohols having 16 to 22 carbon atoms are particularly suitable as emulsifiers.
  • emulsifiers are, in particular, adducts of 8 to 12 moles of ethylene oxide with a saturated fatty alcohol having 18 to 22 carbon atoms.
  • a co-emulsifier can be useful in many cases for the preparation of the oil-in-water emulsions by the process according to the invention.
  • coe ulgators according to the invention are those of the type of fatty alcohols with 16 to 22 carbon atoms, for. B. cetyl alcohol, stearyl alcohol, arachidyl alcohol or behenyl alcohol or mixtures of these alcohols, as they are obtained in the technical hydrogenation of vegetable and animal fatty acids with 16 to 22 carbon atoms or the corresponding fatty acid methyl ester.
  • partial esters made of a polyol with 3 to 6 carbon atoms and fatty acids with 14 to 22 carbon atoms.
  • Such partial esters are e.g. B. the monoglycerides of palmitic and / or stearic acid, the sorbitan mono- and / or diesters of myristic acid, palmitic acid, stearic acid or mixtures of these fatty acids, the monoesters of triethylolpropane, erythritol or pentaerythritol and saturated fatty acids with 14 to 22 carbon atoms.
  • the technical monoesters which are obtained by esterification of 1 mol of polyol with 1 mol of fatty acid and which are a mixture of monoesters, diesters and unesterified polyol are also understood as monoesters.
  • Cetyl alcohol, stearyl alcohol or a glycerol, sorbitan or trimethylolpropane monoester of a fatty acid with 14 to 22 carbon atoms or mixtures of these substances are particularly suitable as co-emulsifiers for the process according to the invention.
  • the co-emulsifiers (C) are used in the O / W emulsions according to the invention in an amount of 0 or 0.1 to 30% by weight. The range from 2 to 20% by weight is preferred.
  • the organic cosmetic ingredient (D) is selected from the group of deodorant ingredients, perfume oils and sun protection factors.
  • Perfume oils are understood to mean substances with odor-active properties, as is customary in the technical field. This can e.g. be natural fragrances, such as those obtained from plants by distillation, extraction or pressing, or synthetically produced fragrances.
  • Deodorants are substances that prevent or largely suppress bacterial growth and / or odor formation.
  • Light protection factors are to be understood as organic substances which are able to absorb ultraviolet rays and which absorb energy in the form of longer-wave radiation, e.g. B. heat to release again (see, for example, perfumery and cosmetics, 1993 (74), pp. 485-490).
  • a particular advantage of the process according to the invention is that, regardless of whether they are water or oil-soluble, the active compounds (D) are equally emulsifiable and the dispersions obtained in this way are finely divided and storage-grade.
  • the condition for components (A) and (D) is that i) the sum of components (A) and (D) is 10 to 90% by weight, based on the mixture as a whole, and ii) that The proportion of component (D) in the range from 5 to 100% by weight, based on the oil body (A), is.
  • the sum of components (A) and (D) is 20 to 60% by weight.
  • components (A) to (D) can also be contained in the emulsion.
  • interface moderators from the group of the tocopherols, Guerbet alcohols with 16 to 20 C atoms and the steroids with 1 to 3 OH groups, which - in According to the teaching of DE-A-41 40 562 - then advantageously be selected as further components if the oil body (A) is an oil with a particularly high dipole moment.
  • Tocopherols are natural substances with a vitamin E character which are derived from 2-methyl-2- (4 '.8'. ⁇ '- trimethyltridecylj-chroman-e-ol, the so-called tocol.
  • the labeling is done with Greek Letters (see "Rö pps Chemie-Lexikon", O.-A.Neumüller (ed.), 7th ed., Stuttgart 1977, p. 3615f).
  • Particularly preferred is ⁇ -tocopherol, the most common and technically most important Tocopherol, which is often referred to as the actual vitamin E.
  • Guerbet alcohols are to be understood as special branched alcohols (see, for example, AJ O'Lenick Jr., RE Bilbo, Soap Cosm. Chem. Spec. 1987 (4) 52)
  • the Guerbet alcohols to be used according to the invention should have 16 to 20 carbon atoms, such as 2-hexyldecanol or 2-0ctyldodecanol, 2-0ctyldodecanol being particularly suitable, steroids being understood to mean a group of naturally occurring or synthetically obtained compounds , which the framework of the (partially) hydrogenated n Cyclopenta [a] phenanthrens is the basis, see e.g. O.A.
  • the steroids should have 1 to 3 OH groups.
  • the sterols in which an OH group is located on the third carbon atom of the steroid structure are particularly suitable.
  • the sterols occur in all animal and plant cells. After their occurrence, they are divided into zoosterols, e.g. Cholesterol and phytosterols, which are predominantly found in higher plants.
  • a particularly suitable steroid is cholesterol.
  • the process according to the invention can be carried out by first determining the phase inversion temperature by heating a sample of the emulsion prepared in the customary manner using a conductivity meter and determining the temperature at which the conductivity decreases sharply.
  • the decrease in the specific conductivity of the oil-in-water emulsion initially present usually decreases over a temperature interval of 5 to 15 ° C. from initially approximately 50 microsiemens per cm to values below approximately 5 microsiemens per cm.
  • the corresponding The temperature range is referred to as the phase inversion temperature range (PIT range).
  • the process according to the invention can either be carried out by subsequently heating the emulsion initially prepared in the customary manner to a temperature which is within or above the phase inversion temperature range, or in that By choosing a temperature that is within or above the phase inversion temperature range already during the preparation of the emulsion. It is also possible to dilute an anhydrous or low-water concentrate with hot or cold water at the phase inversion temperature (hot-hot or hot-cold method).
  • the process according to the invention can be carried out in the manner just described, the total amount of active substances (D) being used. However, it is also possible to proceed in the manner described, initially using only the oil-soluble active ingredients (D), while the water-soluble active ingredients (D) are only added subsequently to the oil-in-water emulsions obtained in this way . It follows from this that the advantages of the process according to the invention are particularly evident in the production of oil-in-water emulsions containing oil-soluble active ingredients (D).
  • Oil-in-water emulsions such as those obtained by the process according to the invention, are used in cosmetics, for example. B. as skin and body care products.
  • the method according to the invention is particularly preferably suitable for producing emulsion-like preparations for skin and hair treatment.
  • IPM isopropyl myristate
  • Ocylether di-n-octylether
  • Paraffin paraffin, viscous (type DAB 9, from Wasserbow / Bonn)
  • nonionic emulsifiers B
  • Eumul ⁇ in adduct of 12 moles of ethylene oxide with 1 mole of cetostearyl alcohol
  • CTFA name Ceteareth-12 ("Eumulgin Bl"; Fa. Henkel / Dusseldorf))
  • GMS glycerol monostearate
  • Cutina GMS Fa. Henkel / Düsseldorf
  • organic cosmetic active ingredients D
  • W-2 perfume oil (type "HC-50-2457”; Fa. Henkel / Düsseldorf)
  • Components (A) to (D) were mixed and heated to a temperature slightly above the melting point of the mixture and homogenized. Then the water, which was heated to about the same temperature, was emulsified into the melt with stirring.
  • the composition of the emulsions is shown in Table 1. The data are to be understood in% by weight, based on the mixture as a whole.
  • the emulsions were, as in 2.1. prepared and then briefly (about 1 minute) heated to 95 ° C. The emulsions were then cooled rapidly, ie at a cooling rate of about 2 ° C. per minute, to room temperature with stirring. 2.3- Determination of the phase inversion temperature
  • the electrical conductivity of the emulsions was determined as a function of the temperature using a conductivity measuring bridge (from Radiometer, Copenhagen). For this purpose, the emulsion was first cooled to + 20 ° C. At this temperature, the emulsions showed a conductivity of over 50 microsiemens per cm, i.e. H. they were in the form of oil-in-water emulsions.
  • a conductivity diagram was created by slowly heating at a heating rate of approximately 0.5 ° C./min, which was controlled with the aid of a temperature programmer in conjunction with a cryostat. The temperature range within which the conductivity dropped to values below 5 microsiemens per cm was noted as the phase inversion temperature range.
  • composition according to Table 1, column B2 was brought to 65 ° C, i.e. a temperature below the PIT.
  • the resulting emulsion was coarse.
  • Table 2 shows the phase inversion temperature (PIT) of the compositions of Examples B1 to B5.
  • the value of the PIT was obtained from the experimentally determined phase inversion temperature range mentioned under 2.3 by averaging.
  • the emulsions B1 to B5 prepared by the process according to the invention were further diluted with water (dilution factor: 2.26).
  • the composition of the emulsions obtained is shown in columns B1 * to B5 * in Table 3. It was found that the emulsions B1 * to B5 * in terms of fineness (measured by quasi-elastic light scattering) and storage stability (no segregation phenomena in the case of storage for several months) of the composition VI *, which were obtained by diluting the mixture according to 2.4. composition VI obtained was superior (see Table 4).
  • Emulsion type e fine fine fine fine fine coarse

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

Feindisperse und langzeitstabile Öl-in-Wasser-Emulsionen auf Basis von Ölmischungen mit einem Gehalt an einem organischen kosmetischen Wirkstoff lassen sich erhalten, indem man (A) einen Ölkörper mit (B) 0,5 bis 30 Gew.-% eines nichtionischen Emulgators mit einem HLB-Wert von 10 bis 18 und (C) 0 oder 0,1 bis 30 Gew.-% eines Co-Emulgators aus der Gruppe der Fettalkohole mit 12 bis 22 C-Atomen oder der Partialester von Polyolen mit 3 bis 6 C-Atomen mit Fettsäuren mit 12 bis 22 C-Atomen und (D) einen organischen kosmetischen Wirkstoff, der ausgewählt ist aus der Gruppe der Deowirkstoffe, Parfümöle und Lichtschutzfaktoren, mit der Maßgabe, daß i) die Summe der Komponenten (A) und (D) 10 bis 90 Gew.-% beträgt und ii) der Anteil der Komponente (D) im Bereich von 5 bis 100 Gew.-% - bezogen auf den Ölkörper (A) - beträgt, in Gegenwart von 8 bis 85 Gew.-% Wasser bei einer Temperatur oberhalb des Schmelzpunktes des Gemisches aus den Komponenten (A) bis (D) emulgiert und die Emulsion auf eine Temperatur innerhalb oder oberhalb des Phaseninversions-Temperaturbereichs erhitzt - oder die Emulsion bei dieser Temperatur herstellt - und dann die Emulsion auf eine Temperatur unterhalb des Phaseninversionstemperaturbereichs abkühlt und gegebenenfalls mit Wasser weiter verdünnt.

Description

"Verfahren zur Herstellung von Öl-in-Wasser-Emulsionen"
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Herstellung von Öl-in-Wasser-Emul¬ sionen mit einem Gehalt an speziellen organischen kosmetischen Wirkstoffen unter Bedingungen, die zu feindispersen und langzeitstabilen Emulsionen führen.
Stand der Technik
Es ist bekannt, daß Öl-in-Wasser-Emulsionen, fortan O/W-Emulsionen ge¬ nannt, die mit nichtionischen Emulgatoren hergestellt und stabilisiert sind, beim Erwärmen eine Phaseninversion erleiden. Unter diesem Vorgang der Phaseninversion ist zu verstehen, daß bei höheren Temperaturen die äußere, wäßrige Phase zur inneren Phase wird. Dieser Vorgang ist in der Regel reversibel, das heißt, daß sich beim Abkühlen wieder der ursprüng¬ liche Emulsionstyp zurückb ldet. Es ist auch bekannt, daß die Lage der Phaseninversionstemperatur von vielen Faktoren abhängt, zum Beispiel von der Art und dem Phasenvolumen der Ölkomponente, von der Hydrophilie und der Struktur des Emulgators oder der Zusammensetzung des Emulgatorsystems, vergleiche zum Beispiel K. Shinoda und H. Kunieda in Encyclopedia of Emul¬ sion Technology, Volume I, P. Becher (Hrsg.), Verlag Marcel Decker, New York 1983, S. 337 ff. Es ist ferner bekannt, daß O/W-Emulsionen, die bei oder wenig oberhalb der Phaseninversionstemperatur hergestellt werden, besonders feindispers sind und sich durch Langzeit-Stabilität auszeichnen. Demgegenüber sind solche Emulsionen, die unterhalb der Phaseninversions- temperatur hergestellt werden, weniger feinteilig (vergl. S. Friberg, C. Solans, J. Colloid Interface Science 1978 [66] 367 f).
F. Schambil, F. Jost und M. J. Schwuger berichten in "Progress and Colloid and Polymer Science" 1987 [73] 37 über die Eigenschaften kosmetischer Emul¬ sionen, die Fettalkohole und Fettalkoholpolyglykolether enthalten. Dabei beschreiben sie, daß Emulsionen, die oberhalb der Phaseninversionstempera- tur hergestellt wurden, eine niedrige Viskosität und eine hohe Lagerstabi¬ lität aufweisen.
In den genannten Druckschriften wurden jedoch nur Emulsionen untersucht, deren Ölphase ganz oder überwiegend aus unpolaren Kohlenwasserstoffen be¬ steht. Demgegenüber verhalten sich entsprechende Emulsionen, deren Ölko - ponente ganz oder überwiegend aus polaren Estern oder Triglyceridölen be¬ steht, anders: entweder werden (a) trotz einer Phaseninversion keine fein¬ teiligen, blauen Emulsionen gebildet, sondern grobdisperse weiße Emulsio¬ nen oder aber es findet (b) im Temperaturbereich bis 100 °C überhaupt keine Phaseninversion statt.
Aus der DE-A-38 19 193 ist ein Verfahren zur Herstellung niedrigviskoser O/W-Emulsionen mittels der Phaseninversionstechnik bekannt. Dabei wird diese Technik auf Mischungen angewandt, die Ölkörper, einen nichtionischen Emulgator und einen Coemulgator in wäßrigem Milieu enthalten.
Aus der DE-A-41 40 562 ist ein Verfahren zur Herstellung von O/W-Emulsio¬ nen mit besonders polaren Ölkörpern mittels der Phaseninversionstechnik bekannt. Unter besonders polaren Ölkörpern sind dabei Öle mit einem Di¬ polmoment oberhalb 1,96 D zu verstehen. Dabei wird die Technik der Phasen¬ inversion auf Mischungen angewandt, die die genannten besonders polaren Öle, einen nichtionischen Emulgator, ggf. einen Coemulgator, sowie einen Grenzflächenmoderator, der aus der Gruppe der Tocopherole, der Guerbetalko- hole mit 16 bis 20 C-Atomen bzw. eines Steroids mit 1 bis 3 OH-Gruppen ausgewählt ist, enthalten.
Die DE-A-38 19 193 sowie die DE-A-4140 562 offenbaren über die genannten Bestandteile hinaus keine weiteren Komponenten. Insbesondere enthalten diese Druckschriften keinen Hinweis auf spezifische Probleme, die mit der Anwesenheit weiterer Bestandteile verbunden sein könnten.
Beschreibung der Erfindung
Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung feindisperser und langzeitstabiler O/W-Emulsionen mit einem Gehalt an ei¬ nem organischen kosmetischen Wirkstoff zu entwickeln. Insbesondere sollte ein Verfahren bereitgestellt werden, bei denen es sich einen Wirkstoff aus der Gruppe der Deowirkstoffe, Parfümöle und Lichtschutzfaktoren handelt.
Es wurde nun überraschend gefunden, daß O/W-Emulsionen mit einem Gehalt an einem organischen kosmetischen Wirkstoff dann besonders feinteilig und langzeitstabil sind, wenn man eine Mischung aus Öl, nichtionischem Emulga¬ tor und einem organischen kosmetischen Wirkstoff, der ausgewählt ist aus der Gruppe der Deowirkstoffe, Parfümöle und Lichtschutzfaktoren, innerhalb oder oberhalb des Phaseninversions-Te peraturbereiches erhitzt - oder die Emulsion bei dieser Temperatur herstellt - und dann die Emulsion auf eine Temperatur unterhalb des Phaseninversion-Temperaturbereiches abkühlt und gegebenenfalls mit Wasser weiterverdünnt. Dabei gilt die zusätzliche Bedin¬ gung, daß die Menge des organischen kosmetischen Wirkstoffs 5 bis 100 Gew.-% der Menge des Öls beträgt.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Öl- in-Wasser-Emulsionen mit einem Gehalt an einem organischen kosmetischen Wirkstoff, wobei man
(A) einen Ölkörper mit
(B) 0,5 bis 30 Gew.-% eines nichtionischen Emulgators mit einem HLB-Wert von 10 bis 18 und
(C) 0 oder 0,1 bis 30 Gew.-% eines Co-Emulgators aus der Gruppe der Fett¬ alkohole mit 12 bis 22 C-Atomen oder der Partialester von Polyolen mit 3 bis 6 C-Atomen mit Fettsäuren mit 12 bis 22 C-Atomen und
(D) einen organischen kosmetischen Wirkstoff, der ausgewählt ist aus der Gruppe der Deowirkstoffe, Parfümöle und Lichtschutzfaktoren, mit der Maßgabe, daß i) die Summe der Komponenten (A) und (D) 10 bis 90 Gew.-% beträgt und ii) der Anteil der Komponente (D) im Bereich von 5 bis 100 Gew.-% - bezo¬ gen auf den Ölkörper (A) - beträgt, in Gegenwart von 8 bis 85 Gew.-% Wasser bei einer Temperatur oberhalb des Schmelzpunktes des Gemisches aus den Komponenten (A) bis (D) emulgiert und die Emulsion auf eine Temperatur innerhalb oder oberhalb des Phaseninver- sions-Temperaturbereichs erhitzt - oder die Emulsion bei dieser Temperatur herstellt - und dann die Emulsion auf eine Temperatur unterhalb des Pha¬ seninversionstemperaturbereichs abkühlt und gegebenenfalls mit Wasser wei¬ ter verdünnt. Sofern nicht anders angegeben beziehen sich die Gew.-%-An¬ gaben dabei jeweils auf die gesamte Mischung.
Das erfindungsgemäße Verfahren hat den Vorteil, daß besonders feinteilige, Emulsionen erhalten werden, die eine ausgezeichnete Lagerstabilität auf¬ weisen. Im Vergleich zum bekannten Stand der Technik, z. B. der DE-OS-38 19 193, wird darüber hinaus die Phaseninversionstemperatur gesenkt, was in der Praxis wegen der damit verbundenen Energie-Einsparung besonders gün¬ stig ist. Darüber hinaus ist von Vorteil, daß die nach dem erfindungsge¬ mäßen Verfahren hergestellten Emulsionen niedrigviskos sind.
Als Ölkörper (A) eignen sich sowohl polare Olkomponenten mit ein oder mehreren Estergruppen im Molekül, aber auch Mischungen solcher polarer Olkomponenten mit kleineren Mengen unpolarer Kohlenwasserstoffe.
Als polare Olkomponenten eignen sich insbesondere Mono- und Diester der allgemeinen Formel (I), (II) und (III)
(I) Rl-COOR2
(II) R2-00C-R3-C00R2
(III) R1-C00-R3-00C-R1
worin R* eine Alkylgruppe mit 8 bis 22 C-Atomen und R2 eine Alkylgruppe mit 3 bis 22 C-Atomen und R3 Alkylengruppen mit 2 bis 16 C-Atomen bedeu¬ ten, mit der Maßgabe, daß die Gesamtzahl der C-Atome in den Verbindungen (I) bis (III) mindestens 11 beträgt. Ölkörper vom Typ der Mono- und Diester der Formeln (I), (II) und (III) sind als kosmetische und pharmazeutische Olkomponenten sowie als Gleit- und Schmiermittelkomponenten bekannt. Unter den Mono- und Diestern dieser Art kommt den bei Raumtemperatur (20 °C) flüssigen Produkten die größte Bedeutung zu. Als Ölkörper geeignete Monoester (I) sind z.B. die Isopro- pylester von Fettsäuren mit 12 bis 22 C-Atomen, wie z.B. Isopropylmyri- stat, IsopropylpaImitat, Isopropylstearat, Isopropyloleat. Andere geeig¬ nete Monoester sind z.B. n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Iso- octylstearat, Isononylpalmitat, Isononyl-isononanoat, 2-Ethylhexyl-pal- mitat, 2-Ethylhexyl-laurat, 2-Hexyldecyl-stearat, 2-0ctyldodecyl-palmitat, Oleyloleat, Oleylerucat, Erucyloleat sowie Ester, die aus technischen ali- phatischen Alkoholgemischen und technischen aliphatischen Carbonsäuren er¬ hältlich sind, z.B. Ester aus gesättigten und ungesättigten Fettalkoholen mit 12 bis 22 C-Atomen und gesättigten und ungesättigten Fettsäuren mit 12 bis 22 C-Atomen, wie sie aus tierischen und pflanzlichen Fetten zugänglich sind. Geeignet sind auch natürlich vorkommende Monoester- bzw. Wachsester- Gemische, wie sie z.B. im Jojobaöl oder im Spermöl vorliegen.
Geeignete Dicarbonsäureester (II) sind z.B. Di-n-butyl-adipat, Di-n-butyl- sebacat, Di-(2-ethylhexyl)-adipat, Di-(2-hexyldecyl)-succinat und Di-iso- tridecyl-acelaat. Geeignete Diolester (III) sind z.B. Ethylenglykol-dio- leat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di-(2-ethylhexa- noat), Propylenglykol-di-isostearat, Propylenglykol-di-pelargonat, Butan- diol-di-isostearat und Neopentylglykol-di-caprylat.
Als Ölkörper gut geeignet sind ferner Ester von drei- und mehrwertigen Alkoholen, insbesondere pflanzliche Triglyceride, z.B. Olivenöl, Mandelöl, Erdnußöl, Sonnenblumenöl oder auch die Ester des Pentaerythrits mit z.B. Pelargonsäure oder Ölsäure.
Als Fettsäuretriglyceride können natürliche, pflanzliche Öle, z. B. Oli¬ venöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, aber auch die flüssigen Anteile des Kokosöls oder des Palmkernöls sowie tie¬ rische Öle, wie z. B. Klauenöl, die flüssigen Anteile des Rindertalges oder auch synthetische Triglyceride, wie sie durch Veresterung von Glycerin mit Fettsäuren mit 8 - 22 C-Atomen erhalten werden, z. B. Trigly- ceride von Caprylsäure-Caprinsäure-Gemisehen, Triglyceride aus technischer Ölsäure oder aus Palmitinsäure-Ölsäure-Gemischen, zur Anwendung kommen.
Bevorzugt eignen sich solche Mono- und Diester und Triglyceride als Ol¬ komponenten für das erfindungsgemäße Verfahren, die bei Normaltemperatur von 20 °C flüssig sind, es können aber auch höherschmelzende Fette und Ester, die den angegebenen Formeln entsprechen, in solchen Mengen mitver¬ wendet werden, daß die Mischung der Olkomponenten bei Normaltemperatur flüssig bleibt.
Die Ölkomponente kann auch Kohlenwasserstofföle in untergeordneten Mengen bis zu maximal 25 Gew.~% - bezogen auf die Ölkomponente - enthalten. Ge¬ eignete Kohlenwasserstoffe sind vor allem Paraffinöle und synthetisch her¬ gestellte Kohlenwasserstoffe, z. B. flüssige Polyolefine oder definierte Kohlenwasserstoffe, z. B. Alkylcyclohexane, wie z. B. das 1.3-Di-isooctyl- cyclohexan.
Als nichtionische Emulgatoren (B) geeignete Substanzen sind gekennzeichnet durch eine lipophile, bevorzugt lineare Alkyl- oder Acylgruppe und eine hydrophile, aus niedermolekularen Glycol-, Glucose- und Polyolethern ge¬ bildete Gruppe.
Die nichtionischen Emulgatoren (B) werden in den erfindungsgemäßen O/W- Emulsionen in einer Menge von 0,5 bis 30 Gewichtsteilen, vorzugsweise von 3 bis 20 Gewichtsteilen eingesetzt.
Als nichtionische Emulgatoren (B) eignen sich insbesondere Ethylenoxidan- lagerungsprodukte an Fettalkohole mit 16 bis 22 C-Atomen. Derartige Pro¬ dukte sind handelsüblich. Die technischen Produkte stellen Gemische homo¬ loger Polyglycolether der Ausgangsfettalkohole dar, deren mittlerer Ox- ethylierungsgrad der angelagerten Molmenge an Ethylenoxid entspricht. Als Emulgatoren können auch Ethylenoxidanlagerungsprodukte an Partialester aus einem Polyol mit 3 bis 6 C-Atomen und Fettsäuren mit 14 bis 22 C-Atomen verwendet werden. Solche Produkte werden z.B. durch Ethoxylierung von Fett- säurepartialglyceriden oder von Mono- und D -Fettsäureestern des Sorbi- tans, z.B. von Sorbitanmonostearat oder Sorbitansesquioleat hergestellt. Die für das erfindungsgemäß Verfahren geeigneten Emulgatoren sollen einen HLB-Wert von 10 bis 18 aufweisen. Unter dem HLB-Wert (Hydrophil-Lipophil- Balance) soll ein Wert verstanden werden, der errechnet werden kann gemäß
HLB = 100 - L 5
worin L der Gewichtsanteil der lipophilen Gruppen, d. h. der Fettalkyl- oder Fettacylgruppen in Prozent in den Ethylenoxidanlagerungsprodukten ist.
Bevorzugt eignen sich als Emulgatoren (B) Fettalkoholpolyglykolether (Bl) der allgemeinen Formel (IV)
R4-(0-CH2-CH2)n-0H (I )
in der R4 einen gesättigten oder ungesättigten, geradkettigen oder ver¬ zweigten Kohlenwasserstoffrest mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 22 C-Atomen und n eine ganze Zahl von 10 bis 50, vorzugsweise von 10 bis 30, bedeutet, sowie Anlagerungsprodukte von 4 bis 20 Mol Ethylenoxid an ein oder mehrere Fettsäurepartialglyceride (B2).
Unter Fettsäurepartialglyceriden (B2) von gesättigten oder ungesättigten Fettsäuren mit 10 bis 20 C-Atomen sind dabei technische Gemische von Fett- säuremono-, di- und triglyceriden zu verstehen, die durch Veresterung von 1 Mol Glycerin mit 1 bis 2 Mol einer (Cιo-2θ)~**rettsäure °der durch Umeste- rung von 1 Mol eines (Cιo_2θ)"frettsäuretrι9lycer''dsι Z*B- von Rindertalg, Schweineschmalz, Palmöl, Sonnenblumenöl oder Sojaöl mit 0,5 bis 2 Mol Gly¬ cerin erhalten werden. Handelsüblich sind zwei Typen von Partialglyceri- den. Partialglyceride des Typs I enthalten 35 bis 60 % Monoglyceride, 35 bis 50 % Diglyceride und 1 bis 20 % Triglyceride. Partialglyceride des Typs II werden durch Molekulardestillation aus solchen des Typs I herge¬ stellt und enthalten 90 bis 96 % Monoglyceride, 1 bis 5 % Diglyceride und weniger als 1 % Triglyceride (vergl. dazu: a) G.Schuster und W. Adams: Zeitschrift für Lebensmitteltechnologie, 1979, Band 30(6), S. 256-264; b) G.Schuster (Hrsg.) "Emulgatoren für Lebensmittel", Springer-Verlag, 1985). Die erfindungsgemäß verwendeten Fettsäurepartialglyceride sollen 35 bis 96 % Monoglyceride, 1 bis 50 % Diglyceride und 0,1 bis 20 % Triglyceride ent¬ halten.
Bevorzugt geeignet als Emulgatoren sind Anlagerungsprodukte von 8 bis 12 Mol Ethylenoxid an gesättigte Fettalkohole mit 16 bis 22 C-Atomen. Zur erfindungsgemäßen Emulgierung von Olkomponenten, die keine unpolaren Koh¬ lenwasserStofföle enthalten, die also aus 50 bis 100 Gew.-% Mono- und Di¬ estern der Formeln I, II und III und 0 bis 50 Gew.-% Fettsäuretriglyceri- den bestehen, eignen sich als Emulgatoren insbesondere Anlagerungsprodukte von 8 bis 12 Mol Ethylenoxid an einen gesättigten Fettalkohol mit 18 bis 22 C-Atomen.
Zusätzlich zum Emulgator kann in vielen Fällen ein Co-Emulgator (C) zur Herstellung der Öl-in-Wasser-Emulsionen nach dem erfindungsgemäßen Verfah¬ ren nützlich sein. Als Coe ulgatoren sind erfindungsgemäß solche vom Typ der Fettalkohole mit 16 bis 22 C-Atomen, z. B. Cetylalkohol, Stearylalko- hol, Arachidylalkohol oder Behenylalkohol oder Gemische dieser Alkohole geeignet, wie sie bei der technischen Hydrierung von pflanzlichen und tierischen Fettsäuren mit 16 bis 22 C-Atomen oder der entsprechenden Fett¬ säuremethylester erhalten werden. Weiterhin eignen sich als Coemulgatoren Partialester aus einem Polyol mit 3 bis 6 C-Atomen und Fettsäuren mit 14 bis 22 C-Atomen. Solche Partialester sind z. B. die Monoglyceride von Pal- mitin- und/oder Stearinsäure, die Sorbitanmono-und/oder -diester von Myri- stinsäure, Palmitinsäure, Stearinsäure oder von Mischungen dieser Fettsäu¬ ren, die Monoester aus Tri ethylolpropan, Erythrit oder Pentaerythrit und gesättigten Fettsäuren mit 14 bis 22 C-Atomen. Als Monoester werden auch die technischen Monoester verstanden, die durch Veresterung von 1 Mol Poly¬ ol mit 1 Mol Fettsäure erhalten werden und die ein Gemisch aus Monoester, Diester und unveresterte Polyol darstellen.
Besonders gut eignen sich für das erfindungsgemäße Verfahren als Co-Emul- gatoren Cetylalkohol, Stearylalkohol oder ein Glycerin-, Sorbitan- oder Trimethylolpropan-Monoester einer Fettsäure mit 14 bis 22 C-Atomen oder Gemische dieser Stoffe. Die Co-Emulgatoren (C) werden in den erfindungsgemäßen O/W-Emulsionen in einer Menge von 0 oder 0,1 bis 30 Gew.-% eingesetzt. Bevorzugt ist der Bereich von 2 bis 20 Gew.-%
Der organische kosmetische Wirkstoff (D) wird ausgewählt aus der Gruppe der Deowirkstoffe, Parfümöle und Lichtschutzfaktoren. Unter Parfümölen sind dabei wie in der Fachwelt üblich Substanzen mit geruchsaktiven Ei¬ genschaften zu verstehen. Dies können z.B. natürliche Riechstoffe sein, wie sie etwa durch Destillation, Extraktion oder Pressung aus Pflanzen gewonnen werden oder synthetisch hergestellte Riechstoffe. Unter Deowirk- stoffen sind Substanzen zu verstehen, die das Bakterienwachstum und/oder die Geruchsbildung verhindern bzw. weitgehend unterdrücken. Unter Licht¬ schutzfaktoren sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme, wieder abzugeben (vergl. z. B. Parfümerie und Kosmetik, 1993 (74), S. 485-490).
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß die Wirkstoffe (D) unabhängig davon, ob sie wasser- oder öllöslich sind, gleichermaßen gut emulgierbar und die so erhaltenen Dispersionen feintei¬ lig und lagerstab l sind.
Wie bereits erwähnt gilt für die Komponenten (A) und (D) die Bedingung, daß i) die Summe der Komponenten (A) und (D) 10 bis 90 Gew.-% - bezogen auf die gesamte Mischung - beträgt und ii) der Anteil der Komponente (D) im Bereich von 5 bis 100 Gew.-% - be¬ zogen auf den Ölkörper (A) - beträgt.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung beträgt die Summe der Komponenten (A) und (D) 20 bis 60 Gew.-%.
Neben den Komponenten (A) bis (D) können noch weitere Komponenten in der Emulsion enthalten sein. Insbesondere seien in diesem Zusammenhang Grenz¬ flächenmoderatoren aus der Gruppe der Tocopherole, Guerbetalkohole mit 16 bis 20 C-Atomen und der Steroide mit 1 bis 3 OH-Gruppen genant, die - im Sinne der Lehre der DE-A-41 40 562 - dann vorteilhaft als weitere Kompo¬ nenten gewählt werden, wenn es sich bei dem Ölkörper (A) um ein Öl mit besonders hohem Dipolmoment handelt.
Unter Tocopherolen sind Naturstoffe mit Vitamin E-Charakter zu verstehen, die sich vom 2-Methyl-2-(4' .8' .^'-trimethyltridecylj-chroman-e-ol, dem sogenannten Tocol, ableiten. Die Kennzeichnung erfolgt mit griechischen Buchstaben (vergl. "Rö pps Chemie-Lexikon", O.-A.Neumüller (Hrsg.), 7. Aufl., Stuttgart 1977, S. 3615f). Besonders bevorzugt ist α-Tocopherol, das am häufigsten vorkommende und technisch bedeutendste Tocopherol, das vielfach auch als das eigentliche Vitamin E bezeichnet wird. Unter Guerbet- alkoholen sind spezielle verzweigte Alkohole zu verstehen (vergl. z.B. A.J. O'Lenick Jr., R.E. Bilbo, Soap Cosm. Chem. Spec. 1987 (4) 52). Die erfindungsgemäß einzusetzenden Guerbetalkohole sollen 16 bis 20 C-Atome aufweisen, wie z.B. 2-Hexyldecanol oder 2-0ctyldodecanol. Besonders geeig¬ net ist dabei 2-0ctyldodecanol. Unter Steroiden ist eine Gruppe von natür¬ lich auftretenden oder synthetisch gewonnenen Verbindungen zu verstehen, denen das Gerüst des (partiell) hydrierten Cyclopenta[a]phenanthrens zu¬ grunde liegt, vergl. z.B. O.A. Neumüller, Römpps Chemie-Lexikon, 7. Aufl., Stuttgart 1975, S. 3336 ff. Die Steroide sollen 1 bis 3 OH-Gruppen aufwei¬ sen. Besonders geeignet sind die Sterine, bei denen sich am dritten C-Atom des Steroidgerüstes eine OH-Gruppe befindet. Die Sterine treten in allen tierischen und pflanzlichen Zellen auf. Nach ihrem Vorkommen teilt man sie in Zoosterine, z.B. Cholesterin, und Phytosterine, die vorwiegend in hö¬ heren Pflanzen vorkommen, auf. Ein besonders geeignetes Steroid ist Cho¬ lesterin.
Das erfindungsgemäße Verfahren kann in der Weise durchgeführt werden, daß zunächst die Phaseninversionstemperatur bestimmt wird, indem man eine Pro¬ be der auf übliche Weise hergestellten Emulsion unter Verwendung eines Leitfähigkeitsmeßgerätes erhitzt und die Temperatur bestimmt, bei der die Leitfähigkeit stark abnimmt. Die Abnahme der spezifischen Leitfähigkeit der zunächst vorhandenen Öl-in-Wasser-Emulsion nimmt dabei üblicherweise über ein Temperaturintervall von 5 bis 15 °C von anfänglich ca. 50 Mikro- siemens pro cm auf Werte unter ca. 5 Mikrosiemens pro cm ab. Der entspre- chende Temperaturbereich wird als Phaseninversions-Temperaturbereich (PIT- Bereich) bezeichnet.
Nachdem der PIT-Bereich bekannt ist, kann man das erfindungsgemäße Ver¬ fahren entweder in der Weise durchführen, daß man die zunächst wie üblich hergestellte Emulsion nachträglich auf eine Temperatur erhitzt, die in¬ nerhalb oder oberhalb des Phaseninversions-Temperaturbereichs liegt, oder in der Weise, daß man bereits bei der Herstellung der Emulsion eine Tem¬ peratur wählt, die innerhalb oder oberhalb des Phaseninversions-Tempera¬ turbereichs liegt. Es ist auch möglich, ein wasserfreies oder wasserarmes Konzentrat bei der Phaseninversions-Temperatur mit heißem oder kaltem Wasser zu verdünnen (Heiß-Heiß- oder Heiß-Kalt-Verfahren).
Sofern Mischungen von öllöslichen und wasserlöslichen Wirkstoffen (D) ein¬ gesetzt werden sollen, kann das erfindungsgemäße Verfahren auf die gerade geschilderte Weise durchgeführt werden, wobei die Gesamtmenge der Wirk¬ stoffe (D) eingesetzt wird. Es ist jedoch auch möglich, auf die geschil¬ derte Weise zu verfahren, und dabei zunächst ausschließlich die öllös¬ lichen Wirkstoffe (D) einzusetzen, während die wasserlöslichen Wirkstoffe (D) dem so erhaltenen Öl-in-Wasser-Emulsionen erst nachträglich zudosiert werden. Daraus ergibt, daß die Vorteile des erfindungsgemäßen Verfahrens insbesondere bei der Herstellung von Öl-in-Wasser-Emulsionen mit einem Gehalt an öllöslichen Wirkstoffen (D) zum Tragen kommen.
Öl-in-Wasser-Emulsionen, wie sie nach dem erfindungsgemäßen Verfahren er¬ halten werden, finden Anwendung in der Kosmetik z. B. als Haut- und Kör¬ perpflegemittel. Besonders bevorzugt ist das erfindungsgemäße Verfahren zur Herstellung emulsionsförmiger Zubereitungen für die Haut- und Haarbe¬ handlung geeignet.
Die folgenden Beispiele dienen der Erläuterung der Erfindung und sind nicht einschränkend zu verstehen. B e i s p i e l e
1. Verwendete Substanzen
a) Ölkörper (A)
IPM: Isopropylmyristat ("Rilanit IPM"; Fa. Henkel/Düsseldorf) Ocylether: Di-n-Octylether ("Cetiol OE"; Fa. Henkel/Düsseldorf) Paraffin: Paraffin, dickflüssig (Type DAB 9, Fa. Wasserfuhr/Bonn) b) nichtionische Emulgatoren (B)
Eumulαin: Anlagerungsprodukt von 12 mol Ethylenoxid an 1 mol Cetostearyl- alkohol; CTFA-Bezeichnung: Ceteareth-12 ("Eumulgin Bl"; Fa. Henkel/Düssel¬ dorf) c) Co-Emulgatoren (C)
GMS: Glycerinmonostearat ("Cutina GMS"; Fa. Henkel/Düsseldorf) d) organische kosmetische Wirkstoffe (D)
Hl Triethyleitrat ("Hydagen CAT", Fa. Henkel/Düsseldorf)
W-2: Parfümöl (Type "HC-50-2457"; Fa. Henkel/Düsseldorf)
W-3: Octvl-Methoxvcinnamat ("Parsol MCX", Fa. Givaudan-Roure GmbH/Norder- stedt)
2. Herstellung und Charakterisierung der Emulsionen
2.1. Herstellung der Emulsionen (übliche Arbeitsweise)
Die Komponenten (A) bis (D) wurden gemischt und auf eine Temperatur leicht oberhalb des Schmelzpunktes der Mischung erwärmt und homogenisiert. Dann wurde in die Schmelze unter Rühren das Wasser, welches auf etwa die gleiche Temperatur erhitzt war, einemulgiert. Die Zusammensetzung der Emul¬ sionen ist der Tabelle 1 zu entnehmen. Die Angaben sind in Gew.-% - bezo¬ gen auf die gesamte Mischung - zu verstehen.
2.2. Herstellung der erfindungsgemäßen Emulsionen (Bl bis B5)
Die Emulsionen wurden, wie unter 2.1. beschrieben hergestellt und dann kurzzeitig (ca. 1 Minute) auf 95 °C erhitzt. Dann wurden die Emulsionen rasch, d. h. mit einer Abkühlrate von ca. 2 °C pro Minute, unter Rühren auf Raumtemperatur abgekühlt. 2.3- Ermittlung der Phaseninversionstemperatur
Unter Verwendung einer Leitfähigkeitsmeßbrücke (Fa. Radiometer, Kopenha¬ gen) wurde die elektrische Leitfähigkeit der Emulsionen in Abhängigkeit von der Temperatur ermittelt. Zu diesem Zweck wurde die Emulsion zunächst auf + 20 °C abgekühlt. Bei dieser Temperatur zeigten die Emulsionen eine Leitfähigkeit von über 50 Mikrosiemens pro cm, d. h. sie lagen als Öl-in- Wasser-Emulsionen vor. Durch langsames Erwärmen mit einer Heizrate von ca. 0,5 °C/min, die mit Hilfe eines Temperatur-Programmgebers in Verbindung mit einem Kryostaten gesteuert wurde, wurde ein Leitfähigkeitsdiagramm er¬ stellt. Der Temperaturbereich, innerhalb welchem die Leitfähigkeit auf Werte unterhalb 5 Mikrosiemens pro cm abfiel, wurde als Phaseninversions- Te peraturbereich notiert.
2.4. Vergleichsbeispiel VI
Die Zusammensetzung gemäß Tabelle 1, Spalte B2, wurde auf 65 °C, d.h. eine Temperatur unterhalb der PIT, erhitzt. Die resultierende Emulsion war grob¬ teilig.
2.5. Beurteilung der Emulsionen
In Tabelle 2 wurde die Phaseninversionstemperatur (PIT) der Zusammenset¬ zungen der Beispiele Bl bis B5 angegeben. Der Wert der PIT ergab sich da¬ bei aus dem unter 2.3 genannten experimentell bestimmten Phaseninversi- ons-Temperaturbereich durch Mittelwertbildung.
Die erhaltenen O/W-Emulsionen der Beispiele Bl bis B5 sowie des Vergleichs¬ beispiels VI wurden ferner bei 400-facher Vergrößerung im Mikroskop unter¬ sucht. Sofern Öltröpfchen erkennbar waren, wurde die Emulsion als "grob" eingestuft; waren dagegen keine öltröpfchen zu erkennen, so wurde die Emul¬ sion als "fein" bezeichnet. Bei feinteiligen Emulsionen kann dementspre¬ chend von einer Tropfchengröße unterhalb von 1 μm ausgegangen werden. Es zeigte sich, daß bei allen Beispielen Bl bis B5, die wie oben unter 2.2. beschrieben hergestellt worden waren, feine Emulsionen resultierten. Im Gegensatz dazu waren die Emulsion, die lediglich in konventioneller Weise (d. h. nach der unter 2.1. beschriebenen Methode, vergl. Versuch VI) und nicht nach dem Phaseninversionsverfahren hergestellt war, grobteilig. 2.6. Verdünnung der Emulsionen
Die nach dem erfindungsgemäßen Verfahren hergestellten Emulsionen Bl bis B5 wurden mit Wasser weiter verdünnt (Verdünnungsfaktor: 2,26). Die Zu¬ sammensetzung der dabei erhaltenen Emulsionen ist den Spalten Bl* bis B5* der Tabelle 3 zu entnehmen. Es wurde festgestellt, daß die Emulsionen Bl* bis B5* in Bezug auf Feinteiligkeit (gemessen durch quasielastische Licht¬ streuung) und Lagerstabilitat (keine Entmischungserscheinungen bei mehrmo¬ natiger Lagerung) der Zusammensetzung VI*, die durch Verdünnung der gemäß 2.4. erhaltenen Zusammensetzung VI erhalten wurde, überlegen war (vergl. Tabelle 4).
Tabelle 1: Zusammensetzung der O/W-Emulsionen
Bl B2 B3 B4 B5 VI
IPM 19,0 12,5
Oetylether 19,0 12,5 22,5 19,0
Paraffin 19,0 19,0 12,5 12,5 19,0
Eumulgin 7,0 7,0 7,0 7,0 10,0 7,0
GMS 3,0 3,0 3,0 3,0 - 3,0
W-1 7,0 7,0 7,0 W-2 20,0 20,0 W-3 22,5 Wasser 45,0 45,0 45,0 45,0 45,0 45,0
Tabelle 2: Charakterisierung der O/W-Emulsion
Bl B2 B3 B4 B5 VI
PIT (°C) 71 73 71 70 85
Konsistenz dünn dünn dünn dünn dünn dünn
Emulsionstype) fein fein fein fein fein grob
e) fein- oder grobteilige Emulsion Tabelle 3: Zusammensetzung verdünnter 0/W-Emulsionena)
Figure imgf000018_0001
a) erhalten gemäß 2.6
Tabelle 4: Charakterisierung der Verdünnungen gemäß 2.6
Bl* B2* B3* B4* B5* VI*
Tropfchengröße0) 554 660 227 382 412 920 Stabilitäte) stabil stabil stab l stabil stabil d)
b) in Nanometer (Maximum der Gaußverteilung)
°) Lagerstabilitat nach 3-monatiger Lagerung bis 20 °C d) Entmischungserscheinungen bereits nach wenigen Tagen

Claims

P a te n t a n s p r ü c h e
1. Verfahren zur Herstellung von Öl-in-Wasser-Emulsionen mit einem Gehalt an einem organischen kosmetischen Wirkstoff, dadurch gekennzeichnet, daß man
(A) einen Ölkörper mit
(B) 0,5 bis 30 Gew.-% eines nichtionischen E ulgators mit einem HLB- Wert von 10 bis 18 und
(C) 0 oder 0,1 bis 30 Gew.-% eines Co-Emulgators aus der Gruppe der Fettalkohole mit 12 bis 22 C-Atomen oder der Partialester von Poly- olen mit 3 bis 6 C-Atomen mit Fettsäuren mit 12 bis 22 C-Atomen und
(D) einen organischen kosmetischen Wirkstoff, der ausgewählt ist aus der Gruppe der Deowirkstoffe, Parfümöle und Lichtschutzfaktoren, mit der Maßgabe, daß i) die Summe der Komponenten (A) und (D) 10 bis 90 Gew.-% beträgt und ii) der Anteil der Komponente (D) im Bereich von 5 bis 100 Gew.-% - bezogen auf den Ölkörper (A) - beträgt, in Gegenwart von 8 bis 85 Gew.-% Wasser bei einer Temperatur oberhalb des Schmelzpunktes des Gemisches aus den Komponenten (A) bis (D) emul¬ giert und die Emulsion auf eine Temperatur innerhalb oder oberhalb des Phaseninversions-Temperaturbereichs erhitzt - oder die Emulsion bei dieser Temperatur herstellt - und dann die Emulsion auf eine Tempera¬ tur unterhalb des Phaseninversionstemperaturbereichs abkühlt und gege¬ benenfalls mit Wasser weiter verdünnt.
2. Verfahren nach Anspruch 1, wobei man die Komponente (B) in einer Menge einsetzt, die 3 bis 20 Gew.-% entspricht.
3. Verfahren nach Anspruch 1 oder 2, wobei man die Komponente (C) in ei¬ ner Menge einsetzt, die 2 bis 20 Gew.-% entspricht.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Summe der Kompo¬ nenten (A) und (D) 20 bis 60 Gew.-% beträgt.
5. Verwendung der Öl-in-Wasser-Emulsion nach einem der Ansprüche 1 bis 4 in der Kosmetik, z. B. als Haut- und Körperpflegemittel.
PCT/EP1994/003457 1993-10-29 1994-10-20 Verfahren zur herstellung von öl-in-wasser-emulsionen WO1995011660A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7512391A JPH09504281A (ja) 1993-10-29 1994-10-20 水中油エマルションの製造方法
EP94930201A EP0725619A1 (de) 1993-10-29 1994-10-20 Verfahren zur herstellung von öl-in-wasser-emulsionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4337041A DE4337041A1 (de) 1993-10-29 1993-10-29 Verfahren zur Herstellung in Öl-in-Wasser-Emulsionen
DEP4337041.1 1993-10-29

Publications (1)

Publication Number Publication Date
WO1995011660A1 true WO1995011660A1 (de) 1995-05-04

Family

ID=6501397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/003457 WO1995011660A1 (de) 1993-10-29 1994-10-20 Verfahren zur herstellung von öl-in-wasser-emulsionen

Country Status (4)

Country Link
EP (1) EP0725619A1 (de)
JP (1) JPH09504281A (de)
DE (1) DE4337041A1 (de)
WO (1) WO1995011660A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962000B2 (en) 2004-08-31 2015-02-24 Stiefel West Coast Llc Microemulsion and sub-micron emulsion process and compositions
EP2474296B1 (de) 2009-09-04 2016-11-02 Shiseido Company, Ltd. Verfahren zur herstellung einer öl-in-wasser-emulsionszusammensetzung
EP1796636B2 (de) 2004-08-31 2016-12-14 Stiefel Research Australia Pty Ltd Mikroemulsions- und submikronemulsionsverfahren & zusammensetzungen

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530220A1 (de) * 1995-08-17 1997-02-20 Henkel Kgaa Translucente Antitranspirantien/Deodorantien
DE19548015A1 (de) * 1995-12-21 1997-06-26 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an hydrophoben anorganischen Mikropigmenten
DE19548016A1 (de) * 1995-12-21 1997-06-26 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen in Form von O/W-Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen mit einem Gehalt an in gelöster Form vorliegenden, an sich schwerlöslichen UV-Filtersubstanzen, insbesondere Triazinderivaten
DE19548014A1 (de) * 1995-12-21 1997-06-26 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen in Form von Emulsionen, insbesondere O/W-Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen, mit einem Gehalt an in fester, dispergierter Form vorliegenden, in Ölkomponenten schwerlöslichen oder unlöslichen UV-Filtersubstanzen
DE19547986C1 (de) * 1995-12-21 1997-07-10 Henkel Kgaa O/W-Mikroemulsionen
DE19703087C2 (de) 1997-01-29 1999-04-22 Henkel Kgaa Verwendung von PIT-Emulsionen
DE19713793A1 (de) * 1997-04-03 1998-10-08 Henkel Kgaa Öl-in-Wasser-Emulsionen zur Wiederherstellung der Lamellarität der Lipidstruktur geschädigter Haut
DE19719504C1 (de) 1997-05-12 1998-12-10 Henkel Kgaa Verfahren zur Herstellung von Haarfärbemitteln
DE19726172A1 (de) * 1997-06-20 1998-12-24 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen in Form von Emulsionen, insbesondere O/W-Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen, mit einem Gehalt an s-Triazinderivaten
DE19726189A1 (de) * 1997-06-20 1998-12-24 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen in Form von O/W-Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen mit einem Gehalt an in gelöster Form vorliegenden s-Triazinderivaten
FR2787025B1 (fr) * 1998-12-14 2002-10-11 Oreal Composition sous forme d'emulsion h/e a forte teneur en cire et ses utilisations dans les domaines cosmetique et dermatologique
DE19908559A1 (de) * 1999-02-27 2000-09-07 Cognis Deutschland Gmbh PIT-Emulsionen
GB9912476D0 (en) 1999-05-28 1999-07-28 Novartis Ag Organic compounds
DE10000209A1 (de) * 2000-01-05 2001-07-12 Beiersdorf Ag Kosmetische oder dermatologische Zubereitungen vom Typ Öl-in-Wasser
DE10000210A1 (de) * 2000-01-05 2001-07-12 Beiersdorf Ag Kosmetische oder dermatologische Zubereitungen vom Typ Öl-in-Wasser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819193A1 (de) * 1988-06-06 1989-12-07 Henkel Kgaa Verfahren zur herstellung stabiler, niedrigviskoser oel-in-wasser-emulsionen polarer oelkomponenten
DE4140562A1 (de) * 1991-12-09 1993-06-17 Henkel Kgaa Verfahren zur herstellung von oel-in-wasser-emulsionen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819193A1 (de) * 1988-06-06 1989-12-07 Henkel Kgaa Verfahren zur herstellung stabiler, niedrigviskoser oel-in-wasser-emulsionen polarer oelkomponenten
EP0345586A1 (de) * 1988-06-06 1989-12-13 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung stabiler, niedrigviskoser Öl-in-Wasser-Emulsion polarer Ölkomponenten
DE4140562A1 (de) * 1991-12-09 1993-06-17 Henkel Kgaa Verfahren zur herstellung von oel-in-wasser-emulsionen
WO1993011865A1 (de) * 1991-12-09 1993-06-24 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von öl-in-wasser-emulsionen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962000B2 (en) 2004-08-31 2015-02-24 Stiefel West Coast Llc Microemulsion and sub-micron emulsion process and compositions
US9492384B2 (en) 2004-08-31 2016-11-15 Stiefel West Coast Llc Microemulsion and sub-micron emulsion process and compositions
EP1796636B2 (de) 2004-08-31 2016-12-14 Stiefel Research Australia Pty Ltd Mikroemulsions- und submikronemulsionsverfahren & zusammensetzungen
EP2474296B1 (de) 2009-09-04 2016-11-02 Shiseido Company, Ltd. Verfahren zur herstellung einer öl-in-wasser-emulsionszusammensetzung

Also Published As

Publication number Publication date
JPH09504281A (ja) 1997-04-28
DE4337041A1 (de) 1995-05-04
EP0725619A1 (de) 1996-08-14

Similar Documents

Publication Publication Date Title
US5723137A (en) Process for the production of storage stable wax dispersions
EP0618840B1 (de) Verfahren zur herstellung von öl-in-wasser-emulsionen
EP0345586B1 (de) Verfahren zur Herstellung stabiler, niedrigviskoser Öl-in-Wasser-Emulsion polarer Ölkomponenten
EP0725619A1 (de) Verfahren zur herstellung von öl-in-wasser-emulsionen
EP0554292B1 (de) Öl-in-wasser-emulsionen
EP0521981B1 (de) Verfahren zur herstellung von öl-in-wasser-cremes
EP1882516A2 (de) Verfahren zur Herstellung feinteiliger Öl-in-Wasser-Emulsionen
EP0845978B1 (de) Translucente antitranspirantien/deodorantien
EP0723432B1 (de) Fliessfähiges emulsionskonzentrat
WO1994014877A1 (de) Verfahren zur herstellung von öl-in-wasser-emulsionen
EP0692957A1 (de) Verfahren zur herstellung multipler w/o/w-emulsionen
WO1996032923A2 (de) Antitranspirantien
DE4338999C1 (de) Kaltwasseremulgierbare Mittel
DE19732013A1 (de) Multiple W/O/W-Emulsionen mit hohem Polyolgehalt
DE19649101A1 (de) Verfahren zur Herstellung multipler W/OW-Emulsionen
DE4128693A1 (de) Oel-in-wasser-emulsionen polarer oelkomponenten
DE19505004C1 (de) Multiple W/O/W-Emulsionen und Verfahren zu deren Herstellung
DE19719297A1 (de) Verfahren zur Herstellung multipler W/O/W-Emulsionen
DE19646878A1 (de) Verfahren zur Herstellung von ÖL-in-Wasser-Emulsionen
WO1992001507A2 (de) Fliessfähige, lagerstabile dispersionen von fettsäurepartialglyceriden
DE4103488A1 (de) Stabile dreiphasensysteme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994930201

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 637639

Date of ref document: 19960429

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994930201

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994930201

Country of ref document: EP