WO1995008566A1 - Nouveau peptide - Google Patents

Nouveau peptide Download PDF

Info

Publication number
WO1995008566A1
WO1995008566A1 PCT/JP1994/001554 JP9401554W WO9508566A1 WO 1995008566 A1 WO1995008566 A1 WO 1995008566A1 JP 9401554 W JP9401554 W JP 9401554W WO 9508566 A1 WO9508566 A1 WO 9508566A1
Authority
WO
WIPO (PCT)
Prior art keywords
gly
peptide
compound
arg
ser
Prior art date
Application number
PCT/JP1994/001554
Other languages
English (en)
French (fr)
Inventor
Kenji Shibata
Toshiyuki Suzawa
Motoo Yamasaki
Koji Yamada
Tatsuhiro Ogawa
Takeo Tanaka
Shiro Soga
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to AU76659/94A priority Critical patent/AU676770C/en
Priority to EP94927080A priority patent/EP0672680A4/en
Priority to JP50968995A priority patent/JP3576554B2/ja
Publication of WO1995008566A1 publication Critical patent/WO1995008566A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel peptide in which a cyclic peptide having a specific structure and a bioactive peptide are bonded via a spacer as required.
  • the peptides of the present invention have higher stability and / or activity than linear bioactive peptides to which no cyclic peptides are bonded.
  • physiologically active peptide examples include a peptide having a cell adhesion inhibitory activity, a protein farnesylase inhibitory peptide, an atrial sodium diuretic peptide binding peptide, and a bradykinin antagonist peptide.
  • Peptides having cell adhesion inhibitory activity generally inhibit the binding of fipurin and other proteins to platelets and blood cells, participate in the regulation of cell adhesion, and serve as a therapeutic agent for platelet aggregation, osteoporosis, inflammation, etc.
  • Protein pharmacolytic enzyme inhibitory peptides generally inhibit protein pharmacosylation, are involved in regulating cell differentiation and proliferation, and are useful as therapeutic agents for cancer and arterial sclerosis.
  • Atrial sodium diuretic peptide receptor-binding peptide generally binds to natriuretic peptide receptor, is involved in regulating blood pressure and fluid volume, and is useful as a therapeutic drug for heart failure, renal failure, hypertension, edema, etc. .
  • the bradykinin antagonist peptide generally has a bradykinin antagonistic activity and is useful as a therapeutic agent for hypertension, inflammation, pain, asthma, sepsis and the like.
  • the cyclic peptide of somatosustin has been found to have increased activity and improved stability compared to the linear peptide due to cyclization. CNature, 292_, 55 (1981)].
  • a peptide having the A rg-G 1 y-Asp (RGD) sequence is an int It is known that they are involved. Pathologies resulting from integrin-mediated cell adhesion include platelet thrombosis, revascularization, osteoporosis, and inflammation, and peptides that inhibit the binding of the RGD sequence to integrin are useful as therapeutic agents for these (Endocrinology, 132 (3), 1411 (1993), J. Cell Biology, 111, 1713 (1990), J. Bone and Mineral Research, 8, 239 (1993), Science, 233, 467 (1986), tissue culture. (14), 486 (1989), Br. J. Cancer, 60, 722 (1989), Jpn. J.
  • Cyclic (-Arg-Gly-Asp-D-Phe-Val-) of RGD-related peptides showed a 20- to 100-fold increase in activity compared to Gly-Arg-Gly-Asp-Ser. [FE BS Lett., 291, 50 (1991)].
  • snake venom peptide Trigramin 72 residues having an RGD sequence in nature and a Cys-Cys cyclic structure [Biochemistry, _28_, 661 (1989)], Albolarin (73 residues), Flavoridin (65 residues) CBioceraistry, 30, 5225 (1991)] is known, and has an activity nearly 1000 times that of Gly-Arg-Gly-Asp-Ser.
  • the following cyclic peptides utilizing these partial structures are known [Japanese Patent Laid-Open No. 5-70364] o
  • FTase is specific for the amino acid sequence of the C-terminal 4 residues of the protein, C a! A 2 X (C is a cysteine residue, a,, and a 2 are aliphatic amino acid residues, and X is any amino acid residue) It is an enzyme that has the function of recognizing and transferring the pharmacophore group of pharynesyl pyrophosphate to a cysteine residue.
  • FTase recognized sequence C a a peptide having a 2 X in the C-terminal has a number a reported [Cel l as FTase inhibitors,, 81 (1990), J. Biol. Chem., 265 ⁇ 14701 (1990 Natl. Acad. Sci. USA, 88, 732 (1991), ibid., 89, 8313 (1992), JP-A-6-157589, JP-A-6-157590. , Cel 57, 1167 (1989), Protein, Nucleic Acid and Enzyme 38, 1695 (1993)]
  • ANP natriuretic peptide found in human atria
  • GC-A and GC-B Two types of receptors, GC-A and GC-B [Nature, 338, 78 (1989), Cell, 58, 1155 (1989), Nature, 341, 68 (1989)]
  • diuretic and hypotensive effects are known as typical effects [Life Sci., 28, 89 ( Ran), Biochem. Biophys. Res. Commun., 118, 131 (1984), J. Clin. Invest., 84, 145 (1989)].
  • ANP agonists are useful as antihypertensive diuretics.
  • C-receptor-binding peptides have been widely reported, mainly including ANP partial peptides and their derivatives ["Peptide Regulation of Cardiovascular Function", pp. 65-77, Ed., Imura, atuo and Masaki, Academic Press (1991), Eur.J. Pharmacol., 147, 49 (1988), J. Med.Chem., 32, 869 (1989) .J. Biol. Chem., 263, 10989 (1988), JP-T-3-50348, Int. J. Peptide Protein Res., 43, 332 (1994), W094 / 14839, WO 94/14840].
  • ⁇ ⁇ A derivative having the following sequence in which the 7th and 18th amino acids are substituted with alanine among the partial peptides having the 7th to 18th amino acid sequences of human ANP
  • BK c- bradykinin
  • Hyp represents hydroxyproline
  • Cyclic BK antagonist peptides have also been reported ["Peptides, Chemistry, Structure and Biology (Proceedings of the 13th American Peptide Symposium)" pp. 381-383, 547-549, 550-552 and 687-689, Ed. , Hodges and Smith, ESC0MC1994)].
  • a peptide represented by the following formula (A) or a pharmacologically acceptable salt thereof is provided.
  • Q represents a bioactive peptide residue
  • X represents the same or a different amino acid residue
  • M represents G 1 y or Cys
  • m represents 5 to 8
  • n represents 0. ⁇ 3 of Each is an integer.
  • bioactive peptide residue represented by the formula Q examples include a peptide residue represented by the following formula (I) and having a cell adhesion inhibitory action.
  • Y 1 and Z 1 represents ⁇ - amino acid residue, hydroxy, represent lower alkoxy or amino. [Rho 1 is 0 to 5, q 1 are each number integer of 0 to 1 0. P The ⁇ -amino acid residues represented by Y 1 in the case where 1 is 2 or more and Z 1 in the case where q 1 is 2 or more may be the same or different.), A protein farnesyl represented by the following formula (II) Enzyme inhibitory peptide residue
  • a 2 , B 2 and C 2 represent ⁇ -amino acid residues, ⁇ 2 represents an integer of 0 to 8, and ⁇ 2 and W 2 have the same meanings as ⁇ ⁇ 1 and W 1 above.
  • ⁇ - amino acid residues [rho 2 is represented by Upsilon 2 in the case of 2 or more may be the same or different.)
  • atrial Natoriumu diuretic base peptide receptor binding base peptide represented by the following formula (III) Residue-(Ala) p 3 — A 3 — B 3 — C 3 — Asp — B 3a -C 3e- D 3 — W 3 (III)
  • P 3 is an integer of 0 to 1, and Z has the same meaning as W 1.
  • a 3 is Phe, Gly, Phe-Gly, Gly-Gly, Phe-Gly. - G ly or represents a single bond
  • B 3 and beta 3 [beta] may be the same or different and represent Ar g or D-a rg
  • C 3 and C 3e are the same or different I 1 e or (N- Methyl) represents I 1 e
  • D 3 represents G 1 y, A 1 a, G 1 y—A 1 a, A 1 a— A 1 a, G 1 y A 1 a-A 1 a or a single bond.
  • a bradykinin antagonist peptide residue represented by the following formula (IV).
  • a 4 represents Ar g, D—Ar g or a single bond
  • B 4 represents hydroxyproline or Pr
  • C 4 represents Ser or Cys, and has the same meaning as W 1. Is.
  • compound (A) the peptide compound represented by the above formula (A) is referred to as compound (A).
  • the alkyl moiety of the lower alkoxy is a straight-chain or branched C1-C6 alkyl group such as Butyl, ethyl, propyl, isopropyl, butyl, isoptyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, isohexyl and the like.
  • ⁇ -amino acid residues include D- or L-form alanine, asparagine, aspartic acid, arginine, cystine, glutamine, glutamic acid, histidine, isoleucine, leucine, lysine, methionine, fenylalanine, proline, serine, Examples include natural amino acid residues such as threonine, tryptophan, tyrosine, phosphoric acid, and glycine, and non-natural amino acids obtained by synthetic methods.
  • -(X) m- is, for example, - ⁇ -Trp-X 2 -Gly-Thr-Ala-X 3- (wherein, X 1 represents Asn or Asp; X 2 represents His or Lys, X 3 represents Pro or Ala.), -Ser-Ala-Ala-Val-Tyr-Phe-, -Phe-Ile-Gly-Trp-Gly-Asn-,- Tyr-Pro- Trp-Trp- Asn- Tyr -Arg-, - Leu- Gly- Val- Gly- Ser- X 4 -Asn- (. wherein, X 4 is to Cys, represents the Ala or Ser), etc. is mentioned Can be
  • P is, for example, -Gly-, -Pro-, -Cys-, -Arg-, -Lys-, -Arg-Ala-, -Phe-Pro -,-Pro-Lys-, -Gly-Arg- ⁇ -lie -Pro-,-et-Thr-, -Leu- Phe-, -Gly- Ser-Arg-, -Val-Thr-Gly-,- I le-Cys -Lys-Arg-Ala-, -l ie- Ser- Lys-Arg-Ala-, -I le-Ala-Lys- Arg-Ala-, -Tyr-I le -Gly-Ser-Arg- , -Tyr-Ala-Val-Thr-Gly-, -Va Tyr-Ala-Val-Thr-Gly-, -Lys-Gly-Thr-Ile-Cys-Arg
  • a 2 and B 2 are preferably an aliphatic amino acid residue or an aromatic amino acid residue, for example, an amino acid residue such as Val, Ile, Leu. can give.
  • C 2 for example, Met, Ser,
  • Amino acid residues such as Leu.Gln, Asn and the like.
  • -(Y 2 ) P 2- includes, for example, -Ser-Ser-Gly-, -Ser-Met-Gly-Leu-Pro-, -Gly-Ser-Met- Ser-Cys-Lys Ala— Met— Ser Cys— Lys, Cys— Val— ys— lie— Lys Lys ⁇ One Lys— ys— Ser- ys- Thr-Lys-,-Lys-Lys-Ser-Arg-Thr- Arg-,-Gly-Cys-Met-Gly-Leu-Pro-,-Gly- Cys-Met- Gly-Ser- Pro-,-Gly-Lys-Lys- Lys-Ser-Gly-, -Asn-Gly- Cys- lie -Asn-Cys-, -Asn-Lys-Arg-Arg-Arg-
  • the pharmacologically acceptable salts of compound (A) include acid addition salts, metal salts, and organic base addition salts.
  • pharmacologically acceptable acid addition salts include inorganic acid salts such as hydrochloride, sulfate, phosphate, and organic salts such as acetate, maleate, fumarate, tartrate, and citrate.
  • pharmacologically acceptable metal salts include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, zinc salt and the like. Is raised.
  • Examples of pharmacologically acceptable organic bases include primary amines such as methylamine, ethylamine, and aniline, dimethylamine, dimethylamine, pyrrolidine, piperidine, morpholine, secondary amines such as piperazine, trimethylamine, triethylamine, N, Examples include tertiary amines such as N-dimethylaniline and pyridine, and ammonia.
  • Fmo c -H is (Tr t) -OH; ⁇ -9-Fluorenylmethyloxycarbonyl N im —Trityl-L-histidine
  • the cyclic peptide in compound (A) can be obtained by using a peptide synthesizer or a general liquid-phase peptide synthesis method ("Peptide Synthesis Basics and Experiments" by Nobuo Izumiya et al., Maruzen). It is synthesized and obtained by a cyclization reaction using a condensing agent such as Py BOP. Further, the compound (A) can be obtained by condensing the C-terminal linear peptide obtained by using a peptide synthesizer or a liquid phase synthesis method, or by appropriately combining both methods, with the above cyclic peptide.
  • Peptide synthesis using a peptide synthesizer was carried out using a peptide synthesizer manufactured by Applied Biosystems, Inc., USA (ABI) or a peptide synthesizer manufactured by Shimadzu Corporation. It can be carried out according to the company's synthesis program using carbonylamino acid or the like, or using ⁇ -9-fluorenylmethyloxycarbonylamino acid or the like appropriately protected in the side chain. Partial peptide
  • the compound (A) obtained in this way can be used for high performance liquid chromatography (hereinafter referred to as HPLC) using a C-14, C-8 or C-18 reversed-phase silica gel column or partition, adsorption resin, silica gel. Purified by column chromatography or thin-layer chromatography such as chemically modified silica gel, reverse-phase silica gel, alumina, diatomaceous earth, magnesium silicate, ion exchange resin, or gel filtration. be able to.
  • HPLC high performance liquid chromatography
  • the acid addition salt and the organic base addition salt of the compound (A) can be obtained by dissolving the compound (A) in an aqueous solution of the corresponding acid or organic base, and freeze-drying.
  • the metal salt of compound (A) can be obtained by dissolving compound (A) in an aqueous solution containing the corresponding metal ion and purifying the solution by gel filtration or HPLC.
  • Table 1 shows specific examples of the compound (A).
  • the cell adhesion inhibition rate was calculated from the measured absorbance according to the following formula.
  • the cells were labeled with biotin by the following method.
  • Cardiac blood was collected with 3.8% sodium citrate: blood (1: 9) from white heron (oss, 2 kg) and centrifuged at 90 Or.pm to obtain a supernatant containing platelet-rich serum (P latelet—Rich). The supernatant was collected and the lower layer was centrifuged at 2500 rpm and the supernatant was used as platelet-poor serum (P latelet—Pool Plasma, PPP). Provided.
  • the platelet aggregation rate was measured using a platelet aggregation measuring device TE-500 manufactured by Elma Optical Co., Ltd. As the standard of the aggregation rate, the measured value of PRP itself was set to 0% and the measured value of PPP itself was set to 100%. Test compound (compound 1 and compound b) solutions were prepared at final concentrations of 1, 0.3, and 0.1 mM.
  • the amount of (Amersham 20 Ci / mmO1) was quantified by measuring the radiation dose on a liquid scintillation counter.
  • the reaction mixture contained V—K i—Ra sp 21 (2 ⁇ g), [ 3 H] pharynesyl diphosphate (0.1 ⁇ M), and 5 OmM tris-hydrochloride (Tris_HC) in 50 n1.
  • V—K i—Ra sp 21 2 ⁇ g
  • [ 3 H] pharynesyl diphosphate 0.1 ⁇ M
  • Tris_HC 5 OmM tris-hydrochloride
  • the reaction by the addition of [3 H] Fuar Neshirujihosufuwe one bets after 3 minutes Blaine particulate adipate above reaction solution at 37 ° C for excluding [3 H] off Arne sill di phosphatidyl We Ichito Started. After reacting at 37 ° C for 30 minutes, the reaction was stopped by adding 0.5 ml of 4% 303, 0.5 ml of 30% TCA was added, and the mixture was allowed to stand on ice for 60 minutes to filter the denatured protein by suction filtration ( Glass filter by ADVA NTEC MULT IFI LTER MF 1 2 G)
  • the vessel used for the reaction was washed twice with 2 ml of 2% SDSZ 5% TCA, and the glass filter was washed 5 times with 2 ml of 6% TCA, dried for 30 minutes, mixed with 6 ml of scintillation liquid, and liquid scintillated.
  • the radiation dose was measured with a screen counter.
  • the enzyme inhibition rate was calculated according to the following equation.
  • bovine brain 50 mM Tris-HC1 (pH8.0), 1 mM EDTA, 1 mM MgC12, 5 mM DTT, 2 g / m1 leptin
  • Bovine lung tissue at 4 ° C Buffer A (1 mM NaHC0 3, 5mM EDTA, 5 iL g / m 1 Roipe leptin, S ⁇ gZm l Bae Pusutachin A, 4 0 ⁇ M PM SF, pH 8. 3) Homogenization was performed using a medium polytron (type PT10Z35K Kinema tica GmbH).
  • the resulting suspension was centrifuged at 4 ° C at 8,000 xg for 10 minutes to obtain a supernatant.c
  • the obtained supernatant was collected at 4 ° C, 40,000 xg. Further centrifugation was performed for 60 minutes to obtain a solid.
  • the obtained solid was suspended in buffer A and centrifuged again at 4 ° C at 40,000 xg for 60 minutes. The obtained solid was suspended so that the protein content was 2 mgZm1, and used as a membrane fraction.
  • Buffer solution B 50 mM Tris-HCl, 1 mM EDTA, 0.2% bovine serum albumin, pH 7.6 Add membrane fraction solution 12.5 ⁇ 1 per ml to prepare membrane fraction solution did.
  • Guinea pig ileal tissue was incubated at 4 ° C with buffer A C25 mM N-Tris (hydroxymeth (Chill) Methyl-2-aminoenesulfonic acid-NaOH, pH 6.8] Polytron (type PT10Z35 Kinematica GmbH) was used for homogenization.
  • the obtained solid was suspended in buffer A and centrifuged again at 4 ° (: 40,00 O xg for 60 minutes.
  • the obtained solid had a protein content of 2 mgZm. It was prepared as a suspension solution so as to be 1 and used as a membrane fraction.
  • Buffer B 25 mM N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid-NaOH, 0.1% bovine serum albumin, 0.014% bacitracin, pH 6.8
  • Membrane fraction per ml Liquid 12.5 ⁇ 1 was added to prepare a membrane fraction solution.
  • 3 H-BK (200 pM) was added to the membrane fraction solution to which unlabeled BK (final concentration 1 / zM) was added, test drug was added, or neither was added. After incubating the mixture at 25 ° C for 1.5 hours, the mixture was filtered through a glass filter GFZB (Whattman) presoaked with 0.3% polyethyleneimine. After washing the filter with buffer C (5 OmM Tris-HC ImM EDTA, pH 7.6), the radioactivity on the glass filter was measured with a liquid scintillation counter (LSC 3500, Aroca) and received. the body and 3 H-BK amount non-specifically bound was measured to calculate the guinea pig BK receptor binding inhibition rate according to the following equation.
  • Compound 1 or compound b was converted to a 25 ⁇ g / ml solution using PBS (-) buffer, pH 7.2, containing 0.01% sodium azide and 0.1 mM calcium chloride. After the preparation, a one-twentieth amount of triscine (SI GMA) was added to compound 1 or b in a weight ratio, and the mixture was incubated in a thermostat at 37 ° C, and a constant amount was collected over time. The collected liquid was analyzed using HPLC using a reversed-phase column (YMC—Pack ODS-AM150 ⁇ 6 mm ID), and using 0% to 45% acetonitrile containing 0.1% TFA. It was eluted with a 30-minute linear concentration gradient and detected by absorbance at 220 nm.
  • Compound 2 or compound c was purified using PBS (-) buffer, pH 7.2, containing 0.01% sodium azide and 0.1M ImM calcium chloride. And then add 1/10 by weight of compound 2 or c to 1/100 of chymotrypsin (SI GMA) and ⁇ -p-tosyl-L-lysine chloromethyl ketone (SI GMA). Incubation was performed in a thermostat at 37 and 37, and a constant amount was collected over time. The collected liquid was analyzed using HPLC using a reversed-phase column (YMC—Pack O DS-A150 ⁇ 6 mm ID), and using 0% to 45% acetonitrile containing 0.1% TFA. The eluate was eluted with a linear concentration gradient for 2 min and detected by absorbance at 220 nm.
  • Compound 3 or compound d was treated with 25 gZm 1 using 0.1% sodium azide, 0. ImM calcium chloride and 0.5 mM DTT in pH 7.2 PBS (-) buffer. After adjusting the concentration of the solution to 3%, add 1/500 by weight of prolyl endopeptidase (Seikagaku Corporation) to Compound 3 or d, and incubate in a thermostat at 37 ° C. A certain amount was collected. The collected liquid was analyzed by HPLC using a reversed-phase column (YMC—Pack ODS-AM 150 x 6 mm ID) using 0-45% acetonitrile containing 0.1% TFA. Elution was performed with a linear concentration gradient for 30 minutes, and detection was performed by absorbance at 220 nm.
  • YMC—Pack ODS-AM 150 x 6 mm ID reversed-phase column
  • FIG. 1 shows the percentage of cell adhesion inhibition at each concentration of compound 1 and compound b.
  • FIG. 2 shows the percentage of cell adhesion inhibition at each concentration of compound 2 and compound c.
  • FIG. 3 shows the stability of Compound 1 and Compound b against trypsin in terms of the residual ratio.
  • FIG. 4 shows the stability of compound 2 and compound c against —chymotrypsin in terms of the residual ratio.
  • FIG. 5 shows the stability of compound 3 and compound d with respect to prolyl endopeptidase by the residual ratio.
  • FIG. 6 shows the stability of compound 5 and compound f with respect to prolyl endopeptidase by the residual ratio.
  • Amino acid analysis was performed according to the method of Bidlingmeyer. B.A. et al. [J. Chromatogr., 3 ⁇ 4_93 (1984)].
  • the hydrolysis was carried out in hydrochloric acid vapor at 110 ° C. for 22 hours.
  • the amino acid composition of the hydrolyzate was analyzed using a Waters Pico Tag amino acid analyzer.
  • the measured value is represented by setting the value of Ala to 1.00.
  • the obtained resin contains 2-methylindole at a ratio of 5 mg Zm1, 82.5% TFA, 5% thioanisole, 5% water, 3% ethylmethyl sulfide, 2.5% 1, 1501 of a mixed solution of 2-ethanedithiol and 2% thiophenol was added, and the mixture was allowed to stand at room temperature for 7 hours to remove side chain protecting groups and to cut out peptides from the resin. The resin was then filtered off and approximately 10 ml of ether was added to the resulting solution to give the resulting precipitate as a crude peptide. This was purified by HPLC in the same manner as in Reference Example 2 to obtain 0.9 mg of Compound 1.
  • the resulting resin contains 2-methylindole at a rate of 5 mg / m1, 82.5% TFA, 5% water, 5% thioanisole, 2.5% 1,2-ethanedithiol, 3% 200 ml of a mixed solution of ethyl methyl sulfide and 2% thiophenol was added, and the mixture was allowed to stand at room temperature for 6 hours to remove side-chain protecting groups and cut out peptides from the resin. Then, the resin was filtered off, and about 2 ml of ether was added to the obtained solution, and the resulting precipitate was obtained as a crude peptide. This was purified by HPLC in the same manner as in Reference Example 2 to obtain 1.3 mg of Compound 6.
  • H is l. 0 (1), Ar g l. 8 (2), Thr l. 0 (l), Al a l. 0 (1), Pr o l. 0
  • the resulting resin contains 2-methylindole in a proportion of 5 mg Zm 1, 82.5% TFA, 5% water, 5% thioanisole, 2.5% 1,2-ethanedithiol, 3% 6001 of a mixed solution of ethyl methyl sulfide and 2% thiophenol was added, and the mixture was allowed to stand at room temperature for 6 hours to remove side chain protecting groups and to cut out peptides from the resin. Then, the resin was filtered off, and about 2 ml of ether was added to the obtained solution, and the resulting precipitate was obtained as a crude peptide. This was purified by HPLC in the same manner as in Reference Example 2 to obtain 2.0 mg of compound 11.
  • Boc—Ala—Pro was synthesized on the carrier.
  • the condensation reaction is performed by adding the symmetric acid anhydride of Boc-Thr (Bz1) -OH in the step (6).
  • the washing step (7) was performed to synthesize Boc-Thr (Bz1) -A1a-Pro on the carrier resin.
  • steps (1) to (7) were sequentially repeated to obtain 1.2 g of a carrier resin to which the protected peptide was bonded.
  • step (6) B0c-G1y-OH, Boc-His (Bom) -OH, Boc-Trp (CHO) -OH, Boc-Asn-OH and Fmoc-G1y-OH was used.
  • the carrier resin was removed (fully automatic high-speed cooling centrifuge, RS-20 type, Tommy Seie) at 100,000 rpm for 10 minutes to obtain a supernatant.
  • This liquid is removed with a concentrator (ROTARY VACUUM EV APORATOR N-2 type Tokyo Rikakiki) to remove DMF and treated with 2 M acetic acid As a result, a crude product 4 6 4. Omg was obtained.
  • Step 3 Synthesis of H-Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-OBz1 (SEQ ID NO: 2)
  • Fmo c—A 1 a 30 zmo] bound carrier resin (Fmo c-A 1a-Wang Re sin) 50 mg was put into the reactor of the automatic synthesizer, and the operation was performed according to the synthesis program of Shimadzu Corporation. Was.
  • step (d) After performing the washing and deprotection steps of (a) to (c), in step (d), a condensation reaction is performed using Fmoc-Ser (t-Bu) 10H, and then ( After the washing step e), Fmoc—Ser (t_Bu) —Pro—A1a was synthesized on the carrier.
  • step (d) Fmo c—Asp (0 t-Bu) —OH, Fmoc—Gly—OH, Fmoc—Arg (Pmc) —OH, Fmoc—Gly-OH, Fmo (a) to (e) are repeated by sequentially using c-Thr (t-Bu) -OH and Fmoc-Va1OH to obtain a carrier resin to which the protected peptide is bound.
  • the carrier resin obtained by performing the washing and deprotection steps of (c) was washed with methanol and butyl ether, and dried under reduced pressure for 3 hours.
  • Amino acid analysis A sx O. 9 (1), G 1 y 1.7 (2), Th rl. 0 (1), A 1 a 2.0 (2), Pro O. 9 (1), 9 (2), Tyr O. 9 (1), A rg 1.0 (1), Ser 0.9 (1)
  • step (d) After performing the washing and deprotection steps of (a) to (c), a condensation reaction is performed in step (d) using Fmoc-Va1-OH, and then the washing step of (e) is performed. After that, Fmoc-Va1-Va1-Met was synthesized on the carrier.
  • step (d) Fmoc—Cys (Trt) —H, Fmoc—Pro—OH, Fmoc—Leu—OH, Fmoc—Gly—OH, Fmoc-Me (a) to (e) are repeated by using t-OH Fmoc-Ser (t-Bu) -OH sequentially to obtain a carrier resin to which a protective peptide is bound, and further, (a) to (c) The carrier resin obtained by performing the washing and deprotection steps was washed with methanol and butyl ether, and dried under reduced pressure for 3 hours to obtain 120. 9 mg of the carrier resin to which the protected peptide was bound.
  • step (d) Fmoc— As p (0 t- ⁇ ⁇ ) -OH, Fmo c-I 1 e-OH.
  • Fmo c-Ar g (Pmc) -OH, Fmo c-G ly— (A) to (e) are repeated using OH, Fmoc-Gly-OH, and Fmoc-Phe-OH sequentially to obtain a carrier resin to which the protected peptide is bound.
  • the carrier resin obtained by performing the washing and deprotection steps of c) was washed with methanol and butyl ether, and dried under reduced pressure for 3 hours to obtain 122.lmg of the carrier resin to which the protected peptide was bound.
  • Fmoc-Gly-OH, Fmoc-Gly-OH and Fmoc-Phe-OH were used to obtain 202.Omg of a carrier resin to which the protective peptide was bound. Using 72.0 mg of this, the peptide was excised from the resin and purified by HPLC as in Reference Example 7 to obtain 11.3 mg of Compound II.
  • Fmoc-Gly- ⁇ H, Fmoc-G1y-OH, and Fmoc-Phe-OH are sequentially condensed as Fmoc amino acids to form a protected peptide.
  • the carrier resin 1 1 5. Omg was obtained.
  • the peptide was cut out from the resin and purified by HPLC in the same manner as in Reference Example 7 to obtain compound k.l.3 mg.
  • a novel peptide in which a cyclic peptide having a specific structure and a physiologically active peptide are bonded via a spacer as necessary.
  • the peptides of the present invention have higher stability and Z or activity than bioactive peptides to which no cyclic peptides are bound.
  • X a a represents — 9-fluorenylmethyloxycarbonylglycine
  • Xaa represents tributophan benzyl ester
  • X a a represents N — 9-fluorenylmethyloxycarbonylglycine
  • Xa a represents aspartic acid-S-t-butyl ester Characterizing symbol: Modified-site
  • Xa a represents tributophan benzyl ester
  • Xaa is a sequence representing alanine amide
  • Xaa represents isoleucine amide.
  • Xa a represents alanine amide.
  • X a a represents N-methyl-L-isoleucine Character indicating characteristic: Modified-site
  • Xaa represents isoleucine amide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

明 細 書
新規べプチド
技 術 分 野
本発明は、 特定の構造からなる環状べプチドと生理活性べプチドとを必要によ りスぺーサーを介して結合させた新規べプチドに関する。 本発明のぺプチドは、 環状ぺプチドが結合していない直鎖状の生理活性べプチドより高い安定性及び 又は活性を有する。
生理活性ペプチドとしては、 細胞接着阻害作用を有するペプチド、 蛋白質ファ ルネシル化酵素阻害べプチド、 心房性ナトリゥム利尿べプチド受容体結合べプチ ド、 ブラジキニン拮抗ペプチドなどがあげられる。 細胞接着阻害作用を有するぺ プチドは、 一般に血小板や血球細胞へのフィプリン及び他の蛋白質との結合を阻 害し、 細胞付着の調節に関与し、 血小板凝集、 骨粗しょう症、 炎症などの治療剤 として有用である。 蛋白質フアルネシル化酵素阻害ペプチドは、 一般に蛋白質の フアルネシル化修飾を阻害し、 細胞の分化及び増殖の調節に関与し、 癌や動脈硬 化症の治療薬として有用である。 心房性ナトリゥム利尿べプチド受容体結合ぺプ チドは、 一般にナトリウム利尿ペプチド受容体に結合し、 血圧及び体液量の調節 に関与し、 心不全、 腎不全、 高血圧、 浮腫などの治療薬として有用である。 ブラ ジキニン拮抗ペプチドは、 一般にブラジキニン拮抗作用を有し、 高血圧、 炎症、 とう痛、 喘息、 敗血症などの治療薬として有用である。
背 景 技 術
直鎖状の生理活性べプチドの多くは溶液中の立体構造が均一ではなく、 また対 プロテア一ゼ安定性が悪いことが知られている。 そこで、 これらの点を解決する 目的から立体構造の固定を意図した環状ぺブチド誘導体が知られている。
例えば、 ソマトス夕チンの環状ペプチドは、 環状化により、 直鎖ペプチドに比 ベ活性上昇、 安定性の向上が認められている CNature, 292_, 55(1981) 〕 。
また、 ガラニンの部分ペプチドについての環状ペプチドは、 立体構造の安定化 ははかられているが、 活性の著しい減少が認められている 〔 Int. J. Peptide
Protein Res. , 38, 267 (1991)〕 。
A r g - G 1 y - A s p (R G D) 配列を有するぺプチドはィンテグ'、)ンの結 合に関与していることが知られている。 ィンテグリンを介した細胞接着による病 態として血小板血栓、 血管再閉塞、 骨粗しょう症、 炎症などがあり、 R G D配列 のィンテグリンへの結合を阻害するべプチドはこれらの治療薬として有用である [Endocrinology, 132(3), 1411 (1993), J. Cel l Biology, 111 , 1713(1990), J. Bone and Mineral Research, 8 , 239(1993), Science, 233 , 467(1986), 組織培養 . 15 (14), 486 (1989), Br. J. Cancer, 60 , 722 (1989), Jpn. J.
Cancer Res. , 81 , 668(1990), Cel l, 65 , 359 (1991), Science , 260 , 906
(1993), 実験医学, 1^(11), 76(1992)) 。
R G D関連べプチドに関して、 下記のヒトフィブロネクチンの部分配列が知ら れている [Nature ¾_ 66 (1991)] 。
H-Va 1 -Thr-G 1 y- Arg- G 1 y- Asp-Ser-Pr o_0H
H-Val-Tyr-Ala-Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-OH
R G D関連べプチドに関しては環状べプチド Cycl ic(-Arg- Gly- Asp- D- Phe- Val -)は Gly-Arg-Gly- Asp- Serに比べ、 20〜100 倍の活性上昇が認められている 〔FE BS Lett. , 291 , 50 (1991)〕 。
また、 自然界で R G D配列を有し、 Cys-Cys 環状構造を有するへビ毒ペプチド Trigramin(72残基) [Biochemistry, _28_, 661 (1989)〕 、 Albolarin(73残基) , Flavoridin (65 残基) CBioc eraistry, 30, 5225 (1991) 〕 などが知られてお り、 活性的には Gly-Arg-Gly- Asp- Serの約 1000倍近い活性を有している。 さらに、 これらの部分構造を利用した下記の環状べプチドが知られている 〔特開平 5- 7036 4 〕 o
X- Cys-R- R- R-Arg- Gly-Asp- R-R-R-R- R- Cys-Y
(式中、 Xは H、 少なくとも一つのアミノ酸残基、 Yは O H、 少なくとも一つの アミノ酸残基、 Rは各々、 同一または異なるアミノ酸残基である。 ) この他、 環状 Arg-Gly-Asp関連ペプチドに関して、 多数の報告がある [Bi ochem. Biophys. Res. Commun. , 177, 74 (1991), Angew. Chem., 104, 341 (1992), Tetrahedron Let t. , 33, 1479 (1992), J. Chem. Soc. Perkin Trans., 2, 601 (1991), Cancer Lett. , 65 , 259 (1992), J. Med. Chem. , 35, 3962(1992),
USP 4683291, W089-05150, EP-A-0319506, EP-A-0341915, 特開平 4-506803。 〕 蛋白質のフアルネシル化修飾は、 フアルネシルトランスフヱラーゼ (FTase ) によって触媒されることが知られている。 この修飾により活性化される Ras 蛋白 質は、 細胞の分化、 増殖の調節に関与しており、 何等かの変異により調節を逸脱 した場合、 細胞が形質転換を起こし癌化すると考えられている。 従って Ras 蛋白 質のフアルネシル化修飾を阻害する物質は抗癌剤として有用である。
FTase は、 蛋白質の C末端 4残基のアミノ酸配列、 C a ! a 2 X ( Cはシステ イン残基、 a , 、 a 2 は脂肪族アミノ酸残基、 Xは任意のアミノ酸残基) を特異 的に認識し、 フアルネシルピロリン酸のフアルネシル基をシスティン残基に転移 する働きを有する酵素である。
FTase が認識する配列 C a , a 2 Xを C末に有するペプチドは、 FTase 阻害剤 として多数報告されている [ Cel l, , 81 (1990) 、 J. Biol. Chem., 265^ 14701 (1990)、 ibid. , 266, 15575(1991)、 Proc. Natl. Acad. Sci. USA, 88, 732(1991)、 ibid. , 89, 8313 (1992) 、 特開平 6-157589、 特開平 6- 157590、 Cel l 57, 1167 (1989)、 蛋白質 ·核酸 ·酵素 (Protein, Nucleic Acid and Enzyme) 38, 1695 (1993) ] o
例えば、 下記配列を有するペプチドが知られている。
H-Cys-Met-Gly-Leu-Pro-Cys-Val-Val-Met-OH
[Cel l 57, 1167 (1989) 、 蛋白質 ·核酸,酵素 (Protein, Nucleic Acid and Enzyme) _S^_ 1695 (1993)]
H-Ser-Ser-Gly-Cys-Val-Leu-Ser-OH
[J. Biol. Chem. , 265^_ 14701 (1990)] また、 これらべプチドの類縁体についても報告がなされている [J. Biol. Chem., 268, 18145 (1993)、 ibid. , 268^ 20695 (1993)、 ibid. , 269, 12410 (1994) 、 Science, 260, 1934(1993)、 Bio. Med. Chem. Lett. , 4, 887(1994)]。 FTase 阻害ペプチドに関しても、 環状化を目的として誘導体化がなされ、 1 0 〜5 0倍の活性の上昇が認められている [Science, 260, 1937(1993)] 。
ヒト心房より見いだされたナトリウム利尿ペプチド (以下、 AN Pと略記する c ) は、 2種類の受容体 G C— A、 G C— Bを介して生理活性を発現することが知 られており [Nature, 338, 78(1989)、 Cel l, 58, 1155 (1989)、 Nature, 341, 68 (1989)] 、 代表的な作用に利尿、 降圧作用が知られている [Life Sci., 28, 89 (蘭)、 Biochem. Biophys. Res. Commun. , 118, 131 (1984)、 J. Cl in. Invest., 84, 145(1989)]。 従って、 AN Pァゴニストは降圧利尿剤として有用である。
一方、 これらの受容体とは別に、 細胞内シグナル伝達ドメインを持たない C受 容体の存在も知られており、 この受容体は A N Pが結合しても生理作用を示さず、 AN Pのクリアランスレセプ夕一として働いていると考えられている [Science, 238, 675(1987) 、 Cellular Signalling, 61_125(1994)]0 従って、 C受容体に結合 する物質は、 AN Pのクリアランスを阻害することにより血中 A N P濃度を上昇 させることができ、 AN Pァゴニストと同様の効果を示すと考えられる。
C受容体結合ペプチドは、 AN P部分ペプチドと、 それらの誘導体を主に、 多 数報告がなされてレヽる ["Peptide Regulation of Cardiovascular Function", pp. 65-77, Ed. , Imura, atuo and Masaki, Academic Press(1991) 、 Eur. J. Pharmacol. , 147, 49(1988)、 J. Med. Chem. , 32, 869(1989). J. Biol. Chem. , 263, 10989(1988) 、 特表平 3-50348、 Int. J. Peptide Protein Res. , 43, 332(1994), W094/14839、 WO 94/14840] 。
例えば、 "Peptide Regulation of Cardiovascular Function", pp. 65-77, Ed. , Imura, Matuo and Masaki, Academic Press(1991) には、 下記のヒト AN Pの 8〜 1 5番目のアミノ酸配列を有する部分ペプチド
H-Phe-G 1 y-G 1 y-Arg- 11 e-As p-Ar g- 11 e-NH 2
ゃヒト AN Pの 7〜1 8番目のアミノ酸配列を有する部分べプチドのうち、 7お よび 1 8番目のアミノ酸がァラニンに置換された下記配列を有する誘導体
H-Ala-Phe-Gly-Gly-Arg-Ile-Asp-Arg-Ile-Gly-Ala-Ala-NH2
が知られている。
AN P部分ペプチドに関しても、 環状化を目的として誘導体化がなされ、 2倍 程度の受容体結合活性の上昇が認められている [J. Med. Chem. , 32, 67 (1989) ]c ブラジキニン (以下、 B Kと略記する。 ) は、 血管収縮、 気管支収縮、 炎症反 応、 痛覚伝達など様々な生理作用を有する内因性ペプチドであり、 高血圧、 炎症、 とう痛、 喘息、 敗血症等の病態に関与する物質の 1つと考えられている。 従って、 B Kに拮抗しこの作用を阻害する物質はこれらの病気の治療並びに予防に有用と 期待される。
B K拮抗ペプチドに関しては多くの報告がなされている [ " Smal l Pept ides, Chemistry, Biology and Cl inical Studies" pp. 83-102, E , A. S. Dutta, Elsevier(1993)、 "Peptides, Chemistry, Structure and Biology (Proceedings of the 13th American Peptide Symposium)" pp. 349-352, 353-355 and 449-451, Ed., Hodges and Smi th, ESC0M(1994)、 Bio. Med. Chem. Let t. , 4^781 (1994)]0 例 えば、 下記配列を有する B K拮抗べプチドが知られている。
H-D-Arg-Arg-Pro-Hyp-Gly-Phe-Cys-D-Phe-Leu-Arg-OH
(式中、 Hyp はヒドロキシプロリンを表す。 )
["Peptides, Chemistry, Structure and Biology (Proceedings of the 13th American Pept ide Symposium)" pp. 349-352, 353-355 and 449 - 451, Ed. , Hodges and Smi th, ESC0MC1994)]
また環状の B K拮抗ペプチドも報告されている [ "Peptides, Chemistry, Structure and Biology (Proceedings of the 13th American Peptide Symposium)" pp. 381-383, 547-549, 550-552 and 687-689, Ed., Hodges and Smi th, ESC0MC1994)] 。
しかしながら、 本発明で提供される該新規べプチドに関する報告はない。
発 明 の 開 示
本発明によれば、 下記式 (A) で表されるペプチドまたはその薬理学的に許容 される塩が提供される。
I ( ヽ
ヒ M - (X)m-Asp - (Trp)n- Q
(式中、 Qは生理活性ペプチド残基を表わし、 Xは同一または異なったひ—アミ ノ酸残基を表す。 Mは G 1 yまたは C y sを表わし、 mは 5〜8、 nは 0〜3の それぞれ整数である。 )
式 Qで表される生理活性ペプチド残基としては、 例えば下記式 (I) で表され る細胞接着阻害作用を有するぺプチド残基
— (Υ')ρ1— Arg -Gly -Asp — (Z q1— W1 (I)
(式中、 Y1 および Z1 は α—アミノ酸残基を表わし、 はヒドロキシ、 低級 アルコキシまたはアミノを表わす。 Ρ1 は 0〜5、 q 1 は 0〜1 0のそれぞれ整 数である。 P1 が 2以上の場合の Y1 および q1 が 2以上の場合の Z1 で表わさ れる α—アミノ酸残基は同一または異なっていてもよい。 ) 、 下記式(II)で表さ れる蛋白質フアルネシル化酵素阻害べプチド残基
-(Y2)p -Cys 一 A2— B2— C2— W2 (II)
(式中、 A2 、 B2 および C2 は α—アミノ酸残基を表わし、 Ρ2 は 0〜8の整 数を表わし、 Υ2 および W2 は前記 Υ1 および W1 と同義である。 ρ2 が 2以上 の場合の Υ2 で表される α—アミノ酸残基は同一または異なっていてもよい。 ) 、 下記式(III) で表される心房性ナトリゥム利尿べプチド受容体結合べプチド残基 -(Ala)p3 — A3— B3— C3— Asp — B3a -C3e 一 D3— W3 (III)
(式中、 P3 は 0〜1の整数であり、 ず は前記 W1 と同義である。 A3 は、 Phe、 G l y、 Phe - Gl y、 Gl y - Gl y、 Ph e— G l y - G l yま たは単結合を表し、 B3 および Βは、 同一または異なって Ar gまたは D— A r gを表し、 C3 および C3eは、 同一または異なって I 1 eまたは (N—メチ ル) I 1 eを表し、 D3 は、 G 1 y、 A 1 a、 G 1 y— A 1 a、 A 1 a— A 1 a、 G 1 y-A 1 a -A 1 aまたは単結合を表す。 ) または下記式(IV)で表されるブ ラジキニン拮抗べプチド残基などがあげられる。
-A4-Arg-Pro-B -Gly-Phe-C -D-Phe-Leu-Arg-W4 (IV)
(式中、 A4 は Ar g、 D— Ar gまたは単結合を表し、 B4 はヒドロキシプロ リンまたは P r 0を表し、 C4 は S e rまたは Cy sを表し、 は前記 W1 と 同義である。 )
以下、 上記式 (A) で表わされるペプチド化合物を化合物 (A) という。
上記式 (A) 、 (I) 、 (II) 、 (III) および(IV)の定義において、 低級アル コキシのアルキル部分は、 直鎖もしくは分岐状の炭素数 1〜6の、 例えば、 メチ ル、 ェチル、 プロピル、 イソプロピル、 プチル、 イソプチル、 sec -プチル、 tert - プチル、 ペンチル、 ネオペンチル、 へキシル、 イソへキシル等があげられる。 α—アミノ酸残基としては、 D—もしくは L—体のァラニン、 ァスパラギン、 ァスパラギン酸、 アルギニン、 システィン、 グルタミン、 グルタミン酸、 ヒスチ ジン、 イソロイシン、 ロイシン、 リジン、 メチォニン、 フエ二ルァラニン、 プロ リン、 セリン、 スレオニン、 トリプトファン、 チロシン、 ノくリンおよびグリシン などの天然型ァミノ酸の各残基または合成的手法により得られる非天然型ァミノ 酸の各残基があげられる。
上記式 (Α) の定義において、 - (X)m-としては、 例えば、 - Γ-Trp-X2- Gly-Thr -Ala- X3- (式中、 X1は Asn または Asp を表し、 X2は His または Lys を表し、 X3は Pro または Ala を表す。 ) 、 -Ser-Ala-Ala-Val-Tyr-Phe- 、 -Phe- I le-Gly- Trp- Gly-Asn -、 -Tyr-Pro- Trp-Trp- Asn- Tyr-Arg- 、 - Leu- Gly- Val- Gly- Ser- X4-Asn- (式中、 X4は Cys 、 Ala または Ser を表す。 ) などがあげられる。
式 ( I ) の定義において、 - (Y!)pしとしては、 例えば、 -Gly- 、 -Pro- 、 -Cys - 、 - Arg -、 -Lys- 、 -Arg-Ala- 、 - Phe - Pro - 、 - Pro - Lys - 、 -Gly-Arg- ゝ -l ie -Pro- 、 - et-Thr- 、 -Leu- Phe-、 -Gly- Ser-Arg-、 -Val-Thr-Gly- 、 -I le-Cys -Lys-Arg-Ala- 、 -l ie- Ser- Lys-Arg-Ala- 、 -I le-Ala-Lys- Arg-Ala- 、 -Tyr-I le -Gly-Ser-Arg- 、 - Tyr- Ala-Val-Thr-Gly - 、 -Va卜 Tyr- Ala- Val-Thr- Gly- 、 - Lys -Gly-Thr-I le-Cys-Arg-Arg-Ala- などがあげられ、 -(Z')q1-としては、 例えば、 -Asp- 、 -Leu- 、 - l ie - 、 - Phe - 、 - Trp - 、 -Asp-Asp- 、 - Thr - Pro - 、 - Phe - Val 一 ヽ 一 Phe— Leu— ヽ 一 Ser—し ys— 一 Phe— Gly— 、 一 Ser— Pro— 、 一 Cys—し eu— ヽ 一 Leu— Pro - 、 -Leu- Arg- 、 -Leu- Gly- 、 -Gly- Trp-、 -Gly- Phe- 、 -Phe-Val- Ala- 、 -Phe -Val -Gly-、 -Phe-Pro-Gly-、 -Phe-Leu- Ala- 、 - Phe- Leu-Gly- 、 -Ser-Pro-Ala ―、 -Arg- Pro- Gly-、 -Ser- Trp- Gly- 、 - Leu-Hi s-Leu- 、 - Phe-Trp- Gin- 、 -Leu -Trp- Thr- 、 -Gly- Trp-Leu-、 -Ser-Pro- Cys- Ala- 、 - Ser-Pro- Ser-Ala- 、 -Gly - Phe - Gly - Ser - 、 - Asp - Leu - Asp - Asp - Tyr - 、 - Asp - Asp- Met - Asp - Asp - Tyr - 、 - Asp -Asp-Gly-Asp-Asp-Tyr-、 -Asp-Asp-Ser-Asp-Asp-Tyr- 、 -Ser-Pro-Ala-Ser-Ser -Lys- 、 -Asp-Leu - Asp - Asp- Tyr- Cys- Asn- 、 - Asp- Leu-Asp - Asp - Tyr-Ser- Asn- な どがあげられる。 式 (I I) の定義において、 A 2 および B 2 は、 脂肪族アミノ酸残基または芳香 族アミノ酸残基が好ましく、 例えば、 V a l、 I l e、 L e u . P h eなどのァ ミノ酸残基があげられる。 また、 C 2 としては、 例えば、 M e t、 S e r、
L e u . G l n、 A s nなどのアミノ酸残基があげられる。 - (Y2)P2-としては、 例えば、 -Ser-Ser-Gly-、 - Ser-Met-Gly- Leu- Pro- 、 - Gly-Ser-Met- Ser- Cys- Lys 一ヽ 一 Gly— Ala— Met— Ser Cys— Lys 、 一 Cys— Val—し ys— l ie— Lys Lys ヽ 一Lys—し ys— Ser -し ys - Thr - Lys - 、 -Lys-Lys-Ser-Arg-Thr-Arg-、 - Gly - Cys - Met - Gly - Leu - Pro -、 - Gly- Cys-Met- Gly-Ser- Pro- 、 - Gly-Lys-Lys- Lys-Ser-Gly-、 -Asn- Gly- Cys- l ie -Asn-Cys-、 -Asn-Lys-Arg-Arg-Arg-Gly- 、 -Lys-Pro-Lys-Lys-Lys-Ser- 、 -Ala -Arg-Lys-Lys-Ser-Ser- 、 - Asp-Pro - Cys-Cys-Ser-Ala- 、 -Lys-Lys-Arg- Lys-Arg -Lys-ヽ - Arg - Gin - Gin -し ys - Arg - Ala - 、 -Lys-Arg- 11 e-Arg-Gl u-Arg- 、 -Lys - Ser -Phe-Lys-Glu-Arg-、 -Gln-Pro-Thr-Arg- Asn- Gin -、 -Thr-Gln-Ser-Pro-Gln-Asn -、 -Ala-Pro-Ala-Pro-Gln-Cys-、 -Gln-Val-Ala-Pro-Gln - Asn - 、 -Lys-Ser-Gly - Asn - Lys - Asn -、 - Arg - Ala - Trp - Asn - Lys - Ser - 、 - Arg - Lys - Pro - Glu - Arg - Ser -、 -Arg-Thr-T r-Ser-Arg-Gly-、 一 Arg— Glu— Lys—し ys— Phe— Phe 、 一 Lys— Glu—し eu— Lys -Gly-Gly-、 -Asp-Lys- Lys- Ser-Lys- Thr-、 -Gly-Pro-Ala-Ser- Lys-Ser- などが あげられる。
化合物 (A) の薬理学的に許容される塩としては、 酸付加塩、 金属塩、 有機塩 基付加塩があげられる。 薬理上許容される酸付加塩の例としては、 塩酸塩、 硫酸 塩、 リン酸塩等の無機酸塩、 酢酸塩、 マレイン酸塩、 フマル酸塩、 酒石酸塩、 ク ェン酸塩等の有機酸塩があげられ、 薬理上許容される金属塩の例としてはナトリ ゥム塩、 カリウム塩等のアルカリ金属塩、 マグネシウム塩、 カルシウム塩等のァ ルカリ土類金属塩、 アルミニウム塩、 亜鉛塩等があげられる。 薬理上許容される 有機塩基の例としてはメチルァミン、 ェチルァミン、 ァニリン等の一級ァミン、 ジメチルァミン、 ジェチルァミン、 ピロリジン、 ピぺリジン、 モルホリン、 ピぺ ラジン等の二級ァミン、 トリメチルァミン、 トリェチルァミン、 N, N ジメチ ルァニリン、 ピリジン等の三級ァミンおよびアンモニア等があげられる。
本発明において使用したアミノ酸及びその保護基に関する略号は、 生化学命名 に関する I U P A C— I U B委員会 (IUPAC- IUB Joint Co画 i tion on Biochemical Nomenclature) の勧告 CEur. J. Biochem. , 138, 9 (1984) 〕 に従 つた。
以下の略号は、 特にことわらない限り対応する下記のァミノ酸及び保護基を表 す。
G 1 y; グリシン
Al a ; L—ァラニン
Th r ; L—スレオニン
P r 0 ; L—プロリン
As ; Lーァスパラギン酸
A s n ; L-ァスパラギン
As X ; L—ァスパラギン酸または Lーァスパラギン
H i s ; L—ヒスチジン
Tyr ; L—チロシン
Trp ; L—トリブトファン
Va 1 ; L—ノくリ ン
S e r ; Lーセリン
Leu ; L一口イシン
I 1 e ; L—イソロイシン
Me t ; L一メチォニン
C y s ; L—システィン
P h e ; L一フエ二ルァラニン
A r g; L一アルギニン
D-A r g; D—アルギニン
D- P h e ; D—フヱニルァラニン
(N-Me) I 1 e ; N—メチルー L—イソロイシン
Hyp ; トランス一 4ーヒドロキシー L—プロリン
Fmo c ; 9—フルォレニルメチルォキシカルボニル
B 0 c ; t一ブチルォキシカルボニル
t -B u ; t—プチル B Z 1 ;ベンジル
CH〇 ;ホルミル
Bom;ベンジルォキシメチル
Pmc ; 2, 2, 5, 7, 8—ペンタメチルクロマン一 6—スルフォニル Tr t ; トリチル
Wang Re s i n ; 4— (ヒドロキシメチル) フエノキシメチルー樹脂 R i nk Ami d e MB HA Re s i n ; 4— {2' , 4' —ジメ トキシ フエ二ルー ( 9—フルォレニルメチルォキシカルボニル) アミノメチル} フエノ キシァセトアミ ドノルロイシルー (4ーメチルーベンズヒドリルァミン) —樹脂 以下の略号は対応する下記の側鎖保護ァミノ酸を表す。
Fmo c -Hy p (t -Bu) — OH ; Nひ一 9一フルォレニルメチルォキシカ ルボニルー 0— t—プチルートランス一 4ーヒドロキシー L—プロリン
Fmo c -H i s (Tr t) -OH ; Να- 9—フルォレニルメチルォキシカル ボニルー Nim—トリチルー L一ヒスチジン
Fm o c - A s n (T r t ) 一 OH ; N 一 9一フルォレニルメチルォキシカル ボニルー Nァ—トリチルー L—ァスパラギン
Fmo c -C y s (Tr t) — OH ; Nひ一 9—フルォレニルメチルォキシカル ボニルー S—トリチルー L一システィン
Fmo c - (N— Me) I 1 e -OH; Να- 9—フルォレニルメチルォキシカ ルポニル一 Ν—メチルー L—イソロイシン
Fmo c— As p (0 t - B u) 一 OH; N a— 9—フルォレニルメチルォキシ カルボニル— Lーァスパラギン酸—;5— t—プチルエステル
Fmo c -Ty r ( t -Β υ) 一 OH ; N a— 9—フルォレニルメチルォキシカ ルボニルー〇一 tーブチルー L—チロシン
Fmo c -Th r (t— Bu) — OH ; Nひ一 9一フルォレニルメチルォキシカ ルボニルー 0— t—ブチルー Lースレオニン
Fmo c— Se r (t— Bu) — OH; N 一 9一フルォレニルメチルォキシカ ルボニルー 0— t—ブチルー Lーセリン
Fmo c—Ar g (Pmc) — OH; N 一 9一フルォレニルメチルォキシカル ボニルー N— 2, 2, 5, 7, 8—ペンタメチルクロマン一 6—スルフォニルー L一アルギニン
Bo c— Thr (B z 1 ) -OH ; Να- t一ブチルォキシカルボニル—〇—ベ ンジルー Lースレオニン
Bo c— Hi s (Bom) — ΟΗ ; Να— t—プチルォキシカルボ二ルー N im— ベンジルォキシメチルー L—ヒスチジン
Bo c— Trp (CH0) _ OH; N α— t—ブチルォキシカルボニル— Nind 一ホルミル一 L一トリブトファン
H-Tr p-OBz 1 ; Lートリブトフアン一べンジルエステル
以下の略号は、 対応する下記の反応溶媒及び反応試薬を表す。
Py B0P;ベンゾトリアゾ一ルー 1ーィルーォキシトリピロリジノフォスフォ ニゥム へキサフルオロフォスフヱ一ト
HOB t ; N—ヒドロキシベンゾトリアゾール
NMM; N—メチルモルホリン
DCC; ジシクロへキシルカルボジイミ ド
HONS u ; N—ヒドロキシスクシンィミ ド
DMF; N, N—ジメチルホルムアミ ド
TF A; トリフルォロ酢酸
P B S; リン酸緩衝生理食塩水
DCM; ジクロロメタン
D I E A; ジイソプロピルカルボジィミ ド
DE P C; ジェチルリン酸シァニド
Pd/C;パラジウム Z炭素触媒
TCA; トリクロロ酢酸
PMSF; フエニルメタンスルホニルフルオリ ド
DMS 0; N, N—ジメチルスルホキシド
PyBr oP; プロモートリスピロリジノフォスフォニゥム へキサフルオロフ ォスフェート
DTT; ジチオスレィ トール S D S ; ドデシル硫酸ナトリウム
化合物 (A) の製造法について説明する。
化合物 (A) 中の環状ペプチドは、 適当に側鎖保護した部分ペプチドをべプチ ド合成機あるいは一般的な液相ペプチド合成法 ( "ペプチド合成の基礎と実験" 泉屋信夫ら、 丸善) にしたがって合成し、 P y B O P等の縮合剤を用いた環化反 応により得られる。 さらにペプチド合成機あるいは液相合成法を用い、 あるいは 両法を適宜組合わせて得られる C末側直鎖べプチドと上記環状べプチドとを縮合 することにより化合物 (A) を得ることができる。
ペプチド合成機によるペプチドの合成は、 Appl ied Biosystems, Inc. , U. S. A. (ABI社) 製ペプチド合成機又は島津製作所製ペプチド合成機上で、 適当に側鎖保 護した N a— t一ブチルォキシカルボニルァミノ酸等を用いるか、 あるいは適当 に側鎖保護した Ν α— 9—フルォレニルメチルォキシカルボニルァミノ酸等を用 い、 同社の合成プログラムに従い、 実施することができる。 部分べプチド
環化反応
H- -(X)m-Asp-(Trp)n-OH
し M-(X)m-Asp-(Trp)n-OH + H - Q 縮合反応
- M-(X)m-Asp-(Trp)n-Q 化合物 (A) の原料となる保護アミノ酸は、 A B I社、 島津製作所、 国産化学 (株) 、 Nova biochem社、 ペプチド研究所 (株) および渡辺化学 (株) から入手 することができる。
このようにして得られた化合物(A) は C一 4, C— 8あるいは C一 1 8逆相 シリカゲルカラムを用いた高速液体クロマトグラフィー (以下、 H P L Cと言 う) あるいは分配、 吸着樹脂、 シリカゲル、 化学修飾シリカゲル、 逆相シリカゲ ル、 アルミナ、 珪藻土、 珪酸マグネシウム、 イオン交換樹脂、 あるいはゲル濾過 等のカラムクロマトグラフィーもしくは薄層クロマトグラフィーにより精製する ことができる。
化合物 (Α) の薬理上許容しうる塩を取得するときは常法に従う。
すなわち、 化合物 (A) の酸付加塩および有機塩基付加塩は、 対応する酸あるい は有機塩基の水溶液に化合物 (A) を溶解し、 凍結乾燥することによって得られ る。 また化合物 (A) の金属塩は、 対応する金属イオンを含む水溶液に化合物 (A) を溶解しゲル濾過もしくは H P L Cで精製することによって得られる。 次に化合物 (A) の具体例を第 1表に示す。
第 1 表 化合物 生理活性 配列の 配 列
番 号 ペプチド名 長 さ
1 9
Figure imgf000016_0001
一 Gly- Asn-Trp-His- Gly-Thr- Ala- Pro- Asp-
2 2 2 Trp-Val-Tyr-Ala-Val-Thr-Gly-Arg-Gly- Asp-Ser-Pro-Ala-NH2
I 1 9
Figure imgf000016_0002
I 1 7 し Gly-Asn-Trp- His- Gly-Thr- Ala-Pro-Asp- Trp- Ser-Ser- Gly-Cys-Val- Leu- Ser- OH
I 1 9
Figure imgf000016_0003
1 1 8 し Gly-Asn-Trp- Hi s- Gly- Thr- Ala-Pro-Asp- Trp-Phe- Gly- Gly- Arg- l ie- Asp-Arg- l ie- NH2
I 2 2 し Gly-Asn- Trp-His- Gly- Thr- Ala- Pro- Asp- Trp-A 1 a-Phe-G 1 y-G 1 y-Arg- 11 e-Asp-Arg- 11 e Gly-Ala- Ala- NH2
Π 1 8 し Gly- Asn- Trp- His-Gly- Thr- Ala- Pro-Asp- Trp-Phe-Gly-Gly-D-Arg- 11 e-Asp-Arg- I I e-NH 2
Π 1 8
Figure imgf000016_0004
1 0 I 1 8 匚 Gly- Asn- Trp-His-Gly-Thr- Ala- Pro- Asp- Trp- Phe- Gly- Gly-Arg- (N- Me) I le- Asp-Arg - I I e-NH 2
1 1 2 0
Figure imgf000016_0005
次に化合物 (A) の生理活性および蛋白質分解酵素に対する安定性を示す。 試験例 1 生理活性
( 1 ) 細胞接着阻害作用
9 6 we 1 1 s F l a t b o t t om プレート (住友ベークライト) に、 マウスフイブロネクチン (テリオス社) 5 0 /we 1 1 (5 μ. g/m 1培養 液) を加えて室温で 2時間のコーティングを行った。 ここに試験化合物として、 PBSに溶解した化合物 1または化合物 bを図 1に示す各濃度で加え、 次に、 ビ ォチン標識した B 1 6— F 1 0 (mo u s e m e 1 a n o m a ) 細胞を加えて、 3 7。C、 3 0分間のインキュベートを行った。 反応後、 未接着の細胞を吸引法に より除き、 0. 2 5%グル夕一ルアルデヒド/ PBSにより接着細胞を固定した。 固定後、 Twe e n— PBSで洗浄し、 P e r o x i d a s e標識アビジン D
(VECTOR社) を加え室温で 1時間反応させ、 以下、 Twe e n— PBSに よる洗浄、 ABTS溶液による発色後、 NJ— 2 0 0 1 (日本インターメッド 社) で OD 4 1 5の吸光度を比色測定した。
測定した吸光度より、 下記の式にしたがって細胞接着阻害率を計算した。
A-B
阻害率 = X 1 0 0
A
A:試験化合物非存在下における吸光度
B :試験化合物存在下における吸光度 未接着細胞の洗浄操作はエツペンドルフピぺッ トによる注入 (未固定のため、 洗浄は培養液で行った) と先端に 1 8 G注射針をつけた吸引装置を用いて行った (およそ 3〜 5回の吸引操作で未接着の細胞は除かれる) 。 また、 その他の洗浄 操作はエツペンドルフによる注入とデカントによる除去で行った。
なお、 細胞のピオチン標識は、 以下の方法により行った。
NHS-LC-B i o t i n (P I ERCE社) 0. 2〜0. 5mgを l m l の PBSに溶解後、 血球系細胞 l〜2 x 1 07 c e l l sZm l培養液と混合し、 室温で 3 0分間のインキュべ一トを行った。 反応後、 PBSで 3回洗浄して未標 識のピオチンを除き、 ピオチン標識細胞を調製した。 結果を図 1に示す。 化合物 bが細胞接着を 50%阻害する濃度 (I C5。) は、 1 1 30 zMであったが、 化合物 1では、 I C50は 290〃Mであった。
同様の試験を、 化合物 2および化合物 cについて行った。 結果を図 2に示す。 両化合物は、 ほぼ同等の細胞接着阻害活性を示した。
(2) コラーゲン刺激による血小板凝集に対する阻害作用
白ゥサギ (ォス、 2 kg) より、 3. 8 %クェン酸ナトリウム:血液(1:9) で 心臓採血し、 90 Or. p.m.で遠心した上清を多血小板血清 (P l a t e l e t— R i ch P l a sma, P R P) として、 また、 上清を採取した後の下層を 2500 r . p. m. で遠心し、 その上清を乏血小板血清 (P l a t e l e t— Poo r P l a sma, P P P) としてそれぞれ実験に供した。 血小板凝集率 は、 エルマ光学 (株) 製血小板凝集測定装置 TE - 500を用いて測定した。 凝 集率の基準は、 PR P自身の測定値を凝集率 0%に、 PPP自身の測定値を凝集 率 1 00%に設定した。 試験化合物 (化合物 1及び化合物 b) 溶液は、 最終濃度 が 1、 0. 3、 0. 1 mMとなるように調製した。
キュベットにコントロールとして再蒸留水、 または試験化合物溶液を 1 0〃1 と、 PRP 200〃1 を加え 3分間プレインキュペートした後、 最終濃度 1 0 II g/m 1となるように調製したコラーゲンを 1 0〃 1添加し、 凝集率を測定し た。 結果を第 2表に示す。 第 2 表 試験化合物 化合物濃度 (mM) 凝集抑制率 (%)
0. 1 28. 3
化合物 1 0. 3 78. 4
1. 0 92. 1 化合物 b 0. 3 20. 3
1. 0 6 1. 2 (3) 蛋白質フアルネシル化酵素阻害作用 ( 1 )
Ra s蛋白質を基質とした系
牛の脳から調製した蛋白質フアルネシル化酵素を用いて、 Ra s蛋白質 (V— K i -R a s p 21 ) に転移された [3 H] フアルネシルジホスフエ一ト
(Am e r s ham 20 C i /mm o 1 ) の量を、 液体シンチレーションカウ ン夕一で放射線量を測定することにより定量した。 反応液は 50 n 1中に V— K i—Ra s p 21 (2〃g) 、 [3 H] フアルネシルジホスフエ一ト (0. 1 〃M)、 5 OmM トリスー塩酸 (Tr i s _HC 1 ) ( H 7. 5) 、 20m M KC 1、 1 OmM MgC l 2 、 5mM DTT、 以下に示す方法で得た蛋 白質フアルネシル化酵素 1. 5 zg及び試験化合物 (5〃 1 DMSO溶液) を含 むように調製した。 具体的方法としては、 [3 H] フアルネシルジホスフヱ一ト を除く上記の反応液を 37°Cで 3分間ブレインキュペートした後 [3 H] フアル ネシルジホスフヱ一トを加えることにより反応を開始させた。 37°Cで 30分間 反応させた後、 4%303の0. 5m 1を添加して反応を止め、 30%TCA 0.5 mlを加えて、 氷中に 60分間放置し変性した蛋白質を吸引濾過 (ADVA NTEC MULT I F I LTER MF 1 2 G) によりガラスフィルター
(Wha tman GF/C 2. 4 c m) に吸着させた。 反応に使用した容器 を 2mlの 2%SDSZ5%TCAで 2回、 ガラスフィルターを 2m lの 6%T CAで 5回洗浄後、 30分間乾燥させ、 シンチレーシヨン液 6m 1と混合し、 液 体シンチレーシヨンカウンタ一で放射線量を測定した。
測定した放射線量より、 以下の式にしたがって酵素阻害率を計算した。
A-B
阻害率 = X 1 00
A
A:試験化合物非存在下におけるフィルターの放射活性
B:試験化合物存在下におけるフィルターの放射活性 アツセィの基質とした v— K i—Ra s p 21は大腸菌を用いて発現させ、 顆粒状となったものを、 3. 5M塩酸グァニジン、 5 OmM Tr i s—HC l (pH 7. 5) 、 1 mM エチレンジァミン四酢酸 ( E D T A) で可溶化し、 原 ら [Oncogene research, ¾_325- 333(1988)]の方法に従って精製して使用した。 ァッセィに用いた蛋白質ファルネシル化酵素は下記の方法 [J. Biol. Chem., 266, 14603-10(1991)] により牛の脳より調製した。
牛の脳 3 0 0 gを、 5 0 mM Tr i s— HC 1 (pH8.0) 、 1 mM ED TA、 1 mM MgC 12 , 5mM DTT、 2 g/m 1 ロイぺプチン
(L e u p e p t i n) . 2 g/m 1 アンチノヽ'イン (A n t i p a i n ) 、 0. 2mM PMSFを含有する緩衝液 2 _i中でホモジナイズし、 1 0, 0 0 0 xgで 1時間遠心分離した。 その上清をさらに 3 3, O O O Xgで 2時間遠心分 離して得られた上清を、 上記緩衝液であらかじめ平衡化しておいた DEAE— S e p h a c e lカラム (カラム容積 5 0 0 m l ) に通塔した。 その後カラムを 同緩衝液で洗浄してから同緩衝液中 N a C 1 0〜5 0 0 mM 1 + 1 ^の直線 勾配で蛋白質を溶出した。 溶出された各フラクションについて酵素活性を測定し、 活性画分を濃縮後、 2 0mM Tr i s—HC l (pH 8. 0) 、 5 OmM Na C l、 2 OmM Zn C l 2 、 0. 2mM PMS Fを含む緩衝液に対して 透析したものを部分精製標品としてァッセィに用いた。 結果を第 3表に示す。 第 3 表
Figure imgf000020_0001
*酵素活性を 5 0 %阻害する濃度
(4) 蛋白質フアルネシル化酵素阻害作用 (2)
S PA e n z yme a s s a y k i tを利用した系
F a r n e s y 1 t r a n s f e r a s e [3 H] -SPA e n z me
l 8 a s s a y k i t (Am e r s h am社) と試験例 1 (3) で用いた蛋白質フ アルネシル化酵素とを用いて、 b i o t i n— l am i n— B p e p t i d e に対する [3 H] フアルネシルジホスフヱートの取り込みを測定した。 k i tの 使用方法は、 添付の説明書に従い、 試験例 1 (3) と同様に酵素阻害率を計算し た。 結果を第 4表に示す。 第 4 表
Figure imgf000021_0001
*酵素活性を 5 0 %阻害する濃度
(5) 牛肺臓 ANPレセプターへの ANPの結合に対する阻害作用
牛肺臓組織を 4°Cで緩衝液 A ( 1 mM NaHC03 、 5mM EDTA、 5 iL g/m 1 ロイぺプチン、 S ^ gZm l ぺプスタチン A、 4 0〃M PM SF、 pH 8. 3) 中ポリ トロン (タイプ PT 1 0Z3 5 K i n ema t i c a Gmb h社) を用いて均質化した。
得られた懸濁液を 4 °Cで 8, 0 0 0 xg、 1 0分間遠心分離し、 上清液を得た c 得られた上清液を 4 °C、 4 0, 0 0 0 x gで更に 6 0分間遠心分離し、 固形物を 得た。 得られた固形物を緩衝液 Aに懸濁し、 再び 4 °Cで 4 0, 0 0 0 xg、 6 0 分間遠心分離した。 得られた固形物をタンパク質含量が 2mgZm 1になるよう に懸濁し、 膜画分液とした。
緩衝液 B (5 0mM Tr i s— HC l、 l mM EDTA、 0.2% 牛血清 アルブミン、 pH 7. 6) 1 m lあたり膜画分液 1 2. 5〃 1を加えて膜画分溶 液を調製した。
非標識ラッ ト ANP (最終濃度 1 M) 添加または試験化合物添加またはどち らも無添加の膜画分溶液に125 I—ラッ ト ANP (約 3 0, O O O c pm) を加 えた。 これらの混合物を 25 °Cで 2時間インキュベートした後、 予め 0. 3%ポ リエチレンィミンに浸したグラスフィルタ一 GFZB (Wh a t t ma n社) で 濾過した。 フィルタ一を緩衝液 C (5 OmM Tr i— HC 1、 1 mM EDT A、 pH7. 6) で洗浄後、 グラスフィルター上の放射活性を測定して、 受容体 および非特異的に結合した125 I—ラッ ト ANP量を測定し、 以下の式にしたが つてラット AN P受容体結合阻害率を計算した。
C-A
阻害率 = X 1 00
C-B
A:試験化合物存在下における放射活性
B:非標識ラット ANP存在下の放射活性
C:試験化合物および非標識 AN P非存在下における放射活性 結果を第 5表に示す c
第 5 表 試験化合物 ■1 50 (nM) 試験化合物 * I C 50 (nM) 化合物 6 0. 34 化合物 g 3. 5 化合物 7 1. 7 化合物 h 2. 5 化合物 8 5. 9 化合物 i 21 0
化合物 9 290 化合物 j 540 0
化合物 1 0 1. 5 化合物 k 2 1
*125 I—ANPの受容体結合を 50%阻害する濃度 (6) BK受容体結合阻害作用
モルモッ ト回腸 BKレセブターへの BKの結合に対する阻害作用
モルモッ ト回腸組織を 4 °Cで緩衝液 A C25mM N—トリス (ヒドロキシメ チル) メチルー 2—アミノエ夕ンスルホン酸— Na OH、 pH 6. 8〕 中ポリ ト ロン (タイプ PT1 0Z35 K i n ema t i c a Gmbh社) を用いて 均質化した。
得られた懸濁液を 4° (、 8, 000 xgで 1 0分間遠心分離し、 上清液を得た c 得られた上清液を 4 °C、 40, 000 xgで更に 60分間遠心分離し、 固形物を 得た。 得られた固形物を緩衝液 Aに懸濁し、 再び 4° (:、 40, 00 O xgで 60 分間遠心分離した。 得られた固形物をタンパク質含量が 2mgZm 1になるよう に懸濁溶液として調製し、 膜画分液とした。
緩衝液 B (25mM N—トリス (ヒドロキシメチル) メチル—2—アミノエ タンスルホン酸— Na OH、 0. 1 %牛血清アルブミン、 0. 0 1 4%バシトラ シン、 pH6. 8) 1mlあたり膜画分液 1 2. 5〃 1を加えて膜画分溶液を調 製した。
非標識 BK (最終濃度 1 /zM)添加または被験薬添加またはどちらも無添加の. 膜画分溶液に3 H-BK ( 200 pM) を加えた。 これら混合物を 25°Cで 1.5 時間ィンキュペートした後、 前もって 0. 3 %ポリエチレンイミンに浸したグラ スフィルター GFZB (Wh a t tma n社) で濾過した。 フィルタ一を緩衝液 C (5 OmM Tr i s-HC ImM EDTA、 pH7. 6) で洗浄後、 グラスフィルター上の放射活性を液体シンチレーシヨンカウンター (L S C 35 00、 ァロカ社) で測定して、 受容体および非特異的に結合した 3 H—BK量 を測定し、 以下の式にしたがってモルモッ ト BK受容体結合阻害率を計算した。
— A
阻害率- X 1 00
C-B
A:試験化合物存在下における放射活性
B:非標識 BK存在下の放射活性
C:試験化合物および非標識 BK非存在下における放射活性 結果を第 6表に示す。 第 6 表
Figure imgf000024_0001
試験例 2 トリブシンに対する安定性
化合物 1または化合物 bを、 0. 0 1 %のアジ化ナトリウム及び 0. 1 mMの 塩化カルシウムを含む pH7.2の PBS (—) 緩衝液を用いて、 25〃g/ml の濃度の溶液に調製した後、 化合物 1または bに対し重量比で 20分の 1量のト リブシン (S I GMA社) を加え、 37 °Cの恒温槽中でインキュベートし、 経時 的に一定量を採取した。 採取液の分析は、 逆相カラム (YMC— Pa ck OD S -AM 1 50 x 6mm I. D. ) を用いた HPLCを用いて行い、 0. 1 % T FAを含む 0 %〜 45 %ァセトニトリルを用いた 30分間の直線濃度勾配で溶 出し、 220 nmの吸光度により検出した。
経時的な分析値は、 トリプシン未処理の化合物 1、 bのピーク高さを 1 00% とし、 これに対する相対値として化合物 1および bの残存率を計算した。 結果を 図 3に示す。 化合物 bは、 半減期が 2時間以内であるのに対し、 化合物 1は、 9 時間後も約 60%が残存していた。
試験例 3 α—キモトリプシンに対する安定性
化合物 2または化合物 cを 0. 0 1 %のアジ化ナトリウム及び 0. ImMの塩 化カルシウムを含む pH7. 2の PBS (—) 緩衝液を用いて、 2 の濃度の溶液に調製した後、 化合物 2または cに対し重量比で 1 0分の 1量の ーキモトリブシン (S I GMA社) と Να— p—トシル一 L一リジン クロロメ チルケトン (S I GMA社) を加え、 37での恒温槽中でィンキュベ一トし、 経 時的に一定量を採取した。 採取液の分析は、 逆相カラム (YMC— Pa c k O DS-A 1 50 X 6mm I. D. ) を用いた HPLCを用いて行い、 0. 1 %TFAを含む 0%〜45%ァセトニトリルを用いた 30分間の直線濃度勾配で 溶出し、 220 nmの吸光度により検出した。
経時的な分析値は、 α—キモトリブシン未処理の化合物 2、 cのピーク高さを 1 00%とし、 これに対する相対値として化合物 2および cの残存率を計算した。 結果を図 4に示す。 化合物 cは、 半減期が 1時間以内であるのに対し、 化合物 2 は、 6時間後も約 95%が残存していた。
試験例 4 プロリルェンドぺプチダーゼに対する安定性
化合物 3または化合物 dを、 0. 0 1 %のアジ化ナトリウム、 0. ImMの塩 化カルシウム及び 0. 5mMの DTTを含む pH 7. 2の PBS (―) 緩衝液を 用いて、 25 gZm 1の濃度の溶液に調整した後、 化合物 3または dに対し重 量比で 500分の 1量のプロリルエンドべプチダ一ゼ (生化学工業) を加え、 37 °Cの恒温槽中でインキュベートし、 経時的に一定量を採取した。 採取液の分析は 逆相カラム (YMC— Pa c k ODS-AM 1 50 x 6 mm I . D. ) を用 いた HPLCを用いて行い、 0. 1 %TF Aを含む 0〜45 %ァセトニトリルを 用いた 30分間の直線濃度勾配で溶出し、 220 nmの吸光度により検出した。 経時的な分析値は、 プロリルエンドべプチダーゼ未処理の化合物 3、 dのピー ク高さを 1 00%とし、 これに対する相対値として化合物 3および dの残存率を 計算した。 結果を図 5に示す。 化合物 dは、 半減期が 1時間以内であるのに対し、 化合物 3は、 7時間後も約 60%が残存していた。
同様の試験を化合物 5および化合物 f について行った。 その結果を図 6に示す。 化合物 ίは 1時間後に残存率が 1 2%であったのに対し、 化合物 5は 63%が残 存していた。
図面の簡単な説明
図 1は、 化合物 1および化合物 bの各濃度における細胞接着阻害率を示す。 図 2は、 化合物 2および化合物 cの各濃度における細胞接着阻害率を示す。 図 3は、 化合物 1および化合物 bのトリプシンに対する安定性を残存率で示す。 図 4は、 化合物 2および化合物 cの —キモトリプシンに対する安定性を残存 率で示す。
図 5は、 化合物 3および化合物 dのプロリルェンドぺプチダーゼに対する安定 性を残存率で示す。
図 6は、 化合物 5および化合物 f のプロリルェンドぺプチダ一ゼに対する安定 性を残存率で示す。
発明を実施するための最良の形態
以下の実施例において、 化合物の理化学的性質は以下の機器により測定した。 マススペクトル: 日本電子 JMS- SX102A (FAB法により測定)
アミノ酸分析は Bidlingmeyer. B.A.等 [J. Chromatogr. , ¾_ 93 (1984) ]の 方法で実施した。 加水分解は塩酸蒸気中 1 1 0°Cで 22時間実施した。 加水分解 物のアミノ酸組成は Waters Pico Tag アミノ酸分析計で分析した。 なお、 実測値 は Ala の値を 1. 00として表した。
実施例 1 化合物 1の合成
参考例 1で得られた化合物 a 3. 4mgを 0. 4 9 m 1の DMFに溶解し、 氷 冷下で PyBOP 3. l mg、 HOB t 0. 8mg、 NMM0. 9 9〃 1を加え 氷冷下のまま 20分間放置した。 ここに、 参考例 2で得られた、 ペプチドの結合 した担体樹脂のうち 25mgを加えて、 4°Cで 2 1時間攪拌した。 担体樹脂を濾 取し、 メタノール、 ブチルエーテルで洗浄後、 減圧下 1時間乾燥した。 得られた 樹脂に、 2—メチルインドールを 5m gZm 1の割合で含む、 82. 5%TFA、 5%チオア二ソール、 5%水、 3%ェチルメチルスルフイ ド、 2. 5 % 1 , 2 - エタンジチオール、 2%チォフエノールの混合溶液 1 5 0 1を加えて室温で 7 時間放置し、 側鎖保護基を除去するとともに樹脂よりペプチドを切り出した。 次 いで樹脂を濾別し、 得られた溶液におよそ 1 0m lのエーテルを加え、 生じる沈 澱を粗ペプチドとして得た。 これを参考例 2と同様 H PLCで精製し、 化合物 1 を 0. 9mg得た。
質量分析 [FABMS] : 1 9 6 2 (M + H) Ύミノ酸分析: As x2. 9 (3) , G 1 y 4. 8 (4) , Thr l. 9 (2) , A 1 a 2. 0 (2) , P r o 1. 9 (2) , Va i l. 0 (1) , H i s 0. 8
(1) , Ar g 1. 1 (1) , Se r l. 4 (1) , Tr pは分析せず
実施例 2 化合物 2の合成
参考例 1で得られた化合物 a 2. 24mgを 1 m 1の DMFに溶解し、 氷冷下 で PyBOP l. 04mg HOB t 0. 27mg. NMMO. 22 / 1の各
1 0 1 DMF溶液を加え氷冷下のまま 1 5分間、 室温で 1 0分間放置した。 こ の溶液を再び氷冷した後、 参考例 3で得られた化合物 c 3. 57mgの 0.5m l DMF溶液を加えて、 4てで1 6時間、 室温で 3時間攪拌した。 これを再び氷冷 し、 上記と等量の PyBOP、 HOB t、 NMMの DMF溶液を加え、 氷冷下の まま 30分間放置後、 化合物 c 3. 57 m gを加え、 4 °Cで 5 1時間、 室温で 4 時間攪拌した。 2 M酢酸で中和した後、 参考例 2と同様 H PLCで精製し、 化合 物 2を 3. Omg得た。
質量分析 [FABMS] : 2294 (M + H)
Ύミノ酸分析: As x2. 4 (3) , G 1 y 4. 2 (4) , Thr l. 9 (2) , A 1 a 3. 0 (3) , Pr o l. 9 (2) , Va i l. 8 (2) , H i s 1. 0 (1) , Ar g l. 0 (1) , Se r O. 9 (1) , Tyr O. 9 (1) , Tr は分析せず
実施例 3 化合物 3の合成
参考例 1で得られた化合物 a 5. 6111 を0. 9 1 m 1の DMFに溶解し、 氷 冷下で PyB〇P 5. 3mg. HOB t 1. 4mg. NMM 1. 6〃 1を加え氷 冷下のまま 20分間放置した。 ここに、 参考例 4で得られた、 ペプチドの結合し た担体樹脂のうち 40 m gを加えて、 4 で 24時間攪拌した。 担体樹脂を濾取 し、 メタノール、 ブチルエーテルで洗浄後、 減圧下 1時間乾燥した。 得られた樹 脂に、 2—メチルインドールを 5m gZm 1の割合で含む、 90%TFA、 5 % チオア二ソール、 5%1, 2—エタンジチオールの混合溶液 200〃 1を加えて 室温で 2時間放置し、 側鎖保護基を除去するとともに樹脂よりべプチドを切り出 した。 次いで樹脂を濾別し、 得られた溶液におよそ 2m 1のエーテルを加え、 生 じる沈澱を粗ペプチドとして得た。 これを参考例 2と同様 HPLCで精製し、 化 合物 3を 0. 24mg得た。
質量分析 [FABMS] : 2039 (M + H)
了ミノ酸分析: As x l. 2 (2) , G 1 y 3. 0 (3) , Th r 1. 0 ( 1 ) , A 1 a 0. 9 (1) , Pr o l. 7 (2) , Va i l. 3 (2) , Hi s O. 9 (1) , Me t 1. 7 (2) , S e r 1. 1 (1) , L e υ 1. 0 (1) , C y s , Tr pは分析せず
実施例 4 化合物 4の合成
参考例 1で得られた化合物 a 3. 5mgを 0. 95 m 1の DMFに溶解し、 氷 冷下で PyBOP3. 3mg、 HOB t O. 9mg. NMM 1. 0〃 1を加え氷 冷下のまま 1時間放置した。 ここに、 参考例 5で得られた、 ペプチドの結合した 担体樹脂のうち 1 5. lmgを加えて、 4 °Cで 24時間攪拌した。 担体樹脂を濾 取し、 実施例 3と同様に洗浄、 乾燥、 ペプチドの切り出し及び HPLCによる精 製を行い、 化合物 4を 1. 9mg得た。
質量分析 [FABMS] : 1 755 (M + H)
ァミノ酸分析: As xO. 6 (2) , G 1 2. 7 (3) , Th r 0. 8 ( 1 ) , A 1 a 0. 9 (1) , Pr o O. 9 (1) , Va 1 0. 8 (1) , Hi s O. 7
(1) , L e u 1. 0 (1) , S e r 2. 5 (3) , Cy s, Tr は分析せず 実施例 5 化合物 5の合成
参考例 1で得られた化合物 a 9. 7 1111 を0. 76 m 1の DMFに溶解し、 氷冷下で PyBOP 9. Omg. HOB t 2. 65mg、 NMM2. 85〃 1を 加え氷冷下のまま 20分間放置した。 ここに、 参考例 6で得られた、 ペプチドの 結合した担体樹脂のうち 40. 3mgを加えて、 4 °Cで 24時間攪拌した。 担体 樹脂を濾取し、 実施例 3と同様に洗浄、 乾燥、 ペプチドの切り出し及び HPLC による精製を行い、 化合物 5を 8. 9mg得た。
質量分析 [FABMS] : 21 0 1 (M + H)
ァミノ酸分析: As x l. 3 (2) 、 S e r 1. 1 (1) 、 G 1 y 3. 2 (3) 、 Hi s O. 9 (l) 、 Al a l. 0 (l) 、 Pr o 2. l (2) 、 Me t 2. 0
(2) 、 I 1 e 0. 9 ( 1 ) , L e u 1. 2 (l) 、 Phe l. 0 (1) 、 Trp、 Cysは分析せず 実施例 6 化合物 6の合成
参考例 1で得られた化合物 a 4. 01118を0. 6 5m 1の DMFに溶解し、 氷 冷下で PyBOP 3. 7mg、 HOB t l . Omg. NMM 1. 2〃 1を加え氷 冷下のまま 20分間放置した。 ここに、 参考例 7で得られた、 ペプチドの結合し た担体樹脂のうち 4 3. 1 mgを加えて、 4 で 24時間攪拌した。 担体樹脂を 濾取し、 メタノール、 ブチルエーテルで洗浄後、 減圧下 1時間乾燥した。 得られ た樹脂に、 2—メチルインドールを 5mg/m 1の割合で含む、 82. 5 %TF A、 5%水、 5%チオアニソ一ル、 2. 5 % 1 , 2—エタンジチオール、 3%ェ チルメチルサルフアイド、 2%チォフエノールの混合溶液 20 0 z 1を加えて室 温で 6時間放置し、 側鎖保護基を除去するとともに樹脂よりぺプチドを切り出し た。 次いで樹脂を濾別し、 得られた溶液におよそ 2m 1のエーテルを加え、 生じ る沈澱を粗べプチドとして取得した。 これを参考例 2と同様 H P L Cで精製し、 化合物 6を 1. 3mg得た。
質量分析 [FABMS] : 20 35 (M + H)
ァミノ酸分析: As x l. 6 (3) 、 G 1 y 3. 8 (4) 、 H i s O. 9 ( 1 ) 、 Ar g l . 7 (2) 、 Th r l . 0 ( l ) 、 A l a l. 0 ( l ) 、 P r o O. 9 ( l) 、 I l e l. 8 (2) 、 Ph e O. 8 ( l ) 、 Tr pは分析せず
実施例 7 化合物 7の合成
参考例 1で得られた化合物 a 3. 8mgを 0. 62 m 1の DMFに溶解し、 氷 冷下で PyBOP 3. 5mg、 HOB t O. 9mg, NMM 1. 1 1を加え氷 冷下のまま 20分間放置した。 ここに、 参考例 8で得られた、 ペプチドの結合し た担体樹脂のうち 4 8. 9mgを加えて、 4 °Cで 24時間、 さらに室温で 24時 間攪拌した。 担体樹脂を濾別し、 濾液に氷冷下で Py BOP 1. 8mg、 HOB t O. 5mg、 NMMO. 4〃 1を加え 2時間放置後、 再び濾別した担体樹脂を 加えて 4 °Cで 24時間攪拌した。 担体樹脂を濾取し、 実施例 6と同様に洗浄、 乾 燥後、 ペプチドの切り出し及び HPLCによる精製を行い、 化合物 7を 1.3mg 得た。
質量分析 [FABMS] : 230 5 (M + H)
アミノ酸分析: As x 2. 3 (3) . G 1 y 5. 3 (5) 、 H i s O. 9 ( 1 ) 、 Ar g 1. 9 (2) 、 Thr l. 0 (l) 、 Al a 4. 0 (4) 、 Pr o l. 0 (1) 、 I 1 e 2. 0 (2) 、 Phe l. 0 (1) 、 Tr pは分析せず
実施例 8 化合物 8の合成
参考例 1で得られた化合物 a 1. 0012を0. 22m 1の DMFに溶解し、 氷 冷下で PyBOPO. 94mg. HOB t 0. 24m g、 NMM 0. 3 1を加 え氷冷下のまま 20分間放置した。 ここに、 参考例 9で得られた、 ペプチドの結 合した担体樹脂のうち 3. 53mgを加えて、 4 °Cで 48時間攪拌した。 担体樹 脂を濾取し、 実施例 6と同様に洗浄、 乾燥後、 ペプチドの切り出し及び HP LC による精製を行い、 化合物 8を 21 得た。
質量分析 [FABMS] : 2035 (M + H)
了ミノ酸分析: As x2. 2 (3) 、 G l y4. 1 (4) 、 Hi s O. 9 (1) 、 Ar g 1. 7 (2) 、 Thr l. 1 (l) 、 Al a l. 0 (l) 、 Pr o l. 0
(l) 、 I l e l. 9 (2) 、 Phe O. 8 (1) 、 Tr pは分析せず
実施例 9 化合物 9の合成
参考例 1で得られた化合物 a 7. 5611 を1. 46 m 1の DMFに溶解し、 氷冷下で PyBOP 7. 1 Omg. HOB t 1. 8 1 mg, NMM2. 27 / 1 を加え氷冷下のまま 20分間放置した。 ここに、 参考例 1 0で得られた、 ぺプチ ドの結合した担体樹脂のうち 65mgを加えて、 4°Cで 24時間攪拌した。 担体 樹脂を濾取し、 実施例 6と同様に洗浄、 乾燥後、 ペプチドの切り出し及び HPL Cによる精製を行い、 化合物 9を 0. 5mg得た。
質量分析 [FABMS] : 2035 (M + H)
ァミノ酸分析: As x2. 3 (3) . G 1 y 4. 1 (4) 、 H i s l. 0 (1) 、 Ar g l. 8 (2) 、 Thr l. 0 (l) 、 Al a l. 0 (1) 、 Pr o l. 0
( 1 ) . I 1 e 2. 0 (2) 、 Phe l. 0 (1) 、 Tr pは分析せず
実施例 1 0 化合物 1 0の合成
参考例 1で得られた化合物 a 7. 63mgを 0. 597 m 1の DMFに溶解し、 氷冷下で PyBOP 7. 08mg, HOB t 2. 08mg、 NMM2. 24 1 を加え氷冷下のまま 20分間放置した。 ここに、 参考例 1 1で得られた、 ぺプチ ドの結合した担体樹脂のうち 38. 35 mgを加えて、 4 °Cで 24時間攪拌した。 担体樹脂を濾取し、 実施例 6と同様に洗浄、 乾燥後、 ペプチドの切り出し及び H PLCによる精製を行い、 化合物 1 0を 1. 8mg得た。
質量分析 [FABMS] : 2049 (M + H)
ァミノ酸分析: As x l. 5 (3) . G 1 y 4. 0 (4) 、 Hi s O. 9 (1) 、 Ar g l. 8 (2) 、 Thr l. 0 (l) 、 A l a l. 0 (l) 、 Pr o l. 0
(1)、 I 1 e 0. 9 (1) 、 Phe O. 9 (1) 、 (N-Me) l i eおよび Tr pは分析せず
実施例 1 1 化合物 1 1の合成
参考例 1で得られた化合物 a 6. 97111 を1. 5 m 1の DMFに溶解し、 氷 冷下で PyBOP 6. 55mg. HOB t 1. 67mg、 NMM2. 09〃 1を 加え氷冷下のまま 5分間放置した。 ここに、 参考例 1 2で得られた、 ペプチドの 結合した担体樹脂のうち 38. 85 mgを加えて、 4 °Cで 24時間攪拌した。 担 体樹脂を濾取し、 メタノール、 ブチルエーテルで洗浄後、 減圧下 2時間乾燥した。 得られた樹脂に、 2—メチルインドールを 5 mgZm 1の割合で含む、 82. 5 %TFA、 5%水、 5%チオア二ソ一ル、 2. 5 % 1 , 2—エタンジチオール、 3 %ェチルメチルサルフアイド、 2%チォフエノールの混合溶液 600 1を加 えて室温で 6時間放置し、 側鎖保護基を除去するとともに樹脂よりペプチドを切 り出した。 次いで樹脂を濾別し、 得られた溶液におよそ 2m 1のエーテルを加え、 生じる沈澱を粗べプチドとして取得した。 これを参考例 2と同様に HPLCで精 製し、 化合物 1 1を 2. Omg得た。
質量分析 [FABMS] : 235 1 (M + H)
ァミノ酸分析: As x l. 2 (2) . G 1 y 3. 0 (3) 、 Hi s O. 8 (1) 、 A r g 2. 7 (3) 、 Thr l. 0 (l) 、 A l a l. 0 (l) 、 Pr o l. 6
(2) . L e u 1. 0 (l) 、 Phe l. 9 (2) 、 Se r l. l (l) 、 Hy P 0. 9 ( 1 )、 Tr pは分析せず
参考例 1 化合物 aの合成
Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-OH
(化合物 a) 工程 1 : Fmo c - G l y-A s n-Tr p -H i s—G l -Th r - A 1 a 一 P r o— OH (配列番号 1 )
AB I社の合成プログラムに従い、 B o c— P r o O. 5 mm o lが結合した 担体樹脂 0. 7 3 gを自動合成機の反応器に入れ、 次の操作を行った。
( 1 ) 3 3 %TF Aを含む塩化メチレン溶液処理 (8 0秒)
(2) 5 0 %TF Aを含む塩化メチレン溶液処理 ( 1 8. 5分)
(3) 塩化メチレン洗浄 (3回)
(4) 1 0 %ジイソプロピルェチルアミンを含む塩化メチレン溶液処理 ( 1分、 2回)
(5) DMF洗浄 (50)
こうして得られた P r oの結合した担体樹脂に
(6) B o c— A 1 a— OHの対称酸無水物 2. Ommo 1を含む DMF溶液 4 m 1を加え、 反応容器を 1 8分間撹拌した。
(7) 塩匕メチレン洗浄 (50)
こうして、 B o c— A l a— P r oが担体上に合成された。 次に、 上記 ( 1 ) 〜 (5) の脱保護工程を行った後、 (6) の工程で B o c - Th r (B z 1 ) - OHの対称酸無水物を加えて縮合反応を行い、 次いで (7) の洗浄工程を得て B o c -Th r (B z 1 ) -A 1 a— P r oを担体樹脂上に合成した。 以下、 工程 ( 1 )〜 (7) を順次繰り返して保護ペプチドの結合した担体樹脂 1. 2 gを得 た。 尚、 工程 ( 6) には順次 B 0 c -G 1 y-OH, B o c— H i s (B om) 一 OH, B o c - Tr p (CHO) - OH, B o c— A s n - OHおよび Fm o c一 G 1 y— OHを用いた。 得られた担体樹脂に 1 , 2—エタンジチオール 0.8 m l , ジメチルスルフイ ド 0. 8m l , ァニソ一ル 0. 2m lを加え 3時間放置 した後フッ化水素 1 8m lを加えて 7 0分間氷冷下撹拌した。 次いでフッ化水素 を減圧除去し、 担体樹脂に酢酸ェチル 1 0 01111を加ぇ0. 5時間撹した。 濾過 して得られた担体樹脂に DMF 1 0 0m lを加えて 1時間撹拌した。 担体樹脂を (全自動高速冷却遠心機、 RS - 2 0型、 トミー精ェ) 1 0 0 0 0 r pm、 1 0 分間で除き上清液を得た。 この液を濃縮機 (ROTARY VACUUM EV APORATOR N - 2型 東京理化器機) で DMFを除去し、 2 M酢酸処理 により粗製品 4 6 4. Omgを得た。 これを逆相カラム (CAPCELL PA CK C 1 8 SG— 1 2 0 3 0 x 2 5 Omm) を用いた H PLCで精製した < 0. 1 %T FAを含むァセトニトリル及び水を用いた直線濃度勾配法で溶出し、 2 2 0 nmで検出し目的物を含む画分を得た。 この画分を凍結乾燥して 1 3 1.9 mgの Fmo c - G l y— As n— Tr p— H i s— G l y— Th r—A l a - P r o— OHを得た。
工程 2 : H - As p (0 t -Bu) -Tr p-OB z 1の合成
(a) Fmo c— As p (O t -B u) -OH 4 1 mgを塩化メチレン 1 m 1に 溶かし、 0°Cにおいて、 HONS u l 2mg、 D C C 2 1 m gを加えて 0 °Cで 30 分間攙拌した。 ここに、 H— Tr p— OB z 1塩酸塩 3 3mgの 1 m 1塩化メチ レン溶液とトリエチルアミン 1 4 / 1を加え、 0°Cのまま 3時間攪拌した。 不溶 物を濾別、 冷塩化メチレンで洗浄し、 濾液を回収した。 減圧下溶媒を留去し、 残 さをシリカゲルカラムクロマトグラフィー (ヮコ一ゲル C一 2 0 0、 5 0 g、 ク ロロホルム Zメタノール = 2 5Z1で溶出) で精製し、 Fmo c— As p (O t -Bu) -T r p-OB z 1 6 7 m gを白色粉末として得た。
(b) (a) で得られたジペプチド 1 Omgを DMF 3m 1に溶かし、 ピベリジ ン 0. 7 5m lを加えて、 室温で 1 0分間放置した。 反応液にエーテル、 へキサ ンを加え析出する白色結晶を濾取し、 減圧下乾燥して、 H— A s p (0 t - Bu) — Tr p—〇B z 1 2mgを得た。
工程 3 : H - G l y - A s n— Tr p - H i s— G l y— Th r—A l a - P r o— As p— Tr p— OB z 1 (配列番号 2 ) の合成
(a) 工程 1で得られたぺプチド 4.4 m に、 工程 2で得られたジぺプチド 1.7 mgを含む 5. 5m 1 DMF溶液を加え 0°Cに冷却した。 ここに、 D E P C 0.5 K トリェチルァミン 1. O z lを順次加え、 0°Cで 5日間攪拌した。 溶媒を 減圧下留去し、 残さを再び DMF l m lに溶解し、 逆相カラム (YMC— P a c k ODS-AM 1 5 0 x 6mm I . D. ) を用いた H P L Cで精製し、 Fm o c -G l y-A s n - T r p - H i s— G l y -Th r - A 1 a— P r o— A s (O t -Bu) 一 Tr p— OB z 1 (配列番号 3 ) 3 2 0 gを白色粉末 として得た。 (b) (a) で得られた保護ペプチド 250〃 gに、 TF A 900〃 1、 1, 2 一エタンジチオール 50〃 1、 ァニソール 50〃 1、 2ーメチルインドール 5 mgからなる混合液のうち 50 n 1を加え、 室温で 1. 5時間放置した。 エーテ ルを加えて生成する白色沈澱を濾取し、 乾燥させ、 20%ピぺリジンを含む DM F 1 00 1を加え、 室温で 1 5分間放置した。 再びエーテルを加えて生成する 白色沈澱を濾取し乾燥させ、 H— G l y— As n—Tr p— Hi s— G l y— Thr— Al a— Pr o— As p— Tr p— OBz 1 200 u gを得た。
工程 4 :化合物 aの合成
(a)工程 3で得られたぺプチド 66 gを DMF 60〃 1に溶解し、 室温にお いて PyBOPの 0. 1 Mを含んだ DMF溶液 1. 6〃 1、 ?1081の0. 1M を含んだ DMF溶液 1. 6〃 1、 NMMの 1 %を含む DMF溶液 3 1を加え、 室温で 3時間攪拌した。 減圧下溶媒を留去し、 生成物を工程 3と同様に HP LC で精製し、 化合物 aのべンジルエステル体 20〃gを得た。
(b) (a) で得られたベンジルエステル 250〃gをメタノール 酢酸 =3Z 1の混合液 80 / 1に溶解し、 窒素雰囲気下、 1 0%PdZC約 0. 5mgを加 え、 系を水素雰囲気下にした後、 室温で 1時間攪拌した。 PdZCを濾別し、 濾 液にエーテルを加えて生成する白色沈澱を濾取し、 乾燥することにより、 化合物 a 1 00〃 gを得た。
質量分析 [FABMS] ; 1 1 22 (M + H)
ァミノ酸分析; G l y 2. 0 (2) , A s X 1. 7 (2) , H i s l. 0 (1) , Th r 1. 0 (1) , A 1 a 1. 0 (1) , Pr o l. 0 (1) , Tr pは分析 せず
参考例 2
化合物 b (H-Va l -Thr-G l y-Ar g-G l y-As p-Se r- Pr o— Al a— OH :配列番号 4 ) の合成
Fmo c— A 1 a 30 zmo】が結合した担体樹脂 (Fmo c -A 1 a -Wa ng Re s i n) 50 m gを自動合成機の反応器に入れ、 島津製作所の合成プ ログラムに従い の操作を行った。
(a)担体樹脂を DMFにより 3分間洗浄し、 該溶液を排出した。 (b) 30%ピぺリジンを含む DMF溶液を加えて混合物を 4分間攪拌し、 該溶 液を排出し、 この操作をもう 1回繰り返した。
(c) 担体樹脂を DMFで 1分間洗浄し、 該溶液を排出し、 この操作を 5回繰り 返した。
こうして、 11 0 (;基を除去した八 1 aの結合した担体樹脂を得た。
(d) Fmo c - P r o - OH24 0 o l、 PyBOP 24 0 zmo l、 H OB t 24 0〃mo l、 NMM 3 6 0〃mo lを 84 0 1の DMF中 3分間攪 拌し、 得られた溶液を樹脂に加え混合物を 30分間攪拌し、 溶液を排出した。
(e) 担体樹脂を DMFで 1分間洗浄し、 これを 5回繰り返した。 こうして、 F mo c -P r o-A l aが担体上に合成された。
次に、 (a)〜(c) の洗浄、 脱保護工程を行った後、 (d) の工程で Fmo c -S e r (t -Bu) 一 0 Hを用いて縮合反応を行い、 次いで (e) の洗浄ェ 程を経て、 Fmo c— S e r (t _Bu) —P r o— A 1 aが担体上に合成され た。 以下、 工程 (d) において、 Fmo c— As p (0 t -Bu) — OH、 Fm o c— G l y— OH、 Fmo c— Ar g (Pmc) — OH、 Fmo c - G l y - OH、 Fmo c -Th r (t -Bu) -OH, Fmo c -Va 1一 OHを順次用 いて、 (a)〜(e) を繰り返し、 保護ペプチドの結合した担体樹脂を得、 さら に (a)〜(c) の洗浄、 脱保護工程を行って得られた担体樹脂をメタノール、 ブチルエーテルで洗浄し、 減圧下 3時間乾燥した。 得られた担体樹脂のうち 5 0 mgを取り除いた残りに、 82. 5 %TFA, 5%チオアニソール、 5 %水、 3 %ェチルメチルスルフイ ド、 2. 5 % 1 , 2—エタンジチオール、 2%チォフエ ノールの混合溶液 20 0 z 1を加えて室温で 8時間放置し、 側鎖保護基を除去す るとともに樹脂よりペプチドを切り出した。 次いで樹脂を濾別し、 得られた溶液 におよそ 1 Om 1のエーテルを加えて、 生じる沈澱を粗ペプチドとして 1 7. 9 mg濾取した。 この粗生成物を逆相カラム (CAPCELL PAK C 1 8 3 Omm0x 25 Omm、 資生堂) を用いた HPLCで精製した。 0. 1 %TF Aと 0〜9 0 %ァセトニトリルを用いた直線濃度勾配で溶出し、 220 nmで検 出し、 標記化合物を含む画分を得た。 この画分を凍結乾燥して、 化合物 bを 6.2 mg得た。 質量分析 [FABMS] ; 8 5 9 (M + H)
Ύミノ酸分析; G l y 2. 1 (2) , A 1 a 1. 0 ( 1 ) , A s x l . 0 ( 1 ) , P r o O. 9 ( 1 ) , Th r 0. 9 ( 1 ) , Va l O. 9 ( 1 ) , S e r l . 0 ( 1 ) , Ar g 1. 0 ( 1 )
参考例 3
化合物 c (H-Va l -Ty r -A l a -Va l -Th r -G l y-Ar g- G l y - A s p— S e r - P r o— A l a - NH2 :配列番号 5) の合成
参考例 2と同様な方法により、 Fmo c— NH 4 0. 8〃mo lが結合した担 体樹脂 (R i n k Am i d e MBHA R e s i n ) を出発物質として用い、 N—保護アミノ酸として順次、 Fmo c _A l a— OH、 Fmo c— P r o— OH、 Fmo c - S e r (t -Bu) 一 OH、 Fmo c - A s p (0 t - B u) -OH. Fmo c— G l y— OH、 Fmo c -Ar g (Pmc) 一 OH、 Fmo c -G l y— OH、 Fmo c -Th r (t -Bu) -OH. Fmo c— Va l - OH、 Fmo c - A l a— OH、 Fmo c - Ty r ( t -Bu) -OH. Fmo c -Va 1 —OHを用いて保護ペプチドを合成した。 得られた担体樹脂 50mgを 用い、 樹脂からのぺプチドの切り出し及び H P L Cによる精製を参考例 2と同様 に行い、 化合物 c 1 2. 6mgを得た。
質量分析 [FABMS] : 1 1 9 1 (M + H)
ァミノ酸分析: A s x O. 9 ( 1 ) , G 1 y 1. 7 (2) , Th r l . 0 ( 1 ) , A 1 a 2. 0 (2) , P r o O. 9 ( 1 ) , Va i l . 9 (2) , Ty r O. 9 ( 1 ) , A r g 1. 0 ( 1 ) , S e r 0. 9 ( 1 )
参考例 4
化合物 d (H-S e r -Me t -G l y-L e u -P r o-Cy s -Va l - Va 1 -Me t -OH:配列番号 6 ) の合成
Fmo c -Me t 3 8 Aimo 1が結合した担体樹脂 (Fmo c— Me t -Wa n g R e s i n) 8 0 m gを自動合成機の反応器に入れ、 島津製作所の合成プ ログラムに従い次の操作を行った。
(a) 担体樹脂を DMFにより 3分間洗浄し、 該溶液を排出した。
(b) 3 0 %ピぺリジンを含む DMF溶液を加えて混合物を 4分間攪拌し、 該溶 液を排出し、 この操作をもう 1回繰り返した。
(c)担体樹脂を DMFで 1分間洗浄し、 該溶液を排出し、 この操作を 5回繰り 返した。
こうして、 Fmo c基を除去した Me tの結合した担体樹脂を得た。
(d) Fmo c -Va 1 -OH 1 90 o l、 Py BOP 1 90 zm o H OB t 1 90 ^mo K NMM285〃mo lを 665 ^ 1の DMF中 3分間攪 拌し、 得られた溶液を樹脂に加え混合物を 30分間攪拌し、 溶液を排出した。
(e)担体樹脂を DMFで 1分間洗浄し、 これを 5回繰り返した。 こうして、 F mo c -Va 1一 Me tが担体上に合成された。
次に、 (a)〜(c) の洗浄、 脱保護工程を行った後、 (d) の工程で Fmo c一 Va 1 - OHを用いて縮合反応を行い、 次いで (e) の洗浄工程を経て、 F mo c -Va 1一 Va 1 -Me tが担体上に合成された。 以下、 工程 (d) にお いて、 Fmo c— Cy s (Tr t) —ひ H、 Fmo c— Pr o— OH、 Fmo c 一 Leu— OH、 Fmo c— G l y— OH、 Fmo c -Me t -OH Fmo c 一 S e r (t -Bu) 一 OHを順次用いて、 ( a )〜( e ) を繰り返し、 保護べ プチドの結合した担体樹脂を得、 さらに (a)〜(c) の洗浄、 脱保護工程を行 つて得られた担体樹脂をメタノール、 ブチルエーテルで洗浄し、 減圧下 3時間乾 燥して、 保護ペプチドの結合した担体樹脂 1 20. 9mgを得た。 このうちの 4 0.3mgに 90 %TF A、 5 % 1 , 2—エタンジチオール、 5%チオア二ソール の混合液 400 β 1を加えて室温で 2時間放置し、 側鎖保護基を除去するととも に樹脂よりペプチドを切り出した。 次いで樹脂を濾別し、 得られた溶液におよそ 10m 1のエーテルを加えて、 生じる沈澱を遠沈により回収し、 粗ペプチドとして 1 2. 7mg得た。 この粗生成物を参考例 2と同様に H PLCで精製し、 化合物 dを 6. 2mg得た。
質量分析 [FABMS] ; 936 (M + H)
ァミノ酸分析; G l y l. 1 (1) , Pr o O. 9 (1) , Va i l. 2 (2) , Se r O. 9 (1) , Me t 1. 9 (2) , L e u 1. 0 (1) , Cy sは分析 せず
参考例 5 化合物 e (H-Se r-S e r-G l y-Cy s-Va 1— Leu— S e r— OH:配列番号 7) の合成
参考例 4と同様な方法により、 Fmo c— Se r (t -Bu) 59. O^mo l が結合した担体樹脂 (Fmo c— Se r (t -Bu) -Wa n g Re s i n) 70m gを出発物質として用い、 N—保護アミノ酸として順次、 Fmo c— Leu 一 OH、 Fmo c— Va l— OH、 Fmo c -Cy s (T r t ) 一 OH、 Fmo c— G l y - OH、 Fmo c— Se r (t - Bu) - OH、 Fmo c - Se r (t -Bu) 一 OHを用いて、 保護ペプチドの結合した担体樹脂 99. 3mgを 得た。 このうちの 33. 1 mgを用い、 樹脂からのペプチドの切り出し及び HP LCによる精製を参考例 4と同様に行い、 化合物 e 5. 3mgを得た。
質量分析 [FABMS] : 652 (M + H)
ァミノ酸分析: G l y l. 1 (1) , Va 1 0. 8 (1) , S e r 2. 9 (3) , Leu l. 0 (1) , Cy sは分析せず
参考例 6
化合物 f (H— Se r— Me t— G l y - Leu— Pr o— Cy s - I 1 e - Ph e -Me t -OH:配列番号 8 ) の合成
参考例 4と同様な方法により、 Fmo c -Me t 52. 0 zmo 1が結合した 担体樹脂 (Fmo c— Me t— Wa n g Re s i n) 80mgを出発物質とし て用い、 N—保護アミノ酸として順次、 Fmo c— Phe— OH、 Fmo c— l i e - OH、 Fmo c— Cy s (Tr t) — OH、 Fmo c - Pr o— OH、 Fmo c - Leu— OH、 Fmo c - G l y - OH、 Fmo c - Me t— OH、 Fmo c— Se r (t -Bu) 一 OHを用いて、 保護べプチドの結合した担体樹 脂 1 20. 8m gを得た。 このうちの 40. 3mgに、 2—メチルインドールを 5mgZm 1の割合で含む、 90%TFA、 5%チオアニソール、 5% 1, 2— エタンジチオールの混合溶液 600 1を加えて室温で 2時間放置し、 側鎖保護 基を除去するとともに樹脂よりペプチドを切り出した。 次いで樹脂を濾別し、 得 られた溶液におよそ 2m 1のエーテルを加え、 生じる沈澱を粗べプチドとして得 た。 これを参考例 4と同様 H PLCで精製し、 化合物 f 8. 8mgを得た。
質量分析 [FABMS] : 998 (M+H) ァミノ酸分析: Se r l. 0 (l) 、 G l y l. 1 (l) 、 Pr o l. 1 ( 1 ) - Me t 1. 9 (2) 、 I l e O. 9 ( 1 ) . L e u 1. 0 (l) 、 Phe O. 9 ( 1 )、 Cy sは分析せず
参考例 7
化合物 g (H-Phe-G l y-G l y-Ar g- I 1 e-As p - Ar g—
I 1 e - NH2 :配列番号 9) の合成
Fmo c -NH 40. 8〃m o 1が結合した担体樹脂 (R i n k ami d e MB HA Re s i n) 80 m gを自動合成機の反応器に入れ、 島津製作所の 合成プログラムに従い次の操作を行った。
(a)担体樹脂を DMFにより 3分間洗浄し、 該溶液を排出した。
(b) 30%ピぺリジンを含む DMF溶液を加えて混合物を 4分間攪拌し、 該溶 液を排出し、 この操作をもう 1回繰り返した。
(c)担体樹脂を DMFで 1分間洗浄し、 該溶液を排出し、 この操作を 5回繰り 返した。
こうして、 Fmo c基を除去した NHの結合した担体樹脂を得た。
(d) Fmo c- I 1 e-OH2040 zmo PyBOP204 zmo K HOB t 204 /mo K NMM 306 zmo lを 71 4 lの DMF中 3分間 攪拌し、 得られた溶液を樹脂に加え混合物を 30分間攪拌し、 溶液を排出した。
(e)担体樹脂を DMFで 1分間洗浄し、 これを 5回繰り返した。 こうして、 F mo c - I 1 eが担体上に合成された。
次に、 (a) 〜(c) の洗浄、 脱保護工程を行った後、 (d) の工程で Fmo c -Ar g (Pmc) — 0 Hを用いて縮合反応を行い、 次いで ( e ) の洗浄工程 を経て、 Fmo c— Ar g (Pmc) 一 I 1 eが担体上に合成された。 以下、 ェ 程 (d) において、 Fmo c— As p (0 t - Β υ) 一 OH、 Fmo c- I 1 e -OH. Fmo c - Ar g (Pmc) 一 OH、 Fmo c - G l y— OH、 Fmo c— G l y— OH、 Fmo c— P he— OHを順次用いて、 (a) 〜(e) を繰 り返し、 保護ペプチドの結合した担体樹脂を得、 さらに (a) 〜(c) の洗浄、 脱保護工程を行って得られた担体樹脂をメタノール、 ブチルエーテルで洗浄し、 減圧下 3時間乾燥し、 保護ペプチドの結合した担体樹脂 1 22. lmgを得た。 このうちの 40. 7mgに、 82. 5%TFA、 5 %チオア二ソール、 5 %水、 3%ェチルメチルスルフイ ド、 2. 5 % 1 , 2—エタンジチオール、 2%チオフ ュノールの混合溶液 60 0 lを加えて室温で 8時間放置し、 側鎖保護基を除去 するとともに樹脂よりペプチドを切り出した。 次いで樹脂を濾別し、 得られた溶 液におよそ 2m 1のエーテルを加えて、 生じる沈澱を粗ペプチドとして 1 6. 2 mg得た。 この粗生成物を参考例 2と同様に H PLCで精製し、 化合物 gを 12. Omg得た。
質量分析 [FABMS] ;測定値 932 ( + H)
ァミノ酸分析; As x l, 0 (l) 、 G l y2. 1 (2) 、 Ar g l. 9 (2) 、 I 1 e 2. 0 (2)、 Ph e 1. 0 ( 1 )
参考例 8
化合物 h (H-Al a-Phe-G l y-G l y-Ar g- I l e-As p- Ar - I 1 e-G l y-Al a-Al a— NH2 :配列番号 1 0) の合成 参考例 7と同様な方法により、 Fmo c— NH 40. 8〃mo lが結合した 担体樹脂 (R i nk ami d e MBHA R e s i n) 80 m gを出発物質 として用い、 N—保護ァミノ酸として順次、 Fmo c— Al a— OH、 Fmo c -A 1 a - OH. Fmo c - G l y— OH、 Fmo c - l i e— OH、 Fmo c - A r g (Pm c) — OH、 Fm o c - A s p (0 t - B u) -OH, Fmo c - I 1 e -OH, Fmo c - Ar g (Pmc) - OH、 Fmo c— G l y - OH、 Fmo c - G l y— OH、 Fmo c— Phe—OH、 Fmo c - Al a— OHを 用いて、 保護ペプチドの結合した担体樹脂 1 47. lmgを得た。 このうちの 49. Omgを用い、 樹脂からのぺプチドの切り出し及び HPLCによる精製を 参考例 7と同様に行い、 化合物 h 1 3. 6mgを得た。
質量分析 [FABMS] : 1202 (M + H)
ァミノ酸分析: As x O. 9 ( 1 ) . G 1 y 3. 0 (3) 、 Ar g l. 8 (2) 、 A 1 a 3. 0 (3) 、 I 1 e 1. 9 (2) 、 Ph e 0. 9 (1)
参考例 9
化合物 i (H - Phe— G l y— G l y— D - Ar g— I 1 e - As p— Ar g 一 I 1 e-NH2 ) の合成 参考例 7と同様な方法により、 Fmo c—NH 40. 8〃mo lが結合した 担体樹脂 (R i nk ami d e MBHA R e s i n ) 80 m gを出発物質 として用い、 N—保護ァミノ酸として順次、 Fmo c— I 1 e -OH. Fmo c - A r g (Pmc) - OH、 Fmo c— As p (0 t - B u) -OH. Fmo c — I l e - OH、 Fmo c -D-A r g (Pmc) — OH、 Fmo c -G 1 y- OH、 Fmo c— G l y— OH、 Fmo c— Ph e— OHを用いて、 保護ぺブチ ドの結合した担体樹脂 221. 5mgを得た。 このうちの 72. 2mgを用い、 樹脂からのぺプチドの切り出し及び H P L Cによる精製を参考例 7と同様に行い、 化合物 i 1 3. 8mgを得た。
質量分析 [FABMS] : 932 (M + H)
ァミノ酸分析: As x l. 0 (l) 、 G l y 2. 1 (2) 、 Ar g l. 8 (2) 、 I 1 e 1. 9 (2) 、 Phe l. 0 (1)
参考例 1 0
化合物 j (H-Phe-G l y-G l y-D-Ar g- I 1 e - As p— D— Ar g- I 1 e— NH2 ) の合成
参考例 7と同様な方法により、 Fmo c— NH 40. 8〃mo lが結合した 担体樹脂 (R i nk ami d e MBHA R e s i n ) 80 m gを出発物質 として用い、 N—保護ァミノ酸として順次、 Fmo c— l i e— OH、 Fmo c 一 D - Ar g (Pmc) -OH. Fmo c— As p (O t - B u) — OH、 Fm o c - I 1 e - OH. Fmo c - D - Ar g (Pmc) -OH. Fmo c - G l y— OH、 Fmo c— G l y— OH、 Fmo c— Ph e— OHを用いて、 保 護ペプチドの結合した担体樹脂 202. Omgを得た。 このうちの 72. 0 m g を用い、 樹脂からのぺプチドの切り出し及び H P L Cによる精製を参考例 7と同 様に行い、 化合物〗 1 1. 3mgを得た。
質量分析 [FABMS] : 932 (M + H)
ァミノ酸分析: As x l. 0 (1) 、 G 1 y 2. l (2) 、 Ar g l. 8 (2) 、 I 1 e 1. 9 (2) 、 Phe l. 0 (1)
参考例 1 1
化合物 k (H - Phe - G l y— G l y— Ar g— (N-Me) I 1 e-As p -A r g- I 1 e -NH2 :配列番号 1 1 ) の合成
参考例 7と同様な方法により、 Fmo c— NH 40. 8〃mo lが結合した 担体樹脂 (R i nk ami d e MBHA R e s i n ) 80 m gを出発物質 として用い、 N—保護アミノ酸として順次、 Fmo c— I 1 e -OH, Fmo c - A r g (Pmc) - OH、 Fmo c— As p (0 t -Bu) -OH, Fmo c - (N-Me) 1 1 6—〇11を用ぃて、 (N— Me) l i e— As p— Ar g— I 1 eが結合した樹脂を得た。 ここに、 Fmo c— Ar g (Pmc) -OH 1 35. 2mg. PyBr oP 1 04. 6111 を含む11111の DMF溶液を加え、 氷冷下 D I EA71 1を加えた。 氷冷下のまま 1 0分間放置後、 室温で 21時 間攪拌し、 樹脂を濾取し、 DMF 1 m 1で 5回洗浄した。 こうして Fmo c— Ar g (Pmc) - (N-Me) I 1 e— Asp (0 t -B υ) -Ar (Pm c) 一 I 1 eの結合した樹脂を得た。 続いて参考例 7と同様に合成プログラムに したがい、 Fm 0 cアミノ酸として順次、 Fmo c— G l y—〇H、 Fmo c— G 1 y— OH、 Fmo c— Phe— OHを縮合し、 保護ペプチドの結合した担体 樹脂 1 1 5. Omgを得た。 このうちの 38. 3mgを用い、 樹脂からのぺプチ ドの切り出し及び HPLCによる精製を参考例 7と同様に行い、 化合物 k l. 3 m gを得た。
質量分析 [FABMS] : 946 (M + H)
ァミノ酸分析: As x O. 9 (l) 、 G l y 2. 1 (2) , A r g 2. 0 (2) 、 l i e 0 ( 1 ) . Ph e 1. 0 (1) 、 (N-Me) I 1 eは分析せず 参考例 1 2
化合物 m (H-D-Ar g-Ar g-Pr o-Hyp-G l y-Phe-Se r —D— Phe - Leu— Ar g— OH) の合成
参考例 7と同様な方法により、 Fmo c— Ar g (Pmc) 37. 6 /mo 1 が結合した担体樹脂 (Fmo c— Ar g (Pmc) 一 Wang Re s i n) 80mgを出発物質として用い、 N—保護アミノ酸として順次、 Fmo c— Leu -OH, Fmo c— D - Ph e— OH、 Fmo c— S e r ( t -B u) -OH, Fmo c— Phe—OH、 Fmo c - G l y - OH、 Fmo c -Hy ( t - Bu) — OH、 Fmo c— Pr o— OH、 Fmo c— Ar g (Pmc) —OH、 Fmo c— D— Ar g (Pmc) 一 OHを用いて、 保護ペプチドの結合した担体 樹脂 1 1 6. 5mgを得た。 このうちの 38. 8 m gを用い、 樹脂からのぺプチ ドの切り出し及び HPLCによる精製を参考例 7と同様に行い、 化合物 m6. 3 m を得た。
質量分析 [FABMS] : 1 248 (M + H)
ァミノ酸分析: Hyp l. 1 (l) 、 Se r l. 1 (l) 、 G l y l. 2 (1) 、 A r g 3. l (3) 、 Pr o O. 9 ( 1 ) . L e u 1. 0 (l) 、 Phe 2. 0 (2)
産業上の利用可能性 '
本発明により、 特定の構造からなる環状べプチドと生理活性べプチドとを必要 によりスぺ一サ一を介して結合させた新規べプチドが提供される。 本発明のぺプ チドは、 環状べプチドが結合していない生理活性べプチドより高い安定性及び Z 又は活性を有する。
配 列 表
配列番号: 1
配列の長さ : 8
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列の特徴
特徴を表す記号: Modified-site
存在位置: 1
特徴を決定した方法: E
他の情報: X a aは — 9—フルォレニルメチルォキシカルボ二ルグリシン を表す
配列
Xaa Asn Trp His Gly Thr Ala Pro
1 5 配列番号: 2
配列の長さ : 1 0
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列の特徴
特徴を表す記号: Modified- si te
存在位置: 1 0
特徴を決定した方法: E
他の情報: X a aはトリブトファンベンジルエステルを表す
配列 Gly Asn Trp His Gly Thr Ala Pro Asp Xaa
1 5 10 配列番号: 3
配列の長さ : 1 0
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド
配列の特徴
特徴を表す記号: Modified-site
存在位置: 1
特徴を決定した方法: E
他の情報: X a aは N — 9—フルォレニルメチルォキシカルボ二ルグリシン を表す
存在位置: 9 - 特徴を決定した方法: E
他の情報: Xa aはァスパラギン酸— S— t一ブチルエステルを表す 特徴を表す記号: Modified-site
存在位置: 1 0
特徴を決定した方法: E
他の情報: Xa aはトリブトファンベンジルエステルを表す
配列
Xaa Asn Trp His Gly Thr Ala Pro Xaa Xaa
1 5 10 配列番号: 4
配列の長さ : 9
配列の型:アミノ酸 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列
Val Thr Gly Arg Gly Asp Ser Pro Ala
1 5 配列番号: 5
配列の長さ : 1 2
配列の型:アミノ酸
鎖の数:一本鎮
トポロジー:直鎖状
配列の種類:ぺプチド
配列の特徴
特徴を表す記号: Modif ied- si te
存在位置: 1 2
特徴を決定した方法: E
他の情報: X a aはァラニンアミ ドを表す 配列
Val Tyr Ala Val Thr Gly Arg Gly Asp Ser Pro Xaa 1 5 10 配列番号: 6
配列の長さ : 9
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド
配列 Ser Met Gly Leu Pro Cys Val Val Met 1 5 配列番号: 7
配列の長さ : 7
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド
配列
Ser Ser Gly Cys Val Leu Ser
1 5 配列番号: 8
配列の長さ : 9
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ペプチド
配列
Ser Met Gly Leu Pro Cys lie Phe Met 1 5 配列番号: 9
配列の長さ : 8
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド 配列の特徴
特徴を表す記号: Modified- site
存在位置: 8
特徴を決定した方法: E
他の情報: Xa aはイソロイシンアミ ドを表す。 配列
Phe Gly Gly Arg lie Asp Arg Xaa
1 5 配列番号: 1 0
配列の長さ : 1 2
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:ぺプチド
配列の特徴
特徴を表す記号: Modified- site
存在位置: 12
特徴を決定した方法: E
他の情報: Xa aはァラニンアミ ドを表す。
配列
Ala Phe Gly Gly Arg lie Asp Arg lie Gly Ala Xaa 1 5 10 配列番号: 1 1
配列の長さ : 8
配列の型:アミノ酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:ぺプチド
配列の特徴
特徴を表す記号: Modif ied- si te
存在位置: 5
特徴を決定した方法: E
他の情報: X a aは N—メチル—L一イソロイシンを表す 特徴を表す記号: Modified-site
存在位置: 8
特徴を決定した方法: E
他の情報: X a aはイソロイシンアミ ドを表す
配列
Phe Gly Gly Arg Xaa Asp Arg Xaa
1 5

Claims

請 求 の 範 囲
( 1 ) 下記式 (A) で表されるぺプチドまたはその薬理学的に許容される塩 c
Figure imgf000050_0001
(式中、 Qは生理活性ペプチド残基を表わし、 Xは同一または異なったひ—アミ ノ酸残基を表す。 Mは G 1 yまたは Cy sを表わし、 mは 5〜8、 nは 0〜3の それぞれ整数である。 )
(2) Qが下記式 (I) で表される請求の範囲第 1項記載のペプチド。
-(Y p'-Arg -Gly -Asp —(Z')q1 - W1 (I)
(式中、 Y1 および Ζ1 は 一アミノ酸残基を表わし、 はヒドロキシ、 低級 アルコキシまたはアミノを表わす。 ρ1 は 0〜5、 q1 は 0〜1 0のそれぞれ整 数である。 P1 が 2以上の場合の Y1 および q1 が 2以上の場合の Z1 で表わさ れる 一アミノ酸残基は同一または異なっていてもよい。 )
(3) Qが下記式 (II) で表される請求の範囲第 1項記載のペプチド。
-(Y )p2-Cys 一 A2 - B2 - C2 - W2 (II)
(式中、 A2 、 B2 および C2 は α—アミノ酸残基を表わし、 ρ2 は 0〜8の整 数を表わし、 Υ2 および W2 はそれぞれ前記 Υ1 および W1 と同義である。 ρ2 が 2以上の場合の Υ2 で表される —ァミノ酸残基は同一または異なっていても よい。 )
(3) Qが下記式 (III)で表される請求の範囲第 1項記載のペプチド。
-(Ala)p3 一 A3— B3— C3— Asp -B3a — C3a 一 D3— W3 (III)
(式中、 P3 は 0〜1の整数であり、 は前記 W1 と同義である。 A3 は、 Phe、 G l y、 Phe— G l y、 G l y— G l y、 Phe - G l y— G l yま たは単結合を表し、 B3 および Βは同一または異なって Ar gまたは D— Ar gを表し、 C3 および C3eは同一または異なって I 1 eまたは (N—メチ ル) I 1 eを表し、 D3 は、 G 1 y、 A 1 a、 G 1 y— A 1 a、 A 1 a— A 1 a、 G 1 y-A 1 a-A 1 aまたは単結合を表す。 )
(4) Qが下記式 (IV) で表される請求の範囲第 1項記載のペプチド。 -A4 -Arg-Pro-B4 -Gl y-Phe-C 4 -D-Phe-Leu-Arg-W4 (IV)
(式中、 A4 は Ar g、 D— Ar gまたは単結合を表し、 B4 はヒドロキシプロ リンまたは P r 0を表し、 C4 は S e rまたは Cy sを表し、 は前記 W1 と 同義である。 )
PCT/JP1994/001554 1993-09-21 1994-09-21 Nouveau peptide WO1995008566A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU76659/94A AU676770C (en) 1993-09-21 1994-09-21 Cyclic peptide with higher stability and/or higher activity
EP94927080A EP0672680A4 (en) 1993-09-21 1994-09-21 NEW PEPTID.
JP50968995A JP3576554B2 (ja) 1993-09-21 1994-09-21 新規ペプチド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/235152 1993-09-21
JP23515293 1993-09-21

Publications (1)

Publication Number Publication Date
WO1995008566A1 true WO1995008566A1 (fr) 1995-03-30

Family

ID=16981826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001554 WO1995008566A1 (fr) 1993-09-21 1994-09-21 Nouveau peptide

Country Status (4)

Country Link
EP (1) EP0672680A4 (ja)
JP (1) JP3576554B2 (ja)
CA (1) CA2149783A1 (ja)
WO (1) WO1995008566A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201700877PA (en) * 2014-08-07 2017-03-30 Hoffmann La Roche Processes for the preparation of oxytocin analogues

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501610A (ja) * 1987-12-10 1991-04-11 ラ・ジョラ・キャンサー・リサーチ・ファウンデーション 立体配座的に安定化された細胞付着ペプチド
JPH0395125A (ja) * 1989-05-23 1991-04-19 Otsuka Pharmaceut Co Ltd カルシウム代謝改善剤
JPH03135997A (ja) * 1989-09-01 1991-06-10 F Hoffmann La Roche Ag 心房ナトリウム排泄因子拮抗体
JPH05262795A (ja) * 1991-06-20 1993-10-12 Snow Brand Milk Prod Co Ltd 新規ペプチドsna−115及びsna−115t、その製造法及び新規ペプチド産生菌株

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009887B1 (ko) * 1987-12-24 1997-06-19 존 에이취. 뉴만 심방의 나트륨이뇨성 펩티드의 선형유사체
JP2945680B2 (ja) * 1988-09-09 1999-09-06 旭硝子株式会社 ペプチド誘導体およびその用途
CA2044333A1 (en) * 1990-06-12 1991-12-13 Jackson B. Gibbs Chemotherapeutic agents
EP0586613A4 (en) * 1991-04-01 1994-08-24 Cortech Inc Bradykinin antagonists
CA2104952A1 (en) * 1991-12-27 1993-06-28 Takeo Tanaka Endothelin-antagonizing peptide
US5753617A (en) * 1992-09-08 1998-05-19 Centocor, Inc. Peptide inhibitors of cellular adhesion
CA2142985A1 (en) * 1993-06-25 1995-01-05 Kenji Shibata Endothelin-antagonizing peptide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501610A (ja) * 1987-12-10 1991-04-11 ラ・ジョラ・キャンサー・リサーチ・ファウンデーション 立体配座的に安定化された細胞付着ペプチド
JPH0395125A (ja) * 1989-05-23 1991-04-19 Otsuka Pharmaceut Co Ltd カルシウム代謝改善剤
JPH03135997A (ja) * 1989-09-01 1991-06-10 F Hoffmann La Roche Ag 心房ナトリウム排泄因子拮抗体
JPH05262795A (ja) * 1991-06-20 1993-10-12 Snow Brand Milk Prod Co Ltd 新規ペプチドsna−115及びsna−115t、その製造法及び新規ペプチド産生菌株

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP0672680A4 *
The Journal of Antibiotics, Vol. 47, No. 3, (March 1994), YOSHIKAZU MORISHITA et al., "RES-701-1, a Novel and Selective Endothelin Type B Receptor Antagonist Produced by Streptomyces sp. RE-701", p. 269-275. *

Also Published As

Publication number Publication date
CA2149783A1 (en) 1995-03-30
EP0672680A1 (en) 1995-09-20
AU7665994A (en) 1995-04-10
JP3576554B2 (ja) 2004-10-13
AU676770B2 (en) 1997-03-20
EP0672680A4 (en) 1999-04-07

Similar Documents

Publication Publication Date Title
JP2726647B2 (ja) 環状ペプチドおよびその用途
JP5384342B2 (ja) 癌のような変更された細胞遊走に関連する障害の治療のための薬理学的活性を有するペプチド
JPH07165797A (ja) 立体配座的に安定化された細胞接着ペプチド
EP0410989A1 (en) Cyclic analogs of atrial natriuretic peptides
US20090215025A1 (en) Small peptidic and peptido-mimetic affinity ligands for factor viii and factor viii-like proteins
JP5744844B2 (ja) 副甲状腺ホルモン(pth)受容体アゴニストとしての短鎖ペプチド
KR101417872B1 (ko) 59번 위치에 아미노산 치환을 포함하는 인슐린 유사 성장 인자-1(igf-1)의 유사체
EP2046814A2 (en) Minimized small peptides with high affinity for factor viii and factor viii-like proteins
US5631222A (en) Endothelin-antagonizing peptide
JPH08509960A (ja) 骨原性成長オリゴペプチドおよびそれを含む医薬組成物
AU2021338639B2 (en) Bispecific fusion polypeptide compound
AU736207B2 (en) Peptides which promote activation of latent TGF-beta and method of screening TGF-beta activity-regulating compounds
WO1995008566A1 (fr) Nouveau peptide
US6872803B1 (en) Peptides
JP3821485B2 (ja) 新規カルシトニン誘導体
EP1152011A1 (en) Peptides inhibiting vascular endothelial cell migration
AU7737101A (en) Peptides promoting the activation of latent TGF-b and method for screening TGF-b activity regulators
JP2001270897A (ja) 生理活性ペプチド
JPH07278191A (ja) 新規ペプチドもしくは蛋白質及びそれを探索する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 433404

Date of ref document: 19950518

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: CA

Ref document number: 2149783

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2149783

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994927080

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994927080

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994927080

Country of ref document: EP