WO1995011548A1 - Rectangular at-cut quartz crystal plate, quartz crystal unit, and quartz oscillator and manufacture of quartz crystal plate - Google Patents

Rectangular at-cut quartz crystal plate, quartz crystal unit, and quartz oscillator and manufacture of quartz crystal plate Download PDF

Info

Publication number
WO1995011548A1
WO1995011548A1 PCT/JP1994/001721 JP9401721W WO9511548A1 WO 1995011548 A1 WO1995011548 A1 WO 1995011548A1 JP 9401721 W JP9401721 W JP 9401721W WO 9511548 A1 WO9511548 A1 WO 9511548A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
rectangular
cut
quartz
piece
Prior art date
Application number
PCT/JP1994/001721
Other languages
French (fr)
Japanese (ja)
Inventor
Itaru Nagai
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP51159795A priority Critical patent/JP3456213B2/en
Priority to DE4497992T priority patent/DE4497992T1/en
Priority to DE4497992A priority patent/DE4497992C2/en
Publication of WO1995011548A1 publication Critical patent/WO1995011548A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to a crystal blank, a crystal resonator, a crystal resonator, and a crystal resonator.
  • the present invention relates to an oscillator used, and particularly to an AT-cut rectangular water crystal piece that performs overtone oscillation. Further, the present invention relates to a manufacturing method suitable for forming these quartz pieces, quartz vibrators, and quartz vibrators.
  • Quartz resonators are resonators that utilize the piezoelectric phenomenon of a single crystal of a crystal, and are currently used in many fields because they provide an oscillation source with a very stable frequency.
  • crystal oscillators and oscillators are used as reference clock sources in various electronic equipment fields such as communication equipment and information processing equipment.
  • various electronic equipment fields such as communication equipment and information processing equipment.
  • miniaturization, weight reduction, and further increase in operating speed due to higher frequency have been progressing.
  • the AT-cut crystal blank cut out of a single crystal of quartz has good frequency-temperature characteristics with respect to temperature change, and has little change over time in frequency.
  • This AT-cut crystal blank is processed into a long rectangular shape in the X-axis direction with a length in the X-axis direction, a thickness t in the Y'-axis direction, and a width w in the ⁇ '-axis direction. Since it can be sealed in a miniaturized crystal holder such as the one described above, it is a suitable crystal piece that constitutes a small and high-performance crystal resonator in combination with the above-mentioned good characteristics.
  • X ⁇ , Y axis, and Z ⁇ ⁇ are the electric, mechanical, and optical axes of the single crystal, respectively, and the Y 'axis and Z' axis are the Y axis and the Z axis when rotated about 35 ° around the X axis.
  • the frequency band that can be covered by a crystal oscillator that oscillates at the fundamental frequency is only a low and limited frequency band of approximately 17 MHz to 40 MHz, which is high in the fields of the above-mentioned electronic devices. It cannot cover the high frequency band exceeding 40 MHz required for speeding up.
  • the thickness t of the AT-cut crystal blank is inversely proportional to the frequency, when the fundamental frequency exceeds 40 MHz, the thickness of the crystal blank becomes 42 m or less, making processing difficult. Therefore, in order to realize a crystal resonator that oscillates at a high frequency, it is necessary to realize a crystal chip for overtone oscillation and a crystal resonator using the same. In order to be able to store a crystal piece in a small crystal holder as described above, its length i must be about 5 mm or less and its width w must be about 1.5 mm or less.
  • the equivalent series resistance Rr deteriorates.
  • the equivalent series resistance R r depends on the dimensions, surface roughness of the surface processing, electrode width, and electrode weight. No effect has been identified.
  • a crystal blank, a crystal vibrator, a crystal vibrator, a crystal vibrator, and a crystal vibrator that are small and light enough to be adopted as an SMD like an IC or the like, and are capable of oscillating high frequency.
  • the purpose is to provide an oscillator. For this reason, even if the length ⁇ is about 5 mm or less and the width w is about 1.5 mm or less, we found a shape of a crystal piece that oscillates overtones with good temperature characteristics. It is intended to provide In addition, even a crystal resonator using such a small crystal blank has a low equivalent series resistance Rr, and can be used for practical crystal blanks and water.
  • DISCLOSURE OF THE INVENTION In order to realize a small-sized and high-frequency crystal resonator as described above, the present applicant has repeated several experiments and measurements to obtain a small crystal piece for overtone oscillation. It was possible to find a vibrator having no coupling with spurious vibrations within a predetermined temperature range required for the vibrator.
  • the range of the side ratio t defined by the width w and the thickness t is 8.48 ⁇ 0.05, 12.18 ⁇ 0.05, 13.22 ⁇ 0.07 , 14.78 ⁇ 0.07, and 15.5.7 ⁇ 0.07.
  • the applicant of the present application has determined that such a crystal piece has a length in the X-axis direction, and the range of this length is 400 to 470,000. m, and if the width w is in the range of 800 to 150 m, a crystal resonator having good equivalent series resistance is used. Found that it can be formed.
  • the surface maximum height of roughness R m range is 0. 2 to 0. 7 m, preferably 0.1 3 It was also found that a good equivalent series resistance can be obtained at 0.6 m. In the conventional crystal blank, the equivalent series resistance was reduced by making the surface as smooth as possible, but the applicant of the present application has found that a good equivalent series resistance can be obtained within the above range of surface roughness. At the same time, we found that we could obtain extremely high yield crystal blanks.
  • Such a crystal piece can be manufactured by lapping the surface of a quartz crystal AT-cut wafer and then etching it. At this time, it is desirable that the thickness of one side reduced by the etching process, that is, half of the thickness reduction (hereinafter referred to as the “etching amount”) is set to 0.5 to 2.5 m. desired to the range of the maximum height R m of the surface roughness of the surface of "the 0. 3 ⁇ 0. 7 m arbitrariness.
  • abrasive grains having an average grain It is effective to use an alumina-based abrasive having a diameter of 2.5 to 3 m, and in the etching process, a hydrofluoric acid of 10 to 33% by weight can be used as an etching solution.
  • the width W of the electrode along the Z 'axis is smaller than the width w of the rectangular AT-cut-.
  • the distance between the end in the width W direction and the end in the width w direction of the rectangular AT-cut crystal piece is 75 to 230 for a crystal piece with a side ratio t in the range of 8.48 ⁇ 0.05. It has been found that good equivalent series resistance and temperature characteristics can be obtained when the distance is zm, preferably 75 to 200 m.
  • the range of the side ratio w / t is 12.18 ⁇ 0.05, 13.22 ⁇ 0.07, 14.78 ⁇ 0.07, and 15.57+
  • ⁇ 5 to 340 m is preferable, and 750 to 200 m is more preferable.
  • the rectangular AT force depends on the presence or absence of the electrode. It has been found that a good equivalent series resistance can be obtained when the value is 700,000 to 300,000 ppm in terms of the change in the frequency of the crystal blank.
  • a crystal resonator is formed using such a rectangular AT-cut crystal piece, it is possible to provide a crystal resonator that is small, light, and capable of oscillating high frequencies.
  • a support mechanism for the crystal blank a support mechanism in which the electrodes are joined to the lead with solder or a conductive adhesive to support one end in the X-axis direction of the crystal blank can be adopted.
  • the crystal piece in the above range is small and can oscillate at a stable high frequency
  • the diameter range is 2.0 ⁇ 0.2 mm and the length range is 6.0 ⁇ 0.5 mm.
  • the crystal holder may be molded by a molding member, and by molding together with an integrated circuit device having an oscillation circuit, a crystal oscillator suitable for mounting on the surface of a substrate can be realized.
  • FIG. 1 is a perspective view showing an outline of a crystal blank manufactured in an embodiment of the present invention.
  • FIG. 2 is a flowchart showing steps of manufacturing a crystal blank, a crystal resonator, and a crystal resonator according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing the configuration of the crystal resonator according to the embodiment of the present invention.
  • FIG. 4 is a perspective view showing an outline of the crystal resonator according to the embodiment of the present invention.
  • FIG. 5 is a structural view of the inside of the crystal unit shown in FIG. 4 as viewed from the Y′-axis direction.
  • FIG. 6 is a structural view of the inside of the crystal unit shown in FIG. 4 as viewed from the Z′-axis direction.
  • FIG. 7 is a graph showing temperature characteristics of a crystal resonator using a crystal piece having a side ratio E of about 12.18, respectively.
  • FIG. 8 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of about 12.18 with spurious vibration.
  • FIG. 9 is a graph showing a temperature characteristic of a crystal unit using a crystal piece having a side ratio E of about 8.48.
  • FIG. 10 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of about 8.48 with spurious vibration.
  • FIG. 11 is a graph showing a temperature characteristic of a crystal unit using a crystal piece having a side ratio E of about 15.5.7, respectively.
  • FIG. 12 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of around 15.5.77 with spurious vibration.
  • FIG. 13 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of about 13.3.22 with spurious vibration.
  • FIG. 14 is a diagram summarizing a coupling state of a crystal resonator using a crystal piece having a side ratio E of about 14.7.88 with spurious vibration.
  • FIG. 15 is a diagram showing a frequency range that can be covered by the crystal unit using the crystal piece having the above-described side ratio.
  • Fig. 16 is a graph showing the relationship between the length ⁇ of the crystal piece and the equivalent series resistance Rr.
  • Figure 17 is a graph showing the relationship between the width w of the crystal blank and the equivalent series resistance Rr.
  • FIG. 18 is a graph showing the relationship between the surface roughness of the etched surface of a quartz piece having a side ratio E of 12.18 and the equivalent series resistance Rr.
  • FIG. 19 is a graph showing the relationship between the surface roughness of the surface of a crystal piece having a side ratio E of 8.48 after etching and the equivalent series resistance Rr.
  • FIG. 20 is a graph showing the relationship between the surface roughness of the surface of a quartz piece having a side ratio E of 15.5.77 after etching and the equivalent series resistance Rr.
  • Figure 21 shows a comparison between the variation in the value of the equivalent series resistance Rr of the crystal blank etched after polishing and the variation in the value of the equivalent series resistance Rr of the crystal blank etched after wrapping. is there.
  • FIG. 22 is a graph showing the relationship between the amount of etching and the surface roughness of the surface of the crystal blank.
  • FIG. 23 is a graph showing the relationship between the amount of etching and the equivalent series resistance Rr.
  • FIG. 24 is a graph showing a temperature characteristic of a crystal unit having a side ratio E of 12.18 and a crystal resonator when the interval D is changed.
  • FIG. 25 is a graph showing the temperature characteristics of a quartz crystal having a side ratio E of 8.48 and a quartz resonator when the interval D is changed.
  • FIG. 26 is a graph showing the temperature characteristics of a quartz crystal element having a side ratio E of 15.5.57 and varying the interval D, respectively.
  • FIG. 27 is a graph showing the relationship between the distance D between the electrode and the end of the crystal piece and the equivalent series resistance Rr.
  • FIG. 28 is a graph showing the relationship between the amount of change in frequency during electrode deposition and the equivalent series resistance Rr.
  • Figure 29 shows an outline of a crystal unit in which the crystal unit is molded with resin.
  • FIG. 30 is a cross-sectional view of a crystal oscillator in which a crystal unit and an IC having an oscillation circuit are molded with resin.
  • FIG. 1 shows an outline of a crystal blank 1 according to the present invention.
  • the crystal blank 1 of this example is a rectangular AT cut crystal blank cut out of a single crystal of crystal and processed into a rectangular shape, has the illustrated coordinate system XY 'Z' axis, and has the X-axis. It has a length ⁇ , a thickness t along the Y 'axis, and a width w along the Z' axis.
  • FIG. 2 shows the steps of manufacturing the crystal blank, the crystal resonator, and the crystal resonator according to the present invention.
  • step 11 a single crystal of quartz is cut into a wafer at a predetermined angle (AT cut).
  • step 12 the surface of the wafer is roughly lapped by using a silicon carbide abrasive having a grain size of about # 150.
  • step 13 a final lapping process is performed using an alumina-based abrasive having an average grain size of 2.5 to 3 m.
  • X is made to be 0. 7 m or less.
  • Maximum height of surface roughness in this specification Is a value measured using a surface roughness measuring instrument “Tarisurf 6” manufactured by Rankera-Hobson.
  • polishing using a polishing agent as in the past was not performed. Also, if necessary, a silicon carbide material having a particle size of about # 300 between steps 12 and 13 can be used. Intermediate lap processing using an abrasive may be performed.
  • a plurality of wafers wrapped in step 14 are attached to each other, and these wafers are cut so as to have a predetermined side ratio or a predetermined length to produce a crystal piece having a predetermined size.
  • X-cutting is performed by cutting the wafer at a plane perpendicular to the X-axis.
  • lapping of the cut surface is performed under the same conditions as in steps 12 and 13 described above.
  • the wafer is cut along a plane perpendicular to the Z axis.
  • lapping of the cut surface in steps 19 and 20 is performed in the same manner as in the above-described step.
  • the edge of the wafer cut from the single crystal is about several tens of millimeters on a side
  • the edge of the wafer cut into a crystal piece of a predetermined size is very small. For this reason, a predetermined surface roughness can be obtained even for the cut surface of a small crystal piece by bonding the cut wafers with a honey and cutting them and then lapping the end surfaces. I am trying to be.
  • each crystal piece is separated in step 21 and washed in step 22.
  • the length and width w of the crystal piece are measured using a dial gauge with a measurement accuracy range of 1 m, and the dial gauge used for this measurement is used after calibrating the scale using a standard block each time. Is done.
  • the thickness t is measured by oscillating a crystal blank using a plate oscillator without attaching electrodes, and measuring the frequency. That is, the thickness t is obtained from the frequency measured by the following equation.
  • C is a frequency constant of the fundamental wave, which is 1670 ⁇ m ⁇ MHz.
  • F is the oscillation frequency (MHz) of the third overtone of the crystal blank. The oscillation frequency was measured to the order of 1 kHz, and the thickness t ( ⁇ ) Seeking.
  • a crystal piece that can be stored in a cylinder-shaped holder having a diameter of about 2 mm and a length of about 6 mm is formed by the above-described process. For this reason, taking the dimensions of the base supporting the crystal blank into account, the upper limit of the length ⁇ of the crystal blank is set to 470 m, and the upper limit of the width w is taken to be 150 / m in consideration of the inner diameter of the cage. I have.
  • each crystal piece is etched.
  • 10 to 30% by weight of hydrofluoric acid is used as the etching solution.
  • an electrode material is formed on both surfaces sandwiching the thickness t, that is, on the XZ ′ surface by vapor deposition or sputtering.
  • the electrode is formed by chromium, nickel, silver, gold, or a laminate of these.
  • FIG. 3 shows an outline of a crystal resonator 5 in which electrodes are deposited on a crystal blank 1.
  • a substantially rectangular excitation electrode 2 having a width W is formed substantially in the center of the surface of the quartz piece 1 and extends along the longitudinal direction of the quartz piece.
  • connection electrode 3 is formed from the excitation electrode 2 toward one corner 1 a in the longitudinal direction of the crystal blank 1, and an adjacent corner 1 b is formed on the surface opposite to the crystal blank 1.
  • the connection electrode 3 is formed so as to correspond to the formed excitation electrode.
  • the electrode is formed so that the distance D between the longitudinal end 2a of the electrode formed on the surface of the crystal blank 1 and the longitudinal end 1c of the crystal blank 1 becomes a predetermined value. At the same time, and the amount of film formation of the electrode is also controlled by monitoring the oscillation frequency of the crystal blank 1. This is also described in more detail below.
  • a mechanism to support the quartz vibrator and supply current to the electrodes Attach a lead that also has the function of The lead may be connected to the electrode by soldering, or may be connected using a conductive adhesive such as epoxy or polyimide containing silver filler.
  • step 26 deposit a small amount of silver on the electrode or
  • step 27 the quartz oscillator is inserted into a cylindrical holder while heating the quartz oscillator so that the adsorbed gas is released in a vacuum chamber, and sealed by vacuum to create a quartz oscillator.
  • an inert gas may of course be sealed in the holder.
  • FIG. 4 shows the outline of the crystal unit
  • Figures 5 and 6 show the cross sections of the crystal unit.
  • the crystal unit 10 of the present example includes a cylindrical holder 9 having a diameter of 2.0 ⁇ 0.2 mm and a length of 6.0 ⁇ 0.5 mm.
  • a quartz vibrator 5 is sealed inside the cage 9, and a lead 4 is connected to each of the connection electrodes 3.
  • the lead 4 is guided to the outside of the cage 9 via the base ls and i s, so that power can be supplied to the crystal vibrating body 5 via the lead 4 to oscillate.
  • the third-order overtone crystal resonator according to the present invention is assembled, and finally, in step 28, the frequency, the equivalent series resistance Rr, which is the resistance value during vibration, and the oscillation frequency due to temperature Inspection of temperature characteristics, which is a change in equivalent series resistance, is performed.
  • Fig. 7 shows the temperature characteristics of the crystal resonator manufactured by the above manufacturing method so that the side ratio E is around 12.1.8 and the frequency f oscillates at 55.0 MHz, which is the third overtone. Is shown.
  • the length £ of the crystal blank is 4200; um, and the width w is around 1100m, and is adjusted according to the relationship of the following formula so that the frequency becomes f.
  • FIG. 7 shows the temperature characteristics of a crystal unit using a crystal element with a side ratio E of 12.18.
  • the temperature characteristic of the frequency of the crystal unit draws a stable cubic curve peculiar to the AT cut, and the coupling with other vibration modes, that is, spurious vibrations, is seen in the range of 45 ° C to +95 ° C. I can't.
  • the equivalent series resistance R r is stable at a low value of about 40 ⁇ , and no coupling with spurious oscillation is seen from now on.
  • Fig. 7 (a) shows the temperature characteristics of a crystal unit using a crystal piece with a side ratio E of 12.13
  • Fig. 7 (c) shows the use of a crystal piece with a side ratio of 12.23. It shows the temperature characteristics of a quartz crystal resonator. These were manufactured as described above and measured by the same method. Looking at the temperature characteristics of the crystal unit with a side ratio of 12.13, coupling with spurious vibration is seen at around 125 ° C. In the case of the crystal unit with a side ratio of 12.23, Coupling with spurious vibration is seen around 95 ° C. In the range of these side ratios, there is no coupling with spurious vibration in the operating temperature range (—20 to + 80 ° C) required for the crystal oscillator, and stable oscillation is achieved. It can be seen that it can be obtained.
  • Fig. 8 summarizes how the applicant measured the temperature characteristics of a crystal unit using a crystal piece with a side ratio of around 12.18 by such a method, and the coupling with spurious vibrations appeared. It is. In the figure, the range where coupling with spurious vibration is seen is indicated by the solid line. As can be seen from this figure, the applicant's experiments have found that, within the operating temperature range of the crystal unit, which is within the range of 120 ° C to + 80 ° C, a region that is free from coupling with spurious vibrations can be found. did it. As shown by the dashed line in this figure, the range is the range where the side ratio E is 12.18 ⁇ 0.05.
  • Figure 9 shows the temperature of the crystal oscillator produced by the above manufacturing method so that the side ratio E is around 8.48 and the frequency f oscillates at the third overtone of 4.1.667 MHz. The characteristics are shown.
  • the length ⁇ of the quartz piece in this example is 420 m, and the width w is around 120 m, and the predetermined circumference is the same as in the above example. Adjusted to get the wave number.
  • Figure 9 (b) shows the temperature characteristics of a crystal unit using a crystal element with a side ratio E of 8.48. No coupling with other vibration modes, ie spurious vibrations, is observed at +95 ° C.
  • the equivalent series resistance R r is also stable at a low value of approximately 50 ⁇ or less.
  • Figure 9 (a) shows the temperature characteristics of a crystal unit using a crystal piece with a side ratio E of 8.43
  • Fig. 9 (c) shows the crystal oscillation using a crystal piece with a side ratio of 8.53
  • 4 shows the temperature characteristics of a child.
  • Figure 10 shows that the applicant measured the temperature characteristics of a crystal unit using a crystal piece with a side ratio of about 8.43 by such a method, and coupled it to spurious vibrations (solid line in the figure). ) are summarized. As can be seen from the figure, the applicant's experiments have found that, within the operating temperature range of the crystal unit, that is, 20 T; did it. As shown by the dashed line in this figure, the range is such that the side ratio E is 8.48 ⁇ 0.05.
  • Fig. 11 shows that the crystal ratio of the crystal unit manufactured by the above manufacturing method was set so that the frequency f oscillated at 71.730 MHz, which is the third overtone, with the side ratio E near 15.57 Temperature characteristics are shown.
  • the length of the crystal piece ⁇ is 4 2 0 0 m, and the width w is in the vicinity of 1080 m, and is adjusted so as to obtain the specified frequency as in the above example.
  • Fig. 11 (b) shows the temperature characteristics of a crystal unit using a crystal element with a side ratio E of 1.5.77. No coupling with other vibration modes, ie spurious vibrations, is observed in the range from to +95 ° C.
  • the equivalent series resistance R r is also stable at a low value of about 40 ⁇ .
  • Figure 11 (a) shows the temperature characteristics of a crystal unit using a crystal piece with a side ratio E of 15.50.
  • Figure 11 (c) shows a crystal piece with a side ratio of 1.5.64.
  • the temperature characteristics of the crystal unit used are shown. These were produced as described above and measured by the same method. Looking at the temperature characteristics of a crystal unit with a side ratio of 15.50, coupling with spurious vibration is found at around 130, and in a crystal unit with a side ratio of 15.5.64, 9 Coupling with spurious vibration is observed around 0 ° C. In the range of these side ratios, there is no coupling with spurious vibration in the operating temperature range required for the crystal unit (120 to + 80 ° C), and stable oscillation can be obtained. You can see this.
  • Figure 12 shows that the applicant measured the temperature characteristics of a crystal unit using a crystal piece with a side ratio of around 1.5.77 by such a method, and coupled it to spurious vibrations (see the figure). (Indicated by a solid line). As can be seen from this figure, the applicant's experiments have found a region without coupling with spurious vibrations within the operating temperature range of the crystal unit, i.e., 20 ° C to + 80 ° C. did it. The range is, as shown by the chain line in this figure, the side ratio E is in the range of 15.57 ⁇ 0.007.
  • Figure 13 shows that the side ratio E is around 13.22, the length is 420 m, and the width is A crystal resonator adjusted so that w oscillates at 60.0 MHz with a third-order overtone when w is around 1100 m is manufactured by the above method, and its temperature characteristics are the same as in the above example
  • the results of the measurements are summarized. As can be seen from this figure, even at this side ratio E, coupling with spurious vibrations was performed within the operating temperature range of the crystal oscillator of 120 ° C. to + 80 ° C. An area without any gaps was found. As shown by the dashed line in this figure, the range is in the range of the side ratio E of 13.2 ⁇ 0.007.
  • Figure 14 shows that the edge ratio E is around 14.78, the length is around 4200 m, the width w is around 1110 / m, and the frequency f is 36.6.
  • a quartz oscillator adjusted to oscillate at 7 MHz is manufactured by the above method, and the results of measuring the temperature characteristics in the same manner as in the above example are summarized.
  • the experiments performed by the applicant of the present application have shown that, with the operating temperature range of the crystal oscillator, the range of 120 ° C. to + 80 ° C. An unbonded area could be found.
  • the range is the range where the side ratio E is 14.78 ⁇ 0.07.
  • the crystal piece for the third overtone is reduced in size by the above-described manufacturing method, some side ratios that are not coupled to spurious vibrations are obtained. E, and its range.
  • Fig. 15 shows a crystal blank with these side ratios E, and in this example, a crystal blank within the range that can be stored in a cylindrical holder with a diameter of 2 mm was used.
  • the frequency range that can be covered by the crystal unit is shown.
  • the five side ratios (8.48, 12.18, 13.22) for which the coupling with spurious vibration was not observed within the operating temperature range in the present application 14.78 15.57
  • a wide range of oscillation frequencies including high frequencies can be covered without leakage.
  • Fig. 16 summarizes the measurement results of the equivalent series resistance R r of a quartz crystal element manufactured using quartz pieces with different lengths as described above.
  • a quartz crystal is designed so that the value of the equivalent series resistance Rr is about 60 ⁇ or less.
  • the side ratio E is In the case of using a 15.57 crystal piece, the length of the crystal piece should be 30000 m or more. In addition, when a crystal piece having a side ratio E of 12.18 is used, the length of the crystal piece may be at least 350 m. Furthermore, in the case of using a crystal piece having a side ratio E of 8.48, it is sufficient that the length £ of the crystal piece is 40 or more than 100 m. Therefore, the length £ of any of the crystal blanks having the side ratios found in the above experimental examples 1 to 5 is 4
  • the length of the crystal piece be about 4700 m or less from the viewpoint that it is stored in a cylinder-shaped cage with a length of about 6 mm.
  • Fig. 17 summarizes the results of measuring the equivalent series resistance R r of a crystal unit using quartz pieces with different widths w manufactured as described above.
  • This figure shows a crystal blank with a side ratio E of 8.48 for relatively low frequencies, 12.18 for intermediate frequencies, and 15.5.77 for high frequencies. The case where it was used is shown as a representative.
  • the length of each crystal piece is 420 m.
  • the width w of the crystal piece is desirably set to about 1500 m or less from the viewpoint of being accommodated in a cylinder holder having a diameter of about 2 mm.
  • Fig. 18 summarizes the measurement results of the equivalent series resistance R r of a quartz crystal element manufactured by manufacturing quartz pieces with different surface roughness after etching is completed.
  • the side ratio E of the crystal piece was adjusted to 12.18, and the width w was adjusted so that the third overtone frequency was 55.0 MHz.
  • the length £ of each crystal piece is 420 m.
  • the surface roughness shown FIG. 8 is a surface roughness after the etching step 2 3-manufacturing process, described above, the maximum height R m, the surface of the crystal piece by measuring the x states Have confirmed.
  • FIG. 18 shows the average value of the equivalent series resistance R r (indicated by a black circle in the drawing) and the variation of the measured value (indicated by a solid line in the drawing).
  • the equivalent series resistance R r even if the average value of the equivalent series resistance R r is low, the variation is large depending on the crystal piece, and the equivalent series resistance R r may exceed 60 ⁇ even if the polishing finish is applied. Many.
  • the variation in the value of the equivalent series resistance Rr due to the crystal blank is small.
  • the maximum value of the surface roughness RmaJ [of the etched surface is 0.2 to 0.7 zm, the equivalent series resistance R r shows a good value of about 60 ⁇ or less, including the range that varies from crystal to crystal. Furthermore, the maximum value of the surface roughness Rm ,, of the etched surface is 0.
  • the equivalent series resistance R r shows a very good value of 60 ⁇ or less including the range that varies from crystal to crystal.
  • Figure 19 shows the same measurement as in Experimental Example 8, with a crystal fragment adjusted so that the side ratio E is 8.48 and the width w is 3rd overtone frequency 41.667 MHz.
  • the results obtained for the quartz oscillator used are summarized. Note that the length of each crystal fragment is about 4200 m.
  • Figure 20 shows the same measurement as in Experimental Example 8, with the quartz piece adjusted so that the side ratio E is 15.57 and the width w is 31.7% of the triplet frequency.
  • the results obtained for a quartz crystal unit using are summarized.
  • the length £ of each crystal piece is 420 m.
  • the variation due to the crystal piece was large, and the equivalent series resistance R r force was 60 ⁇ . There are many things that go beyond.
  • the variation in the value of the equivalent series resistance Rr due to the crystal blank is small. If the maximum value R max of the surface roughness of the etched surface is from 0.2 to 0.
  • An equivalent series resistance R r is approximately 6 0 Omega below, including the range varies for each crystal piece and good value Show. Furthermore, if the maximum surface roughness Rma! T of the etched surface is 0.3 to 0.6 m, the equivalent series resistance Rr is 60 ⁇ or less, including the range that varies from crystal to crystal. And very good values. As a result of such experiments conducted by the present applicant, the value of the equivalent series resistance Rr itself was small, and the variation of this value Rr was small for each crystal blank. In order to obtain such a crystal resonator, it has been found that it is desirable not to finish the surface of the crystal blank as smoothly as possible, but to finish it to a certain roughness within the range obtained above.
  • polishing is performed in order to suppress the irregular reflection of vibrations on the surface of the crystal blank and improve the excitation efficiency.
  • the surface roughness was made as small as possible. Therefore, the surface roughness of the surface of the crystal blank was finished to a maximum height R mai [ of 0.2 or 0.1 m or less.
  • polishing was thought to be indispensable because vibrations tended to leak when the quartz pieces were made smaller.
  • Polishing is a laborious and costly operation using expensive polishing agents.
  • the surface can be polished Even if the roughness decreases, it is difficult to maintain the flatness of the surface, and the surface will undulate. Polishing is a work that requires such skill, and polished quartz pieces are difficult to peel off when the polished planes come into close contact with each other, and the polished surface is trivial. There is also difficulty in handling such as scratching and deterioration of surface roughness.
  • the present invention may be finished by lapping, the maximum height R m of surface roughness of the crystal piece, x is from 0. 2 ⁇ 0.
  • FIG. 21 shows an enlarged distribution state of the equivalent series resistance R r of a crystal unit using a crystal piece having a side ratio E of 12.18 measured in Experimental Example 8.
  • the average equivalent series resistance R r is as low as 38 ⁇ , but the maximum equivalent series resistance R r
  • Some quartz resonators have a resistance of about 100 ⁇ .
  • the average equivalent series resistance Rr shows a good value of 40 ⁇ , Furthermore, the maximum value of the equivalent series resistance R r is as good as about 50 ⁇ .
  • the thickness of a polished crystal piece has a large distribution, it is necessary to adjust the frequency by etching.
  • the polished surface is easily stained and scratched during the peeling, washing and drying processes. No. Therefore, when such a surface is etched, a dirty portion remains as a pit without being etched, that is, a so-called etch pit is generated.
  • scratches and the like are enlarged, resulting in a surface with uneven unevenness. As a result, the equivalent series resistance Rr increases.
  • the frequency distribution of the lap-finished quartz piece is also small because the polished quartz piece has a small thickness distribution.
  • the equivalent series resistance does not vary even when etched, so the wrapped quartz pieces are classified by resonance frequency, the etching time is determined for each classification, and the frequency is further narrowed by etching. It can be confined to a range.
  • FIG. 22 shows the change in surface roughness with the amount of etching when the lap-finished quartz piece is etched.
  • FIG. 23 shows a change in the equivalent series resistance Rr value according to the amount of etching.
  • the side ratio E of the crystal piece was 12.18, and the width w was adjusted so as to oscillate at a frequency of 55.0 MHz.
  • the length £ of the crystal piece is 420 m.
  • FIGS. 22 and 23 show that the surface roughness immediately before the etching is a crystal piece with a maximum height R ma J [of 1.2 m, a crystal piece B with a 0.7 m thickness, and a crystal piece B with a maximum height of 0.7 m.
  • the change in surface roughness and the change in equivalent series resistance R r of a 4 m crystal blank C are shown.
  • the value of the equivalent series resistance R r is The average of multiple measurements is shown.
  • the etching liquid uses 10 to 30 weight percent hydrofluoric acid.
  • the maximum height R max of the surface roughness sharply decreases until the etching processing amount is about 0.5 m, and the part of the damaged layer that is most roughened by lapping It is presumed that the surface was etched away. No significant change in surface roughness was observed between 0.5 and 2. Etching amount, indicating that the affected layer with a stable structure was reduced by etching. On the other hand, when the amount of etching exceeds 2.5 m, the maximum height R m , x of the surface roughness increases. This is thought to be due to the effect that the etching rate differs depending on the direction due to the anisotropy of the quartz single crystal. Due to the anisotropy of the etching speed, large irregularities are generated on the surface of the crystal blank.
  • the change in the equivalent series resistance shown in Fig. 23 also shows almost the same tendency as the maximum surface roughness Rma! T shown in Fig. 22. That is, the equivalent series resistance R r sharply decreases until the etching amount is 0.5 m, and there is no significant change in the equivalent series resistance R r when the etching amount is 0.5 to 2.5 m. I can't. When the amount of etching exceeds 2.5 m, the tendency of the equivalent series resistance Rr to increase becomes remarkable. Thus, in this experiment, in order to obtain a crystal piece having a low and stable equivalent series resistance Rr value, it is preferable to set the etching amount after lapping to 0.5 to 2.5 m. You can see that. If the thickness reduction on one side due to the etching process falls within this range, structurally stable portions of the deformed layer formed when lapping or cutting the crystal blank appear on the surface of the crystal blank. It is considered that a good equivalent series resistance Rr can be obtained.
  • a good equivalent series resistance R of less than 60 ⁇ In order to obtain r value, the crystal blank shown in this diagram desirable to keep the maximum height R ma, the surface roughness of the pre-etching 0. 7 m or less arbitrarily.
  • R ma should be in the range of 0.3 to 0.7 ⁇ m.
  • an alumina-based abrasive having an average grain size of 2.5 to 3.0 m was used in order to lap the surface roughness of the crystal blank within the above range.
  • Fig. 24 shows a quartz piece with a side ratio of 12.18, width w of 1109 m, length of 420 m and 55.0 MHz manufactured by the above method. This shows the temperature characteristics when electrodes of different sizes are deposited.
  • electrodes are formed on both sides of the crystal blank.
  • the electrodes are formed by depositing chromium and silver.
  • FIG. 27 summarizes the maximum value of the equivalent series resistance R r at a temperature of 20 to + 80 ° C. measured by changing the interval D from 50 to 350 m.
  • the interval D is preferably 50 to 340 m in terms of the equivalent series resistance R r and the power of 60 ⁇ or less. Then, as shown above, when the interval D is 50! / M, the coupling with spurious vibration is within the operating temperature range, so that it is understood that the interval D is desirably 75 to 340 m.
  • Fig. 25 shows the same results as in the above experiment using a quartz piece with a side ratio of 8.48, a width w of 94.4 m, and a length £ of 420 m and 45.0 MHz. The result of the measurement is shown.
  • the interval D In the case of 100 m, the frequency deviation and the equivalent series resistance R r are stable over the entire temperature range, and the values are also good at around 50 ⁇ .
  • Fig. 27 summarizes the maximum value of the equivalent series resistance R r at _20 .- + 80 when the interval D is varied from 50 to 250 m.
  • the interval D is preferably 50 to 230 m in terms of the equivalent series resistance R r of 60 ⁇ or less. Then, as shown above, when the distance D is 50 m, the coupling with the spurious vibration is within the operating temperature range, so that it is understood that the distance D is desirably 75 to 230 ⁇ m.
  • Figure 26 shows the above-mentioned results using a crystal piece with a side ratio of 15.57, a width w of 1170 m, and a length 4 of 4200 m and a size of 6.6.667 MHz. The results of the same measurements as in the experiment are shown. As shown in Fig. 26 (b), when the interval D is 100 m, the frequency deviation and the equivalent series resistance R r are stable over the entire temperature range, and their values are very close to 40 ⁇ . It is good.
  • Figure 27 shows the equivalent direct current measured while changing the distance D from 50 to 350 m.
  • the maximum value of the column resistance Rr at 20 to 180 is summarized.
  • the interval D should be 50 to 340 in terms of the equivalent series resistance R r of 60 ⁇ or less.
  • the coupling with the spurious vibration is within the operating temperature range, so that it is understood that the interval D is desirably 75 to 340 m.
  • the equivalent series resistance R r is further reduced, excluding the influence of spurious vibrations caused by the ends of the crystal blank. Can be lower. That is, in the low frequency side ratio of 8.48, the interval D is desirably 75 to 230 m. When the side ratio is 12.18 to 15.5.7, the distance D is preferably 75 to 340 m. In addition, if the interval D is set to 75 to 200 / m, the frequency deviation of the crystal resonator with a low frequency side ratio of 8.48 to a high frequency side ratio of 15.5.7 will be reduced. It is stable and can provide a sufficiently low equivalent series resistance.
  • Figure 28 shows a quartz piece with a side ratio of 12.18, width w of 1109 m, and length H of 420 m, manufactured by the above method, and electrodes deposited on it. This shows the relationship between the amount of change in frequency, which varies depending on the amount of vapor deposition, and the equivalent series resistance Rr when a quartz resonator is manufactured.
  • the frequency change is expressed by the following equation.
  • f is the frequency when no evaporation is performed
  • is the frequency when evaporation is performed.
  • the equivalent series resistance Rr is very high when the amount of change in frequency when the electrode is deposited is less than 700 ppm.
  • the equivalent series resistance Rr is stable at a good value of about 50 ⁇ .
  • the equivalent series resistance Rr tends to increase, and it can be seen that the characteristics of the crystal resonator are deteriorated.
  • the value of the equivalent series resistance Rr is high due to insufficient energy confinement of the thickness-shear vibration, and 300 ppm or more.
  • the weight of the excitation electrode is too large, which inhibits the thickness shear vibration of the crystal blank, and the equivalent series resistance Rr is considered to have increased.
  • crystal resonator having a cylinder of about 2 mm and a length of about 6 mm, which can cover an oscillation frequency of around 100 MHz.
  • the crystal blank, crystal vibrator, and crystal vibrator having each element in the range of the numerical values clarified above have an AT cut within the operating temperature range of ⁇ 20 ° C to + 80 ° C. It has a stable temperature characteristic peculiar to a quartz crystal resonator, and the equivalent series resistance R r is a good value of about 60 ⁇ or less.
  • FIG. 29 shows a crystal unit 30 in which the crystal unit 10 of this example is molded with resin and surface-mounted.
  • This crystal oscillator 30 A lead 4 protruding from a cylindrical holder 9 of a crystal oscillator 10 is welded to a metal lead 31 and molded with a resin 32.
  • the crystal oscillator 30 of this example is an element that can be mounted on the surface of the substrate as it is because the cage 9 is molded with the resin 32.
  • FIG. 30 shows a crystal oscillator 40 in which the crystal unit 10 of the present example and the IC integrated circuit 41 are combined and molded with resin.
  • a crystal oscillator 10 and an IC integrated circuit 41 at least including an oscillation circuit for oscillating the crystal oscillator 10 with a third overtone are mounted on a metal frame 42.
  • a reference frequency that regulates the operation of each circuit mounted on the substrate can be supplied. Since the diameter of the crystal unit 10 in this example is as small as about 2.0 mm, the thickness of the oscillator is also from 2.5 mm to 2.7 mm, and the size and weight can be extremely reduced. Further, by using the crystal resonator of the present example, a high frequency can be stably supplied, so that the oscillator is suitable for an electronic device with a high-speed operation.
  • the quartz piece having the side ratio found by the present invention can oscillate with a third overtone without coupling with spurious vibration even in a region having a very small size.
  • a thin crystal blank can be obtained.
  • the equivalent series resistance with respect to the crystal blank or the crystal vibrator shows a good value.
  • the use of the crystal blank according to the present invention provides a crystal resonator and a crystal oscillator that can be reduced in size and weight so that they can be used as SMDs like ICs, and that can oscillate high frequencies. It is possible to do.
  • the present invention also discloses a manufacturing method for providing a crystal piece having excellent characteristics at a high yield.
  • various electronic devices such as communication devices and information processing devices, which will become lighter, smaller, and faster in the future.
  • INDUSTRIAL APPLICABILITY The crystal blank, crystal resonator, crystal resonator, and crystal oscillator according to the present invention can be used in various electronic device fields such as communication devices and information processing devices. Can be used as a reference clock source.
  • the quartz oscillator according to the present invention and the quartz oscillator using the same are capable of providing a small, lightweight, high-frequency clock signal.
  • It can be provided as an SMD product that can oscillate a stable high frequency in the field of miniaturized electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A quartz crystal unit which has a small size and light weight and can oscillate at overtone frequencies. The aspect ratio (w/t) of the quartz plate at which no coupling with spurious vibrations occurs within the operating temperature range even when the width and length of the quartz plate are below 1.5 mm and below 4.7 mm, respectively, is specified. It has been experimentally confirmed that an AT-cut rectangular quartz plate having an aspect ratio of 8.48 ± 0.05, 12.18 ± 0.05, 13.22 ± 0.07, 14.78 ± 0.07, or 15.57 ± 0.07 has excellent temperature characteristics. In addition, several factors which are essential to providing a quartz plate having a low equivalent series resistance have been found.

Description

明 細 書 矩形状 A Tカツ ト水晶片、 水晶振動体、 水晶振動子および水晶発振 器、 および水晶片の製造方法 技術分野 ' 本発明は、 水晶片、 水晶振動体、 水晶振動子、 およびこれを用いた 発振器に関し、 特に、 オーバトーン発振を行う A Tカツ 卜の矩形状水 晶片等に関するものである。 さらに、 これら水晶片、 水晶振動体およ び水晶振動子を形成するのに好適な製造方法に関するものである。 背景技術 水晶振動子は、 水晶単結晶の圧電現象を利用した振動子であり、 非 常に安定した周波数の発振源となるために、 現在多くの分野で使用さ れている。 特に、 水晶振動子および発振器は、 通信機器、 情報処理装 置をはじめ様々な電子機器分野において基準クロック源などと して利 用されている。 そして、 このような電子機器の分野では、 近年、 小型 化、 軽量化、 さらに高周波化による動作速度の高速化が進んでおり、 これにともなって小型で軽量であり、 さらに、 高周波を安定して発振 できる水晶振動子の実現が急務となっている。  Description Rectangular AT-cut crystal blank, crystal resonator, crystal resonator and crystal oscillator, and method for manufacturing crystal blank Technical field '' The present invention relates to a crystal blank, a crystal resonator, a crystal resonator, and a crystal resonator. The present invention relates to an oscillator used, and particularly to an AT-cut rectangular water crystal piece that performs overtone oscillation. Further, the present invention relates to a manufacturing method suitable for forming these quartz pieces, quartz vibrators, and quartz vibrators. BACKGROUND ART Quartz resonators are resonators that utilize the piezoelectric phenomenon of a single crystal of a crystal, and are currently used in many fields because they provide an oscillation source with a very stable frequency. In particular, crystal oscillators and oscillators are used as reference clock sources in various electronic equipment fields such as communication equipment and information processing equipment. In recent years, in the field of such electronic devices, miniaturization, weight reduction, and further increase in operating speed due to higher frequency have been progressing. There is an urgent need to realize a crystal oscillator that can oscillate.
水晶の単結晶から切り出された A Tカツ ト水晶片は温度変化に対し 良好な周波数温度特性を有し、 また、 周波数経時変化も少ない。 この A Tカツ 卜水晶片は X軸方向に長さ 、 Y ' 軸方向に厚み t、 Ζ ' 軸 方向に幅 wを備えた X軸方向に長い矩形状に加工され、 シリ ンダー状 などの小型化された水晶保持器に封止できるので、 上記のような良好 な特性を有することも相まって小型で高性能の水晶振動子を構成する 好適な水晶片である。 なお、 X轴、 Y軸および Z轴はそれぞれ水晶単 結晶の電気軸、 機械軸および光軸であり、 Y' 軸および Z' 軸は X軸 まわりに約 3 5° 回転したときの Y軸および Z軸である。 The AT-cut crystal blank cut out of a single crystal of quartz has good frequency-temperature characteristics with respect to temperature change, and has little change over time in frequency. This AT-cut crystal blank is processed into a long rectangular shape in the X-axis direction with a length in the X-axis direction, a thickness t in the Y'-axis direction, and a width w in the Ζ'-axis direction. Since it can be sealed in a miniaturized crystal holder such as the one described above, it is a suitable crystal piece that constitutes a small and high-performance crystal resonator in combination with the above-mentioned good characteristics. Note that X 轴, Y axis, and Z 電 気 are the electric, mechanical, and optical axes of the single crystal, respectively, and the Y 'axis and Z' axis are the Y axis and the Z axis when rotated about 35 ° around the X axis. The Z axis.
水晶振動子を用いた発振器を、 I C等と同様の実装方法で回路基板 表面に実装することの可能な表面実装デバイス (SMD) として提供 するためには、 近年の I C等の小型化に伴い、 水晶振動子の直径が略 2 mm程度以下で長さが 6 mm程度の保持器に格納する必要がある。 このような水晶振動子を構成するためにシリ ンダー状の水晶保持器に 格納可能で、 基本波周波数で発振する水晶片については、 第 2 1回 E Mシンポジウム (電気学会、 電子回路技術委員会の主催によって 1 9 9 2年 5月 2 2日に開催された。 予稿集 P 3 7〜4 2参照) に発表さ れたように実現されている。 しかし、 基本波周波数で発振する水晶振 動子でカバーできる周波数帯は、 概ね 1 7MH z〜 4 0MH zといつ た低く限られた周波数帯のみであって、 上記の電子機器等の分野で高 速化のために要求される 4 0MH zを越えるような高い周波数帯まで はカバーできない。  In order to provide an oscillator using a crystal oscillator as a surface mount device (SMD) that can be mounted on the surface of a circuit board in the same mounting method as an IC, etc. It is necessary to store the crystal unit in a cage with a diameter of about 2 mm or less and a length of about 6 mm. In order to construct such a crystal unit, a crystal element that can be stored in a cylinder-shaped crystal holder and oscillates at the fundamental frequency is described in the 21st EM Symposium (The Institute of Electrical Engineers of Japan, The meeting was held on May 22, 1992 by the organizer. See Proceedings P37-42). However, the frequency band that can be covered by a crystal oscillator that oscillates at the fundamental frequency is only a low and limited frequency band of approximately 17 MHz to 40 MHz, which is high in the fields of the above-mentioned electronic devices. It cannot cover the high frequency band exceeding 40 MHz required for speeding up.
ATカツ ト水晶片の厚み tは、 周波数に反比例するので、 基本周波 数が 4 0 MH zを越えると水晶片の厚みが 4 2 m以下となり、 加工 が困難となる。 従って、 高周波を発振する水晶振動子を実現するため には、 オーバトーン発振用の水晶片、 およびそれを用いた水晶振動子 を実現する必要がある。 水晶片を上記のような小型の水晶保持器に格 納できるようにするためには、 その長さ iを 5 mm程度以下、 幅 wを 1. 5 mm程度以下にする必要がある。 しかし、 このように小さい A Tカツ ト水晶片をオーバトーン発振させると、 主振動である厚みすベ り振動以外に、 主振動の近傍にスプリアス振動が励起され易い。 そし て、 このようなスプリアス振動と主振動が結合して、 5て〜 1 0 °Cの 少ない温度変化でも周波数のジャンプなどが発生する。 このため、 上 記のような小型の水晶片でも A T力ッ 卜水晶振動子の特徴である 3次 曲線の周波数温度特性を、 規定の温度範囲 (一 2 0〜十 8 0 °C程度) で得られる水晶片の形状、 特に辺比 (幅 w/厚さ t ) は見いだされて いない。 Since the thickness t of the AT-cut crystal blank is inversely proportional to the frequency, when the fundamental frequency exceeds 40 MHz, the thickness of the crystal blank becomes 42 m or less, making processing difficult. Therefore, in order to realize a crystal resonator that oscillates at a high frequency, it is necessary to realize a crystal chip for overtone oscillation and a crystal resonator using the same. In order to be able to store a crystal piece in a small crystal holder as described above, its length i must be about 5 mm or less and its width w must be about 1.5 mm or less. However, when such a small AT-cut crystal blank is caused to overtone oscillate, the main vibration, the thickness reduction, In addition to vibration, spurious vibration is likely to be excited near the main vibration. Then, the spurious vibration and the main vibration are coupled to generate a frequency jump even with a small temperature change of 5 to 10 ° C. For this reason, even with the small crystal piece described above, the frequency temperature characteristics of the cubic curve, which is a characteristic of the AT-cut crystal resonator, can be controlled within the specified temperature range (about 120 to 180 ° C). The shape of the resulting crystal blank, especially the side ratio (width w / thickness t), has not been found.
さらに、 小型の水晶片を使用した水晶振動体では、 主振動である厚 みすべり振動のエネルギー閉じ込めが不十分となり易いため、 等価直 列抵抗 R rが悪化するという問題がある。 上記のような小型の水晶片 および水晶振動体に対し、 特にオーバトーン発振するものでは、 その 寸法、 表面加工の表面粗さ、 電極の幅、 さらに電極の重量などによる 等価直列抵抗 R rへの影響は確認されていない。  Furthermore, in the case of a quartz vibrator using a small quartz piece, the energy confinement of the main vibration, that is, the thickness-shear vibration, tends to be insufficient, so that there is a problem that the equivalent series resistance Rr deteriorates. In the case of the above-mentioned small quartz pieces and quartz vibrators, especially those that generate overtone oscillation, the equivalent series resistance R r depends on the dimensions, surface roughness of the surface processing, electrode width, and electrode weight. No effect has been identified.
また、 表面の加工状態については、 表面粗さを向上させれば等価直 列抵抗 R rを低減できることは判っているが、 その反面、 等価直列抵 抗 R rの値がばらつく現象が見られる。 このため、 上記のような小型 の水晶片を用いる場合には、 表面の表面粗さを単に向上させたのでは 、 歩留りが低下し、 性能の良い水晶片を安価に提供できない。  Regarding the surface processing state, it is known that increasing the surface roughness can reduce the equivalent series resistance R r, but on the other hand, there is a phenomenon in which the value of the equivalent series resistance R r varies. For this reason, in the case of using a small crystal piece as described above, simply improving the surface roughness of the surface lowers the yield and cannot provide a high-performance crystal piece at low cost.
そこで、 本発明においては、 I C等と同様に S M Dと して採用でき る程度に小型化、 軽量化され、 さらに、 高周波を発振可能な水晶片、 水晶振動体、 および水晶振動子、 さらに、 水晶発振器を提供すること を目的としている。 このため、 長さ ^が 5 m m程度以下で、 幅 wが 1 . 5 m m程度以下でも、 良好な温度特性を持ってオーバトーン発振す る水晶片の形状を見いだし、 そのような形状の水晶片を提供すること を目的としている。 また、 このような小型の水晶片を用いた水晶振動 子であっても、 低い等価直列抵抗 R rを備え、 実用可能な水晶片、 水 晶振動体および水晶振動子を提供することも目的と している。 さらに 、 良好な温度特性と等価直列抵抗 R rを備えた水晶片、 水晶振動体お よび水晶振動子を歩留り良く提供できる製造方法を提供することも目 的と している。 発明の開示 上述したような小型で周波数の高い水晶振動子を実現するために、 本願出願人は幾つかの実験および測定を繰り返すことによって、 小さ なオーバトーン発振用の水晶片であって、 水晶振動子と して要求され る所定の温度範囲内でスプリアス振動との結合のないものを見いだす ことができた。 それは、 3次オーバトーン水晶振動子用の矩形状 AT カツ 卜水晶片であって、 X軸方向に長さ 、 Y' 軸方向に厚み t、 さ らに、 Z' 軸方向に幅 wを有し、 この幅 wおよび厚み tによって規定 される辺比 tの範囲が、 8. 4 8 ± 0. 0 5、 1 2. 1 8 ± 0. 0 5、 1 3. 2 2 ± 0. 0 7、 1 4. 7 8 ± 0. 0 7、 および 1 5. 5 7 ± 0. 0 7のいずれかであることを特徴とする矩形状 AT力ッ 卜 水晶片である。 Therefore, in the present invention, a crystal blank, a crystal vibrator, a crystal vibrator, a crystal vibrator, and a crystal vibrator that are small and light enough to be adopted as an SMD like an IC or the like, and are capable of oscillating high frequency. The purpose is to provide an oscillator. For this reason, even if the length ^ is about 5 mm or less and the width w is about 1.5 mm or less, we found a shape of a crystal piece that oscillates overtones with good temperature characteristics. It is intended to provide In addition, even a crystal resonator using such a small crystal blank has a low equivalent series resistance Rr, and can be used for practical crystal blanks and water. It is also an object to provide a crystal oscillator and a crystal oscillator. It is still another object of the present invention to provide a manufacturing method capable of providing a crystal blank, a crystal resonator, and a crystal resonator having good temperature characteristics and an equivalent series resistance Rr with high yield. DISCLOSURE OF THE INVENTION In order to realize a small-sized and high-frequency crystal resonator as described above, the present applicant has repeated several experiments and measurements to obtain a small crystal piece for overtone oscillation. It was possible to find a vibrator having no coupling with spurious vibrations within a predetermined temperature range required for the vibrator. It is a rectangular AT-cut crystal piece for a third-order overtone crystal unit, having a length in the X-axis direction, a thickness t in the Y'-axis direction, and a width w in the Z'-axis direction. The range of the side ratio t defined by the width w and the thickness t is 8.48 ± 0.05, 12.18 ± 0.05, 13.22 ± 0.07 , 14.78 ± 0.07, and 15.5.7 ± 0.07. A rectangular AT crystal blank.
本願出願人は、 さらに実験および測定を繰り返すことによって、 こ のような水晶片であって、 X軸方向に長さ を有し、 この長さ の範 囲が 4 0 0 0〜4 7 0 0 mであることを特徴とするもの、 また、 幅 wの範囲が 8 0 0〜 1 5 0 0 mであることを特徵とするものであれ ば、 良好な等価直列抵抗を備えた水晶振動子を形成可能であることを 見いだした。  By repeating experiments and measurements, the applicant of the present application has determined that such a crystal piece has a length in the X-axis direction, and the range of this length is 400 to 470,000. m, and if the width w is in the range of 800 to 150 m, a crystal resonator having good equivalent series resistance is used. Found that it can be formed.
さらに、 水晶片がエッチング加工された表面を有し、 その表面粗さ の最大高さ Rm,, の範囲が 0. 2〜0. 7 m、 好ましく は 0. 3〜 0. 6 mである場合に良好な等価直列抵抗を得られることも見いだ した。 従来の水晶片では、 表面を出来るかぎり滑らかにすることによ つて等価直列抵抗を低減するようにしていたが、 本願出願人は上記の ような表面粗さの範囲で、 良好な等価直列抵抗が得られると同時に、 極めて歩留りの良い水晶片を得られることを見いだした。 Furthermore, having a surface crystal piece is etched, the surface maximum height of roughness R m range ,, is 0. 2 to 0. 7 m, preferably 0.1 3 It was also found that a good equivalent series resistance can be obtained at 0.6 m. In the conventional crystal blank, the equivalent series resistance was reduced by making the surface as smooth as possible, but the applicant of the present application has found that a good equivalent series resistance can be obtained within the above range of surface roughness. At the same time, we found that we could obtain extremely high yield crystal blanks.
このような水晶片は、 水晶を ATカツ ト したゥヱハの表面をラップ 加工した後、 エッチング加工することにより製造できる。 この際、 ェ ツチング加工による片面の減厚量、 すなわち減厚量の半分 (以下、 ェ ツチング加工量と呼ぶ) を 0. 5 ~ 2. 5 mとすることが望ま しく 、 また、 エッチング加工直前の表面の表面粗さの最大高さ Rm„ の範 囲を 0. 3 ~ 0. 7 mとすることが望ま しい。 エッチング加工直前 の表面の仕上げを行うラップ加工において、 砥粒の平均粒径が 2. 5 ~ 3 mのアルミナ系の研磨材を用いることが有効であり、 また、 ェ ツチング加工において、 エッチング液として 1 0〜3 3重量パーセン トのフッ酸を用いることができる。 Such a crystal piece can be manufactured by lapping the surface of a quartz crystal AT-cut wafer and then etching it. At this time, it is desirable that the thickness of one side reduced by the etching process, that is, half of the thickness reduction (hereinafter referred to as the “etching amount”) is set to 0.5 to 2.5 m. desired to the range of the maximum height R m of the surface roughness of the surface of "the 0. 3 ~ 0. 7 m arbitrariness. in lapping performing finishing etching the immediately preceding surface, abrasive grains having an average grain It is effective to use an alumina-based abrasive having a diameter of 2.5 to 3 m, and in the etching process, a hydrofluoric acid of 10 to 33% by weight can be used as an etching solution.
また、 水晶片の厚み tを挟んで向かい合う面に形成する電極との関 係においては、 Z' 軸に沿った電極の幅 Wが矩形状 ATカッ ト -.く晶片 の幅 wより狭く、 電極の幅 W方向の端および矩形状 ATカツ ト水晶片 の幅 w方向の端の間隔が、 辺比 tの範囲が 8. 4 8 ± 0. 0 5の 水晶片については 7 5〜2 3 0 zm、 好ま しく は 7 5〜 2 0 0 mで あるときに良好な等価直列抵抗と温度特性とが得られることを見いだ した。 また、 辺比 w/ tの範囲が 1 2. 1 8 ± 0. 0 5、 1 3. 2 2 ± 0. 0 7、 1 4. 7 8 ± 0. 0 7、 および 1 5. 5 7 + 0. 0 7の いずれかの矩形状 ATカツ ト水晶片については、 Ί 5 ~ 3 4 0 mが 好ま しく、 7 5〜2 0 0 mがいつそう望ましい。 さらに、 電極の蒸 着等の製膜量との関係においては、 電極の有無による矩形状 AT力ッ ト水晶片の周波数の変化量に換算して 7 0 0 0〜 3 0 0 0 0 p p mで ある場合に良好な等価直列抵抗が得られることを見いだした。 In addition, in relation to the electrodes formed on the surfaces facing each other across the thickness t of the crystal piece, the width W of the electrode along the Z 'axis is smaller than the width w of the rectangular AT-cut-. The distance between the end in the width W direction and the end in the width w direction of the rectangular AT-cut crystal piece is 75 to 230 for a crystal piece with a side ratio t in the range of 8.48 ± 0.05. It has been found that good equivalent series resistance and temperature characteristics can be obtained when the distance is zm, preferably 75 to 200 m. Also, the range of the side ratio w / t is 12.18 ± 0.05, 13.22 ± 0.07, 14.78 ± 0.07, and 15.57+ For any of the rectangular AT-cut quartz pieces of 0.07, Ί5 to 340 m is preferable, and 750 to 200 m is more preferable. Furthermore, regarding the relationship with the film formation amount such as electrode deposition, the rectangular AT force depends on the presence or absence of the electrode. It has been found that a good equivalent series resistance can be obtained when the value is 700,000 to 300,000 ppm in terms of the change in the frequency of the crystal blank.
このような矩形状 A Tカツ 卜水晶片を用いて水晶振動子を構成すれ ば、 小型、 軽量で高周波を発振できる水晶振動子を提供することが可 能となる。 水晶片の支持機構と しては、 電極を半田または導電性接着 剤によってリ一ドへ接合し、 水晶片の X軸の方向の一端を支持する支 持機構を採用できる。 さらに、 上記のような範囲の水晶片は小型で安 定した高い周波数の発振が可能なので、 直径の範囲が 2 . 0 ± 0 . 2 m m、 長さの範囲が 6 . 0 ± 0 . 5 m mの保持器に格納できる。 水晶 保持器はモールド部材によってモールドしても良く、 また、 発振回路 を備えた集積回路装置と共にモールドすることによって基板の表面に 実装するのに好適な水晶発振器を実現できる。  If a crystal resonator is formed using such a rectangular AT-cut crystal piece, it is possible to provide a crystal resonator that is small, light, and capable of oscillating high frequencies. As a support mechanism for the crystal blank, a support mechanism in which the electrodes are joined to the lead with solder or a conductive adhesive to support one end in the X-axis direction of the crystal blank can be adopted. In addition, since the crystal piece in the above range is small and can oscillate at a stable high frequency, the diameter range is 2.0 ± 0.2 mm and the length range is 6.0 ± 0.5 mm. Can be stored in the cage. The crystal holder may be molded by a molding member, and by molding together with an integrated circuit device having an oscillation circuit, a crystal oscillator suitable for mounting on the surface of a substrate can be realized.
なお、 上記のような構成および各要素の範囲は、 以下に述べる発明 を実施するための最良の形態において詳しく開示してある。 しかし、 本願発明は、 請求の範囲に記載されている通りであり、 発明を実施す るための最良の形態に記載された以下の実験例等の水晶片、 水晶振動 体、 水晶振動子などに限定されるものではない。 図面の簡単な説明 図 1 は、 本発明の実施例において製造された水晶片の概要を示す斜 視図である。  The configuration and the range of each element as described above are disclosed in detail in the best mode for carrying out the invention described below. However, the invention of the present application is as described in the claims, and is applied to a crystal blank, a crystal resonator, a crystal resonator, etc. of the following experimental examples described in the best mode for carrying out the invention. It is not limited. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an outline of a crystal blank manufactured in an embodiment of the present invention.
図 2は、 本発明の実施例に係る水晶片、 水晶振動体および水晶振動 子を製造する工程を示すフローチヤ一 トである。  FIG. 2 is a flowchart showing steps of manufacturing a crystal blank, a crystal resonator, and a crystal resonator according to an embodiment of the present invention.
図 3は、 本発明の実施例に係る水晶振動体の構成を示す平面図であ る。 図 4は、 本発明の実施例に係る水晶振動子の概要を示す斜視図であ る。 FIG. 3 is a plan view showing the configuration of the crystal resonator according to the embodiment of the present invention. FIG. 4 is a perspective view showing an outline of the crystal resonator according to the embodiment of the present invention.
図 5は、 図 4に示す水晶振動子の内部における Y ' 軸方向から見た 構造図である。  FIG. 5 is a structural view of the inside of the crystal unit shown in FIG. 4 as viewed from the Y′-axis direction.
図 6は、 図 4に示す水晶振動子の内部における Z ' 軸方向から見た 構造図である。  FIG. 6 is a structural view of the inside of the crystal unit shown in FIG. 4 as viewed from the Z′-axis direction.
図 7は、 辺比 Eが 1 2 . 1 8近傍の水晶片を用いた水晶振動子の温 度特性をそれぞれ示すグラフである。  FIG. 7 is a graph showing temperature characteristics of a crystal resonator using a crystal piece having a side ratio E of about 12.18, respectively.
図 8は、 辺比 Eが 1 2 . 1 8近傍の水晶片を用いた水晶振動子のス プリアス振動との結合状態を纏めた図である。  FIG. 8 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of about 12.18 with spurious vibration.
図 9は、 辺比 Eが 8 . 4 8近傍の水晶片を用いた水晶振動子の温度 特性をそれぞれ示すグラフである。  FIG. 9 is a graph showing a temperature characteristic of a crystal unit using a crystal piece having a side ratio E of about 8.48.
図 1 0は、 辺比 Eが 8 . 4 8近傍の水晶片を用いた水晶振動子のス プリアス振動との結合状態を纏めた図である。  FIG. 10 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of about 8.48 with spurious vibration.
図 1 1は、 辺比 Eが 1 5 . 5 7近傍の水晶片を用いた水晶振動子の 温度特性をそれぞれ示すグラフである。  FIG. 11 is a graph showing a temperature characteristic of a crystal unit using a crystal piece having a side ratio E of about 15.5.7, respectively.
図 1 2は、 辺比 Eが 1 5 . 5 7近傍の水晶片を用いた水晶振動子の スプリァス振動との結合状態を纏めた図である。  FIG. 12 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of around 15.5.77 with spurious vibration.
図 1 3は、 辺比 Eが 1 3 . 2 2近傍の水晶片を用いた水晶振動子の スプリアス振動との結合状態を纏めた図である。  FIG. 13 is a diagram summarizing the coupling state of a crystal resonator using a crystal piece having a side ratio E of about 13.3.22 with spurious vibration.
図 1 4は、 辺比 Eが 1 4 . 7 8近傍の水晶片を用いた水晶振動子の スプリァス振動との結合状態を纏めた図である。  FIG. 14 is a diagram summarizing a coupling state of a crystal resonator using a crystal piece having a side ratio E of about 14.7.88 with spurious vibration.
図 1 5は、 上記に示した辺比の水晶片を用いた水晶振動子でカバー できる周波数範囲を示す図である。  FIG. 15 is a diagram showing a frequency range that can be covered by the crystal unit using the crystal piece having the above-described side ratio.
図 1 6は、 水晶片の長さ ^と、 等価直列抵抗 R rとの関係を示すグ ラフである。 図 1 7は、 水晶片の幅 wと、 等価直列抵抗 R rとの関係を示すグラ フである。 Fig. 16 is a graph showing the relationship between the length ^ of the crystal piece and the equivalent series resistance Rr. Figure 17 is a graph showing the relationship between the width w of the crystal blank and the equivalent series resistance Rr.
図 1 8は、 辺比 Eが 1 2 . 1 8の水晶片のエッチング後の表面の表 面粗さと、 等価直列抵抗 R rとの関係を示すグラフである。  FIG. 18 is a graph showing the relationship between the surface roughness of the etched surface of a quartz piece having a side ratio E of 12.18 and the equivalent series resistance Rr.
図 1 9は、 辺比 Eが 8 . 4 8の水晶片のエッチング後の表面の表面 粗さと、 等価直列抵抗 R rとの関係を示すグラフである。  FIG. 19 is a graph showing the relationship between the surface roughness of the surface of a crystal piece having a side ratio E of 8.48 after etching and the equivalent series resistance Rr.
図 2 0は、 辺比 Eが 1 5 . 5 7の水晶片のエツチング後の表面の表 面粗さと、 等価直列抵抗 R rとの関係を示すグラフである。  FIG. 20 is a graph showing the relationship between the surface roughness of the surface of a quartz piece having a side ratio E of 15.5.77 after etching and the equivalent series resistance Rr.
図 2 1 は、 ポリ ツシング後にエッチングした水晶片に係る等価直列 抵抗 R rの値のばらつきと、 ラップ後にエッチングした水晶片に係る 等価直列抵抗 R rの値のばらつきとを比較して示す図である。  Figure 21 shows a comparison between the variation in the value of the equivalent series resistance Rr of the crystal blank etched after polishing and the variation in the value of the equivalent series resistance Rr of the crystal blank etched after wrapping. is there.
図 2 2は、 エッチング加工量と、 水晶片の表面の表面粗さとの関係 を示すグラフである。  FIG. 22 is a graph showing the relationship between the amount of etching and the surface roughness of the surface of the crystal blank.
図 2 3は、 エッチング加工量と、 等価直列抵抗 R rとの関係を示す グラフである。  FIG. 23 is a graph showing the relationship between the amount of etching and the equivalent series resistance Rr.
図 2 4は、 辺比 Eが 1 2 . 1 8の水晶片であって、 間隔 Dを変えた 場合の水晶振動子の温度特性をそれぞれ示すグラフである。  FIG. 24 is a graph showing a temperature characteristic of a crystal unit having a side ratio E of 12.18 and a crystal resonator when the interval D is changed.
図 2 5は、 辺比 Eが 8 . 4 8の水晶片であって、 間隔 Dを変えた場 合の水晶振動子の温度特性をそれぞれ示すグラフである。  FIG. 25 is a graph showing the temperature characteristics of a quartz crystal having a side ratio E of 8.48 and a quartz resonator when the interval D is changed.
図 2 6は、 辺比 Eが 1 5 . 5 7の水晶片であって、 間隔 Dを変えた 場合の水晶振動子の温度特性をそれぞれ示すグラフである。  FIG. 26 is a graph showing the temperature characteristics of a quartz crystal element having a side ratio E of 15.5.57 and varying the interval D, respectively.
図 2 7は、 電極と水晶片の端との間隔 Dと、 等価直列抵抗 R rとの 関係を示すグラフである。  FIG. 27 is a graph showing the relationship between the distance D between the electrode and the end of the crystal piece and the equivalent series resistance Rr.
図 2 8は、 電極を蒸着する際の周波数の変化量と、 等価直列抵抗 R rとの関係を示すグラフである。  FIG. 28 is a graph showing the relationship between the amount of change in frequency during electrode deposition and the equivalent series resistance Rr.
図 2 9は、 水晶振動子を樹脂によってモールドした水晶振動子の概 要を一部欠いて示す説明図である。 Figure 29 shows an outline of a crystal unit in which the crystal unit is molded with resin. FIG.
図 3 0は、 水晶振動子と発振用回路を具備した I Cとを樹脂によつ てモールドした水晶発振器の断面図である。 発明を実施するための最良の形態 水晶振動子の製造工程 図 1 に、 本発明に係る水晶片 1の概要を示してある。 本例の水晶片 1 は、 水晶の単結晶から切り出され、 矩形状に加工された矩形状 A T カツ ト水晶片であり、 図示した座標系 X Y ' Z ' 軸を備えており、 X 軸に沿って長さ ^、 Y ' 軸に沿って厚み t、 Z ' 軸に沿って幅 wを取 つてある。  FIG. 30 is a cross-sectional view of a crystal oscillator in which a crystal unit and an IC having an oscillation circuit are molded with resin. BEST MODE FOR CARRYING OUT THE INVENTION Quartz Crystal Resonator Manufacturing Process FIG. 1 shows an outline of a crystal blank 1 according to the present invention. The crystal blank 1 of this example is a rectangular AT cut crystal blank cut out of a single crystal of crystal and processed into a rectangular shape, has the illustrated coordinate system XY 'Z' axis, and has the X-axis. It has a length ^, a thickness t along the Y 'axis, and a width w along the Z' axis.
図 2に、 本発明に係る水晶片、 水晶振動体および水晶振動子を製造 する工程を示してある。 まず、 工程 1 1で、 水晶の単結晶を所定の角 度 (A Tカツ ト) でウェハ状に切断する。 次に、 工程 1 2においてゥ ェハの表面を粒度が # 1 5 0 0程度の炭化珪素質研磨材を用いて粗ラ ップ加工を行う。 さらに、 工程 1 3において、 砥粒の平均粒径が 2 . 5〜 3 mのアルミナ系研磨材を用いて仕上げのラップ加工を行う。 この仕上げラップ加工によってウェハの表面を表面粗さの最大高さ R m . x が 0 . 7 m以下となるようにする。 本明細書における表面粗さ の最大高さ
Figure imgf000011_0001
は、 ランクテーラ一ホブソン社製の表面粗さ測定機 「タ リサーフ 6」 を用いて測定された値である。
FIG. 2 shows the steps of manufacturing the crystal blank, the crystal resonator, and the crystal resonator according to the present invention. First, in step 11, a single crystal of quartz is cut into a wafer at a predetermined angle (AT cut). Next, in step 12, the surface of the wafer is roughly lapped by using a silicon carbide abrasive having a grain size of about # 150. Further, in step 13, a final lapping process is performed using an alumina-based abrasive having an average grain size of 2.5 to 3 m. Maximum surface of wafer surface roughness by the lapping processing height R m. X is made to be 0. 7 m or less. Maximum height of surface roughness in this specification
Figure imgf000011_0001
Is a value measured using a surface roughness measuring instrument “Tarisurf 6” manufactured by Rankera-Hobson.
なお、 本例の水晶片 1の表面を仕上げるにあたり、 従来のようなポ リ ツシング剤を用いたポリ ツシング加工は行っていない。 また、 必要 に応じて工程 1 2 と 1 3との間で粒度が # 3 0 0 0程度の炭化珪素質 研磨材を用いた中間ラップ加工を行っても良い。 In finishing the surface of the crystal blank 1 of the present example, polishing using a polishing agent as in the past was not performed. Also, if necessary, a silicon carbide material having a particle size of about # 300 between steps 12 and 13 can be used. Intermediate lap processing using an abrasive may be performed.
次に、 工程 1 4でラップ加工された複数のゥヱハを相互に貼付け、 これらのウェハを所定の辺比、 あるいは長さとなるようにカツ 卜 して 所定の寸法の水晶片を製造する。 まず、 工程 1 5でゥ ハを X軸に垂 直な面で切る X切断を行う。 そして、 工程 1 6および 1 7において、 上述した工程 1 2および 1 3 と同じ条件で切断した面のラップ加工を 行う。 X軸に垂直な面のラップ加工が終わると、 工程 1 8においてゥ ェハを Z軸に垂直な面で切る Z切断を行う。 さらに工程 1 9および 2 0において切断した面のラップ加工を上述した工程と同様に行う。 単結晶から切断された状態のゥヱハは一辺は数十 m m程度なのに対 し、 このウェハを所定の寸法の水晶片となるように切断した端面は非 常に小さい。 このため、 切断された複数のウェハを蜜蠟等によって接 着したのち切断し、 その端面のラップ加工を行うことによって、 面積 の小さな水晶片の切断面に対しても所定の表面粗さが得られるように している。  Next, a plurality of wafers wrapped in step 14 are attached to each other, and these wafers are cut so as to have a predetermined side ratio or a predetermined length to produce a crystal piece having a predetermined size. First, in step 15, X-cutting is performed by cutting the wafer at a plane perpendicular to the X-axis. Then, in steps 16 and 17, lapping of the cut surface is performed under the same conditions as in steps 12 and 13 described above. When the lapping process on the plane perpendicular to the X axis is completed, in step 18, the wafer is cut along a plane perpendicular to the Z axis. Further, lapping of the cut surface in steps 19 and 20 is performed in the same manner as in the above-described step. While the edge of the wafer cut from the single crystal is about several tens of millimeters on a side, the edge of the wafer cut into a crystal piece of a predetermined size is very small. For this reason, a predetermined surface roughness can be obtained even for the cut surface of a small crystal piece by bonding the cut wafers with a honey and cutting them and then lapping the end surfaces. I am trying to be.
端面のラップ加工を終えると、 工程 2 1でそれぞれの水晶片を剝離 し、 工程 2 2で洗浄する。 水晶片の長さ および幅 wは、 測定精度の レンジが 1 mのダイヤルゲージを用いて測定され、 この測定に用い られるダイヤルゲージは測定の度に標準プロックを用いて目盛りを較 正した後に使用される。 また、 厚み tは、 水晶片を素板発振器を用い て電極を付けずに発振させ、 その周波数によって測定する。 すなわち 、 厚み t は、 以下の式によって測定された周波数から求められる。  When the lapping of the end face is completed, each crystal piece is separated in step 21 and washed in step 22. The length and width w of the crystal piece are measured using a dial gauge with a measurement accuracy range of 1 m, and the dial gauge used for this measurement is used after calibrating the scale using a standard block each time. Is done. The thickness t is measured by oscillating a crystal blank using a plate oscillator without attaching electrodes, and measuring the frequency. That is, the thickness t is obtained from the frequency measured by the following equation.
t = 3 X C / f · · · ( 1 )  t = 3 X C / f (1)
ここで、 Cは基本波の周波数定数であり、 1 6 7 0 x m · M H zであ る。 また、 f は水晶片の 3次オーバトーンの発振周波数 (M H z ) で ある。 なお、 発振周波数は 1 k H zの桁まで測定し、 厚み t ( τη ) を求めている。 Here, C is a frequency constant of the fundamental wave, which is 1670 × m · MHz. F is the oscillation frequency (MHz) of the third overtone of the crystal blank. The oscillation frequency was measured to the order of 1 kHz, and the thickness t (τη) Seeking.
本例では、 上記のような工程によって直径 2 m m程度で長さが 6 m m程度のシリ ンダー伏の保持器に格納可能な水晶片を形成するように している。 このため、 水晶片を支持するベースの寸法も考慮し水晶片 の長さ ίの上限を 4 7 0 0 m、 また、 保持器の内径を考慮し幅 wの 上限を 1 5 0 0 / mとしている。  In this example, a crystal piece that can be stored in a cylinder-shaped holder having a diameter of about 2 mm and a length of about 6 mm is formed by the above-described process. For this reason, taking the dimensions of the base supporting the crystal blank into account, the upper limit of the length 水晶 of the crystal blank is set to 470 m, and the upper limit of the width w is taken to be 150 / m in consideration of the inner diameter of the cage. I have.
次に、 工程 2 3においてそれぞれの水晶片のエッチングを行う。 こ の際、 本例では 1 0 ~ 3 0重量パーセン トのフッ酸をェッチング液と して用いている。 エッチングを行うことによってラップ加工による歪 みおよび加工変質層を除去できる。  Next, in step 23, each crystal piece is etched. At this time, in this example, 10 to 30% by weight of hydrofluoric acid is used as the etching solution. By performing the etching, the distortion due to the lapping process and the affected layer can be removed.
さらに、 工程 2 4において厚み tを挟んだ両面、 すなわち、 X Z ' 面に電極材を蒸着、 またはスパッタ リ ング等によって製膜する。 本例 では、 クロム、 ニッケル、 銀、 金あるいはこれらを積層させることに よって電極を形成する。 図 3に、 水晶片 1 に電極が蒸着された水晶振 動体 5の概要を示してある。 本例の水晶振動体では、 水晶片 1の表面 の略中央に水晶片 の長手方向に沿って延びた略長方形で幅 Wの励振 電極 2を形成してある。 さらに、 接続電極 3が、 励振電極 2から水晶 片 1の長手方向の一方の角 1 aに向かって形成されており、 これと隣 接する角 1 bには、 水晶片 1 の反対側の面に形成された励振電極と繫 がった接続電極 3が形成されている。  Further, in step 24, an electrode material is formed on both surfaces sandwiching the thickness t, that is, on the XZ ′ surface by vapor deposition or sputtering. In this example, the electrode is formed by chromium, nickel, silver, gold, or a laminate of these. FIG. 3 shows an outline of a crystal resonator 5 in which electrodes are deposited on a crystal blank 1. In the quartz vibrator of this example, a substantially rectangular excitation electrode 2 having a width W is formed substantially in the center of the surface of the quartz piece 1 and extends along the longitudinal direction of the quartz piece. Further, the connection electrode 3 is formed from the excitation electrode 2 toward one corner 1 a in the longitudinal direction of the crystal blank 1, and an adjacent corner 1 b is formed on the surface opposite to the crystal blank 1. The connection electrode 3 is formed so as to correspond to the formed excitation electrode.
水晶片 1の表面に製膜された電極の長手方向に延びた端 2 aと、 水 晶片 1の長手方向に延びた端 1 cとの間隔 Dが所定の値となるように 電極の製膜時に制御されており、 また、 電極の製膜量も水晶片 1の発 振周波数をモニターすることによって制御されている。 これについて も以下でさらに詳しく説明する。  The electrode is formed so that the distance D between the longitudinal end 2a of the electrode formed on the surface of the crystal blank 1 and the longitudinal end 1c of the crystal blank 1 becomes a predetermined value. At the same time, and the amount of film formation of the electrode is also controlled by monitoring the oscillation frequency of the crystal blank 1. This is also described in more detail below.
次に、 工程 2 5で水晶振動体を支持する機構と、 電極へ電流を供給 する機能とを兼ねたリ一ドを接铳電極に取り付ける。 リ一ドは半田付 けによつて電極に接続しても良く、 銀フイ ラ一入りのエポキシ、 ポリ ィ ミ ド系などの導電性接着剤を用いて接続しても良い。 Next, in step 25, a mechanism to support the quartz vibrator and supply current to the electrodes Attach a lead that also has the function of The lead may be connected to the electrode by soldering, or may be connected using a conductive adhesive such as epoxy or polyimide containing silver filler.
工程 2 6で、 電極上に微量の銀を堆積したり、 あるいは電極の表面 In step 26, deposit a small amount of silver on the electrode or
5 を除去することによつて水晶振動体の発振周波数の最終的な調整を行 う。 次に、 工程 2 7で真空チヱンバー内で、 吸着ガスが放出するよう に水晶振動体を加熱しながらシリ ンダー状の保持器に挿入し、 真空封 止することによって水晶振動子を作成する。 真空封止する代わりに、 不活性気体を保持器内に封止してももちろん良い。 The final adjustment of the oscillation frequency of the crystal resonator is made by removing step 5. Next, in step 27, the quartz oscillator is inserted into a cylindrical holder while heating the quartz oscillator so that the adsorbed gas is released in a vacuum chamber, and sealed by vacuum to create a quartz oscillator. Instead of vacuum sealing, an inert gas may of course be sealed in the holder.
1 0 図 4に水晶振動子の概要を示し、 図 5および図 6に水晶振動子の断 面を示してある。 本例の水晶振動子 1 0は、 シリ ンダー状の保持器 9 を備えており、 その直径は 2 . 0 ± 0 . 2 m m、 長さは 6 . 0 ± 0 . 5 m mとなっている。 この保持器 9の内部に水晶振動体 5が封止され ており、 接続電極 3の各々にリー ド 4が接続されている。 リード 4は i s 、 ベース 6を介して保持器 9の外側に導かれており、 リー ド 4を介し て水晶振動体 5に電力を供給し発振できるようになっている。  10 Figure 4 shows the outline of the crystal unit, and Figures 5 and 6 show the cross sections of the crystal unit. The crystal unit 10 of the present example includes a cylindrical holder 9 having a diameter of 2.0 ± 0.2 mm and a length of 6.0 ± 0.5 mm. A quartz vibrator 5 is sealed inside the cage 9, and a lead 4 is connected to each of the connection electrodes 3. The lead 4 is guided to the outside of the cage 9 via the base ls and i s, so that power can be supplied to the crystal vibrating body 5 via the lead 4 to oscillate.
このようにして、 本発明に係る 3次オーバトーン水晶振動子は組み 立てられ、 工程 2 8で最終的に周波数、 振動時の抵抗値である等価直 列抵抗 R r、 さらに、 温度による発振周波数および等価直列抵抗の変 0 化である温度特性などの検査を行う。 温度特性  In this way, the third-order overtone crystal resonator according to the present invention is assembled, and finally, in step 28, the frequency, the equivalent series resistance Rr, which is the resistance value during vibration, and the oscillation frequency due to temperature Inspection of temperature characteristics, which is a change in equivalent series resistance, is performed. Temperature characteristics
A Tカツ ト水晶片には多くの振動モー ドがあり、 矩形状の A T力ッ ト水晶片の厚みすベりモー ドが主振動である。 従って、 他のモー ド、 例えば面すべり、 屈曲モー ドによる振動はスプリアス振動となるので 、 動作温度範囲内でこれらの振動を回避できる辺比を求めることが重 要である。 各モー ドの周波数は計算によって予測することができる。 しかし、 水晶片の形伏や、 寸法によって、 計算では予見できないスプ リアス振動との結合が存在する。 特に、 上記にて製造したよ ': な小型 の矩形状 A Tカッ ト水晶片について、 3次オーバトーン発振させる水 晶片として実用可能な辺比 E (幅 w/厚み t ) は見いだされていない 。 そこで、 本願出願人は、 上記の製造方法にて様々な寸法の水晶片を 作成し実験を繰り返すことによって、 動作温度範囲内でスプリアス振 動との結合のない辺比 Eを見いだした。 There are many vibration modes for AT-cut crystal blanks, and the thickness vibration mode of the rectangular AT-cut crystal blank is the main vibration. Therefore, vibrations in other modes, such as sliding and bending modes, are spurious vibrations. It is important to find a side ratio that can avoid these vibrations within the operating temperature range. The frequency of each mode can be predicted by calculation. However, due to the shape and dimensions of the crystal blank, there are couplings with spurious vibrations that cannot be predicted by calculation. In particular, for a small rectangular AT-cut crystal piece manufactured as described above, a side ratio E (width w / thickness t) that can be practically used as a water crystal piece for tertiary overtone oscillation has not been found. Therefore, the applicant of the present application has made a crystal piece of various dimensions by the above-described manufacturing method and repeated the experiment to find a side ratio E without coupling with spurious vibration within the operating temperature range.
(実験例 1 ) (Experimental example 1)
図 7に、 辺比 Eを 1 2 . 1 8近傍と して周波数 f が 3次オーバトー ンの 5 5 . 0 M H zで発振するように上記の製造方法で作成した水晶 振動子の温度特性を示してある。 水晶片の長さ £は 4 2 0 0 ; u mであ り、 幅 wは 1 1 0 0 m近傍で、 周波数 f となるように以下の式の関 係に従って調整してある。  Fig. 7 shows the temperature characteristics of the crystal resonator manufactured by the above manufacturing method so that the side ratio E is around 12.1.8 and the frequency f oscillates at 55.0 MHz, which is the third overtone. Is shown. The length £ of the crystal blank is 4200; um, and the width w is around 1100m, and is adjusted according to the relationship of the following formula so that the frequency becomes f.
w = E X ( 3 X C / f ) · · · ( 2 ) 図 7 ( b ) は辺比 Eが 1 2 . 1 8の水晶片を用いた水晶振動子の温度 特性を示してある。 水晶振動子の周波数の温度特性は A Tカツ ト特有 の安定した 3次曲線を描き、 一 4 5 °Cから + 9 5 °Cの範囲で他の振動 モー ド、 すなわちスプリアス振動との結合は見られない。 また、 等価 直列抵抗 R r も略 4 0 Ωと低い値に安定しており、 これからもスプリ ァス振動との結合は見られない。 なお、 等価直列抵抗 R r、 および以 下の式に示す 2 5 °Cを基準とする周波数変化量 (以下において周波数 偏差と呼ぶ) の温度特性はサンダース社のシステム 2 1 0 0測定器を 用いて測定している。 以下の測定においても同様である。 周波数偏差 = ( f Τ - f 25 ) / f 25 · · · ( 3 ) ここで、 f T はある温度における周波数、 f 25は 2 5 °Cにおける周波 数を示す。 w = EX (3 XC / f) · · · (2) Figure 7 (b) shows the temperature characteristics of a crystal unit using a crystal element with a side ratio E of 12.18. The temperature characteristic of the frequency of the crystal unit draws a stable cubic curve peculiar to the AT cut, and the coupling with other vibration modes, that is, spurious vibrations, is seen in the range of 45 ° C to +95 ° C. I can't. In addition, the equivalent series resistance R r is stable at a low value of about 40 Ω, and no coupling with spurious oscillation is seen from now on. The temperature characteristics of the equivalent series resistance R r and the frequency variation (hereinafter referred to as frequency deviation) based on 25 ° C shown in the following equation were measured using a Sanders System 2100 measuring instrument. Measuring. The same applies to the following measurements. Frequency deviation = (f Τ - f 25) / f 25 · · · (3) , where the frequency at the temperature is f T is, f 25 denotes a frequency at 2 5 ° C.
図 7 (a ) に辺比 Eが 1 2. 1 3の水晶片を用いた水晶振動子の温 度特性を示し、 図 7 ( c ) に辺比が 1 2. 2 3の水晶片を用いた水晶 振動子の温度特性を示す。 これらは上記と同様に製造され、 同じ方法 によって測定された。 辺比が 1 2. 1 3の水晶振動子の温度特性を見 ると、 一 2 5 °C近傍にスプリァス振動との結合が見られ、 辺比が 1 2 . 2 3の水晶振動子では、 9 5 °C近傍にスプリアス振動との結合が見 られる。 そして、 これらの辺比の範囲内では、 水晶振動子と して要求 される動作温度範囲 (— 2 0 ~+ 8 0 °C) ではスプリアス振動との結 合は見られず、 安定した発振を得られることが判る。  Fig. 7 (a) shows the temperature characteristics of a crystal unit using a crystal piece with a side ratio E of 12.13, and Fig. 7 (c) shows the use of a crystal piece with a side ratio of 12.23. It shows the temperature characteristics of a quartz crystal resonator. These were manufactured as described above and measured by the same method. Looking at the temperature characteristics of the crystal unit with a side ratio of 12.13, coupling with spurious vibration is seen at around 125 ° C. In the case of the crystal unit with a side ratio of 12.23, Coupling with spurious vibration is seen around 95 ° C. In the range of these side ratios, there is no coupling with spurious vibration in the operating temperature range (—20 to + 80 ° C) required for the crystal oscillator, and stable oscillation is achieved. It can be seen that it can be obtained.
図 8に、 本願出願人がこのような方法により、 辺比が 1 2. 1 8近 傍の水晶片を用いた水晶振動子の温度特性を測定し、 スプリァス振動 との結合が現れる様子を纏めてある。 図中、 スプリアス振動との結合 が見られる範囲は実線で示してある。 本図で判るように、 本願出願人 の実験によって、 水晶振動子の動作温度範囲である一 2 0 °C~+ 8 0 °Cの範囲で、 スプリアス振動との結合のない領域を見いだすことがで きた。 その範囲は、 本図に一点鎖線で示してあるように、 辺比 Eが 1 2. 1 8 ± 0. 0 5の範囲である。  Fig. 8 summarizes how the applicant measured the temperature characteristics of a crystal unit using a crystal piece with a side ratio of around 12.18 by such a method, and the coupling with spurious vibrations appeared. It is. In the figure, the range where coupling with spurious vibration is seen is indicated by the solid line. As can be seen from this figure, the applicant's experiments have found that, within the operating temperature range of the crystal unit, which is within the range of 120 ° C to + 80 ° C, a region that is free from coupling with spurious vibrations can be found. did it. As shown by the dashed line in this figure, the range is the range where the side ratio E is 12.18 ± 0.05.
(実験例 2 ) (Experimental example 2)
図 9に、 辺比 Eを 8. 4 8近傍と して周波数 f が 3次オーバトーン の 4 1. 6 6 7 MH zで発振するように上記の製造方法で作成した水 晶振動子の温度特性を示してある。 本例の水晶片の長さ ίは 4 2 0 0 mであり、 幅 wは 1 0 2 0 m近傍で、 上記の例と同様に所定の周 波数を得られるように調整してある。 図 9 (b) は辺比 Eが 8. 4 8 の水晶片を用いた水晶振動子の温度特性を示してあり、 周波数偏差お よび等価直列抵抗 R rの値からも一 4 5°Cから + 9 5 °Cの範囲で他の 振動モー ド、 すなわちスプリァス振動との結合は見られない。 等価直 列抵抗 R rも略 5 0 Ω以下と低い値に安定している。 Figure 9 shows the temperature of the crystal oscillator produced by the above manufacturing method so that the side ratio E is around 8.48 and the frequency f oscillates at the third overtone of 4.1.667 MHz. The characteristics are shown. The length ί of the quartz piece in this example is 420 m, and the width w is around 120 m, and the predetermined circumference is the same as in the above example. Adjusted to get the wave number. Figure 9 (b) shows the temperature characteristics of a crystal unit using a crystal element with a side ratio E of 8.48. No coupling with other vibration modes, ie spurious vibrations, is observed at +95 ° C. The equivalent series resistance R r is also stable at a low value of approximately 50 Ω or less.
図 9 (a) に辺比 Eが 8. 4 3の水晶片を用いた水晶振動子の温度 特性を示し、 図 9 (c) に辺比が 8. 5 3の水晶片を用いた水晶振動 子の温度特性を示す。 これらは上記と同様に製造され、 同じ方法によ つて測定されたものである。 辺比が 8. 4 3の水晶振動子の温度特性 を見ると、 ― 2 5 °C近傍にスプリァス振動との結合が見られ、 辺比が 8. 5 3の水晶振動子では、 8 0 °Cを越えたあたりでスプリアス振動 との結合が見られる。 そして、 これらの辺比の範囲内では、 水晶振動 子として要求される動作温度範囲 (一 2 0〜十 8 0°C) でスプリアス 振動との桔合は見られず、 安定した発振を得られることが判る。 図 1 0に、 本願出願人がこのような方法により、 辺比が 8. 4 3近 傍の水晶片を用いた水晶振動子の温度特性を測定し、 スプリアス振動 との結合 (図中に実線で示す) が現れる様子を纏めてある。 本図で判 るように、 本願出願人の実験によって、 水晶振動子の動作温度範囲で ある一 2 0T;〜 + 8 0ての範囲で、 スプリァス振動との結合のない領 域を見いだすことができた。 その範囲は、 本図に一点鎖線で示してあ るように、 辺比 Eが 8. 4 8 ± 0. 0 5の範囲である。  Figure 9 (a) shows the temperature characteristics of a crystal unit using a crystal piece with a side ratio E of 8.43, and Fig. 9 (c) shows the crystal oscillation using a crystal piece with a side ratio of 8.53. 4 shows the temperature characteristics of a child. These were manufactured as described above and measured by the same method. Looking at the temperature characteristics of the crystal unit with a side ratio of 8.43, coupling with spurious vibration is seen near -25 ° C. In the case of the crystal unit with a side ratio of 8.53, 80 ° C Coupling with spurious vibration is observed around C. In the range of these side ratios, there is no coupling with spurious vibration in the operating temperature range (120 to 180 ° C) required for a crystal oscillator, and stable oscillation can be obtained. You can see that. Figure 10 shows that the applicant measured the temperature characteristics of a crystal unit using a crystal piece with a side ratio of about 8.43 by such a method, and coupled it to spurious vibrations (solid line in the figure). ) Are summarized. As can be seen from the figure, the applicant's experiments have found that, within the operating temperature range of the crystal unit, that is, 20 T; did it. As shown by the dashed line in this figure, the range is such that the side ratio E is 8.48 ± 0.05.
(実験例 3 ) (Experimental example 3)
図 1 1に、 辺比 Eを 1 5. 5 7近傍として周波数 f が 3次オーバト ーンの 7 1. 7 3 0 MH zで発振するように上記の製造方法で作成し た水晶振動子の温度特性を示してある。 水晶片の長さ ίは 4 2 0 0 mであり、 幅 wは 1 0 8 0 m近傍で、 上記の例と同様に規定の周波 数が得られるように調整してある。 図 1 1 (b ) は辺比 Eが 1 5. 5 7の水晶片を用いた水晶振動子の温度特性を示してあり、 周波数偏差 および等価直列抵抗 R rの値からも一 4 5 °Cから + 9 5 °Cの範囲で他 の振動モード、 すなわちスプリアス振動との結合は見られない。 等価 直列抵抗 R r も略 4 0 Ω程度と低い値に安定している。 Fig. 11 shows that the crystal ratio of the crystal unit manufactured by the above manufacturing method was set so that the frequency f oscillated at 71.730 MHz, which is the third overtone, with the side ratio E near 15.57 Temperature characteristics are shown. The length of the crystal piece ί is 4 2 0 0 m, and the width w is in the vicinity of 1080 m, and is adjusted so as to obtain the specified frequency as in the above example. Fig. 11 (b) shows the temperature characteristics of a crystal unit using a crystal element with a side ratio E of 1.5.77. No coupling with other vibration modes, ie spurious vibrations, is observed in the range from to +95 ° C. The equivalent series resistance R r is also stable at a low value of about 40 Ω.
図 1 1 ( a) に辺比 Eが 1 5. 5 0の水晶片を用いた水晶振動子の 温度特性を示し、 図 1 1 ( c ) に辺比が 1 5. 6 4の水晶片を用いた 水晶振動子の温度特性を示す。 これらは上記と同様に製造され、 同じ 方法によって測定されたものである。 辺比が 1 5. 5 0の水晶振動子 の温度特性を見ると、 一 3 0て近傍にスプリァス振動との結合が見ら れ、 辺比が 1 5. 6 4の水晶振動子では、 9 0 °Cを越えたあたりでス プリアス振動との結合が見られる。 そして、 これらの辺比の範囲内で は、 水晶振動子として要求される動作温度範囲 (一 2 0 ~ + 8 0 °C) ではスプリアス振動との結合は見られず、 安定した発振を得られるこ とが判る。  Figure 11 (a) shows the temperature characteristics of a crystal unit using a crystal piece with a side ratio E of 15.50.Figure 11 (c) shows a crystal piece with a side ratio of 1.5.64. The temperature characteristics of the crystal unit used are shown. These were produced as described above and measured by the same method. Looking at the temperature characteristics of a crystal unit with a side ratio of 15.50, coupling with spurious vibration is found at around 130, and in a crystal unit with a side ratio of 15.5.64, 9 Coupling with spurious vibration is observed around 0 ° C. In the range of these side ratios, there is no coupling with spurious vibration in the operating temperature range required for the crystal unit (120 to + 80 ° C), and stable oscillation can be obtained. You can see this.
図 1 2に、 本願出願人がこのような方法により、 辺比が 1 5. 5 7 近傍の水晶片を用いた水晶振動子の温度特性を測定し、 スプリアス振 動との結合 (図中に実線で示す) が現れる様子を纏めてある。 本図で 判るように、 本願出願人の実験によって、 水晶振動子の動作温度範囲 である一 2 0 °C~ + 8 0 °Cの範囲で、 スプリァス振動との結合のない 領域を見いだすことができた。 その範囲は、 本図に一点鎖線で示して あるように、 辺比 Eが 1 5. 5 7 ± 0. 0 7の範囲である。  Figure 12 shows that the applicant measured the temperature characteristics of a crystal unit using a crystal piece with a side ratio of around 1.5.77 by such a method, and coupled it to spurious vibrations (see the figure). (Indicated by a solid line). As can be seen from this figure, the applicant's experiments have found a region without coupling with spurious vibrations within the operating temperature range of the crystal unit, i.e., 20 ° C to + 80 ° C. did it. The range is, as shown by the chain line in this figure, the side ratio E is in the range of 15.57 ± 0.007.
(実験例 4 ) (Experimental example 4)
図 1 3に、 辺比 Eが 1 3. 2 2近傍で、 長さ が 4 2 0 0 m、 幅 wが 1 1 0 0 m近傍で周波数 f が 3次オーバトーンの 6 0. 0 MH zで発振するように調整した水晶振動子を上記の方法で製造し、 その 温度特性を上記の例と同様に測定した結果を纏めてある。 本図で判る ように、 この辺比 Eにおいても、 本願出願人の実験によって、 水晶振 動子の動作温度範囲である一 2 0 °C~+ 8 0 °Cの範囲で、 スプリアス 振動との結合のない領域を見いだすことができた。 その範囲は、 本図 に一点鎖線で示してあるように、 辺比 Eが 1 3. 2 2 ± 0. 0 7の範 囲である。 Figure 13 shows that the side ratio E is around 13.22, the length is 420 m, and the width is A crystal resonator adjusted so that w oscillates at 60.0 MHz with a third-order overtone when w is around 1100 m is manufactured by the above method, and its temperature characteristics are the same as in the above example The results of the measurements are summarized. As can be seen from this figure, even at this side ratio E, coupling with spurious vibrations was performed within the operating temperature range of the crystal oscillator of 120 ° C. to + 80 ° C. An area without any gaps was found. As shown by the dashed line in this figure, the range is in the range of the side ratio E of 13.2 ± 0.007.
(実験例 5 ) (Experimental example 5)
図 1 4に、 辺比 Eが 1 4. 7 8近傍で、 長さ が 4 2 0 0 m、 幅 wが 1 1 1 0 /m近傍で周波数 f が 3次オーバトーンの 6 6. 6 6 7 MH zで発振するように調整した水晶振動子を上記の方法で製造し、 その温度特性を上記の例と同様に測定した結果を纏めてある。 本図で 判るように、 この辺比 Eにおいても、 本願出願人の実験によって、 水 晶振動子の動作温度範囲である一 2 0 °C〜 + 8 0ての範囲で、 スプリ ァス振動との結合のない領域を見いだすことができた。 その範囲は、 本図に一点鎖線で示してあるように、 辺比 Eが 1 4. 7 8 ± 0. 0 7 の範囲である。 以上のように、 本願出願人の実験によって、 上記のような製造方法 により 3次オーバトーン用の水晶片を小型化した場合であっても、 ス プリァス振動との結合のない幾つかの辺比 E、 およびその範囲を見い 出すことができた。  Figure 14 shows that the edge ratio E is around 14.78, the length is around 4200 m, the width w is around 1110 / m, and the frequency f is 36.6. A quartz oscillator adjusted to oscillate at 7 MHz is manufactured by the above method, and the results of measuring the temperature characteristics in the same manner as in the above example are summarized. As can be seen from this figure, even at this side ratio E, the experiments performed by the applicant of the present application have shown that, with the operating temperature range of the crystal oscillator, the range of 120 ° C. to + 80 ° C. An unbonded area could be found. As shown by the dashed line in this figure, the range is the range where the side ratio E is 14.78 ± 0.07. As described above, according to the experiments performed by the present applicant, even when the crystal piece for the third overtone is reduced in size by the above-described manufacturing method, some side ratios that are not coupled to spurious vibrations are obtained. E, and its range.
図 1 5に、 これらの辺比 Eを備えた水晶片であって、 本例において は直径 2 mmのシリ ンダー状保持器に格納可能な範囲の水晶片を用い た水晶振動子によってカバーできる周波数範囲を示してある。 本図に て判るように、 本願にて動作温度範囲内でスプリアス振動との結合が 見られないことを確認した 5つの辺比 ( 8. 4 8、 1 2. 1 8、 1 3 . 2 2 , 1 4. 7 8 1 5. 5 7 ) を備えた水晶片であって、 幅 wが 5 8 0 0〜 1 5 0 0 mのものを用いれば、 略 3 0〜9 0 MH zを越え た、 高周波を含めた広い範囲の発振周波数を漏れなく カバーできる。 Fig. 15 shows a crystal blank with these side ratios E, and in this example, a crystal blank within the range that can be stored in a cylindrical holder with a diameter of 2 mm was used. The frequency range that can be covered by the crystal unit is shown. As can be seen from this figure, the five side ratios (8.48, 12.18, 13.22) for which the coupling with spurious vibration was not observed within the operating temperature range in the present application , 14.78 15.57), the width of which exceeds approximately 30 to 90 MHz if a w of 5800 to 150 m is used. In addition, a wide range of oscillation frequencies including high frequencies can be covered without leakage.
形状による等価直列抵抗 R rへの影響 Effect of shape on equivalent series resistance Rr
I 0  I 0
上記の実験によって、 小型の ATカツ 卜矩形水晶片を用いてオーバ トーン発振できる辺比の範囲を見いだせた。 そこで、 このような水晶 片を用いた水晶振動子をデバイスと して実用化する上で重要な等価直 列抵抗 R rを低減できる形状、 その他の要素に関する幾つかの実験を Through the above experiment, we found a range of side ratio where overtone oscillation can be performed using a small AT-cut rectangular crystal piece. Therefore, we conducted several experiments on shapes and other elements that can reduce the equivalent series resistance Rr, which is important in putting such a crystal unit using a crystal blank into practical use as a device.
5 行った。 5 I went.
(実験例 6 ) (Experimental example 6)
図 1 6に、 長さ の異なる水晶片を上記のように製造し、 これを用 いた水晶振動子の等価直列抵抗 R rの測定結果を纏めてある。 本図に Fig. 16 summarizes the measurement results of the equivalent series resistance R r of a quartz crystal element manufactured using quartz pieces with different lengths as described above. In this figure
0 は、 辺比 Eとして、 比較的低い周波数 ( f = 4 1. 6 6 7 MH z ) 用 の 8. 4 8、 中間の周波数 ( f = 5 5. 0 MH z ) 用の 1 2. 1 8、 さらに、 高い周波数 ( f = 7 1. 7 3 0 ) 用の 1 5. 5 7を備えた水 晶片を用いた場合を代表して示してある。 なお、 各水晶片の幅 wは発 振周波数に合わせて調整してある。 0 is 8.48 for relatively low frequencies (f = 4 1.67 MHz) and 12.1 for intermediate frequencies (f = 55.0 MHz) as the side ratio E 8. In addition, the case of using a crystal fragment with 15.5.7 for high frequencies (f = 71.730) is shown as a representative. The width w of each crystal blank was adjusted according to the oscillation frequency.
5 水晶振動子としては等価直列抵抗 R rの値を 6 0 Ω程度以下となる ように設計するのが一般的である。 図 1 6にて判るように、 辺比 Eが 1 5 . 5 7の水晶片を用いた場合では、 水晶片の長さ が 3 0 0 0 m以上であれば良い。 また、 辺比 Eが 1 2 . 1 8の水晶片を用いた場 合では、 水晶片の長さ £が 3 5 0 0 m以上であれば良い。 さらに、 辺比 Eが 8 . 4 8の水晶片を用いた場合では、 水晶片の長さ £が 4 0 、0 0 m以上であれば良い。 従って、 上記の実験例 1〜 5によって見 いだされた辺比を備えた水晶片のいずれであっても、 その長さ £が 45 Generally, a quartz crystal is designed so that the value of the equivalent series resistance Rr is about 60 Ω or less. As can be seen in Fig. 16, the side ratio E is In the case of using a 15.57 crystal piece, the length of the crystal piece should be 30000 m or more. In addition, when a crystal piece having a side ratio E of 12.18 is used, the length of the crystal piece may be at least 350 m. Furthermore, in the case of using a crystal piece having a side ratio E of 8.48, it is sufficient that the length £ of the crystal piece is 40 or more than 100 m. Therefore, the length £ of any of the crystal blanks having the side ratios found in the above experimental examples 1 to 5 is 4
0 0 0 m以上とすれば、 良好な等価直列抵抗 R rを示す水晶片を提 供することができる。 When it is set to not less than 0.000 m, a crystal blank exhibiting a good equivalent series resistance Rr can be provided.
なお、 水晶片の長さ は、 長さ 6 m m程度のシリ ンダー状保持器 に格納すると言う観点から 4 7 0 0 m程度以下とすることが望まし い。  It is desirable that the length of the crystal piece be about 4700 m or less from the viewpoint that it is stored in a cylinder-shaped cage with a length of about 6 mm.
(実験例 7 ) (Experimental example 7)
図 1 7に、 幅 wの異なる水晶片を上記のように製造し、 これを用い た水晶振動子の等価直列抵抗 R rの測定結果を纏めてある。 本図には 、 辺比 Eとしては、 比較的低い周波数用の 8 . 4 8、 中間の周波数用 の 1 2 . 1 8、 さらに、 高い周波数用の 1 5 . 5 7を備えた水晶片を 用いた場合を代表して示してある。 また、 各水晶片の長さ は 4 2 0 0 mである。  Fig. 17 summarizes the results of measuring the equivalent series resistance R r of a crystal unit using quartz pieces with different widths w manufactured as described above. This figure shows a crystal blank with a side ratio E of 8.48 for relatively low frequencies, 12.18 for intermediate frequencies, and 15.5.77 for high frequencies. The case where it was used is shown as a representative. The length of each crystal piece is 420 m.
図 1 7にて判るように、 辺比 Eが 1 5 . 5 7、 および辺比 Eが 1 2 . 1 8の水晶片を用いた場合では、 水晶片の幅 wが 7 0 0 m以上で あれば、 等価直列抵抗 R rは 6 0 Ω以下と良好な値を示す。 また、 辺 比 Eが 8 . 4 8の水晶片を用いた場合では、 幅 wが 8 0 0 m以上で 等価直列抵抗 R rは 6 0 Ω以下と良好な値を示す。 従って、 上記の実 験例 1〜 5によって見いだされた辺比を備えた水晶片のいずれであつ ても、 その幅 wが 8 0 0 以上とすれば、 良好な等価直列抵抗 R r を提供することができる。 As can be seen in FIG. 17, when a crystal piece having a side ratio E of 15.57 and a side ratio E of 12.18 is used, when the width w of the crystal piece is 700 m or more, If so, the equivalent series resistance R r shows a good value of 60 Ω or less. In addition, when a crystal piece with a side ratio E of 8.48 is used, the width w is 800 m or more and the equivalent series resistance R r is a good value of 60 Ω or less. Therefore, if any of the crystal blanks having the side ratios found in the above experimental examples 1 to 5 has a width w of 800 or more, a good equivalent series resistance R r Can be provided.
なお、 水晶片の幅 wは、 直径 2 mm程度のシリ ンダ一状保持器に格 納すると言う観点から 1 5 0 0 m程度以下とすることが望ま しい。  The width w of the crystal piece is desirably set to about 1500 m or less from the viewpoint of being accommodated in a cylinder holder having a diameter of about 2 mm.
表面粗さによる等価直列抵抗 R rへの影響 (実験例 8 ) Effect of surface roughness on equivalent series resistance R r (Experimental example 8)
図 1 8に、 エッチングが終了した状態で表面粗さの異なる水晶片を 製造し、 これらを用いた水晶振動子の等価直列抵抗 R rの測定結果を 纏めてある。 水晶片の辺比 Eは 1 2. 1 8、 幅 wは 3次オーバトーン 周波数が 5 5. 0 MH zとなるように調整してある。 また、 各水晶片 の長さ £は 4 2 0 0 mである。 図 1 8に示した表面粗さは、 上記で 説明した製造工程の工程 2 3のエッチング後の表面の粗さであり、 最 大高さ Rm,x を測定して水晶片の表面の状態を確認している。 なお、 最大高さ Rmax が 0. 1 / mの水晶片においては、 上記で説明したェ 程と異なり、 エッチング前にポリ ッシング工程を入れ、 水晶片の表面 を従来と同様にポリ ツシング仕上げしてある。 また、 図 1 8には、 等 価直列抵抗 R rの平均値 (図面上に黒い丸印で示す) と、 測定値のば らつき (図面上に実線で示す) を示してある。 Fig. 18 summarizes the measurement results of the equivalent series resistance R r of a quartz crystal element manufactured by manufacturing quartz pieces with different surface roughness after etching is completed. The side ratio E of the crystal piece was adjusted to 12.18, and the width w was adjusted so that the third overtone frequency was 55.0 MHz. The length £ of each crystal piece is 420 m. The surface roughness shown FIG. 8 is a surface roughness after the etching step 2 3-manufacturing process, described above, the maximum height R m, the surface of the crystal piece by measuring the x states Have confirmed. In the case of a crystal piece with a maximum height R max of 0.1 / m, a polishing step is performed before etching, and the surface of the crystal piece is polished and finished in the same manner as before, unlike the process described above. It is. FIG. 18 shows the average value of the equivalent series resistance R r (indicated by a black circle in the drawing) and the variation of the measured value (indicated by a solid line in the drawing).
本図で判るように、 ポリ ッシング仕上げしたのでは、 等価直列抵抗 R rの平均値は低くても、 水晶片によってばらつきが大きく、 等価直 列抵抗 R rが 6 0 Ωを越えてしまう場合も多い。 これに対し、 上述し たようなラップ工程によって仕上げた場合は、 水晶片による等価直列 抵抗 R rの値のばらつきは小さい。 そして、 エッチングされた面の表 面粗さの最大値 RmaJ[ が 0. 2〜0. 7 zmであれば、 等価直列抵抗 R rは、 水晶片毎にばらつく範囲も含めて略 6 0 Ω以下と良好な値を 示す。 さらに、 エッチングされた面の表面粗さの最大値 Rm,, が 0.As can be seen from this figure, even if the average value of the equivalent series resistance R r is low, the variation is large depending on the crystal piece, and the equivalent series resistance R r may exceed 60 Ω even if the polishing finish is applied. Many. On the other hand, when finished by the lapping process as described above, the variation in the value of the equivalent series resistance Rr due to the crystal blank is small. Then, if the maximum value of the surface roughness RmaJ [of the etched surface is 0.2 to 0.7 zm, the equivalent series resistance R r shows a good value of about 60 Ω or less, including the range that varies from crystal to crystal. Furthermore, the maximum value of the surface roughness Rm ,, of the etched surface is 0.
3 ~ 0. 6 mであれば、 等価直列抵抗 R rは、 水晶片毎にばらつく 範囲も含めて 6 0 Ω以下と非常に良好な値を示す。 If it is 3 to 0.6 m, the equivalent series resistance R r shows a very good value of 60 Ω or less including the range that varies from crystal to crystal.
(実験例 9 ) (Experimental example 9)
図 1 9に、 実験例 8と同様の測定を辺比 Eが 8. 4 8、 幅 wは 3次 オーバト一ン周波数が 4 1. 6 6 7 MH zとなるように調整された水 晶片を用いた水晶振動子に対し行った結果を纏めてある。 なお、 各水 晶片の長さ ·Πま 4 2 0 0〃mである。  Figure 19 shows the same measurement as in Experimental Example 8, with a crystal fragment adjusted so that the side ratio E is 8.48 and the width w is 3rd overtone frequency 41.667 MHz. The results obtained for the quartz oscillator used are summarized. Note that the length of each crystal fragment is about 4200 m.
本図で判るように、 この実験例においても、 ポリ ッシング仕上げし た場合は等価直列抵抗 R rの平均値は低くても、 水晶片によってばら つきが大きく、 等価直列抵抗 R r力 6 0 Ωを越えてしまうものが多い 。 これに対し、 上述したようなラップ工程によって仕上げた場合は、 水晶片による等価直列抵抗 R rの値のばらつきは小さい。 エッチング された面の表面粗さの最大値 Rm,, が 0. 2~0. 7 mであれば、 等価直列抵抗 R rは、 水晶片毎にばらつく範囲も含めて略 6 0 Ω程度 と良好な値を示す。 さらに、 エッチングされた面の表面粗さの最大値 Rm,, が 0. 3~0. 6 mであれば、 等価直列抵抗 R rは、 水晶片 毎にばらつく範囲も含めて 6 0 Ω以下と非常に良好な値を示す。 As can be seen from this figure, even in this experimental example, even if the average value of the equivalent series resistance R r is low when polished, the variation is large depending on the crystal piece, and the equivalent series resistance R r force is 60 Ω. Many things go beyond. On the other hand, when finished by the lapping process described above, the variation in the value of the equivalent series resistance Rr due to the crystal blank is small. If the maximum value of the surface roughness Rm ,, of the etched surface is 0.2 to 0.7 m , the equivalent series resistance Rr is about 60 Ω including the range that varies from crystal to crystal. Shows good values. Furthermore, if the maximum value of the surface roughness Rm ,, of the etched surface is 0.3 to 0.6 m, the equivalent series resistance Rr is 60 Ω or less including the range that varies from crystal to crystal. Shows very good values.
(実験例 1 0) (Experimental example 10)
図 2 0に、 実験例 8と同様の測定を辺比 Eが 1 5. 5 7、 幅 wは 3 次オーバ卜一ン周波数が 7 1. 7 3 0MH zとなるように調整された 水晶片を用いた水晶振動子に対し行った結果を纏めてある。 なお、 各 水晶片の長さ £は 4 2 0 0 mである。 本図で判るように、 この実験例においても、 ポリ ツシング仕上げし た場合は等価直列抵抗 R rの平均値は低くても、 水晶片によってばら つきが大きく、 等価直列抵抗 R r力 6 0 Ωを越えてしまう ものが多い 。 これに対し、 上述したようなラップ工程によって仕上げた場合は、 水晶片による等価直列抵抗 R rの値のばらつきは小さい。 エッチング された面の表面粗さの最大値 R m a x が 0 . 2〜 0 . であれば、 等価直列抵抗 R rは、 水晶片毎にばらつく範囲も含めて略 6 0 Ω以下 と良好な値を示す。 さらに、 エッチングされた面の表面粗さの最大値 R m a !t が 0 . 3〜 0 . 6 mであれば、 等価直列抵抗 R rは、 水晶片 毎にばらつく範囲も含めて 6 0 Ω以下と非常に良好な値を示す。 このような本願出願人の行った実験によって、 等価直列抵抗 R rの 値自体が小さ く、 また、 水晶片毎にこの値 R rのばらつきも少ないと いった高性能で、 さらにその性能の安定した水晶振動子を得るために は、 水晶片の表面をできるかぎり滑らかに仕上げるのではなく、 上記 にて得られたような範囲の一定の粗さに仕上げることが望ま しいこと が見いだされた。 Figure 20 shows the same measurement as in Experimental Example 8, with the quartz piece adjusted so that the side ratio E is 15.57 and the width w is 31.7% of the triplet frequency. The results obtained for a quartz crystal unit using are summarized. The length £ of each crystal piece is 420 m. As can be seen from this figure, even in this experimental example, even if the average value of the equivalent series resistance R r was low when polishing was applied, the variation due to the crystal piece was large, and the equivalent series resistance R r force was 60 Ω. There are many things that go beyond. On the other hand, when finished by the lapping process described above, the variation in the value of the equivalent series resistance Rr due to the crystal blank is small. If the maximum value R max of the surface roughness of the etched surface is from 0.2 to 0. An equivalent series resistance R r is approximately 6 0 Omega below, including the range varies for each crystal piece and good value Show. Furthermore, if the maximum surface roughness Rma! T of the etched surface is 0.3 to 0.6 m, the equivalent series resistance Rr is 60 Ω or less, including the range that varies from crystal to crystal. And very good values. As a result of such experiments conducted by the present applicant, the value of the equivalent series resistance Rr itself was small, and the variation of this value Rr was small for each crystal blank. In order to obtain such a crystal resonator, it has been found that it is desirable not to finish the surface of the crystal blank as smoothly as possible, but to finish it to a certain roughness within the range obtained above.
従来、 比較的小型の水晶片、 特にオーバトーン振動する水晶片を製 造するときは、 水晶片の表面における振動の乱反射を抑制し、 励振効 率を向上させるという点から、 ポリ ツシング加工を行い、 できるかぎ り表面粗さを小さくするようにしていた。 従って、 水晶片の表面の表 面粗さは、 最大高さ R m a i[ で 0 . 2あるいは 0 . 1 m以下に仕上げ られていた。 特に、 水晶片が小型化されると振動の漏れが起きやすい ので、 ポリ ッシング加工が必須と考えられていた。 Conventionally, when manufacturing relatively small crystal blanks, especially crystal blanks that vibrate overtones, polishing is performed in order to suppress the irregular reflection of vibrations on the surface of the crystal blank and improve the excitation efficiency. However, the surface roughness was made as small as possible. Therefore, the surface roughness of the surface of the crystal blank was finished to a maximum height R mai [ of 0.2 or 0.1 m or less. In particular, polishing was thought to be indispensable because vibrations tended to leak when the quartz pieces were made smaller.
ポリ ッシング加工は高価なポリ ッシング剤を用いて手間、 およびコ ス トのかかる作業である。 さらに、 ポリ ッシュすることによって表面 粗さは減少しても、 表面の平坦度を確保することは難しく、 表面にう ねりが生ずる。 ポリ ッシング加工はこのように熟練を必要とする作業 であり、 ポリ ツシング加工された水晶片は、 ポリ ッ シュされた平面が 相互に密着すると剥がれずらく、 ポリ ッシュされた表面は些細なこと で傷がつき表面粗さが劣化するなどといった取扱い難さもある。 これに対し、 本発明では、 ラップ加工で仕上げすれば良く、 水晶片 の表面を表面粗さの最大高さ R m, x が 0 . 2 ~ 0 . 7 m、 望ま しく は 0 . 3〜 0 . 6 mとすれば、 等価直列抵抗 R rの低い水晶振動子 を得られると同時に、 水晶片毎のばらつきの少ない、 すなわち、 歩留 りの良い水晶振動子が得られる。 そして、 このような高性能で歩留り の良い水晶振動子を形成する水晶片を製造する際に、 ポリ ッ シング加 ェをする必要はないので、 水晶片、 特に小型の水晶片を作成する上で 費用と手間、 さらに熟練を必要と していたポリ ッシング加工の工程を 省き、 安価に高性能の水晶振動子を提供することができる。 Polishing is a laborious and costly operation using expensive polishing agents. In addition, the surface can be polished Even if the roughness decreases, it is difficult to maintain the flatness of the surface, and the surface will undulate. Polishing is a work that requires such skill, and polished quartz pieces are difficult to peel off when the polished planes come into close contact with each other, and the polished surface is trivial. There is also difficulty in handling such as scratching and deterioration of surface roughness. In contrast, in the present invention may be finished by lapping, the maximum height R m of surface roughness of the crystal piece, x is from 0. 2 ~ 0. 7 m , is desirable properly 0.3 to 0 With a distance of 6 m, a crystal resonator with a low equivalent series resistance Rr can be obtained, and at the same time, a crystal resonator with little variation among crystal pieces, that is, a good yield can be obtained. When manufacturing a crystal blank that forms such a high-performance and high-yield crystal resonator, there is no need to perform policing, and therefore, it is necessary to produce a crystal blank, especially a small crystal blank. This eliminates the need for costly, labor-intensive, and polishing processing, and can provide a high-performance quartz resonator at low cost.
図 2 1 に、 実験例 8で測定した辺比 Eが 1 2 . 1 8の水晶片を用い た水晶振動子の等価直列抵抗 R rの分布状態を拡大して示してある。 ポリ ッシング加工した表面をエツチングして表面粗さの最大高さが 0 . 1 m程度とした場合は、 等価直列抵抗 R rの平均は 3 8 Ωと低い ものの、 等価直列抵抗 R rの最大値は 1 0 0 Ω程度となる水晶振動子 もある。 これに対し、 ラッ ピング加工した表面をエッチングして表面 粗さの最大高さが 0 . 4 m程度と して場合は、 等価直列抵抗 R rの 平均は 4 0 Ωと良好な値を示し、 さらに、 等価直列抵抗 R rの最大値 も 5 0 Ω程度と良好である。  FIG. 21 shows an enlarged distribution state of the equivalent series resistance R r of a crystal unit using a crystal piece having a side ratio E of 12.18 measured in Experimental Example 8. When the polished surface is etched to have a maximum surface roughness of about 0.1 m, the average equivalent series resistance R r is as low as 38 Ω, but the maximum equivalent series resistance R r Some quartz resonators have a resistance of about 100 Ω. On the other hand, if the lapping surface is etched and the maximum height of the surface roughness is about 0.4 m, the average equivalent series resistance Rr shows a good value of 40 Ω, Furthermore, the maximum value of the equivalent series resistance R r is as good as about 50 Ω.
ポリ ッシング加工した水晶片は厚みに大きな分布ができるので、 ェ ツチングによって周波数を調整する必要がある。 また、 ポリ ツシング 加工した表面は、 剥離工程、 洗浄工程、 乾燥工程で汚れや傷が付き易 い。 そのため、 そのような表面をエッチングすると汚れた部分がエツ チングされずにピッ 卜として残る、 いわゆるエッチピッ 卜が発生する 。 また、 傷などが拡大され、 不均一な凹凸を持った表面となる。 その 結果、 等価直列抵抗 R rが大きくなる。 Since the thickness of a polished crystal piece has a large distribution, it is necessary to adjust the frequency by etching. In addition, the polished surface is easily stained and scratched during the peeling, washing and drying processes. No. Therefore, when such a surface is etched, a dirty portion remains as a pit without being etched, that is, a so-called etch pit is generated. In addition, scratches and the like are enlarged, resulting in a surface with uneven unevenness. As a result, the equivalent series resistance Rr increases.
これに対し、 ラップ加工の後、 エッチング加工を行うと、 R m a it が 小さ く、 かつ、 均一な表面粗さが得られる。 このため、 等価直列抵抗 R rのばらつきは少なく、 歩留りの良い水晶片を得ることができる。 このことは、 水晶片に限らず、 素子の表面での振動を反射させ閉じ込 める他のセラ ミ ツク共振子などにおいても同様である。 In contrast, after lapping, when the etching, R ma it is rather small and uniform surface roughness can be obtained. For this reason, the variation of the equivalent series resistance Rr is small, and a crystal blank with a high yield can be obtained. This applies not only to the crystal blank but also to other ceramic resonators that reflect and confine vibrations on the surface of the element.
ラップ加工された水晶片はポリ ッシング加工された水晶片ょりも厚 み分布が小さいので、 周波数分布も小さくなる。 ラップ加工の場合に はエッチングしても等価直列抵抗がばらついたり しないのでラップ加 ェされた水晶片を共振周波数ごとに分類し、 各分類ごとにエッチング 時間を決めてエツチングすることにより周波数をさらに狭い範囲に押 さえこむことができる。  The frequency distribution of the lap-finished quartz piece is also small because the polished quartz piece has a small thickness distribution. In the case of lapping, the equivalent series resistance does not vary even when etched, so the wrapped quartz pieces are classified by resonance frequency, the etching time is determined for each classification, and the frequency is further narrowed by etching. It can be confined to a range.
(実験例 1 1 ) (Experimental example 1 1)
図 2 2に、 ラップ仕上げした水晶片をエッチングする際に、 エッチ ング加工量に伴う表面粗さの変化を示してある。 また、 図 2 3に、 ェ ツチング加工量に伴う等価直列抵抗 R r値の変化を示してある。 なお 、 水晶片の辺比 Eは 1 2 . 1 8であり、 幅 wは周波数 5 5 . 0 M H z で発振するように調整してある。 また、 水晶片の長さ £は 4 2 0 0 mである。 なお、 図 2 2および図 2 3には、 エッチングを行う直前の 表面粗さが、 最大高さ R m a J[ が 1 . 2 mの水晶片 、 0 . 7 mの 水晶片 B、 および、 0 . 4 mの水晶片 Cの表面粗さの変化および等 価直列抵抗 R rの変化を示してある。 また、 等価直列抵抗 R rの値は 複数の測定の平均値を示してある。 エツチング液は先に説明したよう に 1 0 ~ 3 0重量パ一セン トフッ酸を用いている。 Figure 22 shows the change in surface roughness with the amount of etching when the lap-finished quartz piece is etched. FIG. 23 shows a change in the equivalent series resistance Rr value according to the amount of etching. The side ratio E of the crystal piece was 12.18, and the width w was adjusted so as to oscillate at a frequency of 55.0 MHz. The length £ of the crystal piece is 420 m. In addition, FIGS. 22 and 23 show that the surface roughness immediately before the etching is a crystal piece with a maximum height R ma J [of 1.2 m, a crystal piece B with a 0.7 m thickness, and a crystal piece B with a maximum height of 0.7 m. The change in surface roughness and the change in equivalent series resistance R r of a 4 m crystal blank C are shown. The value of the equivalent series resistance R r is The average of multiple measurements is shown. As described above, the etching liquid uses 10 to 30 weight percent hydrofluoric acid.
図 2 2で判るように、 エッチング加工量が 0. 5 m程度までは急 激に表面粗さの最大高さ Rmax は低下し、 加工変質層の表面のラップ 加工によって最も荒らされている部分がエツチングによって削られて いることが推測される。 エッチング加工量が 0. 5〜 2. の間 は、 表面粗さに大きな変化は見られず、 安定した構造の加工変質層が エッチングによって減少していると考えられる。 これに対し、 エッチ ング加工量が 2. 5 mを越えると表面粗さの最大高さ Rm,x は増加 している。 これは、 水晶単結晶の異方性によりエッチング速度が方向 によって異なる影響が表れていると考えられる。 このエツチング速度 の異方性によって、 水晶片の表面に大きな凹凸が発生し、 これによりAs can be seen from Fig. 22, the maximum height R max of the surface roughness sharply decreases until the etching processing amount is about 0.5 m, and the part of the damaged layer that is most roughened by lapping It is presumed that the surface was etched away. No significant change in surface roughness was observed between 0.5 and 2. Etching amount, indicating that the affected layer with a stable structure was reduced by etching. On the other hand, when the amount of etching exceeds 2.5 m, the maximum height R m , x of the surface roughness increases. This is thought to be due to the effect that the etching rate differs depending on the direction due to the anisotropy of the quartz single crystal. Due to the anisotropy of the etching speed, large irregularities are generated on the surface of the crystal blank.
R ca x が増加していると判断される。 It is determined that R ca x has increased.
図 2 3に示した等価直列抵抗の変化も、 図 2 2に示した表面粗さの 最大高さ Rma!t と略同じ傾向を見せる。 すなわち、 エッチング加工量 が 0. 5 mまでは等価直列抵抗 R rは急激に '减少し、 エツチング加 ェ量が 0. 5〜 2. 5 mの間は等価直列抵抗 R rに大きな変化は見 られない。 そして、 エッチング加工量が 2. 5 mを越えると、 等価 直列抵抗 R rの増加傾向は顕著となる。 このように、 本実験によって 、 低く安定した等価直列抵抗 R r値を備えた水晶片を得るためにはラ ップ加工後のエッチング加工量を 0. 5 ~ 2. 5 mとするのが良い ことが判る。 ェッチング加工による片面の減厚量をこの範囲に収めれ ば、 水晶片をラップ加工したり切断したりする際に形成された加工変 質層の構造的に安定した部分が水晶片の表面に現れ、 良好な等価直列 抵抗 R rを得られるものと考えられる。 The change in the equivalent series resistance shown in Fig. 23 also shows almost the same tendency as the maximum surface roughness Rma! T shown in Fig. 22. That is, the equivalent series resistance R r sharply decreases until the etching amount is 0.5 m, and there is no significant change in the equivalent series resistance R r when the etching amount is 0.5 to 2.5 m. I can't. When the amount of etching exceeds 2.5 m, the tendency of the equivalent series resistance Rr to increase becomes remarkable. Thus, in this experiment, in order to obtain a crystal piece having a low and stable equivalent series resistance Rr value, it is preferable to set the etching amount after lapping to 0.5 to 2.5 m. You can see that. If the thickness reduction on one side due to the etching process falls within this range, structurally stable portions of the deformed layer formed when lapping or cutting the crystal blank appear on the surface of the crystal blank. It is considered that a good equivalent series resistance Rr can be obtained.
さらに、 図 2 3で判るように、 良好な 6 0 Ω以下の等価直列抵抗 R r値を得るためには、 本図に示した水晶片ではエツチング前の表面粗 さの最大高さ Rma, を 0. 7 m以下と しておく ことが望ま しい。 ま た、 ラップ加工により仕上げられる表面粗さの程度を考慮すると、 良 好な等価直列抵抗 R rを備えた水晶片を製造するためには、 エツチン グ前の水晶片の表面粗さの最大高さ R ma , は 0. 3〜 0. 7 ^ mの範 囲とすることが望ま しいことが本実験で見いだせた。 なお、 水晶片の 表面粗さを上記の範囲にラップ加工するために、 本例では、 砥粒の平 均粒径が 2. 5〜 3. 0 mのアルミナ系研磨材を用いた。 電極による影響 水晶片に電極を形成し、 良好な特性を持った水晶振動体とするため には、 電極の大きさや、 膜厚を適当に選定することが重要である。 電 極が小さいとエネルギーの閉じ込めが不足となり等価直列抵抗 R rが 増加することになるし、.一方、 電極を水晶片の端部にまで形成すると 端部のスプリ アス振動を誘起することになり、 温度特性が劣化したり 、 等価直列抵抗 R rが増加する原因 なる。 特に、 本例のような小型 で、 3次オーバトーンで振動する水晶片については、 電極の大きさ、 厚みと等価直列抵抗 R rとの関係は調べられていない。 Furthermore, as can be seen in Fig. 23, a good equivalent series resistance R of less than 60 Ω In order to obtain r value, the crystal blank shown in this diagram desirable to keep the maximum height R ma, the surface roughness of the pre-etching 0. 7 m or less arbitrarily. Considering the degree of surface roughness that can be achieved by lapping, in order to manufacture a crystal blank with good equivalent series resistance Rr, the maximum height of the surface roughness of the crystal blank before etching is required. It was found in this experiment that R ma, should be in the range of 0.3 to 0.7 ^ m. In this example, an alumina-based abrasive having an average grain size of 2.5 to 3.0 m was used in order to lap the surface roughness of the crystal blank within the above range. Influence of Electrodes In order to form electrodes on a crystal blank and obtain a crystal resonator with good characteristics, it is important to properly select the size and thickness of the electrodes. If the electrode is small, energy confinement will be insufficient and the equivalent series resistance Rr will increase, while if the electrode is formed up to the end of the crystal blank, spurious vibrations at the end will be induced. This causes the temperature characteristics to deteriorate and the equivalent series resistance Rr to increase. In particular, the relationship between the size and thickness of the electrode and the equivalent series resistance Rr has not been investigated for a small crystal piece that vibrates with the third overtone as in this example.
(実験例 1 2 ) (Experimental example 1 2)
図 2 4に、 辺比が 1 2. 1 8、 幅 wが 1 1 0 9 m、 さらに長さ が 4 2 0 0 mで 5 5. 0 MH zの水晶片を上記の方法にて製造し、 これに異なった大きさの電極を蒸着した場合の温度特性を示してある 。 先に図 3に基づき説明したように、 電極を水晶片の両面に形成する 。 そして、 本例では、 電極はクロムと銀を蒸着することによって形成 しており、 水晶片の幅方向の端と電極の幅方向の端との間隔 Dの異な つたサンプルを幾つか作成し、 それを用いて水晶振動子と したものの 温度特性をサンダース社製の測定器システム 2 1 0 0を用いて測定し た。 Fig. 24 shows a quartz piece with a side ratio of 12.18, width w of 1109 m, length of 420 m and 55.0 MHz manufactured by the above method. This shows the temperature characteristics when electrodes of different sizes are deposited. As described above with reference to FIG. 3, electrodes are formed on both sides of the crystal blank. In this example, the electrodes are formed by depositing chromium and silver. We prepared several samples with different distances D between the width direction edge of the crystal blank and the electrode width direction, and used them to measure the temperature characteristics of the crystal unit manufactured by Sanders. The measurement was performed using an instrument system 2100.
図 2 4 ( b ) に示すように、 間隔 Dが 1 0 0 mの場合は、 周波数 偏差は測定した全ての温度範囲で安定しており、 A Tカツ 卜水晶振動 子の特性である 3次曲線を描いている。 また、 等価直列抵抗 R r も全 ての温度範囲で安定しており、 その値も 4 0 Ω近傍と良好である。 これに対し図 2 4 ( a ) に示すように、 間隔 Dが 3 5 0 mの場合 は、 周波数偏差、 等価直列抵抗 R rとも測定した温度範囲全体に渡つ て不安定である。 この現象は、 電極の面積が小さいためにエネルギー の閉じ込めが不足しているために起きていると考えられる。 一方、 図 2 4 ( c ) に示すように、 間隔 Dが 5 0 mの場合は、 8 0て近傍に スプリァス振動との結合が見られる。  As shown in Fig. 24 (b), when the distance D is 100 m, the frequency deviation is stable over the entire measured temperature range, and the cubic curve which is the characteristic of the AT-cut crystal resonator Is drawing. In addition, the equivalent series resistance R r is stable over the entire temperature range, and its value is good at around 40 Ω. On the other hand, as shown in Fig. 24 (a), when the distance D is 350 m, both the frequency deviation and the equivalent series resistance Rr are unstable over the entire measured temperature range. This phenomenon is thought to be caused by insufficient energy confinement due to the small electrode area. On the other hand, as shown in Fig. 24 (c), when the distance D is 50 m, coupling with spurious vibration is seen near 80.
図 2 7に、 間隔 Dを 5 0から 3 5 0 mまで変えて測定した等価直 列抵抗 R rの一 2 0 ~ + 8 0 °Cでの最大値を纏めてある。 本例の辺比 Eが 1 2 . 1 8のものでは、 等価直列抵抗 R r力く 6 0 Ω以下という点 では、 間隔 Dが 5 0 ~ 3 4 0 mで良いことが判る。 そして、 上記で 示したように間隔 Dが 5 0 !/ mではスプリアス振動との結合が動作温 度範囲内にあるので、 間隔 Dは 7 5〜 3 4 0 mが望ま しいことが判 る。  FIG. 27 summarizes the maximum value of the equivalent series resistance R r at a temperature of 20 to + 80 ° C. measured by changing the interval D from 50 to 350 m. In the case where the side ratio E of this example is 12.18, it can be seen that the interval D is preferably 50 to 340 m in terms of the equivalent series resistance R r and the power of 60 Ω or less. Then, as shown above, when the interval D is 50! / M, the coupling with spurious vibration is within the operating temperature range, so that it is understood that the interval D is desirably 75 to 340 m.
(実験例 1 3 ) (Experimental example 13)
図 2 5に、 辺比が 8 . 4 8、 幅 wが 9 4 4 m、 さらに長さ £が 4 2 0 0 mで 4 5 . 0 M H zの水晶片を用いて上記の実験と同様の測 定を行った結果を示してある。 図 2 5 ( b ) に示すように、 間隔 Dが 1 0 0 mの場合は、 周波数偏差および等価直列抵抗 R rは全ての温 度範囲で安定しており、 その値も 5 0 Ω近傍と良好である。 Fig. 25 shows the same results as in the above experiment using a quartz piece with a side ratio of 8.48, a width w of 94.4 m, and a length £ of 420 m and 45.0 MHz. The result of the measurement is shown. As shown in Fig. 25 (b), the interval D In the case of 100 m, the frequency deviation and the equivalent series resistance R r are stable over the entire temperature range, and the values are also good at around 50 Ω.
これに対し図 2 5 ( a ) に示すように、 間隔 が 2 5 0 mの場合 温度範囲全体にわたり不安定であり、 先の実験例と同じことが言える 。 また、 図 2 5 ( c ) に示すように、 間隔 Dが 5 0 mの場合は、 8 0 °C近傍にスプリァス振動との結合が見られる。  On the other hand, as shown in Fig. 25 (a), when the interval is 250 m, the temperature is unstable over the entire temperature range, and the same as in the previous experimental example. Further, as shown in FIG. 25 (c), when the distance D is 50 m, coupling with spurious vibration is observed at around 80 ° C.
図 2 7に、 間隔 Dを 5 0から 2 5 0 mまで変えて測定した等価直 列抵抗 R rの _ 2 0.-+ 8 0てでの最大値を纏めてある。 本例の辺比 Eが 8. 4 8のものでは、 等価直列抵抗 R rが 6 0 Ω以下という点で は、 間隔 Dが 5 0〜 2 3 0 mで良いことが判る。 そして、 上記で示 したように間隔 Dが 5 0 mではスプリァス振動との結合が動作温度 範囲内にあるので、 間隔 Dは 7 5〜 2 3 0 〃mが望ましいことが判る  Fig. 27 summarizes the maximum value of the equivalent series resistance R r at _20 .- + 80 when the interval D is varied from 50 to 250 m. When the side ratio E of this example is 8.48, the interval D is preferably 50 to 230 m in terms of the equivalent series resistance R r of 60 Ω or less. Then, as shown above, when the distance D is 50 m, the coupling with the spurious vibration is within the operating temperature range, so that it is understood that the distance D is desirably 75 to 230 μm.
(実験例 1 4 ) (Experimental example 14)
図 2 6に、 辺比が 1 5. 5 7、 幅 wが 1 1 7 0 m、 さらに長さ ί が 4 2 0 0 mで 6 6. 6 6 7 MH zの水晶片を用いて上記の実験と 同様の測定を行った結果を示してある。 図 2 6 (b ) に示すように、 間隔 Dが 1 0 0 mの場合は、 周波数偏差および等価直列抵抗 R rは 全ての温度範囲で安定しており、 その値も 4 0 Ω近傍と非常に良好で ある。  Figure 26 shows the above-mentioned results using a crystal piece with a side ratio of 15.57, a width w of 1170 m, and a length 4 of 4200 m and a size of 6.6.667 MHz. The results of the same measurements as in the experiment are shown. As shown in Fig. 26 (b), when the interval D is 100 m, the frequency deviation and the equivalent series resistance R r are stable over the entire temperature range, and their values are very close to 40 Ω. It is good.
これに対し図 2 6 ( a ) に示すように、 間隔 Dが 3 5 0 mの場合 温度範囲全体にわたり不安定であり、 先の実験例と同じことが言える 。 また、 図 2 6 ( c ) に示すように、 間隔 Dが 5 0 mの場合は、 3 5 °C近傍にスプリ アス振動との結合が見られる。  On the other hand, as shown in Fig. 26 (a), when the distance D is 350 m, the temperature is unstable over the entire temperature range, and the same as in the previous experimental example. In addition, as shown in FIG. 26 (c), when the distance D is 50 m, coupling with spurious vibration is observed around 35 ° C.
図 2 7に、 間隔 Dを 5 0から 3 5 0 mまで変えて測定した等価直 列抵抗 R rの一 2 0〜十 8 0てでの最大値を纏めてある。 本^の辺比 Eが 1 5. 5 7のものでは、 等価直列抵抗 R rが 6 0 Ω以下という点 では、 間隔 Dが 5 0〜 3 4 0 で良いことが判る。 そして、 上記で 示したように間隔 Dが 5 0 mではスプリァス振動との結合が動作温 度範囲内にあるので、 間隔 Dは 7 5〜 3 4 0 mが望ま しいことが判 る。 Figure 27 shows the equivalent direct current measured while changing the distance D from 50 to 350 m. The maximum value of the column resistance Rr at 20 to 180 is summarized. In the case of this ^ with a side ratio E of 15.5.77, it can be seen that the interval D should be 50 to 340 in terms of the equivalent series resistance R r of 60 Ω or less. Then, as shown above, when the interval D is 50 m, the coupling with the spurious vibration is within the operating temperature range, so that it is understood that the interval D is desirably 75 to 340 m.
このように、 水晶片に電極を形成する場合、 上記のような条件で間 隔 Dを設定すれば、 水晶片の端部に起因するスプリアス振動の影響を 除き、 さらに、 等価直列抵抗 R rを低くすることができる。 すなわち 、 低い周波数用の辺比 8. 4 8においては、 間隔 Dは 7 5〜 2 3 0 mであることが望ま しい。 また、 辺比が 1 2. 1 8〜 1 5. 5 7にお いては、 間隔 Dは 7 5 ~ 3 4 0 mであることが望ま しい。 さらに、 間隔 Dを 7 5〜 2 0 0 /mに設定すれば、 低い周波数の辺比 8. 4 8 から高い周波数の辺比 1 5. 5 7を備えた水晶振動体において、 周波 数偏差が安定しており、 等価直列抵抗の値の充分に低いものを提供で きる。  In this way, when the electrodes are formed on the crystal blank, if the interval D is set under the above conditions, the equivalent series resistance R r is further reduced, excluding the influence of spurious vibrations caused by the ends of the crystal blank. Can be lower. That is, in the low frequency side ratio of 8.48, the interval D is desirably 75 to 230 m. When the side ratio is 12.18 to 15.5.7, the distance D is preferably 75 to 340 m. In addition, if the interval D is set to 75 to 200 / m, the frequency deviation of the crystal resonator with a low frequency side ratio of 8.48 to a high frequency side ratio of 15.5.7 will be reduced. It is stable and can provide a sufficiently low equivalent series resistance.
(実験例 1 5 ) (Experimental example 15)
図 2 8に、 辺比が 1 2. 1 8、 幅 wが 1 1 0 9 m、 さらに長さ H が 4 2 0 0 mの水晶片を上記の方法にて製造し、 これに電極を蒸着 して水晶振動体を製造する際に、 蒸着量によって変わる周波数の変化 量と、 等価直列抵抗 R rとの関係を示してある。 周波数の変化量は以 下の式で表される。  Figure 28 shows a quartz piece with a side ratio of 12.18, width w of 1109 m, and length H of 420 m, manufactured by the above method, and electrodes deposited on it. This shows the relationship between the amount of change in frequency, which varies depending on the amount of vapor deposition, and the equivalent series resistance Rr when a quartz resonator is manufactured. The frequency change is expressed by the following equation.
周波数の変化量 = ( f - f * ) / f · · · ( 4 )  Frequency change = (f-f *) / f
ここで、 f は蒸着しないときの周波数であり、 Γ は蒸着したときの 周波数である。 本図にて判るように、 電極を蒸着した際の周波数の変化量が 7 0 0 0 p pm以下では等価直列抵抗 R rが非常に高い。 周波数の変化量が 7 0 0 0 ~ 3 0 0 0 0 p mの範囲は等価直列抵抗 R rが 5 0 Ω程度 と良好な値に安定している。 一方、 電極を蒸着した際の周波数の変化 量が 3 0 0 0 0 p pmを越えると等価直列抵抗 R rは増加傾向となり 、 水晶振動子の特性が悪化していることが判る。 周波数の変化量が 7 0 0 O p p m以下では、 厚みすベり振動のエネルギー閉じ込めが不十 分であることが原因で等価直列抵抗 R rの値が高く、 また、 3 0 0 0 0 p p m以上になると励振電極の重量が多すぎて水晶片の厚みすベり 振動を阻害することとなり、 等価直列抵抗 R rが増加しているものと 考えられる。 Here, f is the frequency when no evaporation is performed, and Γ is the frequency when evaporation is performed. As can be seen from the figure, the equivalent series resistance Rr is very high when the amount of change in frequency when the electrode is deposited is less than 700 ppm. When the frequency change is in the range of 700 to 300 pm, the equivalent series resistance Rr is stable at a good value of about 50 Ω. On the other hand, when the amount of change in the frequency when the electrode is deposited exceeds 300 000 ppm, the equivalent series resistance Rr tends to increase, and it can be seen that the characteristics of the crystal resonator are deteriorated. When the frequency change is 700 ppm or less, the value of the equivalent series resistance Rr is high due to insufficient energy confinement of the thickness-shear vibration, and 300 ppm or more. When, the weight of the excitation electrode is too large, which inhibits the thickness shear vibration of the crystal blank, and the equivalent series resistance Rr is considered to have increased.
このように本例の測定によって、 電極を蒸着する際の水晶片の周波 数の変化量を 7 0 0 0 p p m~ 3 0 0 0 0 p p mの範囲に収めれば、 良好な等価直列抵抗 R rを備えた水晶振動子を提供可能であることが 見いだせた。 以上のように、 本願出願人の実験および測定によって、 例えば直径 As described above, if the variation of the frequency of the crystal blank during electrode deposition is kept within the range of 700 ppm to 300 ppm by the measurement of this example, a good equivalent series resistance R r Can be provided. As described above, according to the experiments and measurements of the applicant, for example, the diameter
2 mm程度で長さ 6 mm程度のシリ ンダーを備えた水晶振動子であつ て、 発振周波数が 1 0 0 MH z近傍までカバーできるものを提供でき ることが見いだせた。 そして、 上記にて明らかになった諸数値の範囲 の各要素を持つ水晶片、 水晶振動体、 水晶振動子は、 動作温度範囲 - 2 0 °C〜+ 8 0 °Cの範囲内において ATカツ 卜水晶振動子特有の安定 した温度特性を備え、 等価直列抵抗 R rの値も略 6 0 Ω程度以下と良 好な値を示すものである。 It has been found that it is possible to provide a crystal resonator having a cylinder of about 2 mm and a length of about 6 mm, which can cover an oscillation frequency of around 100 MHz. The crystal blank, crystal vibrator, and crystal vibrator having each element in the range of the numerical values clarified above have an AT cut within the operating temperature range of −20 ° C to + 80 ° C. It has a stable temperature characteristic peculiar to a quartz crystal resonator, and the equivalent series resistance R r is a good value of about 60 Ω or less.
図 2 9に、 本例の水晶振動子 1 0を樹脂によってモールドし、 表面 実装化した水晶振動子 3 0を示してある。 この水晶振動子 3 0は、 水 晶振動子 1 0のシリ ンダー状の保持器 9から突出したリ一ド 4を金属 リー ド 3 1 に溶接し樹脂 3 2にてモールドしたものである。 本例の水 晶振動子 3 0は、 保持器 9を樹脂 3 2によってモールドしてあるので 、 このままの状態で基板の表面に実装できる素子である。 FIG. 29 shows a crystal unit 30 in which the crystal unit 10 of this example is molded with resin and surface-mounted. This crystal oscillator 30 A lead 4 protruding from a cylindrical holder 9 of a crystal oscillator 10 is welded to a metal lead 31 and molded with a resin 32. The crystal oscillator 30 of this example is an element that can be mounted on the surface of the substrate as it is because the cage 9 is molded with the resin 32.
図 3 0は、 本例の水晶振動子 1 0と I C集積回路 4 1 とを組み合わ せて樹脂によってモールドした水晶発振器 4 0を示してある。 この水 晶発振器 4 0においては、 水晶振動子 1 0、 および水晶振動子 1 0を 3次オーバトーンで発振させる発振回路が少なく とも内蔵された I C 集積回路 4 1が金属フレーム 4 2の上に樹脂 3 2によってモールドさ れた状態で搭載されている。 そして、 本装置 4 0を基板に実装するこ とによって基板上に搭載された各回路の動作を規定する基準周波数を 供給することができる。 本例の水晶振動子 1 0の直径は 2 . 0 m m程 度と小型なので、 発振器の厚みも 2 . 5 m m〜2 . 7 m mとなり、 非 常に小型、 軽量化できる。 さらに、 本例の水晶振動子を用いることに より、 高周波を安定して供給できるので、 動作の高速化した電子装置 に適した発振器である。  FIG. 30 shows a crystal oscillator 40 in which the crystal unit 10 of the present example and the IC integrated circuit 41 are combined and molded with resin. In this crystal oscillator 40, a crystal oscillator 10 and an IC integrated circuit 41 at least including an oscillation circuit for oscillating the crystal oscillator 10 with a third overtone are mounted on a metal frame 42. Mounted with resin 32. By mounting the device 40 on a substrate, a reference frequency that regulates the operation of each circuit mounted on the substrate can be supplied. Since the diameter of the crystal unit 10 in this example is as small as about 2.0 mm, the thickness of the oscillator is also from 2.5 mm to 2.7 mm, and the size and weight can be extremely reduced. Further, by using the crystal resonator of the present example, a high frequency can be stably supplied, so that the oscillator is suitable for an electronic device with a high-speed operation.
以上に説明したように、 本発明によって見いだされた辺比の水晶片 によって、 寸法が非常に小さな領域でもスプリアス振動と結合するこ となく 3次オーバトーンで発振でき、 安定した高い周波数の振動をす る水晶片を得ることができる。 また、 本願発明では、 このような小型 でオーバトーン発振の可能な矩形状の A T力ッ ト水晶片を用いた際に 、 水晶片あるいは水晶振動体等に対する、 等価直列抵抗が良好な値を 示すための様々な要素を見いだしている。 従って、 本発明に係る水晶 片を用いることによって、 I C等と同様に S M Dと して採用できる程 度に小型化、 軽量化され、 さらに、 高周波を発振可能な水晶振動子お よび水晶発振器を提供することが可能となる。 さらに、 このような優 れた特性を持つ水晶片を歩留り良く提供する製造方法も開示しており 、 本発明によって、 今後、 軽量化、 小型化、 さらに、 高速化が進む通 信機器、 情報処理装置をはじめ様々な電子機器分野に好適な水晶振動 子、 水晶発振器を提供することができる。 産業上の利用可能性 本発明に係る水晶片、 水晶振動体、 水晶振動子および水晶発振器は 、 通信機器、 情報処理装置をはじめ様々な電子機器分野において利用 可能であり、 特に、 これらの機器における基準クロック源などと して 利用できる。 特に、 本発明に係る水晶振動子、 これらを用いた水晶発 振器は、 小型、 軽量で高周波のクロック信号を提供できるものでありAs described above, the quartz piece having the side ratio found by the present invention can oscillate with a third overtone without coupling with spurious vibration even in a region having a very small size. A thin crystal blank can be obtained. Further, according to the present invention, when such a small-sized rectangular AT crystal blank capable of overtone oscillation is used, the equivalent series resistance with respect to the crystal blank or the crystal vibrator shows a good value. To find various elements for Therefore, the use of the crystal blank according to the present invention provides a crystal resonator and a crystal oscillator that can be reduced in size and weight so that they can be used as SMDs like ICs, and that can oscillate high frequencies. It is possible to do. Furthermore, such an excellent The present invention also discloses a manufacturing method for providing a crystal piece having excellent characteristics at a high yield. According to the present invention, various electronic devices such as communication devices and information processing devices, which will become lighter, smaller, and faster in the future. It is possible to provide a crystal oscillator and a crystal oscillator suitable for the equipment field. INDUSTRIAL APPLICABILITY The crystal blank, crystal resonator, crystal resonator, and crystal oscillator according to the present invention can be used in various electronic device fields such as communication devices and information processing devices. Can be used as a reference clock source. In particular, the quartz oscillator according to the present invention and the quartz oscillator using the same are capable of providing a small, lightweight, high-frequency clock signal.
、 小型化される電子機器分野において安定した高周波を発振可能な S M D品と して提供できるものである。 It can be provided as an SMD product that can oscillate a stable high frequency in the field of miniaturized electronic devices.

Claims

請 求 の 範 囲 The scope of the claims
1. 電気軸を X軸と し、 機械轴を Y軸と し、 さらに、 光轴を Z軸と した直交座標系を前記 X轴回りに回転した XY' Z' 軸を備えた水晶1. A crystal with an XY'Z 'axis rotated about the X axis on a rectangular coordinate system where the electric axis is the X axis, the mechanical axis is the Y axis, and the light axis is the Z axis.
5 単結晶から切りだされた 3次オーバトーン水晶振動子用の矩形状 AT カッ ト水晶片であって、 前記 Y' 軸方向に厚み t と、 前記 Z' 轴方向 に幅 wとを有し、 この幅 wおよび厚み tによって規定される辺比 wZ tの範囲が、 8. 4 8 ± 0. 0 5、 1 2. 1 8 ± 0. 0 5、 1 3. 2 2 ± 0. 0 7、 1 4. 7 8 ± 0. 0 7、 および 1 5. 5 7 ± 0. 0 7 , α のいずれかであることを特徴とする矩形状 ATカツ 卜水晶片。 5 A rectangular AT-cut crystal blank cut out of a single crystal for a third-order overtone crystal resonator, having a thickness t in the Y′-axis direction and a width w in the Z ′ 轴 direction. The range of the side ratio wZt defined by the width w and the thickness t is 8.48 ± 0.05, 12.18 ± 0.05, 13.22 ± 0.07 , 14.78 ± 0.07, 15.77 ± 0.07, α.
2. 請求項 1 において、 前記 X軸方向に長さ ^を有し、 この長さ ^ の範囲が 4 0 0 0 - 4 7 0 0 であることを特徴とする矩形状 AT 力ッ トフ J 晶片。 2. The rectangular AT chip J crystal piece according to claim 1, having a length ^ in the X-axis direction, wherein the length ^ is in a range of 400-470. .
15  Fifteen
3. 請求項 2において、 前記幅 wの範囲が 8 0 0 ~ 1 5 0 0 で あることを特徵とする矩形状 A Tカツ 卜水晶 "一。  3. The rectangular AT cut crystal according to claim 2, wherein the range of the width w is 800 to 150.
4. 請求項 1 において、 エッチング加工された表面を有し、 その表 0 面粗さの最大高さ の範囲が 0. 2 ~ 0. 7 mであることを特 徵とする矩形状 ATカツ ト水晶片。 4. The rectangular AT cutter according to claim 1, characterized in that the surface has an etched surface, and the maximum surface roughness of the surface thereof ranges from 0.2 to 0.7 m. Crystal piece.
5. 請求項 4において、 前記表面の表面粗さの最大高さ Rma, の範 囲が 0. 3〜0. 6 mであることを特徴とする矩形状 ATカッ ト水 5 B曰片 o 5. In claim 4, wherein the maximum height R ma surface roughness of the surface, the range of 0.3 to 0. Rectangular AT cut water 5, which is a 6 m B曰片o
6. 請求項 1 に記載の前記辺比 w/ tの範囲が 8. 4 8 ± 0. 0 5 の矩形状 ATカツ 卜水晶片と、 この矩形状 ATカツ 卜水晶片の前記厚 み tを挟んで向かい合う面に付いた電極とを有する水晶振動体であつ て、 前記 Z' 軸に沿った電極の幅 Wは、 矩形状 ATカツ ト水晶片の幅 wより狭く、 前記電極の幅 W方向の端および前記矩形状 ATカツ 卜水 晶辺の幅 w方向の端との間隔が 7 5 - 2 3 0 mであることを特徴と する水晶振動体。 6. The rectangular AT-cut quartz piece having a side ratio w / t of 8.48 ± 0.05 according to claim 1 and the thickness t of the rectangular AT-cut quartz piece are defined as follows. A quartz vibrating body having an electrode attached to a surface facing each other, wherein a width W of the electrode along the Z ′ axis is smaller than a width w of the rectangular AT-cut quartz piece, and a width W direction of the electrode. A quartz vibrating body, characterized in that the distance between the end of the rectangular AT-cut crystal side and the end in the direction w of the rectangular AT-cut water crystal is 75 to 230 m.
7. 請求項 6において、 前記間隔が 7 5〜2 0 0 zmであることを 特徴とする水晶振動体。 7. The crystal resonator according to claim 6, wherein the interval is 75 to 200 zm.
8. 請求項 1 に記載の辺比 w/ tの範囲が 1 2. 1 8 ± 0. 0 5、 1 3. 2 2 ± 0. 0 7、 1 4. 7 8 ± 0. 0 7、 および 1 5. 5 7土 0. 0 7のいずれかの矩形状 ATカッ ト水晶片と、 この矩形状 AT力 ッ ト水晶片の前記厚み tを挟んで向かい合う面に付いた電極とを有す る水晶振動体であって、 前記 Z' 軸に沿った電極の幅 Wは、 矩形状 A Tカツ 卜水晶片の幅 wより狭く、 前記電極の幅 W方向の端および前記 矩形状 ATカツ ト水晶辺の幅 w方向の端の間隔が 7 5〜3 4 0 /mで あることを特徴とする水晶振動体。 8. The range of the side ratio w / t according to claim 1 is 12.18 ± 0.05, 13.22 ± 0.07, 14.78 ± 0.07, and 15.5 7 Sat 0.07 A rectangular AT-cut crystal blank of any one of 0.07 and an electrode attached to the surface facing the rectangular AT-cut crystal blank across the thickness t. A quartz vibrator, wherein the width W of the electrode along the Z 'axis is smaller than the width w of the rectangular AT-cut quartz piece, the end in the width W direction of the electrode and the rectangular AT-cut quartz side. A quartz vibrator characterized in that the width between the ends in the w direction is 75 to 340 / m.
9. 請求項 8において、 前記間隔が 7 5 - 2 0 0 mであることを 特徴とする水晶振動体。 9. The crystal resonator according to claim 8, wherein the interval is 75 to 200 m.
1 0. 請求項 1 に記載の矩形状 ATカッ ト水晶片と、 この矩形状 A Tカツ ト水晶片の前記厚み tを挟んで向かい合う面に製膜した電極と を有する水晶振動体であって、 前記電極の製膜量が、 この電極の有無 による前記矩形状 ATカツ 卜水晶片の周波数の変化量に換算して 7 0 0 0 ~ 3 0 0 0 0 p p mであることを特徴とする水晶振動体。 10.A quartz vibrator comprising: the rectangular AT-cut quartz piece according to claim 1; and electrodes formed on opposite surfaces of the rectangular AT-cut quartz piece with the thickness t interposed therebetween. The amount of film formation of the electrode is A quartz vibrating body characterized in that the amount is 700,000 to 300,000 ppm in terms of a change in frequency of the rectangular AT-cut quartz piece.
1 1. 請求項 1 に記載の矩形状 ATカツ 卜水晶片と、 この矩形状 A Tカツ ト水晶片の前記厚み tを挟んで向かい合う 2面に付いた電極と1 1. A rectangular AT-cut quartz piece according to claim 1, and electrodes provided on two faces facing each other across the thickness t of the rectangular AT-cut quartz piece.
、 前記矩形状 ATカツ ト水晶片の前記 X軸の方向の一端を支持する支 持機構とを有する水晶振動子であって、 前記支持機構は、 前記電極を 半田または導電性接着剤によって接合したリー ドを備えていることを 特徴とする水晶振動子。 A supporting mechanism for supporting one end of the rectangular AT-cut quartz crystal piece in the X-axis direction, wherein the supporting mechanism has the electrodes joined by solder or conductive adhesive. A crystal unit characterized by having a lead.
1 2. 請求項 1 に記載の矩形状 ATカツ 卜水晶片と、 この矩形状 A Tカツ 卜水晶片を保護する水晶保持器とを有する水晶振動子であって 、 前記水晶保持器は、 直径の範囲が 2. 0 ± 0. 2 mm、 長さの範囲 が 6. 0 ± 0. 5 mmであることを特徴とする水晶振動子。 1 2. A crystal resonator comprising: the rectangular AT-cut crystal piece according to claim 1; and a crystal retainer for protecting the rectangular AT-cut crystal piece, wherein the crystal retainer has a diameter. A crystal unit having a range of 2.0 ± 0.2 mm and a length range of 6.0 ± 0.5 mm.
1 3. 請求項 1 2において、 前記矩形伏 ATカツ 卜水晶片の前記幅 wの範囲が 8 0 0〜 1 5 0 0 ^m、 前記 X軸方向に沿った長さ の範 囲が 4 0 0 0〜 4 7 0 0 mであることを特徴とする水晶振動子。 1 3. The method according to claim 12, wherein the width w of the rectangular flat AT-cut quartz piece is 800 to 150 ^ m, and the length along the X-axis direction is 40. A quartz resonator having a length of from 0 to 470 m.
1 4. 請求項 1 2において、 前記水晶保持器はモールド部材によつ てモールドされていることを特徴とする水晶振動子。 14. The crystal unit according to claim 12, wherein the crystal holder is molded by a molding member.
1 5. 請求項 1 に記載の矩形状 ATカツ 卜水晶片を格納し保護する 水晶保持器と、 前記矩形状 ATカツ ト水晶片の発振回路を備えた集積 回路装置とを有し、 前記水晶保持器および集積回路装置がモールド部 材によって共にモールドされていることを特徴とする水晶発振器。 15. A quartz crystal holder comprising: a crystal holder for storing and protecting the rectangular AT-cut crystal piece according to claim 1; and an integrated circuit device including an oscillation circuit of the rectangular AT-cut crystal piece. A crystal oscillator, wherein a cage and an integrated circuit device are molded together by a molding member.
1 6. 請求項 1 5において、 前記水晶保持器は、 直径の範囲が 2. 0 ± 0. 2 mm、 長さの範囲が 6. 0 ± 0. 5 mmであることを特徵 とする水晶発振器。 16. The crystal oscillator according to claim 15, wherein the crystal retainer has a diameter range of 2.0 ± 0.2 mm and a length range of 6.0 ± 0.5 mm. .
1 7. 請求項 1 5において、 前記矩形状 ATカツ ト水晶片の前記幅 wの範囲が 8 0 0 ~ 1 5 0 0 m、 前記 X軸方向に沿った長さ の範 囲が 4 0 0 0〜 4 7 0 0 mであることを特徴とする水晶振動子。 1 7. The method according to claim 15, wherein the range of the width w of the rectangular AT-cut quartz piece is 800 to 150 m, and the range of the length along the X-axis direction is 400. A quartz oscillator having a length of 0 to 470 m.
1 8. 水晶から切り出されたウェハの表面をラップ加工した後、 ェ ツチング加工する水晶振動体用の水晶片の製造方法であって、 前記ェ ッチング加工直前の前記表面の仕上げを研磨材を用いた前記ラップ加 ェによって行うことを特徴とする水晶片の製造方法。 1 8. A method for manufacturing a crystal blank for a crystal vibrating body, which is subjected to a lapping process on a surface of a wafer cut out of a crystal, followed by an etching process, wherein a polishing material is used to finish the surface immediately before the etching process. A method of manufacturing a crystal piece, wherein the method is performed by the wrapping method.
1 9. 水晶から切り出された ATカツ 卜のゥヱハの表面をラップ加 ェした後、 エツチング加工する水晶振動体用の水晶片の製造方法であ つて、 前記エッチング加工による片面の減厚量の範囲を 0. 5 ~ 2. 5 mとすることを特徴とする水晶片の製造方法。 1 9. A method for manufacturing a crystal blank for a crystal vibrating body, which is processed by lapping the surface of the AT cut of the AT cut out of the crystal, followed by etching. Characterized in that the length is 0.5 to 2.5 m.
2 0. 請求項 1 9において、 前記エッチング加工直前の前記表面の 表面粗さの最大高さ
Figure imgf000038_0001
の範囲を 0. 3 ~ 0. 7 mとすることを 特徵とする水晶片の製造方法。
20. The maximum height of the surface roughness of the surface immediately before the etching process according to claim 19.
Figure imgf000038_0001
The method for manufacturing a crystal blank, wherein the range of 0.3 to 0.7 m is set.
2 1. 請求項 2 0において、 前記エッチング加工直前の前記表面の 仕上げを行う前記ラップ加工において、 砥粒の平均粒径が 2. 5 - 3 mのアルミナ系の研磨材を用いることを特徴とする水晶片の製造方 法。 21. The method according to claim 20, wherein in the lapping processing for finishing the surface immediately before the etching processing, an alumina-based abrasive having an average grain diameter of 2.5-3 m is used. How to make crystal blanks Law.
2 2. 請求項 1 9において、 前記エッチング加工において、 エッチ ング液と して 1 0 ~ 3 0重量パーセン トのフッ酸を用いることを特徴 とする水晶片の製造方法。 22. The method for manufacturing a crystal piece according to claim 19, wherein, in the etching, 10 to 30% by weight of hydrofluoric acid is used as an etching solution.
2 3. ATカツ 卜の水晶片の扳厚方向に対峙するそれぞれの表面に 金属性の電極素材を製膜し電極を形成する製膜工程を有する水晶振動 体の製造方法において、 前記製膜工程における前記水晶片の周波数の 変化量が 7 0 0 0〜 3 0 0 0 0 p pmであることを特徵とする水晶振 動体の製造方法。 2 3. The method for manufacturing a quartz vibrator, comprising a film forming step of forming a metal electrode material on each surface of the quartz crystal piece of the AT cut opposed in the thickness direction and forming electrodes. The method for manufacturing a crystal resonator according to claim 1, wherein the amount of change in the frequency of the crystal piece is 700 to 300 ppm.
PCT/JP1994/001721 1993-10-18 1994-10-13 Rectangular at-cut quartz crystal plate, quartz crystal unit, and quartz oscillator and manufacture of quartz crystal plate WO1995011548A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP51159795A JP3456213B2 (en) 1993-10-18 1994-10-13 Rectangular AT-cut crystal blank, crystal vibrator and crystal vibrator
DE4497992T DE4497992T1 (en) 1993-10-18 1994-10-13 Rectangular AT-cut quartz element, quartz oscillator, quartz oscillator unit and quartz oscillator and method for producing the quartz element
DE4497992A DE4497992C2 (en) 1993-10-18 1994-10-13 Rectangular AT-cut quartz crystal plate of quartz crystal unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/260174 1993-10-18
JP26017493 1993-10-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08454305 A-371-Of-International 1995-08-17
US08/847,339 Continuation US6469423B2 (en) 1993-10-18 1997-04-23 Rectangular at-cut quartz element, quartz resonator, quartz resonator unit and quartz oscillator, and method of producing quartz element

Publications (1)

Publication Number Publication Date
WO1995011548A1 true WO1995011548A1 (en) 1995-04-27

Family

ID=17344352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001721 WO1995011548A1 (en) 1993-10-18 1994-10-13 Rectangular at-cut quartz crystal plate, quartz crystal unit, and quartz oscillator and manufacture of quartz crystal plate

Country Status (3)

Country Link
JP (1) JP3456213B2 (en)
DE (2) DE4497992T1 (en)
WO (1) WO1995011548A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114103A (en) * 2009-11-26 2011-06-09 Kyocera Corp Wiring board
JP2013207536A (en) * 2012-03-28 2013-10-07 Seiko Epson Corp Vibration element, oscillator, electronic device and electronic apparatus
JPWO2016158520A1 (en) * 2015-03-27 2017-11-30 京セラ株式会社 Quartz crystal resonator and crystal oscillation device
CN115261994A (en) * 2022-07-22 2022-11-01 珠海东锦石英科技有限公司 Wafer corrosion cleaning equipment and process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291681A (en) * 1976-01-29 1977-08-02 Seiko Instr & Electronics Ltd Vibrator crystal plate and manufacture of it
JPS6458107A (en) * 1987-08-28 1989-03-06 Matsushima Kogyo Kk Rectangular at vibrator for overtone
JPH01135213A (en) * 1987-11-20 1989-05-26 Matsushima Kogyo Co Ltd Piezo-oscillator
JPH0226405A (en) * 1988-07-15 1990-01-29 Miyota Seimitsu Kk Cylinder-type crystal resonator
JPH02198213A (en) * 1988-04-11 1990-08-06 Matsushima Kogyo Co Ltd Overtone rectangular at vibrator
JPH04146987A (en) * 1990-10-09 1992-05-20 Nippon Kenmazai Kogyo Kk Alumina-zirconia lapping compound, production thereof, and composition for abrasion
JPH04294622A (en) * 1991-03-25 1992-10-19 Seiko Epson Corp Production of piezoelectric element
JPH0583064A (en) * 1991-09-20 1993-04-02 Seiko Epson Corp Manufacture of crystal vibrator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291681A (en) * 1976-01-29 1977-08-02 Seiko Instr & Electronics Ltd Vibrator crystal plate and manufacture of it
JPS6458107A (en) * 1987-08-28 1989-03-06 Matsushima Kogyo Kk Rectangular at vibrator for overtone
JPH01135213A (en) * 1987-11-20 1989-05-26 Matsushima Kogyo Co Ltd Piezo-oscillator
JPH02198213A (en) * 1988-04-11 1990-08-06 Matsushima Kogyo Co Ltd Overtone rectangular at vibrator
JPH0226405A (en) * 1988-07-15 1990-01-29 Miyota Seimitsu Kk Cylinder-type crystal resonator
JPH04146987A (en) * 1990-10-09 1992-05-20 Nippon Kenmazai Kogyo Kk Alumina-zirconia lapping compound, production thereof, and composition for abrasion
JPH04294622A (en) * 1991-03-25 1992-10-19 Seiko Epson Corp Production of piezoelectric element
JPH0583064A (en) * 1991-09-20 1993-04-02 Seiko Epson Corp Manufacture of crystal vibrator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 47498/1984, (Laid-Open No. 160633/1985) (MIYOTA SEIMITSU K.K.), 25 October 1985. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114103A (en) * 2009-11-26 2011-06-09 Kyocera Corp Wiring board
JP2013207536A (en) * 2012-03-28 2013-10-07 Seiko Epson Corp Vibration element, oscillator, electronic device and electronic apparatus
JPWO2016158520A1 (en) * 2015-03-27 2017-11-30 京セラ株式会社 Quartz crystal resonator and crystal oscillation device
CN115261994A (en) * 2022-07-22 2022-11-01 珠海东锦石英科技有限公司 Wafer corrosion cleaning equipment and process thereof
CN115261994B (en) * 2022-07-22 2024-04-05 珠海东锦石英科技有限公司 Wafer corrosion cleaning equipment and process thereof

Also Published As

Publication number Publication date
JP3456213B2 (en) 2003-10-14
DE4497992C2 (en) 1998-05-07
DE4497992T1 (en) 1995-12-07

Similar Documents

Publication Publication Date Title
US9948275B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
KR100802865B1 (en) Piezoelectric resonator element and piezoelectric device
JP2003110388A (en) Piezoelectric oscillator element and manufacturing method thereof, and piezoelectric device
JP5272121B2 (en) Quartz crystal unit, crystal unit, crystal oscillator, information communication device, and manufacturing method thereof
JP2013046085A (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic device
JP5987321B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, piezoelectric device, and electronic apparatus
JP3456213B2 (en) Rectangular AT-cut crystal blank, crystal vibrator and crystal vibrator
JP4680449B2 (en) Piezoelectric device and manufacturing method thereof
JP2007088691A (en) Piezoelectric vibration chip, piezoelectric device, and manufacturing method of them
JP2007189492A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator
JP4641111B2 (en) Method for manufacturing piezoelectric device element
JP3896585B2 (en) Tuning fork type piezoelectric vibrator
JP3149835B2 (en) Spherical pot for convex processing
US6469423B2 (en) Rectangular at-cut quartz element, quartz resonator, quartz resonator unit and quartz oscillator, and method of producing quartz element
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JP2001085970A (en) Resonator for high stable piezo-oscillator
JP2003060481A (en) Piezoelectric oscillation element and manufacturing method therefor, and piezoelectric device
JP3258078B2 (en) Crystal oscillator
US9172347B2 (en) Wafer, method of manufacturing package, and piezoelectric oscillator
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor
JP2004304448A (en) Crystal diaphragm
JP2003046360A (en) Two frequency oscillator and its manufacturing method
JP2004207913A (en) Crystal vibrator
JPH05259799A (en) Crystal vibrator
JP2005094542A (en) High frequency piezoelectric vibrator and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

ENP Entry into the national phase

Ref document number: 1995 454305

Country of ref document: US

Date of ref document: 19950817

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 4497992

Country of ref document: DE

Date of ref document: 19951207

WWE Wipo information: entry into national phase

Ref document number: 4497992

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 1997 847339

Country of ref document: US

Date of ref document: 19970423

Kind code of ref document: A