JP2005094542A - High frequency piezoelectric vibrator and its manufacturing method - Google Patents

High frequency piezoelectric vibrator and its manufacturing method Download PDF

Info

Publication number
JP2005094542A
JP2005094542A JP2003327211A JP2003327211A JP2005094542A JP 2005094542 A JP2005094542 A JP 2005094542A JP 2003327211 A JP2003327211 A JP 2003327211A JP 2003327211 A JP2003327211 A JP 2003327211A JP 2005094542 A JP2005094542 A JP 2005094542A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric substrate
main electrode
frequency
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003327211A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003327211A priority Critical patent/JP2005094542A/en
Publication of JP2005094542A publication Critical patent/JP2005094542A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency piezoelectric vibrator, and its manufacturing method which is easily manufacturable even when mass production is performed, and moreover does not have variations in characteristics. <P>SOLUTION: In the high frequency piezoelectric vibrator 12, a recession 3 is formed by etching in the center of one surface of a crystal substrate 2 by etching, and a thick annular surrounding portion 5 is formed in the peripheral brim portion of a thin oscillator 4 formed on the bottom surface of the recession 3 integrally with the oscillator 4. An exciting main electrode 13, a lead electrode 14 and a pad electrode 15 led out from the main electrode are formed approximately at the center of the thin oscillator 4 on the flat side of the crystal substrate 2. Besides, an annular electrode having an inside diameter with a size larger than the size of the main electrode, is formed at the oscillator 4 in the recess of the crystal substrate 2 as a suppression electrode 16 using material the same as that of the exciting main electrode 13, in opposition to the exciting main electrode 13 formed on the flat side of the crystal substrate 2. Moreover, a whole surface electrode 17 is formed on the whole surface on the recession side of the crystal substrate 2, and a high frequency piezoelectric device is made. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高周波圧電振動子とその製造方法に関し、特に基本波振動で100MHz以上の高い共振周波数を有する高周波圧電振動子のCI値劣化や不要なスプリアス発生を防止し、且つ、良好な共振特性を得るための電極構成の改良とその製造方法に関する。   The present invention relates to a high-frequency piezoelectric vibrator and a method of manufacturing the same, and in particular, prevents CI value deterioration and unnecessary spurious generation of a high-frequency piezoelectric vibrator having a high resonance frequency of 100 MHz or more by fundamental vibration, and provides good resonance characteristics. The present invention relates to an improvement of an electrode configuration to obtain and a manufacturing method thereof.

近年、各種電子機器、通信機器等においては、扱う情報量の増大や高速化に伴い、基準周波数源や周波数選択機能として使用される圧電振動子や圧電フィルタ等の圧電デバイスに対しても、高周波化と高い周波数安定度が求められている。
従来圧電デバイスとして多用されてきた一般のATカット水晶振動子は、周波数温度特性が極めて優れているものの、その共振周波数は、水晶基板の板厚に反比例するため、共振周波数が高周波になると水晶基板の板厚が薄くなり、水晶振動子の製造技術や機械的強度の観点から共振周波数は50MHz程度が限界であった。
In recent years, in various electronic devices, communication devices, etc., with the increase in the amount of information to be handled and the speeding up, high frequency is also applied to piezoelectric devices such as piezoelectric vibrators and piezoelectric filters used as reference frequency sources and frequency selection functions. And high frequency stability are required.
Conventional AT-cut quartz resonators that have been widely used as piezoelectric devices have excellent frequency-temperature characteristics, but the resonance frequency is inversely proportional to the thickness of the quartz substrate. From the viewpoint of crystal resonator manufacturing technology and mechanical strength, the resonance frequency is limited to about 50 MHz.

又、ATカット水晶振動子の高調波成分を抽出して基本波共振周波数の奇数倍の周波数を得るオーバトーン発振手段も広く用いられているが、発振回路にコイルを含むLC同調回路を必要とするため、発振回路を半導体集積回路化する上で不都合がある上、容量比が大きく、且つ、インピーダンスレベルが高いため発振が困難になる場合があるという欠陥を有していた。   In addition, overtone oscillation means that extracts harmonic components of an AT-cut crystal resonator and obtains an odd multiple of the fundamental resonance frequency is widely used, but requires an LC tuning circuit that includes a coil in the oscillation circuit. For this reason, there is a disadvantage in that the oscillation circuit is not integrated into a semiconductor integrated circuit, and the capacitance ratio is large and the impedance level is high, so that oscillation may be difficult.

一方、インターデジタル・トランスジューサ電極の電極指ピッチによって共振周波数が決定される弾性表面波共振子は、フォトリソグラフィ技術の進歩によって1〜2GHz程度の周波数出力まで可能となってきたが、これに使用し得る圧電基板の周波数温度特性がATカット水晶振動子と比較して著しく劣ると言う問題が生じていた。   On the other hand, the surface acoustic wave resonator whose resonance frequency is determined by the electrode finger pitch of the interdigital transducer electrode has been capable of a frequency output of about 1 to 2 GHz due to the advancement of photolithography technology. There has been a problem that the frequency temperature characteristic of the obtained piezoelectric substrate is significantly inferior to that of the AT-cut quartz resonator.

そこで、このような問題を解決するため、従来の高周波圧電振動子は、ATカット水晶基板の片面に、所定の寸法で機械加工やエッチング等の手段を用いて凹部を形成し、この凹部の薄肉の底面を振動部として励振電極を形成する構造を有している。   Therefore, in order to solve such a problem, the conventional high-frequency piezoelectric vibrator has a concave portion formed on one surface of an AT-cut quartz crystal substrate with a predetermined dimension by means of machining or etching, and the thin portion of the concave portion is thin. The excitation electrode is formed with the bottom surface of the substrate as the vibration part.

一方、ATカット水晶振動子のスプリアス特性を改善するため、電極長や膜厚に関係なく、スプリアスの発生周波数をある程度任意に制御できる圧電振動子が特開2001−244778号公報に開示されている。それによれば、圧電基板の主面に形成した主電極の周縁を囲むように所定の間隙をあけて第二の電極として、スプリアスの抑圧電極を形成する。そこで、この抑圧電極の質量負荷(膜厚)を、主電極の質量負荷(膜厚)に応じて適宜設定すれば、エネルギー閉じ込め係数を容易に制御可能となり、スプリアスの少ない水晶振動子を実現することが可能となる。   On the other hand, in order to improve the spurious characteristics of an AT-cut crystal resonator, a piezoelectric resonator capable of arbitrarily controlling the spurious generation frequency to some extent regardless of the electrode length and film thickness is disclosed in Japanese Patent Laid-Open No. 2001-244778. . According to this, a spurious suppression electrode is formed as a second electrode with a predetermined gap so as to surround the periphery of the main electrode formed on the main surface of the piezoelectric substrate. Therefore, if the mass load (film thickness) of the suppression electrode is appropriately set according to the mass load (film thickness) of the main electrode, the energy confinement factor can be easily controlled, and a crystal resonator with less spurious is realized. It becomes possible.

図4は、従来の高周波圧電振動子の構造例であり、(a)は上面図を示し、(b)は、A−A’にける断面図を示す。高周波圧電振動子1は、水晶基板2の片面に、エッチング、或いは機械加工により凹部3を形成し、凹部3の底面に設けた薄肉の振動部4の周縁部に、肉厚の環状囲繞部5を前記振動部4と一体的に形成し、薄板状の振動部4を機械的に支持した構造である。   4A and 4B are structural examples of a conventional high-frequency piezoelectric vibrator. FIG. 4A is a top view, and FIG. 4B is a cross-sectional view taken along A-A ′. In the high-frequency piezoelectric vibrator 1, a concave portion 3 is formed on one surface of a quartz substrate 2 by etching or machining, and a thick annular surrounding portion 5 is formed on a peripheral portion of a thin vibrating portion 4 provided on the bottom surface of the concave portion 3. Is formed integrally with the vibrating portion 4 and the thin plate-like vibrating portion 4 is mechanically supported.

そこで、上述した構造を有する水晶基板2の凹部3内の側壁を含む全面に導体膜を形成し全面電極6とすると共に、水晶基板2の平坦側の薄肉の振動部4のほぼ中央に主電極7を形成し、更に、これから導出するリード電極8及び外部パッケージ端子との導通を図るためのパッド電極9を形成した後、インハーモニックモードによるスプリアスを抑制する抑圧電極10を、前記主電極等と異なる電極材料を用いて、所定の間隙を隔てて主電極7を囲むように形成している。   Therefore, a conductor film is formed on the entire surface including the side wall in the concave portion 3 of the quartz substrate 2 having the above-described structure to form a full-surface electrode 6, and the main electrode is provided at the approximate center of the thin vibrating portion 4 on the flat side of the quartz substrate 2. 7, and further, the lead electrode 8 derived from this and the pad electrode 9 for conducting with the external package terminal are formed, and then the suppression electrode 10 for suppressing spurious due to the inharmonic mode is used as the main electrode and the like. Different electrode materials are used to surround the main electrode 7 with a predetermined gap therebetween.

次に、上述したような従来の高周波圧電振動子の製造法について説明する。
図5は、従来の高周波圧電振動子の製造工程例を示す図である。高周波圧電振動子を製造するためには、ATカット水晶基板2の表面の所定の位置に保護膜11をフォトリソグラフィ技術で形成した後エッチングを行い(ステップ1)、水晶基板2の保護膜11が形成されていない部分を所定の形状に凹陥し、薄板状の振動部4とその周囲を支持する環状囲繞部5とを一体的に形成して前記保護膜11を剥離する(ステップ2)。
Next, a method for manufacturing the conventional high-frequency piezoelectric vibrator as described above will be described.
FIG. 5 is a diagram illustrating an example of a manufacturing process of a conventional high-frequency piezoelectric vibrator. In order to manufacture a high-frequency piezoelectric vibrator, a protective film 11 is formed at a predetermined position on the surface of the AT-cut quartz crystal substrate 2 by photolithography and then etched (step 1). The portion not formed is recessed into a predetermined shape, and the thin plate-like vibrating portion 4 and the annular surrounding portion 5 supporting the periphery thereof are integrally formed to peel off the protective film 11 (step 2).

次に、水晶基板2の凹陥部3側の全面電極6と、対向する水晶基板2の平坦側の振動部4のほぼ中央に位置する主電極7とこれから導出するリード電極8及び外部パッケージ端子との導通を図るためのパッド電極9を、真空蒸着等により同時に形成し(ステップ3)、その後、スプリアス抑圧用の抑圧電極を、前記主電極等と異なる電極材料を用いて、同じく真空蒸着等により形成する(ステップ4)。
このように圧電振動子を構成することにより、共振周波数が極めて高く、スプリアスを抑圧した高周波圧電振動子を得ることが出来る。
特開2001−244778号公報
Next, the entire surface electrode 6 on the recessed portion 3 side of the quartz substrate 2, the main electrode 7 positioned substantially at the center of the vibrating portion 4 on the flat side of the facing quartz substrate 2, the lead electrode 8 and the external package terminal derived therefrom Are simultaneously formed by vacuum vapor deposition or the like (step 3), and then a suppression electrode for suppressing spurious is similarly formed by vacuum vapor deposition or the like using an electrode material different from the main electrode or the like. Form (step 4).
By configuring the piezoelectric vibrator in this way, a high-frequency piezoelectric vibrator having a very high resonance frequency and suppressing spurious can be obtained.
JP 2001-244778 A

従来の高周波圧電振動子は、インハーモニックモードによるスプリアスを抑圧するため、前述した特開2001−244778号公報に開示されているような条件が必要である。そこで、主電極のみをエネルギー閉じ込めモードにするためには、スプリアス抑圧用の電極は励振用の主電極に比べて厚くするが、主電極のカットオフ周波数をf1、主電極と抑圧電極との間隙のカットオフ周波数をf2、抑圧電極のカットオフ周波数をf3とすると、夫々のカットオフ周波数の関係はf1<f2<f3となることが必要であると共に、所定のエネルギー閉じ込め係数を得るため精度の高い所定の形状、膜厚、及び位置を有する電極を必要としていた。   The conventional high-frequency piezoelectric vibrator needs to have the conditions disclosed in Japanese Patent Application Laid-Open No. 2001-244778 described above in order to suppress spurious due to the inharmonic mode. Therefore, in order to set only the main electrode to the energy confinement mode, the spurious suppression electrode is thicker than the excitation main electrode, but the cutoff frequency of the main electrode is f1, and the gap between the main electrode and the suppression electrode If the cut-off frequency of f2 is f2 and the cut-off frequency of the suppression electrode is f3, the relationship between the cut-off frequencies needs to be f1 <f2 <f3. An electrode having a high predetermined shape, film thickness, and position was required.

しかしながら、従来の高周波圧電振動子は、圧電基板の平坦側に形成する同じ電極材料である励振用の主電極、リード電極、ボンディングパッド電極、更には、圧電基板の凹部側に形成する全面電極とを同時に所定の膜厚で形成した後、これらの電極と異なる材料を用いて所定の膜厚で、スプリアス抑圧用の抑圧電極をマスク蒸着法により形成する必要があり、製造工程が複雑で高精度を必要とする励振用の主電極とスプリアス抑制用の抑圧電極の間隔、位置精度が得られないため、安定した高周波圧電振動子の特性が得られないと共に、高周波圧電振動子を製造する際の歩留まり低下による製造コストの上昇を招いていた。   However, the conventional high-frequency piezoelectric vibrator has a main electrode for excitation, a lead electrode, a bonding pad electrode, which are the same electrode material formed on the flat side of the piezoelectric substrate, and an entire surface electrode formed on the concave side of the piezoelectric substrate. Must be formed simultaneously with a predetermined film thickness, and a suppression electrode for spurious suppression must be formed by a mask vapor deposition method with a predetermined film thickness using a material different from these electrodes. The distance and position accuracy between the main electrode for excitation and the suppression electrode for suppressing spurious noise cannot be obtained, so that stable high-frequency piezoelectric vibrator characteristics cannot be obtained. This led to an increase in manufacturing cost due to a decrease in yield.

本発明は、上述したような問題を解決するためになされたものであって、量産時においても製造が容易でしかも特性のばらつきを発生することなく、電極膜厚制御が容易で、CI値の劣化や不要なスプリアス発生を防止出来る電極構造を有する高周波圧電振動子とその製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can be easily manufactured even during mass production, and can easily control the electrode film thickness without causing variations in characteristics. An object of the present invention is to provide a high-frequency piezoelectric vibrator having an electrode structure that can prevent deterioration and unnecessary spurious generation, and a method for manufacturing the same.

上記目的を達成するために本発明に係わる高周波圧電振動子とその製造方法は、以下の構成をとる。
請求項1記載の高周波圧電振動子は、圧電基板の片面に、エッチング、或いは機械加工により凹部を形成することにより薄肉の振動部と、その周縁を機械的に支持する肉厚の環状囲繞部とを一体的に構成した高周波圧電振動子であって、
前記圧電基板の平坦側主面の前記振動部のほぼ中央部に形成した所定の形状の励振用の主電極を備えており、前記圧電基板の凹部側には、環状の抑圧電極が前記圧電基板の平坦側に形成した励振用の主電極と重複することなくその周囲を囲むように配置されており、圧電基板の凹部側のほぼ全面が全面電極にて覆われるよう構成する。
In order to achieve the above object, a high-frequency piezoelectric vibrator and a manufacturing method thereof according to the present invention have the following configurations.
The high-frequency piezoelectric vibrator according to claim 1 is formed by forming a concave portion on one surface of the piezoelectric substrate by etching or machining, and a thick annular surrounding portion that mechanically supports the periphery thereof. A high-frequency piezoelectric vibrator integrally configured with
A main electrode for excitation having a predetermined shape formed at a substantially central portion of the vibration portion of the flat main surface of the piezoelectric substrate, and an annular suppression electrode is provided on the concave portion side of the piezoelectric substrate; The main electrode for excitation formed on the flat side of the piezoelectric substrate is arranged so as to surround the periphery thereof without overlapping, and the entire surface on the concave side of the piezoelectric substrate is covered with the entire surface electrode.

請求項2記載の高周波圧電振動子は、前記抑圧電極の電極膜厚を、主電極の電極膜厚に応じて形成することにより、エネルギー閉じ込め係数を制御して、スプリアスの発生を低減するよう構成する。   The high-frequency piezoelectric vibrator according to claim 2, wherein the electrode film thickness of the suppression electrode is formed in accordance with the electrode film thickness of the main electrode, thereby controlling the energy confinement coefficient and reducing spurious generation. To do.

請求項3記載の高周波圧電振動子は、前記圧電基板が、ATカット水晶基板であるよう構成する。   The high-frequency piezoelectric vibrator according to claim 3 is configured such that the piezoelectric substrate is an AT-cut quartz crystal substrate.

請求項4記載の高周波圧電振動子の製造方法は、圧電基板の一方の主面にエッチングにより凹部を形成することにより、薄板状の振動部とその周囲を支持する環状囲繞部とを一体的に形成する工程と、前記圧電基板の両面に、全面にわたって金属膜を所定の膜厚で成膜する第一の成膜工程と、前記圧電基板の平坦側面にのみ金属膜を所定の膜厚で全面にわたり成膜する第二の成膜工程と、圧電基板の平坦側の前記振動部のほぼ中央部に所定の形状で励振用の主電極を、圧電基板の凹部側には前記主電極に重複することなく周囲を囲むように環状の抑圧電極を、フォトリソグラフィ技法とエッチング技法とを用いて形成する工程と、前記抑圧電極を形成した前記圧電基板の凹部側にほぼ全面にわたって、全面電極を成膜する工程とを含むよう構成する。   According to a fourth aspect of the present invention, there is provided a method for producing a high-frequency piezoelectric vibrator, wherein a concave portion is formed by etching on one main surface of a piezoelectric substrate, whereby a thin plate-like vibrating portion and an annular surrounding portion supporting the periphery thereof are integrated. A first film forming step of forming a metal film with a predetermined film thickness on both surfaces of the piezoelectric substrate, and a metal film with a predetermined film thickness only on the flat side surface of the piezoelectric substrate. A main film for excitation in a predetermined shape at the substantially central part of the vibrating part on the flat side of the piezoelectric substrate, and the main electrode for the concave part of the piezoelectric substrate overlapping the main electrode. Forming an annular suppression electrode so as to surround the surrounding without using a photolithographic technique and an etching technique, and forming an entire surface electrode almost entirely on the concave side of the piezoelectric substrate on which the suppression electrode is formed To include To.

上述したように請求項1乃至4に記載の発明は、圧電基板の凹部側に環状の抑圧電極を、圧電基板の平坦側に形成した励振用の主電極と重複することなくその周囲を囲むように励振用の主電極と同一材料を用いて配置し、その後、圧電基板の凹部側全面に全面電極を形成したことにより、スプリアスの少ない良好な共振特性を有すると共に、バッチ処理方式で大量生産が可能であるため製造コストが低下し、高周波圧電振動子を量産する上で著しい効果を発揮する。   As described above, according to the first to fourth aspects of the present invention, the annular suppression electrode is provided on the concave side of the piezoelectric substrate so as to surround the main electrode for excitation formed on the flat side of the piezoelectric substrate without overlapping. The same material as the main electrode for excitation is disposed on the surface, and then the entire surface electrode is formed on the entire recess side of the piezoelectric substrate, so that it has good resonance characteristics with less spurious and mass production by batch processing method. Since this is possible, the manufacturing cost is reduced, and a remarkable effect is exhibited in mass production of high-frequency piezoelectric vibrators.

以下、図示した実施例に基づいて本発明を詳細に説明する。
本実施例においては、薄肉の振動部と該振動部の周囲を機械的に支持する厚肉の環状囲繞部とを一体的に構成した圧電基板の凹部側に、環状の抑圧電極を圧電基板の平坦側に形成した励振用の主電極と重複することなくその周囲を囲むように配置し、且つ、励振用の主電極と同一材料を用いて、質量負荷効果によるエネルギー閉じ込めが十分なされる励振用の主電極の電極膜厚に応じた膜厚差を有する抑圧電極として形成し、その後、圧電基板の凹部側のほぼ全面を全面電極にて覆った。因みに、励振用の主電極との膜厚差は、周波数換算で約0.2%、156MHzの周波数において、電極材料として金を用いた場合、励振用の主電極と抑圧電極の膜厚差は約2nmとなり、励振用の主電極の電極膜厚は50nm、抑圧電極の電極膜厚は48nmとなる。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
In this embodiment, an annular suppression electrode is formed on the concave side of the piezoelectric substrate integrally formed with a thin vibrating portion and a thick annular surrounding portion that mechanically supports the periphery of the vibrating portion. For excitation with sufficient energy confinement due to the mass load effect using the same material as the excitation main electrode, which is arranged to surround the excitation main electrode formed on the flat side without overlapping. A suppression electrode having a film thickness difference corresponding to the electrode film thickness of the main electrode was formed, and then the substantially entire surface on the concave side of the piezoelectric substrate was covered with the entire surface electrode. By the way, the difference in film thickness between the main electrode for excitation is about 0.2% in terms of frequency, and when gold is used as the electrode material at a frequency of 156 MHz, the difference in film thickness between the main electrode for excitation and the suppression electrode is The thickness of the main electrode for excitation is 50 nm, and the thickness of the suppression electrode is 48 nm.

図1は、本発明に係る高周波圧電振動子の構造を示す実施例であり、(a)は上面図を示し、(b)は、A−A’にける断面図を示す。高周波圧電振動子12は、水晶基板2の片面に、エッチング、或いは機械加工により凹部3を形成し、凹部3の底面に設けた薄肉の振動部4の周縁部に、肉厚の環状囲繞部5を前記振動部4と一体的に形成し、薄板状の振動部1を機械的に支持した構造である。   FIG. 1 is an example showing the structure of a high-frequency piezoelectric vibrator according to the present invention, where (a) shows a top view and (b) shows a cross-sectional view taken along A-A ′. The high-frequency piezoelectric vibrator 12 has a concave portion 3 formed on one side of a quartz substrate 2 by etching or machining, and a thick annular surrounding portion 5 on a peripheral portion of a thin vibrating portion 4 provided on the bottom surface of the concave portion 3. Is formed integrally with the vibrating portion 4 and the thin plate-like vibrating portion 1 is mechanically supported.

そこで、水晶基板2の平坦側の薄肉の振動部4のほぼ中央に、励振用の主電極13と、これから導出するリード電極14及び外部パッケージ端子との導通を図るためのパッド電極15を形成している。又、水晶基板2の凹部側の振動部4に抑圧電極16を、水晶基板2の平坦側に形成した励振用の主電極13と重複することなくその周囲を囲むように配置し、電極材料は励振用の主電極13と同一材料とする。更に、水晶基板2の凹部側には、環状囲繞部5の内壁を含めて全面に全面電極17を形成して高周波圧電デバイスとする。 Therefore, a pad electrode 15 for conducting the main electrode 13 for excitation, the lead electrode 14 derived therefrom, and the external package terminal is formed in the approximate center of the thin vibrating portion 4 on the flat side of the quartz substrate 2. ing. In addition, the suppression electrode 16 is arranged on the vibration part 4 on the concave side of the quartz substrate 2 so as to surround the excitation main electrode 13 formed on the flat side of the quartz substrate 2 so as not to overlap, and the electrode material is The same material as the main electrode 13 for excitation is used. Further, a full surface electrode 17 is formed on the entire surface including the inner wall of the annular surrounding portion 5 on the concave portion side of the quartz crystal substrate 2 to obtain a high frequency piezoelectric device.

本実施例によれば、励振用の主電極と抑圧電極を同一電極材料を用いて形成しており、電極膜形成時にバッチ処理が可能となると共に、励振用の主電極と抑圧電極の形成にフォトリソグラフィ技術を使用して、両電極間のギャップ寸法や位置精度の高い電極パターンが形成出来、電極膜厚制御が容易で、CI値の劣化や不要なスプリアス発生を防止出来る電極構造を有する高周波圧電振動子を得ることが可能となる。   According to the present embodiment, the excitation main electrode and the suppression electrode are formed using the same electrode material, batch processing is possible at the time of forming the electrode film, and the formation of the excitation main electrode and the suppression electrode is possible. High-frequency electrode structure that can form electrode patterns with high gap accuracy and position accuracy between both electrodes using photolithography technology, can easily control electrode film thickness, and prevent CI value deterioration and unnecessary spurious generation A piezoelectric vibrator can be obtained.

次に、本実施例における高周波圧電振動子の製造方法について説明する。
図2は、本発明に係わる高周波圧電振動子の第一の製造工程例を示す図であり、図3は、本発明に係わる高周波圧電振動子の第二の製造工程例を示す図である。
図2は、所定の形状に加工した高周波対応の水晶基板の製造工程を示し、図3は、各電極膜の形成工程を示す。又、本工程例は、各電極膜の実施例として全ての電極膜の材料に金を用い、励振用の主電極と抑圧電極の膜厚差は約2nm、励振用の主電極、リード電極、ボンディングパッド電極の電極膜厚は50nm、抑圧電極の電極膜厚は48nmとした。
Next, the manufacturing method of the high frequency piezoelectric vibrator in the present embodiment will be described.
FIG. 2 is a diagram illustrating a first manufacturing process example of the high-frequency piezoelectric vibrator according to the present invention, and FIG. 3 is a diagram illustrating a second manufacturing process example of the high-frequency piezoelectric vibrator according to the present invention.
FIG. 2 shows a manufacturing process of a high frequency crystal substrate processed into a predetermined shape, and FIG. 3 shows a process of forming each electrode film. Also, in this process example, gold is used as the material of all electrode films as an example of each electrode film, the film thickness difference between the main electrode for excitation and the suppression electrode is about 2 nm, the main electrode for excitation, the lead electrode, The film thickness of the bonding pad electrode was 50 nm, and the film thickness of the suppression electrode was 48 nm.

図2を説明すると、高周波圧電振動子を製造するためには、ATカット水晶基板2の表面の所定の位置に保護膜11をフォトリソグラフィ技術で形成した後(ステップ1)、エッチングを行い、水晶基板2の保護膜11が形成されていない部分を所定の形状に凹陥して、薄板状の振動部4とその周囲を支持する環状囲繞部5とを一体的に形成し(ステップ2)、その後、前記保護膜11を剥離して、所定の形状の水晶基板を得る(ステップ3)。   Referring to FIG. 2, in order to manufacture a high-frequency piezoelectric vibrator, a protective film 11 is formed at a predetermined position on the surface of the AT-cut quartz crystal substrate 2 by a photolithography technique (step 1), and etching is performed. A portion of the substrate 2 where the protective film 11 is not formed is recessed into a predetermined shape, and the thin plate-like vibrating portion 4 and the annular surrounding portion 5 supporting the periphery thereof are integrally formed (step 2), and thereafter Then, the protective film 11 is peeled off to obtain a quartz substrate having a predetermined shape (step 3).

次に、図3を説明すると、前工程において所定の形状に加工した水晶基板の
両面に、第一の蒸着として全面にわたって金を電極膜材料とし、真空蒸着機を用いて48nmの膜厚で全面電極膜18を成膜した後(ステップ4)、水晶基板の平坦側面(主電極の形成面)についてのみ、更に、金を電極膜材料とし第二の蒸着として2nmの膜厚で全面にわたり、真空蒸着機を用いて全面電極膜19を成膜して平坦面側の電極膜厚を50nmとする(ステップ5)。この時、真空蒸着機の膜厚制御の一般的な精度は、±10%程度であるので、第一の蒸着時においては±4.8nmの成膜誤差が生じるが、第二の蒸着時においては成膜誤差が±0.2nmとなる。
Next, FIG. 3 will be described. On the both surfaces of the quartz substrate processed into a predetermined shape in the previous step, gold is used as the electrode film material over the entire surface as the first vapor deposition, and the entire surface is formed with a film thickness of 48 nm using a vacuum vapor deposition machine. After the electrode film 18 is formed (Step 4), only the flat side surface (formation surface of the main electrode) of the quartz substrate is further vacuumed over the entire surface with a film thickness of 2 nm by using gold as an electrode film material and second deposition. A full-surface electrode film 19 is formed using a vapor deposition machine, and the electrode film thickness on the flat surface side is set to 50 nm (step 5). At this time, since the general accuracy of the film thickness control of the vacuum vapor deposition machine is about ± 10%, a film formation error of ± 4.8 nm occurs during the first vapor deposition. The film formation error is ± 0.2 nm.

次に、両面に全面電極を形成した水晶基板に、水晶基板の平坦側の振動部のほぼ中央部に所定の形状で励振用の主電極を、該主電極より導出してリード電極、パッド電極を、凹部側には前記主電極に重複することなく周囲を囲むように環状の抑圧電極を、同時にフォトリソグラフィ技法とエッチング技法を用いて形成する(ステップ6)。このように、フォトリソグラフィ技法とエッチング技法を併用することにより、精度の高い電極形成が行え、主電極と抑圧電極間のギャップ寸法や位置精度の誤差を低減できる。又、上述したように、本実施例のような製造工程を経ることにより、励振用の主電極と抑圧電極との電極膜厚差は2nmであるが、その電極膜厚差の誤差は±0.2nm以下であり、CI値の劣化や不要なスプリアス発生を防止するのに必要な電極膜が形成可能となる。   Next, a main electrode for excitation having a predetermined shape is led out from the main electrode to a substantially central portion of the vibration part on the flat side of the crystal substrate on a quartz substrate having full-surface electrodes formed on both sides thereof, and lead electrodes and pad electrodes An annular suppression electrode is formed on the concave side so as to surround the main electrode without overlapping with the main electrode by using a photolithography technique and an etching technique at the same time (step 6). As described above, by using the photolithography technique and the etching technique in combination, it is possible to form an electrode with high accuracy, and to reduce an error in gap size and position accuracy between the main electrode and the suppression electrode. As described above, the electrode film thickness difference between the main electrode for excitation and the suppression electrode is 2 nm through the manufacturing process as in the present embodiment, but the error in the electrode film thickness difference is ± 0. .2 nm or less, and an electrode film necessary to prevent CI value deterioration and unnecessary spurious generation can be formed.

次に、最後の工程として、抑圧電極を形成した水晶基板の凹部側に全面電極を施して高周波圧電振動子は完成する(ステップ7)。
従って本実施例の製造方法においては、電極膜の成膜と各電極の形成をバッチ処理可能となり、同一な電極膜材料を用いて全ての電極を、電極膜厚、電極形状共に精度良く形成できるので、高周波圧電振動子の大量生産に適し、高周波帯の基本振動で動作する高周波圧電振動子を低価格で提供可能となる。
Next, as the last step, the entire surface electrode is applied to the concave side of the quartz substrate on which the suppression electrode is formed, thereby completing the high-frequency piezoelectric vibrator (step 7).
Therefore, in the manufacturing method of this embodiment, the electrode film formation and the electrode formation can be batch-processed, and all the electrodes can be formed with high accuracy in both electrode film thickness and electrode shape using the same electrode film material. Therefore, it is possible to provide a high-frequency piezoelectric vibrator that is suitable for mass production of high-frequency piezoelectric vibrators and that operates with basic vibrations in a high-frequency band at a low price.

尚、以上、ATカット水晶基板を用いた高周波圧電振動子を実施例として本発明を説明したが、本発明はこれに限定されるものではなく、エッチング可能な圧電基板、例えば、ランガサイト(LaGaSiO14)、或いは、四ホウ酸リチウム(Li)の如き圧電材料を用いてもよいことは自明である。
更に、本実施例においては、電極形状が矩形である場合を説明したが、円形電極、楕円形電極についても適応可能である。
Although the present invention has been described above using the high-frequency piezoelectric vibrator using an AT-cut quartz substrate as an example, the present invention is not limited to this, and an etchable piezoelectric substrate such as a langasite (La 3 Ga 5 SiO 14), or, it is obvious that may be used, such as piezoelectric material lithium tetraborate (Li 2 B 4 O 7) .
Furthermore, in the present embodiment, the case where the electrode shape is rectangular has been described, but the present invention can also be applied to a circular electrode and an elliptical electrode.

本発明に係る高周波圧電振動子の構造を示す実施例である。1 is an example showing the structure of a high-frequency piezoelectric vibrator according to the present invention. 本発明に係わる高周波圧電振動子の第一の製造工程例を示す図である。It is a figure which shows the 1st example of a manufacturing process of the high frequency piezoelectric vibrator concerning this invention. 本発明に係わる高周波圧電振動子の第二の製造工程例を示す図である。It is a figure which shows the 2nd example of a manufacturing process of the high frequency piezoelectric vibrator concerning this invention. 従来の高周波圧電振動子の構造例である。It is a structural example of a conventional high-frequency piezoelectric vibrator. 従来の高周波圧電振動子の製造工程例を示す図である。It is a figure which shows the example of a manufacturing process of the conventional high frequency piezoelectric vibrator.

符号の説明Explanation of symbols

1・・高周波圧電振動子、 2・・水晶基板、
3・・凹部、 4・・振動部、
5・・環状囲繞部、 6・・全面電極、
7・・主電極、 8・・リード電極、
9・・パッド電極、 10・・抑圧電極、
11・・保護膜、 12・・高周波圧電振動子、
13・・主電極、 14・・リード電極、
15・・パッド電極、 16・・抑圧電極、
17・・全面電極、 18・・全面電極膜、
19・・全面電極膜

1 .... high frequency piezoelectric vibrator, 2 .... quartz substrate,
3 .... concave, 4 .... vibrating part,
5 .... Annular go, 6 .... Full-surface electrode,
7 ・ ・ Main electrode, 8 ・ ・ Lead electrode,
9 .... Pad electrode, 10 .... Suppression electrode,
11 .... Protective film, 12 .... High frequency piezoelectric vibrator,
13 .... Main electrode, 14 .... Lead electrode,
15 .... Pad electrode, 16 .... Suppression electrode,
17. Full-surface electrode, 18. Full-surface electrode film,
19 .. Full-surface electrode film

Claims (4)

圧電基板の片面に、エッチング、或いは機械加工により凹部を形成することにより、薄肉の振動部と、その周縁を機械的に支持する肉厚の環状囲繞部とを一体的に構成した高周波圧電振動子であって、
前記圧電基板の平坦側主面の前記振動部のほぼ中央部に形成した所定の形状の励振用の主電極を備えており、
前記圧電基板の凹部側には、環状の抑圧電極が前記圧電基板の平坦側に形成した励振用の主電極と重複することなくその周囲を囲むように配置されており、圧電基板の凹部側のほぼ全面が全面電極にて覆われていることを特徴とする高周波圧電振動子。
A high-frequency piezoelectric vibrator in which a thin vibrating portion and a thick annular surrounding portion that mechanically supports the peripheral edge thereof are integrally formed by forming a concave portion on one surface of a piezoelectric substrate by etching or machining. Because
A main electrode for excitation having a predetermined shape formed at a substantially central part of the vibration part of the flat main surface of the piezoelectric substrate;
On the concave side of the piezoelectric substrate, an annular suppression electrode is arranged so as to surround the main electrode for excitation formed on the flat side of the piezoelectric substrate without overlapping, and on the concave side of the piezoelectric substrate, A high-frequency piezoelectric vibrator characterized in that almost the entire surface is covered with a full-surface electrode.
前記抑圧電極の電極膜厚を、主電極の電極膜厚に応じて形成することにより、エネルギー閉じ込め係数を制御して、スプリアスの発生を低減したことを特徴とする請求項1記載の高周波圧電振動子。   2. The high-frequency piezoelectric vibration according to claim 1, wherein the generation of spurious is reduced by controlling the energy confinement coefficient by forming the electrode film thickness of the suppression electrode in accordance with the electrode film thickness of the main electrode. Child. 前記圧電基板が、ATカット水晶基板であることを特徴とする請求項1、又は2記載の高周波圧電振動子。   The high-frequency piezoelectric vibrator according to claim 1, wherein the piezoelectric substrate is an AT-cut quartz substrate. 圧電基板の一方の主面にエッチングにより凹部を形成することにより、薄板状の振動部とその周囲を支持する環状囲繞部とを一体的に形成する工程と、
前記圧電基板の両面に、全面にわたって金属膜を所定の膜厚で成膜する第一の成膜工程と、
前記圧電基板の平坦側面にのみ金属膜を所定の膜厚で全面にわたり成膜する第二の成膜工程と、
圧電基板の平坦側の前記振動部のほぼ中央部に所定の形状で励振用の主電極を、圧電基板の凹部側には前記主電極に重複することなく周囲を囲むように環状の抑圧電極を、フォトリソグラフィ技法とエッチング技法とを用いて形成する工程と、
前記抑圧電極を形成した前記圧電基板の凹部側にほぼ全面にわたって、全面電極を成膜する工程とを含むことを特徴とする高周波圧電振動子の製造方法。
Forming a concave portion by etching on one main surface of the piezoelectric substrate to integrally form a thin plate-like vibrating portion and an annular surrounding portion supporting the periphery thereof;
A first film forming step of forming a metal film with a predetermined film thickness on both surfaces of the piezoelectric substrate;
A second film forming step of forming a metal film over the entire surface with a predetermined film thickness only on the flat side surface of the piezoelectric substrate;
A main electrode for excitation having a predetermined shape is provided at a substantially central portion of the vibration portion on the flat side of the piezoelectric substrate, and an annular suppression electrode is provided on the concave portion side of the piezoelectric substrate so as to surround the main electrode without overlapping with the main electrode. Forming using photolithography technique and etching technique;
A method of manufacturing a high-frequency piezoelectric vibrator, comprising: forming a full-surface electrode over substantially the entire surface of the concave portion of the piezoelectric substrate on which the suppression electrode is formed.
JP2003327211A 2003-09-19 2003-09-19 High frequency piezoelectric vibrator and its manufacturing method Pending JP2005094542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327211A JP2005094542A (en) 2003-09-19 2003-09-19 High frequency piezoelectric vibrator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327211A JP2005094542A (en) 2003-09-19 2003-09-19 High frequency piezoelectric vibrator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005094542A true JP2005094542A (en) 2005-04-07

Family

ID=34457136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327211A Pending JP2005094542A (en) 2003-09-19 2003-09-19 High frequency piezoelectric vibrator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005094542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567014B2 (en) * 2004-10-14 2009-07-28 Murata Manufacturing Co., Ltd. Energy trap piezoelectric resonator
US9503045B2 (en) 2015-01-19 2016-11-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567014B2 (en) * 2004-10-14 2009-07-28 Murata Manufacturing Co., Ltd. Energy trap piezoelectric resonator
US9503045B2 (en) 2015-01-19 2016-11-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object

Similar Documents

Publication Publication Date Title
US9923544B2 (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP4709884B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5796355B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP2001244778A (en) High-frequency piezoelectric vibrator
JP2007037102A (en) Film bulk acoustic resonator, integrated filter integrating surface acoustic wave resonator and fabrication method therefor
JP4665282B2 (en) AT cut crystal unit
JP2004260718A (en) Tuning fork type vibration pieces, manufacturing method of tuning fork type vibration pieces, and piezoelectric device
JP2010088141A (en) Surface acoustic wave device and surface acoustic wave oscillator
JP2011147053A (en) Piezoelectric vibrating piece, and piezoelectric oscillator
JP4665849B2 (en) Method for manufacturing piezoelectric vibration device
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP5910092B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPH11340775A (en) Piezoelectric oscillator
JP2007189492A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator
JP2005094542A (en) High frequency piezoelectric vibrator and its manufacturing method
JP2000040938A (en) Ultra high frequency piezoelectric device
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JP2001257558A (en) Piezoelectric vibrator
JP2003318697A (en) At-cut quartz resonator
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor
JP2003283292A (en) Piezoelectric resonator and filter, duplexer and communication device using the same
JP2004236008A (en) Piezo-electric oscillating member, piezo-electric device using the same, and cell phone unit and electric apparatus using piezo-electric device
JP2884569B2 (en) Method of manufacturing rectangular AT-cut quartz resonator for overtone
JP2001326554A (en) Piezoelectric vibrator