WO1995007428A1 - Thermoplastic composite pipe - Google Patents
Thermoplastic composite pipe Download PDFInfo
- Publication number
- WO1995007428A1 WO1995007428A1 PCT/FI1994/000391 FI9400391W WO9507428A1 WO 1995007428 A1 WO1995007428 A1 WO 1995007428A1 FI 9400391 W FI9400391 W FI 9400391W WO 9507428 A1 WO9507428 A1 WO 9507428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoplastic
- composite material
- pipe
- composite
- core pipe
- Prior art date
Links
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 119
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 119
- 239000002131 composite material Substances 0.000 title claims abstract description 103
- 230000002787 reinforcement Effects 0.000 claims abstract description 27
- 239000000835 fiber Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004804 winding Methods 0.000 claims description 25
- 229920003023 plastic Polymers 0.000 claims description 20
- 239000004033 plastic Substances 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 12
- 229920001187 thermosetting polymer Polymers 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 3
- 238000009954 braiding Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 229920006300 shrink film Polymers 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000000463 material Substances 0.000 description 13
- -1 polyethylene Polymers 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 239000002990 reinforced plastic Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000012447 hatching Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 241000531908 Aramides Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/12—Rigid pipes of plastics with or without reinforcement
- F16L9/127—Rigid pipes of plastics with or without reinforcement the walls consisting of a single layer
- F16L9/128—Reinforced pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/08—Reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
Definitions
- the invention relates to a strong thermoplastic composite pipe and to a method for its manufacture.
- the pipe according to the invention is made up of a thermoplastic core pipe onto which there has been connected seamlessly a composite material layer made up of reinforcement fibers and a thermoplastic.
- Pipes are used, for example, for the transport of liquids and gases and as various structural components in machines and devices, in transport vehicles, in the building industry, etc.
- plastic pipes By the use of plastic pipes, significant advantages can be achieved over metal pipes in a number of applications.
- Typical advantages of plastic pipes as compared with metal pipes include their light weight, resistance to corrosion, moldability in manufacture, and electrical and thermal insulation capacity.
- Plastic pipes are typically manufactured by extrusion. Reinforced plastic pipes are most commonly manufactured by pultrusion, winding, pull winding, or pressure molding.
- Non-reinforced plastic pipes are manufactured, for example, from PVC, polyethylene, polypropylene, polybutene, and crosslinked polyethylene. Reinforced plastic pipes are commonly manufactured from glassfiber and a thermosetting plastic, which may be polyester, vinyl ester or epoxy.
- thermoplastic pipes It is known that structures light in weight and resistant to corrosion are achieved by using thermoplastic pipes.
- the problems involved with thermoplastic pipes typically include low mechanical properties and susceptibility to creep when loaded. Furthermore, they have a low impact resistance at low temperatures, and for pressure resistance the pipes must be made thick-walk .
- reinforced-plastic pipes are easily damaged by impact, whereupon they lose some of their mechanical strength properties and become susceptible to environmental effects such as corrosion. Furthermore, the wear resistance of reinforced-plastic pipes is in certain conditions low.
- thermoplastic pipes have been interconnected with other thermoplastic pipes or with thermoset pipes so that their interfaces are tightly fitted to each other.
- these constructions do not eliminate from the pipes the discontinuity points due to the interfaces, and may cause weakening of the structure owing to the above-mentioned damage by impact, to material-specific thermal expansion coefficients or elongations of the different pipe types.
- US patent publication 3 900 048 discloses a method of manufacturing a reinforced-plastic pipe wherein a glassfiber-reinforced, thermoplastic, non-crosslinked polymer is connected onto a thermoplastic core pipe by means of a solvent. According to the system disclosed in the publication, the clear interface between the layers can be caused to disappear by means of the solvent.
- thermoplastic pipe and the polymer matrix of the glassfiber-reinforced polymer layer are soluble.
- materials which are not soluble, or are very poorly soluble are also used in pipes.
- the dissolving of a polymer is in many cases time-consuming, and therefore such a method is often not suitable for practical applications.
- polypropylene which is used as a preferred alternative in the composite pipe according to the present invention, is a very poorly soluble material.
- non-desirable solvent residues may be left in the pipe from the solvent used.
- the object of the present invention is to provide a strong thermoplastic composite pipe, the various layers of the pipe being interconnected seamlessly.
- the object of the invention is thus to provide a strong thermoplastic composite pipe which has good pressure resistance properties, high impact resistance also at low temperatures, high wear resistance, high rigidity, and low creep.
- thermoplastic composite pipe which has all the other good chemical-mechanical properties typical of a thermoplastic pipe.
- thermoplastic composite pipe which has no detrimental discontinuity points between the different layers.
- thermoplastic composite pipe which may contain one or more different types of plastic.
- thermoplastic composite pipe according to the invention which is characterized in that a thermoplastic core pipe and a surrounding composite material made up of a thermoplastic and continuous reinforcement fibers are fused seamlessly to each other by means of heat.
- a pipe according to the invention it is possible to achieve high pressure resistance, high impact resistance also at low temperatures, high wear resistance, high rigidity, low creep, and additionally all the other good properties typical of a thermoplastic pipe.
- the high pressure resistance of a pipe according to the invention is achieved so that the continuous reinforcement phase will bear the stress to which the pipe may be subjected, so that the core pipe will not under pressure expand, stretch, or develop local strictures critical to pressure stress.
- the composite materials made up of a thermoplastic and a continuous reinforcement phase, used in the composite pipe according to the present invention, can be manufactured by various impregnation techniques in which continuous reinforcement fibers are im ⁇ pregnated with a thermoplastic.
- the reinforcement materials used in the composite structure may be, for example, glassfibers, carbon fibers, aramide fibers, polyethylene fi ⁇ bers, boron fibers, organic fibers, and other corresponding fibrous reinforcement mate ⁇ rials.
- the said composite materials are called thermoplastic prepregs, i.e. pre-impregna- tes.
- thermoplastic and a continuous reinforcement phase can be used for the manufacture of a pipe according to the invention, either as a thermoplastic prepreg, i.e. a pre-impregnated intermediate, or by directing the composite material directly from the preparation process onto the thermoplastic core pipe, i.e. by using an in situ method. These methods are described below in the specification.
- the said materials of a pipe interconnect seamlessly, their polymer matrices becoming mixed or diffused with each other.
- mixing or diffusion occurs when plastics are in contact with each other in molten state. If mixing or diffusion has not taken place, a discontinuity point can be observed at the interface.
- the thickness of the diffused boundary layer will range from a few tens of Angstrom units (A) up to thick diffused layers of similar polymers the thickness of which may approach the total combined thickness of the said materials, which can be indicated by oo , /Wu, Souheng, Polymer Interface and Adhesion, Marcel Dekker Inc., New York, 1982, p.393/.
- thermoplastic core pipe and the thermoplastic matrix of the surrounding composite material made up of a thermoplastic and continuous reinforcement fibers may be of the same or of different types of plastic.
- thermoplastic of the core pipe and the polymer matrix of the composite material are of the same plastic.
- Usable plastics include any thermoplastics, preferably, for example, polyethylene, polypropylene, polybutene, PVC and ABS plastics.
- Polypropylene is a plastic very suitable for use in a composite pipe according to the invention.
- thermoplastic of the core pipe and the matrix of the said composite material are of the same plastic, diffusion of the polymer chains will occur between them under suitable conditions. When the polymer chains become diffused, the connection point will be seamless.
- the interface between the core pipe and the surrounding composite material can be made seamless also when the thermoplastic of the core pipe and the matrix plastic of the composite material are of different plastics. This presupposes that diffusion or mixing occurs between these plastic materials.
- a seamless structure is achieved, for example, by using a PVC core pipe and a polyethylene-based composite material. By using these materials, a strong diffused layer can be produced, having a thickness of, for example, 90000 A. /Wu, Souheng, Polymer Interface and Adhesion, Marcel Dekker Inc., New York, 1982, p. 393/. There is no clear interface in the said boundary layer; there is a seamless shift from one material to the other.
- the diffusion between the thermoplastic core pipe and the polymer matrix of the composite material surrounding it, i.e. the seamless interconnecting of the layers, is effected by fusing them together by means of heat.
- An addition of pressure at the connection point of the melt fronts of the core pipe and the composite material will promote the diffusion.
- diffusion can be enhanced by using compatibilizers by means of which the mixing of the plastic materials with each other is promoted.
- thermoplastic composite pipe according to the invention is prepared in such a manner that a thermoplastic core pipe and a composite layer made up of a thermoplastic and continuous reinforcement fibers are interconnected by means of a third thermoplastic material or thermoplastic composite material by fusing it by means of heat between the aforementioned layers, so that it will interconnect in mol ⁇ ten state both with the thermoplastic core pipe and with the first mentioned composite material made up of continuous reinforcement fibers and a thermoplastic.
- the bond between the core pipe and the said composite material is at its most advanta ⁇ geous when a potential rupture will not occur at the imagined connection point but the rupture will take place either in the material of the core pipe or in the matrix material of the composite material, or randomly alternately in each.
- a strong thermoplastic pipe according to the invention can be manufactured, for example, by winding onto a thermoplastic core pipe the above-mentioned composite material containing a thermoplastic matrix.
- a seamless structure according to the invention is achieved in this manufacturing method by fusing by means of heat the matrix polymer of the composite material and/or the thermoplastic core pipe, either entirely or in part, and then by interconnecting the layers in molten state.
- the composite material to be wound may be wound onto the core pipe by winding it onto the thermoplastic core pipe at a winding angle of 0 - 180°.
- the selection of the winding angle depends on the intended use of the pipe and the stresses it will be subjected to. The angle is selected so that the capacity of the pipe to bear axial and radial loads will be optimal.
- the preferred winding angle is 50 - 60°.
- the preferred winding angle may be approx. 0°. It is always preferable to use a winding angle by means of which the bands of composite material can be placed adjacent to each other to form an even layer.
- a strong thermoplastic composite pipe according to the invention may also be manufactu ⁇ red by connecting onto a thermoplastic core pipe, in a suitable order and at suitable angles, various composite materials in which the thermoplastic matrix is the same but which may contain different types of continuous reinforcement fibers.
- thermoplastic composite pipe according to the invention may be coated with a shielding layer, such as a layer of a thermoplastic or a thermosetting plastic and/or some other coating material which will adhere to the outermost composite material layer and the purpose of which is to shield the thermoplastic composite pipe from impact, radiation, thermal action, burning, cooling ac ⁇ tion, corrosion, and/or other environmental effects.
- a shielding layer such as a layer of a thermoplastic or a thermosetting plastic and/or some other coating material which will adhere to the outermost composite material layer and the purpose of which is to shield the thermoplastic composite pipe from impact, radiation, thermal action, burning, cooling ac ⁇ tion, corrosion, and/or other environmental effects.
- the composite material made up of continuous reinforcement fibers and a thermoplastic and/or the thermoplastic core pipe may, when necessary, additionally contain some other filler, admixture, and/or rein ⁇ forcement material.
- the manufacture of a strong thermoplastic composite pipe by heat fusing can be carried out advantageously, as set forth earlier in the present specification, by using the so-called prepreg method or the in situ method, which methods are described in greater detail below. Winding of a pipe by the prepreg method
- a strong thermoplastic composite pipe according to the invention may be manufactured by the prepreg method by connecting onto a selected thermoplastic core pipe a composite material made up of a thermoplastic and a continuous reinforcement phase, in such a manner that a tape-form composite material of a suitable width, selected according to the diameter of the core pipe and the selected winding angle, is directed from a roll onto the circumference of the rotating core pipe.
- the seamless fusion of the composite material tape and the thermoplastic core pipe is effected by heating the composite material to its softening or melting point before directing it onto the surface of the core pipe.
- the surface of the core pipe may also be heated at the fusion point so that the outermost surface of the pipe will be at a temperature at which softening and/or melting may occur.
- the fusion of the molten-state thermoplastic phases to each other is ensured by tensioning the composite material tape being wound over the core pipe; the tensioning will produce a pressure advantageous for the fusion at the interconnection point of the said molten phases. Fusion will occur when the melted interconnection point of the composite material and the core pipe cools from the molten-state temperature, while the said composite material tape is still subject to tension.
- the fusing of the composite material layers subsequent to the first composite material layer on the circumference of the strong thermoplastic pipe blank is carried out in a corresponding manner.
- the fusion may also be ensured by pressure molding the pipe at the fusion point by means of a pressure roll or the like.
- a composite material of a thermoplastic and a continuous fiber reinforcement phase is prepared by an impregnation technique, known per se. suitable for the making of a thermoplastic tape with continuous-fiber reinforcement.
- the composite material tape coming from impregnation, in molten state with respect to its thermoplastic matrix, is directed onto the circumference of a rotating thermoplastic core pipe at a selected angle so that the rotating core pipe will pull the tensioned composite material tape from the impregnation process, whereby a pressure advantageous for fusion is produced at the interconnection point of the said tensioned composite material and the core pipe.
- thermoplastic composite pipe according to the present invention may also be manufactu- red by using other pipe coating methods known in the manufacturing technology, such as pultrusion, pull winding, braiding, flat winding, or pressure molding. Regardless of the method used, it is essential that the interconnection point between the composite material and the core pipe is heated to the softening or melting temperature of the thermoplastic in order to produce a seamless interconnection point.
- Figure 1 A cross section of the structure of a strong thermoplastic composite pipe according to the invention.
- FIG. 1 A partial enlargement of the wall structure of a thermoplastic composite pipe according to the invention.
- FIG. 1 shows a thermoplastic composite pipe 1 according to the invention, which has, around the thermoplastic core pipe 2 indicated with horizontal hatching, a composite material layer 3, indicated by vertical hatching, made up of thermoplastic and a con ⁇ tinuous reinforcement phase.
- a strong thermoplastic composite pipe was prepared by the prepreg method by winding onto a polypropylene core pipe having a diameter of 110 mm and a wall thickness of 5 mm a tape-form composite material made up of polypropylene and parallel continuous glassfiber and having a glassfiber/polypropylene ratio of 70 wt. %/30 wt. % .
- the width of the tape was 6 mm, and its thickness was 0.3 mm.
- Three layers of the tape were wound onto the core pipe at winding angles of +53°, -53° and 90°.
- the composite material was heated by hot air blowing at its interconnection point to a temperature of 195-205 °C.
- the pressure resistance of the composite pipe thus manufactu- red was 120 bar.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU75388/94A AU7538894A (en) | 1993-09-06 | 1994-09-05 | Thermoplastic composite pipe |
DE4496642T DE4496642T1 (de) | 1993-09-06 | 1994-09-05 | Röhre aus thermoplastischem Verbundwerkstoff |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI933877 | 1993-09-06 | ||
FI933877A FI933877A (fi) | 1993-09-06 | 1993-09-06 | Luja kestomuovipohjainen komposiittiputki |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995007428A1 true WO1995007428A1 (en) | 1995-03-16 |
Family
ID=8538534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI1994/000391 WO1995007428A1 (en) | 1993-09-06 | 1994-09-05 | Thermoplastic composite pipe |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU7538894A (fi) |
DE (1) | DE4496642T1 (fi) |
FI (1) | FI933877A (fi) |
WO (1) | WO1995007428A1 (fi) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998016376A1 (en) * | 1996-10-14 | 1998-04-23 | Danomast Gt Glasfiber A/S | Pole and method for its manufacture |
GB2295875B (en) * | 1994-12-06 | 1999-04-21 | Conoco Inc | Spoolable composite tubular member |
US6787207B2 (en) | 1996-04-30 | 2004-09-07 | Borealis Technology Oy | Multi-layer pressure pipe of a plastic material |
EP1506921A1 (de) * | 2003-08-14 | 2005-02-16 | Gabler Maschinenbau GmbH | Ausfahrzylindereinheit eines U-Bootes und Verfahren zu deren Herstellung |
NL1030476C2 (nl) * | 2005-11-21 | 2007-05-22 | Pipelife Nederland Bv | Vezelversterkte kunststofbuis. |
EP3345750A1 (de) | 2017-01-10 | 2018-07-11 | Evonik Degussa GmbH | Thermoplastisches compositrohr mit mehrschichtiger zwischenlage |
EP3345749A1 (de) | 2017-01-10 | 2018-07-11 | Evonik Degussa GmbH | Thermoplastisches compositrohr mit mehrschichtiger zwischenlage |
US10022948B2 (en) * | 2009-02-19 | 2018-07-17 | Terry C. Shafer | Composite pipe and method of manufacture |
EP3626764A1 (de) | 2018-09-21 | 2020-03-25 | Evonik Operations GmbH | Composite mit thermoplastischer matrix |
RU202560U1 (ru) * | 2020-06-10 | 2021-02-24 | Общество с ограниченной ответственностью «ЭНЕРГОПАЙП» | Термопластичная композитная труба |
RU203164U1 (ru) * | 2020-07-10 | 2021-03-24 | Общество с ограниченной ответственностью "ЭНЕРГОПАЙП" | Термопластичная композитная труба c усиленными оболочками |
RU204558U1 (ru) * | 2020-06-08 | 2021-05-31 | Михаил Алексеевич Попов | Композитная труба |
RU208651U1 (ru) * | 2021-03-04 | 2021-12-29 | Общество с ограниченной ответственностью "ЭНЕРГОПАЙП" | Армированная труба с барьерными свойствами |
RU210547U1 (ru) * | 2021-12-14 | 2022-04-20 | Михаил Алексеевич Попов | Композитная труба с распределенным газовым барьером |
CN114413078A (zh) * | 2022-02-28 | 2022-04-29 | 昶维(厦门)塑胶科技有限公司 | 一种连续纤维预浸肋板缠绕增强复合管及生产方法 |
RU2778197C1 (ru) * | 2021-04-22 | 2022-08-15 | Общество с ограниченной ответственностью «Инжиниринговая технологическая компания СВ» | Гибкая насосно-компрессорная труба |
EP4122692A1 (de) | 2021-07-21 | 2023-01-25 | Fibron Pipe GesmbH | Kunststoffzusammensetzung, kunststoffrohr, verwendung und herstellungsverfahren |
EP4134581A1 (de) | 2021-08-10 | 2023-02-15 | Fibron Pipe GesmbH | Thermisch gedämmtes, flexibles leitungsrohr und verfahren zur herstellung eines solchen leitungsrohrs |
EP4261012A1 (de) | 2022-04-12 | 2023-10-18 | Fibron Pipe GesmbH | Verfahren zur herstellung eines flexiblen, thermoplastischen verbundrohrs sowie thermoplastisches verbundrohr |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29906035U1 (de) | 1999-04-01 | 1999-06-17 | REHAU AG + Co., 95111 Rehau | Rohr |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3900048A (en) * | 1971-07-20 | 1975-08-19 | Owens Corning Fiberglass Corp | Reinforced thermoplastic pipe |
EP0054751A1 (de) * | 1980-12-15 | 1982-06-30 | Hoechst Aktiengesellschaft | Heizungsrohr aus Kunststoff für Fussbodenheizungen mit sauerstoffdichter Ummantelung |
EP0291639A1 (en) * | 1987-02-25 | 1988-11-23 | Phillips Petroleum Company | Thermoplastic composite pipe tube with resin rich inner portion and method of manufacturing the same |
WO1991008101A1 (en) * | 1989-11-29 | 1991-06-13 | Wavin B.V. | Plastic pipe with a wall made up of a plastic-filler layer |
EP0442457A2 (de) * | 1990-02-13 | 1991-08-21 | Holger Knappe | Wärmeformbeständige Rohre oder Liner |
-
1993
- 1993-09-06 FI FI933877A patent/FI933877A/fi not_active Application Discontinuation
-
1994
- 1994-09-05 AU AU75388/94A patent/AU7538894A/en not_active Abandoned
- 1994-09-05 WO PCT/FI1994/000391 patent/WO1995007428A1/en active Application Filing
- 1994-09-05 DE DE4496642T patent/DE4496642T1/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3900048A (en) * | 1971-07-20 | 1975-08-19 | Owens Corning Fiberglass Corp | Reinforced thermoplastic pipe |
EP0054751A1 (de) * | 1980-12-15 | 1982-06-30 | Hoechst Aktiengesellschaft | Heizungsrohr aus Kunststoff für Fussbodenheizungen mit sauerstoffdichter Ummantelung |
EP0291639A1 (en) * | 1987-02-25 | 1988-11-23 | Phillips Petroleum Company | Thermoplastic composite pipe tube with resin rich inner portion and method of manufacturing the same |
WO1991008101A1 (en) * | 1989-11-29 | 1991-06-13 | Wavin B.V. | Plastic pipe with a wall made up of a plastic-filler layer |
EP0442457A2 (de) * | 1990-02-13 | 1991-08-21 | Holger Knappe | Wärmeformbeständige Rohre oder Liner |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2295875B (en) * | 1994-12-06 | 1999-04-21 | Conoco Inc | Spoolable composite tubular member |
US6787207B2 (en) | 1996-04-30 | 2004-09-07 | Borealis Technology Oy | Multi-layer pressure pipe of a plastic material |
WO1998016376A1 (en) * | 1996-10-14 | 1998-04-23 | Danomast Gt Glasfiber A/S | Pole and method for its manufacture |
EP1506921A1 (de) * | 2003-08-14 | 2005-02-16 | Gabler Maschinenbau GmbH | Ausfahrzylindereinheit eines U-Bootes und Verfahren zu deren Herstellung |
NL1030476C2 (nl) * | 2005-11-21 | 2007-05-22 | Pipelife Nederland Bv | Vezelversterkte kunststofbuis. |
EP1787794A1 (en) * | 2005-11-21 | 2007-05-23 | Pipelife Nederland B.V. | Fibre-reinforced plastic tube |
US10022948B2 (en) * | 2009-02-19 | 2018-07-17 | Terry C. Shafer | Composite pipe and method of manufacture |
US10816113B2 (en) | 2017-01-10 | 2020-10-27 | Evonik Operations Gmbh | Thermoplastic composite pipe with multilayer intermediate lamina |
US11149879B2 (en) | 2017-01-10 | 2021-10-19 | Evonik Operations Gmbh | Thermoplastic composite pipe with multilayer intermediate lamina |
EP3345749A1 (de) | 2017-01-10 | 2018-07-11 | Evonik Degussa GmbH | Thermoplastisches compositrohr mit mehrschichtiger zwischenlage |
CN108284659A (zh) * | 2017-01-10 | 2018-07-17 | 赢创德固赛有限公司 | 具有多层中间层的热塑性复合材料管材 |
RU2709588C2 (ru) * | 2017-01-10 | 2019-12-18 | Эвоник Оперейшенс ГмбХ | Термопластичная композитная труба с многослойной промежуточной прослойкой |
RU2714587C2 (ru) * | 2017-01-10 | 2020-02-18 | Эвоник Оперейшенс ГмбХ | Термопластичная композитная труба с многослойной промежуточной прослойкой |
US11982396B2 (en) | 2017-01-10 | 2024-05-14 | Evonik Operations Gmbh | Thermoplastic composite pipe with multilayer intermediate lamina |
CN108286627A (zh) * | 2017-01-10 | 2018-07-17 | 赢创德固赛有限公司 | 具有多层中间片层的热塑性复合管 |
CN108284659B (zh) * | 2017-01-10 | 2020-04-07 | 赢创运营有限公司 | 具有多层中间层的热塑性复合材料管材 |
EP3345750A1 (de) | 2017-01-10 | 2018-07-11 | Evonik Degussa GmbH | Thermoplastisches compositrohr mit mehrschichtiger zwischenlage |
US20220003338A1 (en) * | 2017-01-10 | 2022-01-06 | Evonik Operations Gmbh | Thermoplastic composite pipe with multilayer intermediate lamina |
WO2020058403A1 (de) | 2018-09-21 | 2020-03-26 | Evonik Degussa Gmbh | Composite mit thermoplastischer matrix |
EP3626764A1 (de) | 2018-09-21 | 2020-03-25 | Evonik Operations GmbH | Composite mit thermoplastischer matrix |
RU204558U1 (ru) * | 2020-06-08 | 2021-05-31 | Михаил Алексеевич Попов | Композитная труба |
RU202560U1 (ru) * | 2020-06-10 | 2021-02-24 | Общество с ограниченной ответственностью «ЭНЕРГОПАЙП» | Термопластичная композитная труба |
RU203164U1 (ru) * | 2020-07-10 | 2021-03-24 | Общество с ограниченной ответственностью "ЭНЕРГОПАЙП" | Термопластичная композитная труба c усиленными оболочками |
RU208651U1 (ru) * | 2021-03-04 | 2021-12-29 | Общество с ограниченной ответственностью "ЭНЕРГОПАЙП" | Армированная труба с барьерными свойствами |
RU2778197C1 (ru) * | 2021-04-22 | 2022-08-15 | Общество с ограниченной ответственностью «Инжиниринговая технологическая компания СВ» | Гибкая насосно-компрессорная труба |
EP4122692A1 (de) | 2021-07-21 | 2023-01-25 | Fibron Pipe GesmbH | Kunststoffzusammensetzung, kunststoffrohr, verwendung und herstellungsverfahren |
EP4134581A1 (de) | 2021-08-10 | 2023-02-15 | Fibron Pipe GesmbH | Thermisch gedämmtes, flexibles leitungsrohr und verfahren zur herstellung eines solchen leitungsrohrs |
WO2023016687A1 (de) | 2021-08-10 | 2023-02-16 | Fibron Pipe Gesmbh | Thermisch gedämmtes, flexibles leitungsrohr und verfahren zur herstellung eines solchen leitungsrohrs |
RU210547U1 (ru) * | 2021-12-14 | 2022-04-20 | Михаил Алексеевич Попов | Композитная труба с распределенным газовым барьером |
CN114413078A (zh) * | 2022-02-28 | 2022-04-29 | 昶维(厦门)塑胶科技有限公司 | 一种连续纤维预浸肋板缠绕增强复合管及生产方法 |
EP4261012A1 (de) | 2022-04-12 | 2023-10-18 | Fibron Pipe GesmbH | Verfahren zur herstellung eines flexiblen, thermoplastischen verbundrohrs sowie thermoplastisches verbundrohr |
WO2023198510A2 (de) | 2022-04-12 | 2023-10-19 | Fibron Pipe Gesmbh | Verfahren zur herstellung eines flexiblen, thermoplastischen verbundrohrs sowie thermoplastisches verbundrohr |
RU223702U1 (ru) * | 2022-12-20 | 2024-02-29 | Общество с ограниченной ответственностью "Научно-Производственная Компания Лаплас" | Композитная труба |
Also Published As
Publication number | Publication date |
---|---|
FI933877A0 (fi) | 1993-09-06 |
AU7538894A (en) | 1995-03-27 |
FI933877A (fi) | 1995-03-07 |
DE4496642T1 (de) | 1996-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1995007428A1 (en) | Thermoplastic composite pipe | |
EP3721125B1 (en) | High-pressure pipe with pultruded elements and method for producing the same | |
CA2446153C (en) | A method of manufacturing a reinforcement element for a flexible pipeline | |
US4276908A (en) | Bonded thermoplastic hose | |
US4961977A (en) | Composite article | |
EP1314923A1 (en) | Composite high-pressure tube and method of manufacturing the tube | |
US20090022920A1 (en) | Composite Article For Conveying And/Or Storage Of Liquid and Gaseous Media And A Process For Producing The Same | |
CA2252932C (en) | Pressure tube of a plastic material | |
US6787207B2 (en) | Multi-layer pressure pipe of a plastic material | |
AU2002320710A1 (en) | Composite Pipe Having a PTFE Inner Layer and a Covering Layer of a Fibre-reinforced Plastics Material | |
JP2015519423A (ja) | 連続繊維強化ポリアリーレンスルフィド | |
US5765600A (en) | Pipe designs using composite materials | |
WO2005070668A1 (en) | Hollow composite body of fiber reinforced thermoplastic material | |
US6663808B2 (en) | Method of producing textile reinforced thermoplastic or thermoset pipes utilizing modified dorn structures | |
CN115051306B (zh) | 一种电缆护套管及其制备方法 | |
RU151868U1 (ru) | Армированная полимерная труба, армирующая система и комплексная армирующая нить для нее | |
EP0912325B1 (en) | Fiber-reinforced resin pipe having improved impact resistance and production method | |
JP2869130B2 (ja) | 繊維強化熱硬化性樹脂製撚構造体及びその製造方法 | |
EP0027708B1 (en) | Thermoplastic reinforced hose | |
US10344904B2 (en) | Strengthened polyethylene tubular member | |
RU2556919C2 (ru) | Способ изготовления кольца из композиционного материала, кольцо из композиционного материала, применение кольца в уплотнительном узле и уплотнительный узел | |
CA1140845A (en) | Hose | |
RU2263243C1 (ru) | Бипластмассовая труба | |
PL176243B1 (pl) | Przewód rurowy z wytłaczanej rury warstwowej z tworzywa sztucznego mający złącze kielichowe | |
CN111183024A (zh) | 加强的聚乙烯管状构件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU CA CH CN CZ DE DK ES GB JP LU NL NO PT RU SE SK US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
RET | De translation (de og part 6b) |
Ref document number: 4496642 Country of ref document: DE Date of ref document: 19960822 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4496642 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |