WO1995004838A1 - Acier a resistance a la traction elevee, a resistance a la fatigue et a aptitude au soudage superieures et procede de fabrication - Google Patents

Acier a resistance a la traction elevee, a resistance a la fatigue et a aptitude au soudage superieures et procede de fabrication Download PDF

Info

Publication number
WO1995004838A1
WO1995004838A1 PCT/JP1994/001297 JP9401297W WO9504838A1 WO 1995004838 A1 WO1995004838 A1 WO 1995004838A1 JP 9401297 W JP9401297 W JP 9401297W WO 9504838 A1 WO9504838 A1 WO 9504838A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
weight
steel
hot rolling
temperature range
Prior art date
Application number
PCT/JP1994/001297
Other languages
English (en)
French (fr)
Inventor
Katsumi Kurebayashi
Shuji Aihara
Atsushi Seto
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to JP50633695A priority Critical patent/JP3526576B2/ja
Priority to EP94923079A priority patent/EP0666332A4/en
Priority to US08/411,738 priority patent/US5634988A/en
Priority to KR1019950701263A priority patent/KR0157540B1/ko
Publication of WO1995004838A1 publication Critical patent/WO1995004838A1/ja
Priority to NO951288A priority patent/NO951288L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the present invention relates to a high-strength steel having excellent fatigue strength and weldability of a weld portion used for shipbuilding, offshore structures, bridges, and the like, and a method for producing the same.
  • Si is used to favor the formation of clean polygonal graphite
  • B is used to strengthen the steel, and by improving the hardenability, it is possible to obtain good elongation flangeability, fatigue properties
  • C 0.01 to 0.2%
  • Mn 0.6 to 2.5%
  • Si 0.02 to 1.5%
  • B 0.0005 to 0.1%
  • a high-strength thin steel sheet excellent in quality is disclosed.
  • An ultra-low carbon steel sheet comprising 0.001 to 0.100% and having good spot weldability is disclosed.
  • JP-A-59-110490 and JP-A-1-1301823 require special work after welding, and the fatigue strength cannot be improved without welding.
  • the method using heat treatment after welding is also not preferable because the number of processes increases and the welding work becomes complicated. The effect is also limited.
  • Thin steel sheets disclosed in JP-A-62-10239 or JP-A-3-264645 are mainly used for automobile wheels and disk base materials. Since the purpose, thickness, and method of use are completely different from those of steel plates used in shipbuilding and marine structures, which are the subject of the present invention, the findings here are applied to steel plates as they are. It is not possible. Looking at the steel composition, the thin steel sheet disclosed in Japanese Patent Application Laid-Open No. 62-10239 particularly shows that the relationship between the amounts of C and P is C: less than 0.22% and P: 0.16%.
  • the aim is to improve the fatigue strength of spot welds by specifying the range of C + 0.6 P31 with C 0.22 to 0.3%, and to improve the weld strength by arc welding. No disclosure is made regarding solid solution strengthening of the flight structure.
  • spot welding is a type of resistance welding method, and is mainly used for welding thin steel sheets with a thickness of about 0.5 to 3.5 mra and after forming, for example, thin steel sheets for automotive parts. This is done by sandwiching the welded part of a thin steel plate by pressing it with an electrode and applying a large current in a short time.
  • spot welding is the arc welding method used for welding high-tensile steel plates that are used as materials for shipbuilding, marine structures, bridges, etc. with a thickness of 6 mm or more.
  • welding methods such as welding conditions, welding conditions, etc.
  • shape of the welded part and welding residual stress also differ, the two factors governing the fatigue strength differ between the two. It is not possible to directly apply the knowledge of welding to arc welding.
  • the steel sheet disclosed in Japanese Patent Application Laid-Open No. 264645 is a steel sheet to which B has been added to improve the strength and hardenability of the steel and to obtain a desired structure. Not touched. Furthermore, there is no description on the improvement of the fatigue strength of welds other than the base metal.
  • the steel sheet disclosed in Japanese Patent Publication No. 56301/1996 relates to spot welds of ultra-low carbon steel sheets and is intended to control the hardness distribution of the spot welds. And grain growth.
  • the upper limit of the amount added is set to suppress deterioration of the material, and no study has been made on weldability.
  • An object of the present invention is to improve the fatigue strength of a weld of a structural member, particularly, a weld welded by an arc welding method.
  • Another object of the present invention is to improve the fatigue strength of the structure of a welded portion of a structural member, particularly the structure of a weld heat affected zone (hereinafter, referred to as HAZ) by controlling the structure of the HAZ up to welding. .
  • HAZ weld heat affected zone
  • Another object of the present invention is to provide a high-tensile steel plate having good weldability in which weld cracks do not occur immediately after welding.
  • Another object of the present invention is to provide a method for producing a high-strength steel plate that achieves the above object. Disclosure of the invention
  • the present invention provides the following high-strength steel plate for achieving the above object.
  • the inventors of the present invention have observed microscopically the state of crack initiation and propagation in a fatigue test piece of a welded joint. As a result, it was found that fatigue cracks often occur at the boundary between the weld metal and the HAZ where repeated load stresses are concentrated, propagate through the HAZ, and further propagate to the base metal, causing the specimen to fracture. did.
  • the HAZ structure in which this fatigue crack is generated and propagated is greatly related to the fatigue strength. Fatigue is caused by the repeated movement of dislocations.To improve the fatigue strength of the weld, fatigue cracks are generated.
  • the HAZ structure is strengthened so that it is difficult to propagate, and dislocation movement is suppressed. I came to think I needed to.
  • strengthening methods such as solid solution strengthening, precipitation strengthening, and dislocation strengthening. Since the welds are rapidly heated and cooled, the precipitates are also dissolved, so it is not possible to strengthen the HAZ structure up to the weld by precipitation strengthening. Even if the base metal is strengthened by working dislocation, dislocation density is reduced by welding, so dislocation strengthening is not an appropriate strengthening method.
  • solid solution strengthening is an effective means to strengthen the HAZ structure.
  • Elements effective for solid solution strengthening are C, N, P, Si, Cu, and Mo in the order of their effect.
  • C and N which are interstitial elements, have a large effect of solid solution strengthening, but have a greater effect on properties such as hardenability, weldability, and toughness other than solid solution strengthening.
  • P has a great effect of solid solution strengthening, but embrittles grain boundaries, so its content must be reduced.
  • substitutional Si, Cu, and Mo have a smaller ratio of solid solution strengthening to the added amount than C, N, and P, but are effective for solid solution strengthening because they can be added more than these.
  • Si reduces stacking fault energy and reduces cross slip, thereby suppressing localization of deformation during repeated plastic deformation and increasing reversibility of plastic deformation. Has the effect of suppressing the generation of cracks.
  • B has the highest cold cracking susceptibility compared to other elements (the larger the coefficient, the higher the cracking susceptibility).
  • B has the function of suppressing grain boundary fluoride, which is a source of fatigue cracks. Therefore, when considering the susceptibility to low-temperature cracking, the effect must be suppressed to 0.0020% or less, at which the effect of saturation is saturated. In addition, when P cm is high due to the combination of elements, it is preferable to suppress the addition amount to less than 0.0005%, which is an addition amount that does not substantially affect the cold cracking susceptibility.
  • the inventors of the present invention observed microscopically the appearance of crack initiation and propagation in fatigue test specimens of welded joints, and obtained knowledge on the relationship between HAZ structure and fatigue strength.
  • the HAZ structure is classified into ferrite structure, bainite structure, and martensite structure according to the hardenability of steel.
  • the HAZ structure of commercially available high-strength steel is often the veneer structure.
  • the payinite organization was defined as both the upper bainite organization and the lower payinite organization, and the ratio of the payinite organization to the total organization was determined as the bainite organization fraction by microscopic observation.
  • High hardenability of HAZ structure Higher fraction of ferrite structure than 20%
  • the payinite microstructure fraction is less than 80%
  • fatigue cracks are likely to occur from soft lite structures such as grain boundary ferrite ⁇ ite 'side plates, resulting in lower fatigue strength. Does not improve.
  • the hardenability is high and the martensite microstructure fraction is higher than 20% and the payneite microstructure fraction is lower than 80%
  • fatigue cracks occur from the grain boundaries at the interface of the hard martensite microstructure. Again, the fatigue strength does not improve.
  • the present invention provides a high-strength steel sheet having improved fatigue strength and weldability by the effects of the above (1) and (2). Further, by combining (3), a higher strength steel sheet can be obtained. Achieved high-strength steel sheets can be provided.
  • FIG. 1A is a plan view showing a fatigue test piece of a T-shaped fillet welded joint.
  • FIG. 1B is a side view of the fatigue test piece shown in FIG. 1A.
  • C is an element that increases the strength of the base material, and it is desirable to add a large amount of C to increase the strength of the base material.
  • the addition of more than 0.20% of C lowers the toughness of the base metal and the weld, and deteriorates the weldability. Therefore, the upper limit of C was set to 0.20%.
  • C is too low, it becomes difficult to secure the strength of the base metal, and the hardenability of the weld decreases, resulting in the formation of grain boundary pro-eutectites that are harmful to the fatigue strength.
  • the lower limit of C was set to 0.03%.
  • Si is a solid solution strengthening element that does not significantly enhance hardenability, and solid solution strengthens the structure. It suppresses the movement of dislocations and the generation of fatigue cracks. Also, Si is known to reduce the eyebrow defect energy of the steel sheet structure and reduce cross slip. As a result, plastic deformation It has the effect of suppressing the occurrence of cracks by suppressing cross-localization of dislocation slip lines and increasing the reversibility of plastic deformation when the shape is repeatedly loaded. Therefore, Si is an essential element for improving fatigue strength.
  • the lower limit was set to 0.6%.
  • the upper limit was set to 2.0%.
  • Mn is an element that increases the strength of the base material without significantly reducing toughness. If Mn is less than 0.6%, sufficient base metal strength cannot be obtained, so the lower limit was set to 0.6%. When Mn is added in excess of 2.0%, not only the toughness of the weld is reduced, but also the weldability and ductility are deteriorated, so the upper limit was set to 2.0%.
  • A1 is required as a deoxidizing element, and unless added at 0.01% or more, deoxidizing action cannot be expected. On the other hand, if added in excess of 0.08%, large amounts of A1 oxides and nitrides are generated, deteriorating the toughness of the weld. Therefore, the upper limit was set to 0.08%.
  • N When Ti is added, N combines with Ti and suppresses austenite grain growth of HAZ. Since this effect cannot be expected if N is less than 0.002%, the lower limit of N is set to 0.002%. Conversely, if a large amount is added, the amount of dissolved N increases and the HAZ toughness decreases, so the upper limit is set to 0.008%.
  • B has the effect of improving the hardenability of the HAZ structure and also has the function of suppressing grain boundary fluoride, which is the source of fatigue cracks, but greatly deteriorates the susceptibility to weld cracking and reduces weldability. It is an element that, when added, causes weld cracks such as root cracks and toe cracks.
  • the above effects As the fruits are saturated at 0.0020%, the upper limit of the amount of B added is set to 0.0020% .When the amount of alloying elements other than B is large and P cm is high, the effect on cold cracking susceptibility is substantially negligible. The upper limit was set to less than 0.0005%.
  • P and S are the more preferable impurity elements as they are lower.
  • P should take into account the toughness of the base metal and the weld
  • S should also take into account the toughness of the base metal and the weld as well as the ductility in the thickness direction, and the upper limit should be 0.020%. Is desirable.
  • Cu and Mo improve the hardenability of the base metal and HAZ, but these elements are rather effective in strengthening the fiber matrix by solid solution strengthening like Si.
  • stacking fault energy does not decrease as much as Si. The effect is not remarkable unless 0.1% and 0.05% or more are added, respectively. Also, if the addition exceeds 1.5% or 0.5%, the hardenability is too high, and the fatigue strength is adversely reduced due to the formation of martensite.
  • Ni, Cr, and V are all elements that improve the hardenability of the base metal and HAZ.
  • the lower limits of 0.1%, 0.1%, and 0.01%, respectively, were set as the additive amounts at which the effect was exhibited for each element.
  • excessive addition facilitates the formation of a lower bainite-martensite structure and rather lowers the fatigue strength of the welded portion. Therefore, the upper limits of the respective contents are set to 3.0%, 1.0% and 0.10%.
  • Nb is an element that has the effect of increasing base metal strength and also has an effect on hardenability.
  • the non-recrystallization temperature range increases. Therefore, it is desirable to add 0.005% or more in order to control recrystallization during rolling and to enable controlled rolling in a wide temperature range.
  • high Nb content lowers HAZ toughness. Therefore, the upper limit of Nb was set to 0.06%.
  • Ti combines with N to form TiN, which improves the toughness of HAZ by refining the structure of HAZ. For that purpose, 0.005% or more is necessary, but if it exceeds 0.05%, no further effect is seen, so the lower limit was set to 0.005% and the upper limit to 0.05%.
  • Ca has the effect of fixing sulfide, which is the source of fatigue cracks, and improving ductility. Also, the occurrence of fatigue fracture originating from sulfides can be suppressed. If the amount is less than 0.0005%, the effect cannot be expected.
  • the lower limit was set to 0.0005% and the upper limit to 0.0050%.
  • REM has the same effect as Ca in fixing sulfides that cause fatigue cracks and improving ductility. Also, the occurrence of fatigue fracture originating from sulfides can be suppressed. REM is considered to have the same effect as any other rare earth element. Among them, La, Ce and Y are mentioned as typical examples. In order for the effect of adding REM to be exerted, it is necessary to add a total of 0.0005% or more. Even if 0.0050% or more is added, the effect saturates and is not economical. Therefore, the lower limit was 0.0005% and the upper limit was 0.0050%.
  • the present invention is mainly intended for high-tensile steel having a tensile strength of 490 MPa or more. By applying the following manufacturing method, it is possible to obtain thick steel plates having various strengths.
  • the ingot before hot rolling, the ingot must first be 100% austenitized. Heating to austenite may be achieved by heating to Ac 3 or higher.However, when heating exceeds 1250 ° C, austenite grains become coarse and the crystal grain size after rolling increases, resulting in a base material such as strength and toughness. Since the characteristics deteriorate, the heating temperature was set to Ar 3 or higher and 1250 ° C or lower. In order to obtain good base metal properties, austenite grain size Need to be smaller. Since the austenite grain size is very large by heating the ingot, hot rolling is performed in the recrystallization temperature range where the austenite grain size can be reduced (normal rolling: about 900 to 1250 ° C) At a temperature of 10 to 95%.
  • high-strength steel can be stably obtained at low cost.
  • hot rolling is completed in the recrystallization temperature range, and natural cooling is performed.
  • the strength may be insufficient when the plate thickness is large or when the added elements are small.
  • Controlled rolling (rolling in the non-recrystallization temperature range, approximately 750 to 900 ° C for high-strength steel) can produce high-strength steel with high strength and toughness.
  • it is effective to introduce a deformation zone by rolling into the austenite grains to increase the number of ferrite-forming nuclei, and then to perform natural cooling.
  • hot rolling with a cumulative reduction of 40% or more in the non-recrystallization temperature region is required.However, if the cumulative reduction exceeds 90%, the base material toughness will decrease. Cumulative rolling reduction was set to 40 to 90%.
  • a high-tensile steel having a higher strength than a manufacturing method using only controlled rolling can be obtained.
  • it is effective to accelerate the cooling to a temperature at which the transformation ends while keeping the C concentration in the fly high.
  • the cooling rate was 1-60 ° C / sec.
  • the temperature at which the transformation is completed is 600 ° C or lower, but the cooling stop temperature is usually set at 600 ° C to room temperature because the liquid above room temperature is usually used as the cooling medium.
  • the production method using controlled rolling, accelerated cooling and tempering heat treatment is even higher than the production method using a combination of controlled rolling and accelerated cooling.
  • High strength steel having strength and toughness can be obtained.
  • it is effective to recover the processed structure by dissipating dislocations or reducing the density of lattice defects due to coalescence.
  • If the tempering temperature is lower than 300 ° C, these effects cannot be expected.At temperatures above the Ad point, transformation rather than recovery starts, so the tempering temperature and time are set to SOiTC Ac, point, 10 ⁇ 120 minutes.
  • Table 2 shows the manufacturing conditions of each steel (heating temperature, cumulative reduction rate in the recrystallization area, cumulative reduction rate in the non-recrystallization area, finishing temperature, cooling start temperature, cooling rate, cooling stop temperature, and tempering temperature). .
  • the cumulative reduction in the recrystallization region is (h 0 — h 1) Zh 0, and the cumulative reduction in the non-recrystallization region is the reduction ratio defined by (h 1 — h 2) / h 1 .
  • h0 is the slab thickness (mm)
  • hi is the thickness after rolling in the recrystallization temperature range or the thickness before rolling in the non-recrystallization temperature range (mm)
  • h2 is the rolling in the non-recrystallization temperature range. It is the rear plate thickness (mm).
  • Each slab is heated to 3 points or more of Ac and 1250 ° C or less, maintained for 60 minutes, hot-rolled in the recrystallization temperature range, and then cooled naturally or unrecrystallized without natural cooling After hot rolling with a cumulative rolling reduction of 40% to 90% in the temperature range, naturally cool or not cool, and cool at a cooling rate of 1 to SiTCZsec. Cool or temper by heating to the SOiTC Ad point With this, it was manufactured to a finished plate thickness of 15 mm.
  • a T-shaped fillet weld fatigue test piece 1 shown in Fig. 1 was prepared.
  • 2 is a flat plate
  • 3 is a rib plate
  • a corner 4 is formed by both plates, and this corner is welded.
  • 5 is a weld metal.
  • the welding method was sheathed arc welding and the heat input was 18 kJZcm.
  • Table 4 shows the fraction of bainite in the HAZ structure of each steel and the crack arresting temperature by oblique y-shaped cracking test (JIS Z3158).
  • Steels 1, 2, and 3 of the present invention are examples in which the amount of added Si is three levels.
  • the steel 3 of the present invention which has been subjected to controlled rolling at an unrecrystallized region cumulative rolling reduction of 40%, has a higher yield stress and tensile strength.
  • the fatigue strength increases, but the Charpy transition temperature also increases, indicating that there is an optimum amount of Si for practical use.
  • the steels 4 to 16 of the present invention to which at least one of the groups Cu, Mo, Ni, Cr, Nb, V, Ti, B, Ca, and REM were added also exhibited a solid solution with Cu and Mo, in addition to the effect of Si.
  • the fatigue strength increased further than the steels 1 to 3 of the present invention due to the synergistic effect due to the sulfide suppression effect due to Ca and REM, and the sulfide suppression.
  • each manufacturing method of normal rolling, controlled rolling, controlled rolling + accelerated cooling, controlled rolling + accelerated cooling + tempering heat treatment is used, but compared to normal rolling, rolling by combining controlled rolling is performed.
  • a high strength steel having higher strength was obtained even with the same carbon equivalent.
  • the fatigue strength of a welded joint does not depend on the yield stress and tensile strength of the base metal.
  • the above-mentioned effects including solid solution strengthening of Si described in the present invention are considered. Is indispensable.
  • Comparative Steel 1 is an example in which the amount of Si added is smaller than the composition range of the steel of the present invention. Fatigue strength is improved when the amount of Si added is within the composition range of the steel of the present invention.
  • Comparative steels 2 to 8 with excessive addition of Cu, Mo, Ni, Cr, Nb, V, and B have fatigue strengths higher than those of comparative steel 1 because the amount of Si added is within an appropriate range. Although it is a high value, as can be seen from the payite structure fraction in Table 4, the comparative steels 2 to 8 have too high hardenability to form a martensite structure, and , The fatigue strength was lower than that of the steel of the present invention.
  • the steel of the present invention with regard to high tensile strength steel used in shipbuilding, offshore structures, bridges, etc., by controlling the structure of the heat-affected zone by adding a specific element while ensuring the weldability of the steel sheet. It is possible to improve the fatigue strength of the welded structure by using the steel of the present invention. It has become possible to improve reliability against fatigue failure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書 溶接部の疲労強度と溶接性に優れた高張力鋼およびその製造方法 技術分野
本発明は、 造船、 海洋構造物、 橋梁等に用いられる、 溶接部の疲 労強度と溶接性に優れた高張力鋼およびその製造方法に関するもの でめ 背景技術
構造物の大型化に伴い、 構造部材の重量低減が近年の重要な課題 となっており、 これを実現するために構造物に使用される鋼の高張 力化が進んでいる。 しかしながら、 船舶、 海洋構造物、 橋梁等では 使用期間中に繰り返し荷重を受けるために、 このような構造物にお いては疲労破壊を防止するための配慮が必要である。 疲労破壊が最 も発生し易い部位は溶接部であることから、 溶接部の疲労強度を向 上することが求められている。
これまでに、 溶接部の疲労強度支配要因と疲労強度改善に関する 膨大な研究がなされており、 溶接部疲労強度の改善は、 グライ ンダ 一研削により、 又は溶接ビー ド最終層を加熱 ·再溶融することによ り、 溶接の止端部形状を整形する等の溶接止端部形状の改善による 応力集中度の低減によるもの、 ショ ッ トピーニング処理等を行う こ とによって溶接止端部に圧縮応力を生成せしめるもの等、 力学的要 因による改善がほとんどであった (特開昭 59— 1 10490号公報、 特開 平 1 一 301823号公報等) 。 また、 溶接後の熱処理によって得られる 残留応力低減効果も従来からよく知られている。
—方、 上記のような特殊な施工や溶接後熱処理を用いず鋼材の成 分によって、 溶接部の疲労強度を改善する方法も提案されている。. 特開昭 62- 10239号公報では、 Si量を増大させ、 Cと Pの添加量を特 定することにより、 高 C、 高 Mnレベルでも、 スポッ ト溶接部疲れ特 性を劣化させないことを目的と して、 C : 0.3%以下、 Si : 0.7~ 1.1%、 Mn: 2.0%以下、 P : 0.16%以下、 および solAl : 0.02〜 0.1 %からなる、 スポッ ト溶接性の疲れ特性に優れた高強度薄鋼板 が開示されている。
特開平 3 — 264645号公報では、 Siにより清浄なポリ ゴナルフヱラ ィ ト形成を有利にし、 Bにより鋼を強化し、 かつ焼入れ性を向上す ることにより、 良好な伸びフ ラ ンジ性、 疲労特性、 抵抗溶接性を得 ることを目的として、 C : 0.01〜0.2 %、 Mn: 0.6〜2.5 %、 Si : 0.02〜1.5 %、 および、 B : 0.0005〜0.1 %等からなる、 伸びフ ラ ンジ性等に優れた高強度薄鋼板が開示されている。
特公平 3 - 56301 号公報では、 B等添加により、 鋼中成分と鋼板 中の未再結晶組織の割合に工夫を加えることにより、 スポッ ト溶接 部の継手疲労強度の有利な改善を図ることを目的と して、 C : 0.006 %以下、 Mn: 0.5%以下、 A1 : 0.05%以下、 および、 窒化物、 硫化 物を除いた固溶状態の Tiおよび または Nbの 1種または 2種の合計 :
0.001〜0.100 %等からなる、 スポッ ト溶接性の良好な極低炭素鋼 板が開示されている。
これらのうち特開昭 59— 110490号公報および特開平 1一 301823号 公報は、 溶接後に特殊な施工をする必要があり、 溶接ままで疲労強 度を改善することはできない。 溶接後熱処理による方法も、 工程が 増加し溶接施工が煩雑となるため好ま しく ない。 また、 その効果も 限られたものである。
特開昭 62-10239号公報または特開平 3 — 264645号公報に示されて いる薄鋼板は、 用途が主に自動車用ホイールやディ スクの母材に関 するものであって、 本発明の対象とする造船、 海洋構造物で用いら れる鋼板とは用途、 板厚、 使用方法が全く異なるものであるため、 ここでの知見をそのまま厚鋼板に適用することはできない。 また、 その鋼成分を見ても、 特開昭 62- 10239号公報に示されている薄鋼板 は、 特に Cと Pの量の関係を C : 0. 22 %未満で P : 0. 16 %以下、 C 0. 22〜 0. 3 %で C + 0. 6 P 31の範囲に規定することにより、 ス ポッ ト溶接部の疲労強度向上を目指すものであり、 アーク溶接法に よる溶接部のフヱライ ト組織の固溶強化について何ら開示していな い。
すなわち、 スポッ ト溶接は抵抗溶接法の一種であり、 主に板厚 0. 5〜 3. 5 mra程度のしかも成形加工後の薄鋼板例えば自動車用部材 用薄鋼板の溶接に用いられており、 か、る薄鋼板の溶接部を電極で 加圧して挟み込み、 大電流を短時間に流すことにより行われる。
したがってか、るスポッ ト溶接は板厚 6 腳以上の造船、 海洋構造 物、 橋梁などの材料になる高張力厚鋼板の溶接に用いられるァ一ク 溶接法とは、 電極形状、 溶接材料の有無、 溶接条件、 などの溶接方 法だけでなく溶接部の形状、 溶接残留応力なども異なるため、 両者 では疲労強度の支配要因が異なり、 スポッ ト溶接で疲労強度が向上 したからといって、 スポッ ト溶接での知見をそのままアーク溶接に 適応することはできないのである。
—方、 特開平 3 — 264645号公報に示されている薄鋼板は鋼の強度 と焼入れ性を向上させて、 所望の組織を得るために Bを添加したも ので、 溶接性との関係に関しては触れられていない。 さらに、 母材 以外に溶接部の疲労強度向上に関する記載もない。
特公平 3 — 56301 号公報に示されている鋼板は、 極低炭素鋼板の スポッ ト溶接部に関するもので、 スポッ ト溶接部の硬度分布を制御 しょうとするものであるが、 Bは組織の微細化と粒成長.抑制をねら つて添加したものであり、 その添加量の上限値は材質の劣化を抑制 するために設定されているのであって、 溶接性については全く検討 されていない。
本発明は構造部材の溶接部、 特にアーク溶接法によつて溶接した 溶接部の疲労強度を改善することを目的とする。
本発明はまた、 構造部材の溶接部、 特に溶接熱影響部 (以下 HAZ と称す) の組織の疲労強度を、 溶接ま 、で前記 HAZ の組織を制御す ることによって改善することを目的とする。
本発明はまた、 溶接直後に溶接割れの生じない良好な溶接性を有 する高張力厚鋼板を提供することを目的とする。
本発明はまた、 上記の目的を達成する高張力厚鋼板を製造する方 法を提供することを目的とする。 発明の開示
本発明は上記目的を達成するために以下に示す高張力厚鋼板を提 供するものである。
こ 、で本発明の基本思想について以下に述べる。
( 1 ) 本発明者らは、 溶接継手の疲労試験片のき裂発生 · 伝播の 様子をミ クロ的に詳細に観察した。 その結果、 疲労き裂は多くの場 合、 繰り返し負荷応力が集中する溶接金属と HAZ の境界部から発生 し、 HAZ を伝播し、 さらに母材に伝播して試験片の破断に至ること を知見した。
以上の観察から、 この疲労き裂が発生 · 伝播する HAZ 組織が疲労 強度に大きく関係していると考えられる。 疲労は転位の繰り返し運 動により生じることから、 溶接部の疲労強度を向上させるためには 疲労き裂が発生 · 伝播しにく くなるように HAZ 組織を強化して、 転 位の運動を抑制する必要があると考えるに至った。 一般に、 組織の強化法には固溶強化、 析出強化、 転位強化等の強 化法がある。 溶接部は急速に加熱 · 冷却されるため、 析出物も溶解 されるので、 析出強化により溶接ま の HAZ 組織を強化することは できない。 また、 母材を加工転位により強化しても、 溶接により転 位密度が減少するため、 転位強化も適切な強化法ではない。 したが つて HAZ 組織を強化するためには固溶強化が有効な手段となる。 . 固溶強化に有効な元素はその効果の順に、 C, N, P, S i , Cu, Moがある。 侵入型元素である Cと Nは固溶強化の効果は大きいが、 固溶強化以外の焼入れ性や溶接性、 靱性等の諸特性に及ぼす影響の 方が大き く、 単純に添加量を増やしても HAZ 組織を固溶強化する目 的だけを達成することはできない。 また、 Pも固溶強化の効果は大 きいが粒界を脆化させるため、 含有量を少なくする必要がある。 こ れに対して、 置換型の S i, Cu, Moは添加量に対する固溶強化の割合 が C, N, Pより小さいが、 これらより も多く添加できるため固溶 強化には有効である。 さ らに、 S iは、 積層欠陥エネルギーを減少さ せ、 交差すベりを減らすことにより、 繰り返し塑性変形時の変形の 局所化を抑制するとともに、 塑性変形の可逆性を高めることにより . き裂の発生を抑制する作用がある。
よって、 疲労強度向上には、 S iの添加が有効であると考えられる, 以上の検討をもとに、 S iで固溶強化した種々の高張力鋼について. 図 1 に示す形状の T字隅肉溶接継手を作成し、 疲労試験を行った結 果、 本発明で述べた知見を得るに至った。
( 2 ) また、 T字隅肉溶接継手を作成する際に、 Bを多量に添加 した高張力鋼で HAZ に低温割れが観察された。 高張力鋼の溶接部に 低温割れが生じることはあってはならないことであり、 当然繰り返 し荷重が負荷された場合は、 この割れを起点に容易に疲労破壊が起 こることが予想される。 ここで、 次式に低温割れ感受性を表す炭素 当量 P eraを示す。
P cm = C + Si/30+Mn/20 + Cu/20+Ni/60 + Cr/20+ o/ /15 + V/10+ 5 B ··· ( 1 )
この式からもわかるように、 Bは他の元素に比べて低温割れ感受性 が最も高い (係数が大きいほど割れ感受性が高い) 。
しかし Bは、 疲労き裂の発生源となる粒界フユライ トを抑制する 働きがあるので、 低温割れ感受性を考慮する場合は、 その抑制効果 が飽和する 0.0020%以下にする必要がある。 また、 元素の組み合わ せにより P cmが高い場合には、 低温割れ感受性に実質的にほとんど 影響しない添加量である 0.0005%未満に抑制することが好ま しい。
そこで、 Bを抑制して溶接性を確保することが溶接部の疲労強度 向上の前提となる。
なお、 低温割れのない良好な溶接性を確保するためには上述のよ うに B以外の元素についても考慮して炭素当量 P cmを制御する必要 がある。 例えば、 本願実施例で示す板厚 15mmの鋼板を溶接する場合- P cmの値を 0.26以下にすることにより室温において良好な溶接を行 うことができる。 P cmの値がこれ以上大きい場合には侵入水素量の 抑制、 鋼板の余熱などの付加工程が必要となる。
( 3 ) さ らに、 本発明者らは、 溶接継手の疲労試験片のき裂発生 伝播の様子をミ クロ的に詳細に観察した結果、 HAZ 組織と疲労強度 の関係についても知見を得た。 HAZ 組織は鋼の焼入れ性によって、 フェライ ト組織 · ベイナィ ト組織 · マルテンサイ ト組織に分類され. 通常、 市販されている高張力鋼の HAZ 組織は多くの場合べィナイ ト 組織である。 ここで、 ペイナイ ト組織は上部べィナイ ト組織と下部 ペイナイ ト組織の両方とし、 顕微鏡組織観察により全組織に占める ペイナイ ト組織の割合をべイナィ ト組織分率と した。
HAZ 組織の焼入れ性が低く フェライ ト組織分率が 20%より も高く ペイナイ ト組織分率が 80%より も低い場合、 疲労き裂は粒界フ ェラ ィ トゃフヱライ ト ' サイ ド * プレー トのような軟質のフヱライ ト組 織から発生しやすいため疲労強度は向上しない。 一方、 焼入れ性が 高く マルテンサイ ト組織分率が 20%より も高くペイナイ ト組織分率 が 80%より も低い場合、 疲労き裂は硬質のマルテンサイ ト組織界面 の粒界から発生してしまうため、 やはり疲労強度は向上しない。
このような知見に基づき、 疲労強度が向上するのはべイナィ ト組 織であり、 その組織分率が 80%以上のときに疲労強度の向上効果が 顕著に現われることを確認した。
このように HAZ 組織をべイナィ ト主体の組織にするために、 組織 の焼入れ性を向上させる元素と して、 Ni, Cr, Vを適量添加するこ とも有効である。
本発明は上記 ( 1 )(2 ) の効果により、 疲労強度と溶接性を向上 させた高張力鋼板を提供するものであり、 さらに ( 3 ) を組み合わ せることにより、 さ らにより高い疲労強度を達成させた高張力鋼板 を提供しうるのである。
なお、 HAZ におけるフユライ ト組織をより固溶強化し、 かつ焼入 れ性も向上するために Cu, Moをさらに添加することも有益であり、 また、 圧延中の未再結晶温度域のフ Xライ トの再結晶を抑制すると ともに焼入性も向上するために Nbを、 オーステナイ ト粒径の粗大化 を抑制するために Tiをそれぞれ添加することも本発明にとって有効 ?ある
また、 疲労き裂の発生源となる硫化物を固定し、 延性を向上させ るために Ca, REM を添加することも有効である。
すなわち、 本発明は重量%で、 C : 0.03〜0.20%、 Si: 0.6〜
2.0 Mn: 0.6〜2.0 %、 A1: 0.01〜0.08%、 N : 0.002〜0.008 %、 B : 0.0020%以下とし、 残部は Feと不可避的不純物とからなる 高張力鋼であり、 さ らに、 必要に応じて、 Cu: 0.1〜1.5 Mo: 0.05〜0.5 %、 Νί : 0.1〜3.0 %、 Cr: 0.1〜 1.0 %、 V : 0.01〜 0.10%、 Nb: 0.005〜0.06%、 Ti : 0.005〜0.05%、 Ca: 0.0005〜 0.0050%、 REM: 0.0005〜0.0050%の範囲で少なく とも 1種の元素 を含有する高張力鋼であり、 さ らには、 HAZ のべイナィ ト組織分率 が 80%以上である溶接部の疲労強度と溶接性に優れた高張力鋼であ る o 図面の簡単な説明
第 1図 Aは T字隅肉溶接継手の疲労試験片を示す平面図である。 第 1図 Bは第 1 図 Aで示す疲労試験片の側面図である。 発明を実施するための最良の形態
本発明を実施するための最良の形態を以下に詳述する。
先ず、 本発明における母材となる鋼の成分の限定理由を述べる。
Cは母材強度を上昇させる元素であり、 母材強度上昇のためには 多量に添加することが望ま しい。 しかしながら、 0.20%超の Cの添 加は、 母材並びに溶接部の靱性を低下させ、 溶接性を悪化させる。 従って、 Cの上限を 0.20%とした。 また、 Cが低すぎると母材強度 の確保が困難となる上に、 溶接部の焼入れ性が低下し、 疲労強度に 有害な粒界初析フヱライ トの生成を招く。 このように、 Cが 0.03% 未満では疲労強度向上に望ま しい組織が得られないため、 Cの下限 値を 0.03%と した。
Siは、 焼き入れ性をあまり上げない固溶強化元素であり、 組織を 固溶強化するものであり、 転位の運動を抑制し、 疲労き裂の発生を 抑制する。 また、 Siは、 鋼板組織の積眉欠陥エネルギーを減少させ 交差すベりを減らすことが知られている。 そのため、 鋼板に塑性変 形が繰り返し負荷された時に、 転位のすべり線が交差 · 局所化する のを抑制して、 塑性変形の可逆性を高めることにより、 き裂の発生 を抑制させる作用がある。 よって、 疲労強度向上には、 Siは必須の 兀素であ 。
Siが 0.6%未満では、 固溶強化および積層欠陥エネルギーを減少 させる効果が少なく、 疲労強度向上は見込めない。 従って、 下限値 を 0.6%とした。 逆に、 Siを 2.0%超添加すると、 赤スケール発生 により表面性状が悪化して疲労き裂の発生源が増加するだけでなく . 靱性も悪化する。 従って、 上限値を 2.0%と した。
Mnは、 靱性をあまり低下させることなく母材強度を上昇させる元 素である。 Mnが 0.6%未満では十分な母材強度が得られないため、 下限値を 0.6%とした。 また、 Mnを 2.0%超添加すると、 溶接部の 靱性が低下するだけでなく、 溶接性、 延性も劣化するため、 上限値 を 2.0%と した。
A1は、 脱酸元素として必要で、 0.01%以上添加しないと、 脱酸作 用を期待できない。 一方、 0.08%超添加すると、 A1酸化物や窒化物 が多量に生成して、 溶接部の靱性を劣化させる。 従って、 上限値を 0.08%とした。
Nは Tiを添加した場合には Tiと結合して HAZ のオーステナイ ト粒 成長を抑制する。 Nが 0.002%未満ではこの効果が期待できないた め、 Nの下限値を 0.002%とした。 逆に、 多量に添加すると、 固溶 N量が増加し、 HAZ 靱性を低下させるので、 上限値を 0.008%とし o
Bは、 HAZ 組織の焼き入れ性を向上させる効果とともに、 疲労き 裂の発生源となる粒界フユライ トを抑制する働きがある一方で、 溶 接割れ感受性を大きく悪化させて溶接性が低下し、 その添加により ルー ト割れ、 止端割れ等の溶接割れを生ずる元素である。 前述の効 果は 0.0020%で飽和するため、 Bの添加量の上限を 0.0020%と した, また、 B以外の合金元素の添加量が多く、 P cmが高い場合は、 低温 割れ感受性に実質的にほとんど影響しない添加量と して、 その上限 を 0.0005%未満と した。
なお、 P, Sは低いほど好ま しい不純物元素である。 Pは母材と 溶接部の靱性を考慮し、 また Sは同様に母材と溶接部の靱性を考慮 するとともに板厚方向の延性の低下も考慮して、 それぞれ上限値を 0.020%にすることが望ま しい。
Cuおよび Moは、 母材および HAZ の焼入れ性を向上するが、 これら の元素はむしろ Siと同様に固溶強化により、 フヱライ ト · マ ト リ ツ クスの強化に有効である。 しかし、 積層欠陥エネルギーは、 Siほど 減少させない。 それぞれ 0.1%、 0.05%以上添加しないと、 その効 果が顕著でないため、 これを下限値とした。 また、 1.5%、 0.5% 超添加すると、 焼入れ性が高すぎて、 マルテンサイ 卜が生成するこ とにより疲労強度は逆に低下するので、 これを上限とした。
Ni, Cr、 および Vは、 ともに母材および HAZ の焼入れ性を向上さ せる元素である。 各元素毎に効果が現れる添加量として、 それぞれ 0.1%、 0.1%、 0.01%を下限値と した。 また、 過度の添加は、 下 部べイナィ トゃマルテンサイ ト組織を生成し易く なり、 溶接部の疲 労強度をむしろ低下させるため、 各々の上限値は、 3.0%、 1.0% 0.10%と した。
Nbは、 母材強度上昇に効果を有するとともに焼入性にも効果があ る元素であり、 さらに、 鋼板製造時に制御圧延 · 制御冷却を適用す る場合には、 未再結晶温度域を上昇させて圧延中の再結晶を抑制す ることにより、 広い温度域で制御圧延が可能となるために 0.005% 以上添加することが望ま しい。 しかしながら、 Nbを多量に含有する と HAZ 靱性を低下させる。 従って、 Nbの上限値を 0.06%と した。 Tiは、 Nと結合して TiN となり、 HAZ の組織の細粒化により HAZ . 靱性を向上させる。 そのためには、 0.005%以上の添加が必要であ るが、 0.05%超の添加では、 それ以上の効果は見られないため、 下 限値を 0.005%、 上限値を 0.05%とした。
Caは、 疲労き裂の発生源となる硫化物を固定し、 延性を向上させ る効果がある。 また、 硫化物を起点とする疲労破壊の発生も抑制で きる。 添加量が 0.0005%以下ではその効果が期待できず、 また
0.0050%超では靱性を低下させる。 よって、 下限値を 0.0005%、 上 限値を 0.0050%とした。
REM は、 疲労き裂の発生源となる硫化物を固定し、 延性を向上さ せる点で、 Caと同様の効果がある。 また、 硫化物を起点とする疲労 破壊の発生も抑制できる。 REM は希土類元素であればいずれの元素 も同様の効果を有すると考えられるが、 これらの中でも特に、 La, Ceおよび Yがそれらの代表として挙げられる。 REM 添加による効果 が発揮されるには、 合計で 0.0005%以上添加することが必要であり . 0.0050%以上添加してもその効果は飽和し、 経済的でもなく なる。 よって、 下限値を 0.0005%、 上限値を 0.0050%とした。
次に、 本発明の高張力鋼の製造方法について説明する。
本発明は引張強さが 490MPa以上の高張力鋼を主な対象と しており . 下記の製造方法を適用することにより、 様々な強度の厚鋼板を得る ことが可能である。
いずれの製造方法でも、 熱間圧延する前には、 まず鋼塊を 100% オーステナイ ト化する必要がある。 オーステナイ ト化するためには Ac3 以上に加熱すればよいが、 1250°Cを超えて加熱するとオーステ ナイ ト粒が粗大化し、 圧延後の結晶粒径が大きくなつて強度、 靱性 等の母材特性が劣化するため、 加熱温度は Ar3 以上、 1250°C以下と した。 また、 良好な母材特性を得るためには、 オーステナイ ト粒径 を小さ くする必要がある。 鋼塊を加熱することにより、 オーステナ ィ ト粒径が非常に大き く なつているため、 オーステナイ ト粒径を小 さ くできる再結晶温度域で熱間圧延 (通常圧延 : 約 900〜 1250°Cの 温度で 10〜95 %の圧下率の圧延) を行う。
前述の通常圧延による製造方法では、 安価に安定して高張力鋼を 得ることができる。 この場合には、 再結晶温度域で熱間圧延を終了 し、 自然冷却する。 ただし、 板厚が厚い場合や、 添加元素が少ない 場合には強度が不足することがある。
制御圧延 (未再結晶温度領域での圧延、 高張力鋼の場合、 約 750 〜900 °C ) による製造方法では、 高い強度と靱性を有する高張力鋼 を得ることができる。 この場合には、 オーステナイ 卜粒内に圧延に よる変形帯を導入し、 フ ェライ ト生成核を増加させた後に、 自然冷 却することが有効である。 変形帯を導入するためには未再結晶温度 域で累積圧下率が 40 %以上の熱間圧延が必要であるが、 累積圧下率 が 90 %を超えると母材靱性が逆に低下するため、 累積圧下率を 40〜 90 %とした。
制御圧延と加速冷却を組合せた製造方法によれば、 制御圧延のみ による製造方法より もさ らに高い強度を有する高張力鋼を得ること ができる。 この場合には、 フヱライ ト中の C濃度を高く保持したま ま、 変態が終了する温度まで加速冷却することが有効である。 フ エ ライ ト中の C濃度を保持するには、 1 °C Z s ec 以上で冷却する必要 があるが、 60°C Z s e c を超えると強度上昇は頭打ちになり、 靱性が 逆に低下するため、 冷却速度を 1 〜60°C / s ec とした。 また、 変態 が終了する温度は 600°C以下であるが、 通常は室温以上の液体を冷 却媒体とするため、 冷却停止温度は 600°C〜室温とした。
制御圧延、 加速冷却および焼き戻し熱処理による製造方法によれ ば、 制御圧延と加速冷却の組合せによる製造方法より もさらに高い 強度と靱性を有する高張力鋼を得ることができる。 この場合には、. 転位の消滅や合体による格子欠陥密度の減少により、 加工組織を回 復させることが有効である。 焼き戻し温度が 300°Cより も低い場合 には、 これらの効果が期待できず、 Ad 点以上の温度では回復では なく変態が開始するため、 焼き戻し温度および時間を SOiTC Ac, 点、 10〜120 分とした。 実施例
以下に、 本発明の実施例について述べる。
各元素添加量の影響を調査するために、 本発明鋼 16鋼種、 比較鋼 8鋼種、 合計 24鋼種について溶解を行い、 90X 200 X 380咖の 50kg スラブをラボにて铸造した。 その供試鋼の化学成分および炭素当量 を第 1表に示す。 炭素当量は前述の式により計算した。
第 2表に各鋼の製造条件 (加熱温度、 再結晶域累積圧下率、 未再 結晶域累積圧下率、 仕上温度、 冷却開始温度、 冷却速度、 冷却停止 温度、 および焼き戻し温度) を示した。
ここで、 再結晶域累積圧下率は、 (h 0 — h 1 ) Zh 0、 未再結 晶域累積圧下率は、 ( h 1 — h 2 ) /h 1で定義される圧下率であ る。 ただし、 h 0 はスラブ厚 (mm) 、 h i は再結晶温度域での圧延 後板厚あるいは未再結晶温度域での圧延前板厚 (mm) 、 h 2は未再 結晶温度域での圧延後板厚 (mm) である。
各スラブを Ac3 点以上、 1250°C以下に加熱し、 60min 保持して、 再結晶温度域にて熱間圧延した後、 自然冷却するか、 あるいは、 自 然冷却せずに引き続き未再結晶温度域で累積圧下率 40%〜 90%の熱 間圧延をした後、 自然冷却するか、 あるいは自然冷却せずに、 1 〜 SiTCZsec の冷却速度で、 60(TC〜室温で冷却停止し、 自然冷却す るか、 あるいはさらに、 SOiTC Ad 点に加熱して焼き戻しするこ とにより、 仕上げ板厚 15咖に製造した。
これら熱延板の機械的性質を測定した結果と して、 降伏応力、 引 張強度、 破断伸び、 およびシャルピー衝撃値の値も第 2表に併せて 示した。
この鋼板を用いて、 第 1 図に示す T型隅肉溶接疲労試験片 1 を作 成した。 図中、 2 は平板、 3 はリブ板で、 両板により隅部 4を構成 し、 この隅部を溶接した。 5 は溶接金属である。 試験片 1 の形状は. a = 50mm、 b = 200mm ^ c = 15nrai、 d = 30麵、 e = 15mmであった。 溶接方法は被覆アーク溶接、 溶接入熱は、 18kJZcmと した。 この 試験片 1 に対し、 応力比 R (最小応カノ最大応力) =0.1 で、 3点 曲げ疲労試験を行った結果を第 3表に示した。 この表では、 繰り返 し数が、 1 X 10+5回、 2 X 10+6回になった時の応力範囲の値を示し た。 また、 第 4表に各鋼の HAZ 組織におけるべイナィ ト組織分率と 斜め y形割れ試験 (JIS Z3158)による割れ停止温度を示した。
666S7ο 6928286907UOS986Oι1I
ooooooοοοοοοοοοοοοο οοο oo
2600 Ό
Figure imgf000017_0001
900 Ό Ό —- -一 --- 一- --- --- --- WO O WO O ΖΖ '\ ΪΖ Ό 9Τ Ό 丄 000 ·0 9000 Ό Τ000 ·0 00 ·0 ·0 10 ·0 20 ·0 10 ·0 10 Ό Ζ Ό Ζ Ό Ζ ·0 00 Ό 800 ·0 66 Ό 18 ·0 91 一—— ―— —一一 ^οθ 'Ο 90 Ό ——― —一— —-— Ζ Ό —一一 --— L Ό 900 '0 BOO 'Ο 28 Ό U ·0 ST
― ― —- 100 '0 'ο --- η 'Ο —- ― Γ0 S O -一 SOO '0 SOO '0 98 Ό £8 ·0
mo '0 ― --- 100 Ό 10 Ό -— --- -- —- —- ― --- 100 '0 900 '0 Z Ί 98 Ό ει
― mo 'ο -— εοο 'ο 9ο 'ο -— --- ― ― --- ― —- βοο 'o zoo Ό TO 'Ϊ ΐΓΙ ζ\
― —一- 0100 ·0 900 Ό 20 'Ο —-- -—- --- ― -—- ― —-- 200 ·0 100 Ό Ζΐ ·ΐ Ζ Ί ΐΐ
― --- -一 m ·ο εο Ό ·ο -― ― ― —- ― --- m ·ο m ·ο 96 ·ΐ ε丄' ο 01 一—— ―— ——― 'ο go "0 —- 60 '0 -— ― —- ― --- '0 900 "0 ½ 'I 6 ·Ι 6 一— —一— ——― g00 ·0 εο ·0 —― ― so ·0 —― —-— ― —- εοο ·ο εοο ·ο ·ΐ 29 ·0 8
― ― -一 Ζ00 Ό 80 Ό --- --- —- t' ·0 —- --- --- 900 Ό m 'ο ·0 Ζ *Ι ί
― ― --- ,00 'Ο ·0 --- --- ― —- 8 Ό ― -一 900 '0 600 '0 VZ 'ΐ £L '0 9
—一 ——- —― εοο '0 Ε0 ·0 ——一 ——― —― —― —- Q -\ ——― εοθ Ό S00 Ό Ϊ0 'ΐ 16 9 本
― --- ― 900 Ό '0 ― ― ― --- ― ― ε ·ΐ S00 Ό Ε00 'Ο 2Ζ '\ 98
― —-- --― εοο Ό ·ο —- —-- --- ― --- ― —-- soo 'o o Ό η '\ 68 ε 一一一 ——― ——― goo ·0 go 'ο ― --- ― ― ― --- ― m ·0 800 Ό 8 ·ΐ τε ζ 一— —一— ——― 200 Ό £0 '0 -—― --- --- --- —- --- —-― ΙΌ0 Ό 900 Ό IS Ί 89 ·0 9ΐ ·0 I
∞ wan ¾o N IV II Λ q ow JO IN no s d IS 0 挲 ΐ ^
ο ο ΐ ΐ
98υ 966 7 ο ο ο ο ο ο ο ο ο ο ο ο τ ΐ τ n ϊ ϊ ΐ ΐ τ ϊ*ι.
·οοοοοο ο ο ο ο ο οοοοοοοο οοο 第 2 表 製 造 条 件 機 械 的 性 質 域 速度 焼さ j 降伏 引 シヤノレビ- 下 し 応力 強 遷移
CO率 (%) 下率 (%) (°C)
Figure imgf000018_0001
(°C/sec)l (。c) CO (MPa)| (MPa) CO
1 950 83 0 954 白然 432 508 92
2 1100 83 0 1001 448 535 73
3 1100 72 40 858 496 583 47
4 1200 67 50 826 808 40 50 550 490 573 96 本 5 1230 72 40 857 841 10 500 516 588 98
6 1200 58 60 849 817 20 580 504 594 92
7 1160 72 40 851 829 40 100 600 473 569 61
8 1200 50 67 800 783 35 150 450 496 584 95 明 9 1240 67 50 810 785 10 450 517 605 45
10 1150 72 40 823 白然^ ¾ϊ 441 519 97 鋼 11 1200 72 40 810 439 533 73
12 1190 50 67 841 471 535 85
13 1210 72 40 866 445 524 71
14 1150 72 40 837 807 20 550 521 592 86
15 1100 50 67 851 824 15 70 500 479 563 84
16 1100 83 0 843 829 30 500 487 573 83
1 960 83 0 891 白然脚 421 498 98 比 2 1230 72 40 841 487 582 61 3 1200 67 50 844 826 40 120 550 470 553 93 4 1150 72 40 850 839 30 550 545 605 86 5 1130 50 67 868 841 20 500 505 587 94 鋼 6 1200 67 50 827 805 30 440 533 592 85 7 1200 58 60 816 797 50 50 500 469 562 65 8 1220 83 0 1050 mm 421 505 78
破伸222 33222 3222222223223232
4997337998748880 3985 1111断び%74 27227 69733632925561111 第 3 表 疲労試験結果 (MPa) 鋼 種 1 X 105 回 2 X 106 回 疲 労 強 度 疲 労 強 度
1 354 224
2 368 231
3 371 238
4 395 266 本 5 £/ U
6 388 258
7 388 258
8 375 247 明 9 372 249
10 381 251 鋼 11 385 257
12 , 383 252
13 387 259
14 one
a y o
15 388 251 -
1 C
丄 0 394 268
1 271 167 比 2 321 194
3 291 178 較 4 303 189
5 286 173 鋼 6 308 184
7 323 191
8 327 199
第 4 表
Figure imgf000020_0001
本発明鋼 1 , 2, 3 は、 Si添加量を 3水準にした実施例である。 通常圧延の本発明鋼 1 , 2 に比べて、 未再結晶域累積圧下率 40%の 制御圧延を行っている本発明鋼 3 は、 降伏応力、 引張強度ともに高 くなつている。 また、 Siの添加に従って、 疲労強度は上昇するが、 シャルピー遷移温度も上昇するため、 実用に供するのに最適な Si添 加量が存在することがわかった。
Cu, Mo, Ni, Cr, Nb, V, Ti, B, Ca, REM のグループから少く とも 1種を添加した本発明鋼 4〜16も、 Siによる効果に加えて、 Cu, Moによる固溶強化、 Ni, Cr, Vの焼入れ性向上による効果、 Nbの再 結晶抑制、 Ti, Nによる結晶粒粗大化抑制、 Bによる粒界フ ニライ ト抑制効果、 Ca, REM による硫化物の抑制による相乗効果により、. 本発明鋼 1〜 3 より もさ らに疲労強度が増大した。 ここでは、 通常 圧延、 制御圧延、 制御圧延 +加速冷却、 制御圧延 +加速冷却 +焼き 戻し熱処理の各製造方法を用いているが、 通常圧延に比べて、 制御 圧延を組み合わせた圧延を行う ことにより、 同じ炭素当量でもより 高い強度を有する高張力鋼が得られた。 また、 溶接継手の疲労強度 は母材の降伏応力、 引張強度には依存せず、 疲労強度を向上させる ためには、 本発明で述べてきた S iの固溶強化をはじめとする上記の 効果が必要不可欠であることがわかる。
一方、 比較鋼 1 は S i添加量が本発明鋼の成分範囲より少ない実施 例である。 疲労強度は S i添加量が本発明鋼の成分範囲内にあるとき に向上する。
Cu, Mo, N i , Cr, Nb, V , Bを過度に添加した比較鋼 2〜 8 は、 S iの添加量が適切な範囲に入っているため、 疲労強度が比較鋼 1 よ り も高い値となっているが、 第 4表のペイナイ ト組織分率からもわ かるように、 比較鋼 2〜 8 は焼入れ性が高すぎてマルテンサイ ト組 織を形成して、 ペイナイ ト組織分率が低下するため、 本発明鋼に比 ベて疲労強度は低下した。
また、 Bを過度に添加すると、 斜め y割れ試験の割れ停止温度も 高くなり、 溶接性が極めて悪化した。 一方、 本発明鋼の割れ停止温 度はいずれも低く溶接性は良好であつた。 産業上の利用可能性
本発明鋼によれば、 造船、 海洋構造物、 橋梁等に用いられる高張 力鋼に関して、 鋼板の溶接性を確保した上で、 特定の元素を添加し て熱影響部の組織を制御することにより、 その疲労強度を向上する ことが可能であり、 かつ本発明鋼を用いることにより溶接構造物の 疲労破壊に対する信頼性を向上させることが可能となつた。

Claims

請 求 の 範 囲
1 . 重量%で、 C : 0.03〜0.20%. Si : 0.6〜2.0 %、 Mn: 0.6 〜2.0 %、 A1: 0.01〜0.08%、 N : 0.002〜0.008 %、 B : 0.0020 %以下、 残部 Fe及び不可避的不純物からなることを特徴とする溶接 部の疲労強度と溶接性に優れた高張力鋼。
2. 重量%で(;11: 0.1〜1.5 %及び Mo: 0.05〜0.5 %のグループ から選ばれた少く とも 1種を含有する請求の範囲 1記載の高張力鋼 <
3. 重量%で、 Ni: 0.1〜3.0 %、 Cr: 0.1〜1.0 %、 V : 0.01 〜0.10%及び Nb: 0.005〜0.06%のグループから選ばれた少く とも 1種を含有する請求の範囲 1又は 2記載の高張力鋼。
4. 重量%で : 0.005〜0.05%、 Ca: 0.0005〜0.0050%及び REM: 0.0005〜0.0050%のグループから選ばれた少く とも 1種を含 有する請求の範囲 1, 2又は 3記載の高張力鋼。
5. 重量%で B : 0.0005%未満含有する請求の範囲 1記載の高張 力鋼。
6. 重量%で、 C : 0.03〜0.20%、 Si: 0.6〜2.0 %、 Mn: 0.6 〜2.0 %、 A1: 0.01〜0.08%、 N : 0.002〜0.008 %、 B : 0.0020 %以下、 残部 Fe及び不可避的不純物からなり、 かつ Ni: 0.1〜3.0 %、 Cr: 0.1〜1.0 %、 V : 0.01〜0.10%、 Cu: 0.1〜: I.5 %、 Mo 0.05〜0.5 %、 及び Nb : 0.005〜0.06%のグループから選ばれた少 く とも 1種を含有し、 さらに溶接部の熱影響部組織が 80%以上のベ ィナイ ト組織分率を有することを特徴とする溶接部の疲労強度と溶 接性に優れた高張力鋼。
7. 重量%で、 C : 0.03〜0.20%、 Si: 0.6〜2.0 %、 Mn: 0.6 〜2.0 %、 A1: 0.01〜0.08%、 N : 0.002〜0.008 %、 B : 0.0020 %以下、 残部 Fe及び不可避的不純物からなるスラブを Ac3 点以上 1250°C以下に加熱し、 再結晶温度域で熱間圧延した後、 自然冷却す ることを特徴とする、 溶接部の疲労強度と溶接性に優れた高張力鋼 の製造方法。
8. 再結晶温度域で熱間圧延した後、 引き続き、 未再結晶温度域 で累積圧下率 40〜90%の熱間圧延をして、 自然冷却する請求の範囲 7記載の高張力鋼の製造方法。
9. 再結晶温度域で熱間圧延した後、 引き続き、 未再結晶温度域 で累積圧下率 40〜90%の熱間圧延をして、 1 〜60 86じ の冷却速 度で、 600°C〜室温で冷却停止し、 自然冷却する請求の範囲 7記載 の高張力鋼の製造方法。
10. 再結晶温度域で熱間圧延した後、 引き続き、 未再結晶温度域 で累積圧下率 40〜90%の熱間圧延をし、 熱間圧延終了後 1 〜60°C/ sec の冷却速度で、 600°C〜室温の温度範囲を冷却し、 自然冷却し た後、 さらに、 SOtTC Ac, 点に加熱して焼き戻し熱処理する請求 の範囲 7記載の高張力鋼の製造方法。
11. 重量%で、 Cu: 0.1〜1.5 %、 Mo : 0.05〜0.5 %、 Ni : 0.1 〜3.0 %、 Cr: 0.1〜1.0 %、 V : 0.01〜0· 10%、 Nb: 0.005〜 〜0.06%、 Ti : 0.005〜0.05%、 Ca: 0.0005〜 0.0050%及び REM : 0.0005〜0.0050%のグループから選ばれた少く とも 1種を含有する 請求の範囲 7〜 10記載の高張力鋼の製造方法。
PCT/JP1994/001297 1993-03-25 1994-08-04 Acier a resistance a la traction elevee, a resistance a la fatigue et a aptitude au soudage superieures et procede de fabrication WO1995004838A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50633695A JP3526576B2 (ja) 1993-08-04 1994-08-04 溶接部の疲労強度と溶接性に優れた高張力鋼の製造方法
EP94923079A EP0666332A4 (en) 1993-08-04 1994-08-04 HIGH TENSILE STRENGTH, FATIGUE RESISTANCE AND HIGHER WELDING ABILITY AND METHOD OF MANUFACTURE.
US08/411,738 US5634988A (en) 1993-03-25 1994-08-04 High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same
KR1019950701263A KR0157540B1 (ko) 1993-08-04 1994-08-04 용접부의 피로강도와 용접성이 뛰어난 고장력강 및 그 제조방법
NO951288A NO951288L (no) 1993-08-04 1995-04-03 Stål med höy strekkstyrke og god utmattingsstyrke ved dets sveis og sveisbarhet og fremgangsmåte for fremstilling av dette

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19335093 1993-08-04
JP5/193350 1993-08-04

Publications (1)

Publication Number Publication Date
WO1995004838A1 true WO1995004838A1 (fr) 1995-02-16

Family

ID=16306444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001297 WO1995004838A1 (fr) 1993-03-25 1994-08-04 Acier a resistance a la traction elevee, a resistance a la fatigue et a aptitude au soudage superieures et procede de fabrication

Country Status (6)

Country Link
EP (1) EP0666332A4 (ja)
JP (1) JP3526576B2 (ja)
KR (1) KR0157540B1 (ja)
CN (1) CN1040555C (ja)
NO (1) NO951288L (ja)
WO (1) WO1995004838A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041024A1 (en) * 1995-06-07 1996-12-19 Ipsco Inc. Steckel mill/on-line accelerated cooling combination
JP2007239042A (ja) * 2006-03-09 2007-09-20 Kobe Steel Ltd 疲労亀裂進展抑制および溶接熱影響部の靭性に優れた高降伏比高張力鋼板
CN101838768A (zh) * 2010-04-09 2010-09-22 武汉钢铁(集团)公司 耐低温冲击的热轧u型钢板桩用钢及其生产方法
JP2019505672A (ja) * 2015-12-22 2019-02-28 ポスコPosco Pwht抵抗性に優れた低温圧力容器用鋼板及びその製造方法
CN115058656A (zh) * 2022-06-30 2022-09-16 马鞍山钢铁股份有限公司 一种寒冷环境下服役的弹性车轮用轮箍及其热处理工艺
CN116482139A (zh) * 2023-06-21 2023-07-25 宁德时代新能源科技股份有限公司 电池疲劳强度确定方法、装置、计算机设备和存储介质

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
US6309482B1 (en) 1996-01-31 2001-10-30 Jonathan Dorricott Steckel mill/on-line controlled cooling combination
DE19632370C2 (de) * 1996-08-10 1998-07-02 Thyssen Stahl Ag Hochleistungsschweißgeeigneter weichmagnetischer Stahl und seine Verwendung für Teile von Magnetschwebebahnen
KR100401167B1 (ko) * 1998-12-29 2003-12-31 주식회사 포스코 용접부인성이우수한베이나이트계고강도강및그제조방법
KR100401951B1 (ko) 1999-01-28 2003-10-17 스미토모 긴조쿠 고교 가부시키가이샤 기계구조용 강재
FR2796966B1 (fr) 1999-07-30 2001-09-21 Ugine Sa Procede de fabrication de bandes minces en acier de type "trip" et bandes minces ainsi obtenues
KR100431850B1 (ko) * 1999-12-28 2004-05-20 주식회사 포스코 저항복비를 갖는 고강도 강 및 그 제조방법
KR100431851B1 (ko) * 1999-12-28 2004-05-20 주식회사 포스코 고강도 구조용 강 및 그 제조방법
KR100380750B1 (ko) * 2000-10-24 2003-05-09 주식회사 포스코 용접열영향부 인성이 우수한 고강도 용접구조용 강재의제조방법
KR100482215B1 (ko) * 2000-11-29 2005-04-21 주식회사 포스코 침질처리에 의한 고강도 용접구조용 강재의 제조방법
KR100470647B1 (ko) * 2000-12-11 2005-03-07 주식회사 포스코 이상역 제어압연에 의한 용접구조용 강재의 제조방법
KR100482197B1 (ko) * 2000-12-16 2005-04-21 주식회사 포스코 침질처리에 의한 TiN석출물과 미세한 TiO산화물을갖는 고강도 용접구조용 강의 제조방법
KR100568362B1 (ko) * 2001-12-26 2006-04-05 주식회사 포스코 대입열 용접열영향부 인성이 우수한 고강도 용접구조용강재의 제조방법
KR100568361B1 (ko) * 2001-12-26 2006-04-05 주식회사 포스코 침질처리에 의한 용접열영향부 인성이 우수한 용접구조용강재의 제조방법
KR100584763B1 (ko) * 2001-12-26 2006-05-30 주식회사 포스코 용접열영향부 인성이 우수한 페라이트 세립강의 제조방법
EP1577412B2 (en) * 2002-12-24 2014-11-12 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
CN100392135C (zh) * 2005-06-30 2008-06-04 宝山钢铁股份有限公司 超高强带钢及其生产方法
CN100430505C (zh) * 2005-09-29 2008-11-05 宝山钢铁股份有限公司 抗拉强度在880Mpa以上的超高强度冷轧带钢及其制造方法
CN101328564B (zh) * 2007-06-21 2010-04-07 宝山钢铁股份有限公司 具有优良焊接性的低屈强比ht780钢板及其制造方法
CN101538679B (zh) * 2009-04-17 2010-09-29 钢铁研究总院 一种微合金化易焊接增氮钢
CN101693980B (zh) * 2009-09-30 2011-06-01 山西太钢不锈钢股份有限公司 一种扁钢及其制造方法
KR20120105292A (ko) 2011-03-15 2012-09-25 삼성디스플레이 주식회사 증착 마스크 및 증착 마스크 제조 방법
CN102925801A (zh) * 2012-11-01 2013-02-13 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102925800B (zh) * 2012-11-01 2015-08-19 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102925802B (zh) * 2012-11-01 2015-08-19 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102925799B (zh) * 2012-11-01 2015-08-19 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN105128446B (zh) * 2015-09-01 2017-12-29 宝鸡市钛程金属复合材料有限公司 钛钼镍合金复合板与其制作方法
SE542893C2 (en) * 2018-11-30 2020-08-18 Voestalpine Stahl Gmbh A resistance spot welded joint comprising a zinc coated ahss steel sheet
CN113441863B (zh) * 2020-03-24 2022-04-05 广西汽车集团有限公司 焊接件的焊缝疲劳强度评判方法
EP4116445A1 (en) * 2021-07-08 2023-01-11 SSAB Technology AB Hot-rolled weather resistant steel product and method of manufacturing the same
CN117344232A (zh) * 2022-06-29 2024-01-05 宝山钢铁股份有限公司 一种490MPa级心部高疲劳强度的厚钢板及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0132301B2 (ja) * 1979-05-23 1989-06-30 Gifuro Henriku
JPH03264645A (ja) * 1982-03-29 1991-11-25 Kobe Steel Ltd 伸びフランジ性等にすぐれた高強度鋼板
JPH0543980A (ja) * 1991-08-12 1993-02-23 Sumitomo Metal Ind Ltd 溶接部靱性に優れた自動車用高強度電縫鋼管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279647A (en) * 1979-06-18 1981-07-21 Henrik Giflo Construction steel exhibiting high fatigue strength
US4299621A (en) * 1979-07-03 1981-11-10 Henrik Giflo High mechanical strength reinforcement steel
JPS57110650A (en) * 1980-12-26 1982-07-09 Kobe Steel Ltd High strength hot rolled steel plate with superior stretch flanging property and resistance weldability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0132301B2 (ja) * 1979-05-23 1989-06-30 Gifuro Henriku
JPH03264645A (ja) * 1982-03-29 1991-11-25 Kobe Steel Ltd 伸びフランジ性等にすぐれた高強度鋼板
JPH0543980A (ja) * 1991-08-12 1993-02-23 Sumitomo Metal Ind Ltd 溶接部靱性に優れた自動車用高強度電縫鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0666332A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041024A1 (en) * 1995-06-07 1996-12-19 Ipsco Inc. Steckel mill/on-line accelerated cooling combination
JP2007239042A (ja) * 2006-03-09 2007-09-20 Kobe Steel Ltd 疲労亀裂進展抑制および溶接熱影響部の靭性に優れた高降伏比高張力鋼板
CN101838768A (zh) * 2010-04-09 2010-09-22 武汉钢铁(集团)公司 耐低温冲击的热轧u型钢板桩用钢及其生产方法
JP2019505672A (ja) * 2015-12-22 2019-02-28 ポスコPosco Pwht抵抗性に優れた低温圧力容器用鋼板及びその製造方法
CN115058656A (zh) * 2022-06-30 2022-09-16 马鞍山钢铁股份有限公司 一种寒冷环境下服役的弹性车轮用轮箍及其热处理工艺
CN115058656B (zh) * 2022-06-30 2023-08-11 马鞍山钢铁股份有限公司 一种寒冷环境下服役的弹性车轮用轮箍及其热处理工艺
CN116482139A (zh) * 2023-06-21 2023-07-25 宁德时代新能源科技股份有限公司 电池疲劳强度确定方法、装置、计算机设备和存储介质
CN116482139B (zh) * 2023-06-21 2023-09-19 宁德时代新能源科技股份有限公司 电池疲劳强度确定方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
NO951288L (no) 1995-06-06
EP0666332A1 (en) 1995-08-09
NO951288D0 (no) 1995-04-03
JP3526576B2 (ja) 2004-05-17
CN1113391A (zh) 1995-12-13
KR950703661A (ko) 1995-09-20
EP0666332A4 (en) 1995-12-13
CN1040555C (zh) 1998-11-04
KR0157540B1 (ko) 1998-11-16

Similar Documents

Publication Publication Date Title
WO1995004838A1 (fr) Acier a resistance a la traction elevee, a resistance a la fatigue et a aptitude au soudage superieures et procede de fabrication
JP4926406B2 (ja) 疲労き裂伝播特性に優れた鋼板
JP5407478B2 (ja) 1層大入熱溶接熱影響部の靭性に優れた高強度厚鋼板およびその製造方法
JP3499085B2 (ja) 耐破壊性能に優れた建築用低降伏比高張力鋼材及びその製造方法
US5634988A (en) High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same
JP4120531B2 (ja) 超大入熱溶接熱影響部靱性に優れる建築構造用高強度厚鋼板の製造方法
US7967923B2 (en) Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
JP2007039795A (ja) 耐疲労亀裂伝播特性および靭性に優れた高強度鋼材の製造方法
WO1997030184A1 (fr) Joint de soudure a haute resistance a la fatigue
JP5151693B2 (ja) 高張力鋼の製造方法
JP2005298877A (ja) 疲労き裂伝播特性に優れた鋼板およびその製造方法
JP2009041073A (ja) 溶接部からの延性き裂発生に対する抵抗性に優れる高張力鋼溶接継手およびその製造方法
JPH0873983A (ja) 溶接継手の疲労強度に優れた溶接構造用厚鋼板およびその製造方法
JP2012188749A (ja) 多パス溶接部の靭性に優れた厚鋼板および多パス溶接継手
JP2013049894A (ja) 高靭性大入熱溶接用鋼およびその製造方法
JPH06235044A (ja) 溶接熱影響部の疲労強度と靭性に優れた溶接構造用高張力鋼
JPS6352090B2 (ja)
JP2020019995A (ja) 厚鋼板およびその製造方法ならびに溶接構造物
JP7410438B2 (ja) 鋼板
JP7506305B2 (ja) 大入熱溶接用高強度鋼板
JP4559673B2 (ja) 溶接継手の疲労強度に優れた溶接構造用厚鋼板およびその製造方法
JP3462943B2 (ja) 溶接部の疲労強度が高い鋼板およびその製造方法
JP2002224835A (ja) 溶接熱影響部靭性に優れた高靱性高張力鋼の溶接方法
JP7506306B2 (ja) 大入熱溶接用高強度鋼板
JP2011153366A (ja) レーザ溶接用またはレーザ・アークハイブリッド溶接用の引張強さが1100MPa以上の高張力鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08411738

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994923079

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994923079

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994923079

Country of ref document: EP