WO1995002922A1 - Moteur a reluctance - Google Patents

Moteur a reluctance Download PDF

Info

Publication number
WO1995002922A1
WO1995002922A1 PCT/JP1993/001879 JP9301879W WO9502922A1 WO 1995002922 A1 WO1995002922 A1 WO 1995002922A1 JP 9301879 W JP9301879 W JP 9301879W WO 9502922 A1 WO9502922 A1 WO 9502922A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
phase
position detection
coil
armature coil
Prior art date
Application number
PCT/JP1993/001879
Other languages
English (en)
French (fr)
Inventor
Itsuki Bahn
Original Assignee
Kabushikigaisya Sekogiken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5222877A external-priority patent/JPH0739191A/ja
Priority claimed from JP5226302A external-priority patent/JPH0746808A/ja
Application filed by Kabushikigaisya Sekogiken filed Critical Kabushikigaisya Sekogiken
Priority to EP94903058A priority Critical patent/EP0662751A4/en
Priority to US08/403,692 priority patent/US5619113A/en
Publication of WO1995002922A1 publication Critical patent/WO1995002922A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a reluctance motor used as a power source, for example, for an electric vehicle, an electric bicycle, a crane, an electric vacuum cleaner, etc. because of its large output and little torque ripple.
  • Reluctance motors have the characteristic of high output torque, but no examples have been put into practical use due to the drawbacks of slow rotation speed and vibration.
  • the first problem is that in the case of a reluctance motor, the inductance of the armature coil is large because the magnetic path of the armature coil and the magnetic path of the salient pole and the magnetic pole are almost closed. The amount of magnetic energy stored or released in the salient poles is large, and the number of times of storage and release per revolution is large. Therefore, the output torque has a great advantage, but there is a problem that the output torque is low. The problem described above becomes more difficult to solve when a high-output motor is used.
  • Fig. 1 is a plan view of a well-known three-phase single-wave reluctance motor.
  • Reference numeral 16 denotes a fixed armature, which is made of a laminated silicon steel sheet, and armature coils 17a-1, 17b-1, ... are mounted on magnetic poles 16a, 16b, ..., respectively.
  • Rotor 1 rotates in the direction of arrow A.
  • Symbol 5 is a rotation axis.
  • Armature coil 1 7 b— 1, 1 7 e-1 When the rotor is energized, the rotor 1 rotates in the direction of arrow A.
  • the armature coils 17a-1 and 17d-1 ⁇ 17b-1 and 17e-l ⁇ 17c-1 and 17f-1 It rotates in the direction of arrow A when energized.
  • the above-mentioned rotation torque involves two salient poles and the other four do not.
  • the third problem is that when the armature coils 17a-1 and 170-1 are energized, the magnetic poles 16a and 16d are attracted to the salient poles la and le in the radial direction. Therefore, the fixed armature 16 is deformed and distorted by the attraction force. The fixed armature 16 is deformed by the rotation of the magnetic poles 16b and 166 and the magnetic poles 16 ⁇ and 16f and the salient poles. There is a problem that vibration is generated by such deformation. Also, since it is technically difficult to keep the gap between the salient poles and the magnetic poles constant, the suction force received by the rotor 1 changes with rotation and the rotor 1 vibrates in the radial direction. Therefore, there is a problem that vibration noise is generated and the service life of the bearing of the rotating shaft of the rotor 1 is reduced. The problem described above becomes difficult to solve when the output is large and large.
  • the fourth problem is that, when the second problem is solved, a large ripple torque is generated as described later with reference to FIG.
  • the present invention is directed to a reluctance type electric motor having low vibration, high speed rotation, large output torque, and flat torque characteristics.
  • the purpose is to provide motivation.
  • the present invention relates to a three-phase dual-wave reluctance motor, wherein n (n is a positive integer equal to or greater than 2) disposed at equal intervals and at equal widths on both sides of the outer peripheral surface of the magnetic rotor.
  • the phase of the electrical angle is 120 degrees between the first and second salient poles and the 6 n slots arranged at the same separation angle on the inner periphery of the cylindrical first fixed armature.
  • the armature coils of the first, second, and third phases, which are sequentially shifted in sequence, have exactly the same configuration as that of the first fixed armature, and the slot has an electrical angle of 120 V in the slot.
  • the second fixed armature with the armature coils of the first, second, and third phases attached, and the slots of the first and second fixed armatures By shifting the positions, the relative positions of the corresponding armature coils of the first, second, and third phases and the armature coils of the 1_, ⁇ 2, and desired_ phases are odd multiples of 30 degrees in electrical angle.
  • Just shift Means for disposing the first salient pole and the second salient pole opposite to each other by an odd multiple of 30 degrees The rotational position of the pole is detected, and the position detection signals of the first phase separated by 240 degrees from each other with a width of 120 degrees in electrical angle and the phase is shifted by 120 degrees in electrical angle from these signals
  • Position detection signal of the second phase and the position detection signal of the third phase whose phase is shifted by 120 electrical degrees and the position detection of the first, second, and third phases
  • a position detection device that can obtain position detection signals of the phases of the first, second, and third phases, each having an electrical angle of an odd multiple of 30 degrees in electrical angle with respect to the signal, and a first, second, third, and third phase detection device;
  • a semiconductor switching element connected in series to each of the armature coils of phases ⁇ , ⁇ , ⁇ _, and the armature coil and the semiconductor switching element.
  • a DC power supply for supplying power to the series-connected body of the first, second, third, first, second and third phases via position detection signals of the first, second, third, and third phases, respectively.
  • An energization control circuit that conducts the semiconductor switching elements connected in series to the armature coils of the l, _, and _3 phases by the width of the position detection signal and conducts the armature coils; and a semiconductor switching element.
  • the first electric circuit that makes the current flowing through the armature coil drop rapidly by charging and holding the capacitor, and the magnetic rotor rotates by the set angle and is then energized.
  • the armature coil is energized by that width according to the position detection signal, the energization is started and, at the same time, the electrostatic energy accumulated in the small-capacity capacitor is applied to the armature coil.
  • it is composed of a second electric circuit that makes the conduction current rise rapidly.
  • the present invention provides a three-phase single-wave reluctance motor, wherein n (n is a positive integer equal to or greater than 2) numbered n equal to the width and equal to the outer circumferential surface of the magnetic rotor.
  • the first, second, and third phases mounted on 6n slots arranged at the same separation angle on the inner circumference of the armature, with phases shifted sequentially by 120 degrees in electrical angle.
  • Means for holding the magnetic pole facing detects the rotational position of the first salient poles And the position detection signals of the first phase separated by 240 degrees from each other with a width of 120 electrical degrees and the position of the second phase shifted by 120 electrical degrees from these
  • a position detection device for obtaining a detection signal and a position detection signal of a third phase whose phase is shifted by 120 electrical degrees, and an armature of the first, second, and third phases.
  • the semiconductor switching elements connected in series with the armature coils of the first, second, and third phases, respectively, are conducted through the position detection signals of the three phases to conduct the armature coils by the width of the position detection signal.
  • Energization control circuit that conducts electricity and position detection obtained by detecting the position of the second salient pole
  • the magnetic energy accumulated by the armature coil via the diode is transferred from the connection point between the semiconductor switching element and the armature coil.
  • a second electric circuit that rapidly reduces the current flowing through the armature coil by charging and holding the capacitor in a small capacity, and the magnetic rotor rotates by a set angle to
  • the energization is started and, at the same time, the electrostatic energy accumulated in the small-capacity capacitor described above is transferred to the electric motor. Power to the secondary coil.
  • An electric circuit that makes the rise of the coil rapidly, an energizing current control circuit that maintains the energizing of the exciting coil at a value corresponding to the energizing current of the armature coil, and a ripple torque of an output torque caused by energizing the armature coil.
  • Excitation coil in concave part And means for adjusting the relative positions of the members that generate torque so that the protrusions of the ripple torque caused by the energization of the coils match.
  • the present invention provides a two-phase dual-wave reluctance motor in which n pieces (n is a positive number of 2 or more) disposed on both sides of an outer peripheral surface of a magnetic rotor at an equal width and a same angle.
  • the first, second, and third motors are mounted on 4n slots arranged at the same separation angle on the inner periphery of the fixed armature, and the phases are sequentially shifted by 90 degrees in electrical angle.
  • the armature coil of the fourth phase and the inner peripheral portion of the cylindrical magnetic body juxtaposed to the fixed armature are projected at the same angle of separation, and at least n magnetic poles having a predetermined width and
  • the excitation coil attached to the fixed armature and the first and second salient poles are connected to the inner peripheral surface of the fixed armature and the cylindrical magnet through a small gap.
  • a DC power supply for supplying a series connection of each of the coils and the semiconductor switching element, and a first, second, and third phase detection signals via the first, second, third, and fourth phase position detection signals, respectively.
  • a conduction control circuit for conducting the semiconductor switching element connected in series to the armature coil of the fourth phase by the width of the position detection signal to conduct the armature coil, and detecting the position of the second salient pole.
  • the point where the salient pole enters the magnetic pole facing the second salient pole by the position detection signal The first electrical circuit that energizes the exciting coil and cuts off the current when the two oppose each other, and the semiconductor switching element when the semiconductor switching element is turned off at the end of the position detection signal. From the point of connection between the armature coil and the armature coil, the magnetic energy accumulated by the armature coil via the diode flows into a small-capacity capacitor and is charged and held.
  • the second electric circuit that makes the current drop rapidly, and when the magnetic rotor rotates by the set angle and the next armature coil that is energized is energized that much by the position detection signal
  • the electrostatic energy accumulated in the small-capacity capacitor flows into the armature coil, thereby increasing the rise of the conduction current.
  • Current control circuit to maintain the value corresponding to the energization of the armature coil, and to match the protrusion of the ripple torque by the energization of the excitation coil to the recess of the output torque ripple by the energization of the armature coil As described above, it is configured by means for adjusting the relative position of the members that generate torque.
  • the present invention relates to a three-phase dual-wave reluctance motor, wherein n pieces (n is 2 or more) arranged at equal widths and on both sides of the outer peripheral surface of the magnetic rotor. (Positive integers), the first and second salient poles, 3n slots arranged at equal spacing angles on the inner periphery of the cylindrical first fixed armature, and two adjacent poles.
  • the 3ri armature coils of the first, second, and third phases mounted on each of the slots have exactly the same configuration as the first fixed armature, and the phases of the slots have electrical angles.
  • the corresponding armature coils of the first, second and third phases are The relative positions of the armature coils in the ⁇ , —, and H phases are shifted by an odd multiple of 60 degrees in electrical angle or they are in phase, and the opposing first salient poles Means for displacing the positions of the first and second salient poles by an odd multiple of 60 degrees, and detecting the rotational position of the first salient poles, and detecting the rotational positions of the first and second salient poles with a width of 120 degrees to each other.
  • the position detection signal of the first phase separated by 0 degree and the position detection signal of the second phase which is shifted by 120 degrees from them, and the phase detection signal shifted by 1 degree from this is 1 electric angle Blocks whose phase is an odd multiple of 60 degrees in electrical angle from the position detection signal of the third phase, which is 20 degrees later, and the position detection signals of the first, second, and third phases, respectively.
  • a position detection device that can obtain a position detection signal of the first phase
  • a semiconductor switching element connected in series to each of the armature coils of the second, third, first, second and third phases, and a DC power supplied to a series connection of the armature coil and the semiconductor switching.
  • Power supply 1st, 2nd, 2nd
  • An energization control circuit for energizing the armature coil by conducting the element by the width of the position detection signal; and a semiconductor switching element and the armature when the semiconductor switching element is turned off at the end of the position detection signal. From the point of connection with the coil, the magnetic energy accumulated by the armature coil via the diode flows into the small-capacity capacitor, is charged and held, and the armature coil is energized.
  • Capacitor the stored static Denko Nerugi the causes flow into the armature coil At the very least, it consists of a second electric circuit that makes the rise of the conduction current rapid.
  • the present invention relates to a three-phase single-wave reluctance motor, wherein n (n is a positive integer of 2 or more) n-th coils arranged at an equal width and a same separation angle on the outer peripheral surface of the magnetic rotor.
  • n salient poles 1 n salient poles, 3 n second salient poles arranged at the same width and the same separation angle on the outer peripheral surface of the magnetic rotor that rotates synchronously coaxially with the magnetic rotor, and a cylindrical fixed 3n slots arranged at equal spacing angles on the inner periphery of the armature, and 3n first, second, and third slots mounted on each of two adjacent slots
  • a three-phase electronic coil and a cylindrical magnetic body juxtaposed to the fixed armature protrude at a separation angle equal to the inner circumference and have at least n magnetic poles of a predetermined width.
  • the excitation coil attached to these and the first and second salient poles are each connected to the inner peripheral surface of the fixed armature and the cylindrical magnet through a small gap.
  • the position detection signal of the second phase whose phase is shifted by 120 degrees in electrical angle and the position of the third phase whose phase is shifted by 120 degrees in electrical angle A position detection device that can obtain a detection signal, a semiconductor switching element connected in series to each of the armature coil and the excitation coil of the first, second, and third phases, and a semiconductor device that includes the armature coil and the excitation coil.
  • a first electrical circuit that energizes the exciting coil from a point where the salient pole enters the magnetic pole opposing the second salient pole and cuts off energization at a point where the two oppose each other, and a semiconductor switch based on the detection signal;
  • the switching element is turned off at the end of the position detection signal, the magnetic charge accumulated by the armature coil via the diode from the connection point between the semiconductor switching element and the armature coil.
  • An electric circuit for speeding up the rise of the electric current an energizing current control circuit for maintaining the energization of the exciting coil at a value corresponding to the energizing current of the armature coil, and an output torque ripple by energizing the armature coil It comprises means for adjusting the relative position of the members that generate torque so that the protrusion of the ripple torque generated by the excitation coil matches the recess of the torque.
  • the inductance of the reluctance type motor is large because the magnetic path between the armature core and the salient poles of the rotor is almost closed due to the conduction of the armature coil. Therefore, the initial rise of the current supply to the armature coil is slow, and the current drop is prolonged when the current supply is cut off. Therefore, there is a disadvantage that high-speed rotation is impossible. This drawback is exacerbated when a high-power motor is used.
  • the magnetic energy of the armature coil is charged into a small-capacity capacitor to reduce the current drop.
  • the energization rise of the armature coil to be energized next is made rapid using the high voltage of the capacitor. Therefore, a high-power motor can be rotated at high speed.
  • the device of the present invention has an effect of removing the above-mentioned drawbacks by adding a device having an output torque curve with a protrusion of the ripple torque at the position of the concave portion of the ripple torque to flatten the output torque.
  • the output torque is about 10 times higher than that of an induction motor of the same shape, and a rotation speed up to about 20,000 rotations per minute can be obtained as necessary.
  • the vibration is reduced and the rotation is smooth.
  • FIG. 1 is a cross-sectional view of a fixed armature and a rotor of a conventional reactance motor
  • FIG. 2 is a cross-sectional view of a fixed armature and a rotor of a three-phase reluctance motor according to the present invention
  • Fig. 4 is a development view of a rotor, a fixed armature, and an armature coil of a three-phase reluctance motor according to the present invention.
  • Fig. 4 is a rotor of another embodiment of the three-phase reluctance motor according to the present invention.
  • Fixed electricity FIG. 5 is a cross-sectional view of the device of the present invention
  • FIG. 5 is a cross-sectional view of the device of the present invention
  • FIG. 6 is an electric circuit diagram for obtaining a position detection signal of a three-phase reactance type motor
  • FIG. 7 is a position detection diagram of the armature coil.
  • Fig. 8 is a graph of a signal and a corresponding torque
  • Fig. 8 is a circuit diagram of a three-phase reluctance motor
  • Fig. 9 is a circuit diagram of another embodiment of a three-phase reluctance motor.
  • Fig. 10 is a circuit diagram of the energization control circuit of a three-phase dual-wave reluctance motor
  • Fig. 11 is a graph of the output torque curve of a three-phase reluctance motor
  • Fig. 12 is Fig.
  • FIG. 13 is a graph of the energizing current and output torque of a reactance motor
  • Fig. 13 is a time chart of the position detection signal curve of a three-phase reactance motor
  • Fig. 14 is the fixation of a two-phase two-wave reactance motor.
  • FIG. 15 is a cross-sectional view of the armature and the rotor.
  • Fig. 16 is a development diagram of the rotor, fixed armature, and armature coil of a type motor
  • Fig. 16 is an electric circuit diagram that obtains position detection signals of a two-phase dual-wave reluctance motor
  • Fig. 17 is a two-phase motor.
  • Fig. 16 is a development diagram of the rotor, fixed armature, and armature coil of a type motor
  • Fig. 16 is an electric circuit diagram that obtains position detection signals of a two-phase dual-wave reluctance motor
  • Fig. 17 is a two-phase motor.
  • FIG. 18 is a time chart of the position detection signal curve of a two-phase double-wave reactance motor
  • Fig. 19 is a time-chart of a two-phase double-wave reactance motor.
  • Output torque curve graph FIG. 20 is a cross-sectional view of a fixed armature and a rotor of a three-phase reluctance motor according to the present invention
  • FIG. 21 is a rotor of a three-phase reluctance motor according to the present invention.
  • FIG. 22 is a development view of a fixed armature and an armature coil
  • FIG. 22 is a development view of a rotor, a fixed armature, and an armature coil of another embodiment of the three-phase reactance motor according to the present invention.
  • a graph of the position detection signal and the corresponding torque Figure 24 shows the three-phase reactor Graph of the output torque curve of the scan-type electric motor, Fig. 2.
  • 5 is a time chart of position detecting signal curves of 3 mutualistic Rakuta Nsu type motor.
  • a cylindrical fixed armature 16 is fixed inside the outer casing 9.
  • the fixed armature 16 is made by a well-known means in which silicon steel sheets are laminated.
  • 12 slots are arranged at equal spacing angles, and armature coils are wound and mounted on each slot.
  • Armature coils are wound around slots 17a and 17d, and mounted and mounted on two slots separated by 180 degrees in electrical angle. All subsequent angle displays are electrical angles.
  • Armature coils are also wound on slots 17b and 17e and slots 17c and 17f, respectively.
  • Other armature coils have the same configuration.
  • the rotating shaft 5 is rotatably supported by bearings on both sides of the outer casing 9, and the magnetic rotor 1 is fixed to the rotating shaft 5.
  • the rotor 1 is made of a silicon steel sheet laminate like the fixed armature 16.
  • Salient poles 1a, 1b protrude from the outer periphery of the rotor 1.
  • the outer periphery faces the magnetic poles 16a, 16b,... Through a gap of 0.5 millimeter.
  • Figure 3 shows the development of Figure 2.
  • the left side of the dotted line B is the developed view of FIG.
  • the rotor is designated as symbol 1 and the fixed armature is designated as symbol 16.
  • the armature coil wound around slots 17a and 17d can be displayed as the lowest armature coil 9a.
  • An armature coil wound around slots 17c and 17f can be indicated as an armature coil 9c.
  • other armature coils can be displayed as symbols 9b, 9d, 9e, and 9f.
  • Armature coils 9a and 9b are connected in series. The power is supplied from terminals 8a and 8d.
  • Armature coils 9c and 9d and armature coils 9e and 9f are also connected in series, respectively, and power is supplied from terminals 8b and 8e and terminals 8c and 8f.
  • the armature coils are separated by 120 degrees, and the armature coils 9a and 9b, the armature coils 9c and 9d, and the armature coils 9e and 9f are the first, second, and third phases, respectively. Armature coil.
  • the rotor 1 rotates in the direction of arrow A, and the three-phase single-wave energization is performed.
  • Reluctance type motor By adding salient pole 1c, three salient poles can be obtained. In this case, the dotted line B moves 360 degrees to the right.
  • the number of salient poles can be two or more, and the output torque increases proportionately.
  • the output torque can be obtained from the six salient poles, so that the output torque is tripled.
  • the armature 16 is fixed by the salient poles 1a and 1e, and receives the magnetic attraction force in the directions of arrows 4-1 and 4-1-4 and deforms.
  • the suction force in the directions of arrows 412 and 415 due to the salient poles lb and If. It is deformed by the suction force in the directions of marks 4-1 and 4-1-6. Therefore, the fixed armature 16 has a drawback that the direction of deformation changes along with the rotation and vibration is generated.
  • the fixed armature 16 is not deformed because only the compressive force is generated in the same circumferential direction, so that the effect of suppressing the generation of vibration is obtained. is there.
  • the polarity of the magnetic pole magnetized by the armature coil is magnetized such that the magnetic pole at the axially symmetric position in FIG. 2 has a different polarity.
  • the armature coils 9a and 9b in Fig. 3 are the armature coils 39a, 9c and 9d, and the armature coils 9e and 9f are the armature coils 39b and 39, respectively.
  • Rotor 3 in Fig. 3 is configured to rotate synchronously coaxially with rotor 1, and is made of a conductor such as aluminum.
  • the salient poles 3a, 3b, 3c ... have a width of 150 degrees and rotate with the relative phases shown.
  • the coils 10a, 10b, and 10c are position detecting elements for detecting the positions of the salient poles 3a, 3b,..., And are fixed to the armature 16 at the positions shown.
  • the coil surface opposes the side surfaces of the salient poles 3a, 3b, ... via a gap.
  • the coils 10a, 10b, and 10c are 120 degrees apart.
  • the coil has an air core of about 30 turns with a diameter of 5 mm.
  • Figure 6 shows a device for obtaining position detection signals from coils 10a, 10b, and 10c.
  • the coil 10a and the resistors 15a, 15b, 15c form a bridge circuit, and are balanced when the coil 10a is not opposed to the salient poles 3a, 3b, ...
  • diode 11a diode 11a, capacitor 12a and The output of a one-pass filter composed of 1 lb of diode and 12 b of capacitors is equal, and the output of the operational amplifier 13 is at low level.
  • Symbol 10 is an oscillator, which oscillates on the order of 2 megacycles.
  • the coil 10a faces the salient poles 3a, 3b, ..., the impedance decreases due to copper loss, so the voltage drop of the resistor 15a increases, and the output of the op-amp 13 becomes High level.
  • the input of the block circuit 18 becomes the curve 45 a, 45 b,... Of the time chart of FIG. 13, and the input via the inverting circuit 13 a becomes the curve 45 a, 45 b, ... is the reverse of Block circuits 14a and 14b in FIG. 6 have the same configuration as the above-described block circuit including coils 10b and 10c, respectively.
  • the oscillator 10 can be used in common.
  • the output of the block circuit 14a and the output of the inverting circuit 13b are input to the block circuit 18, and their output signals are represented by curves 46a and 46b in FIG. ,..., And curves 46 a, 46 b,....
  • the output of the block circuit 14b and the output of the inverting circuit 13c are input to the block circuit 18 and their output signals are represented by curves 47a, 47b,. And the reverse of this. Curves 46 a, 46 b,... are 120 degrees out of phase with curves 45 a, 45 b,... and curves 4 a, 46 b,... 7 a, 4 7 b, ... have a phase of 120 degrees.
  • the block circuit 18 is a circuit commonly used for a control circuit of a three-phase Y-type semiconductor motor.
  • the terminals 18a, 18b,..., 18f It is a logic circuit that can obtain a square-wave electric signal with a width of more than 120 degrees.
  • the outputs of terminals 18a, 18b, and 18c are represented by curves 48a, 48b,..., curves in Fig. 13, respectively. 49a, 49b, ..., curves 50a, 50b, ... are shown.
  • the outputs of terminals 18d, 18e, and 18f are the curves 51a,
  • the phase difference between the output signals of terminals 18a and 18d, the output signals of terminals 18b and 18e, and the output signals of terminals 18c and 18f is 30 degrees.
  • the output signals of terminals 18a, 18b, and 18c are sequentially shifted by 120 degrees, and the output signals of terminals 18d, 18e, and 18f are also sequentially shifted by 120. Have been delayed.
  • Arrow 44a indicates a width of 180 degrees
  • arrow 44b indicates a width of 150 degrees
  • the means for obtaining the curves 48a, 48b,... are the outputs of the inverted curves 46a, 46b,... and the curves 45a, 45b,... Become the curves 48a and 48b. Other lower curves can also be obtained by similar means. This means is shown as block circuit 18.
  • Transistors 20a, 20b and 20c, 20c, 20d and 20e, 20f are inserted at both ends of the armature coils 39a, 39b and 39c, respectively. - ing.
  • the transistors 20a, 20b, 20c, ... are switching elements, and may be other semiconductor elements having the same effect. Power is supplied from the DC power supply positive and negative terminals 2a and 2b. When the lower input of the AND circuit '41a is at a high level and a high-level electric signal is input from the terminal 42a, the transistors 20a and 2Ob conduct, and The armature coil 39a is energized.
  • Terminal 40 is a reference voltage for specifying the exciting current. By changing the voltage of terminal 40, the output torque can be changed.
  • the power switch (not shown) is turned on, the input of one terminal of the operational amplifier 40b is lower than that of the + terminal, so that the output of the operational amplifier 40b becomes a high level, and the transistors 20a and 2a are turned on. 0b conducts, and a voltage is applied to the energization control circuit of the armature coil 39a.
  • the resistor 22a is a resistor for detecting the exciting current of the armature coil 39a.
  • the symbol 30a is an absolute value circuit '.
  • the input signal of the terminal 42a is the position detection signal 48a, 48b in Fig. 13 and the input signal of the terminal 42b, 42c is the position detection signal 49a, 49b, ... And 50 a, 50 b,...
  • One of the aforementioned position detection signal curves is shown as a curve 48a in the first stage of the time chart in FIG.
  • the armature coil 39a is energized by the width of this curve 48a.
  • the arrow 23a indicates a conduction angle of 120 degrees. In the initial stage of energization, the rise is delayed due to the inductance of the armature coil, and when the energization is cut off, the accumulated magnetic energy is removed by the diode 49a-1 in FIG.
  • reflux discharge occurs to the power supply via the diodes 21a and 21b, so that the current falls as shown in the second half of the curved line 25 on the right side of the dotted line K-11.
  • the section in which the positive torque is generated is a section of 180 degrees indicated by the arrow 23, and therefore, there is a counter torque, which reduces the output torque and the efficiency. At high speeds, this phenomenon becomes extremely large and cannot be used.
  • the device of the present invention is a diode 49a-1 for preventing backflow shown in FIG.
  • the magnetic energy stored in 39a is not returned to the DC power supply side by the diode 49a-1 for backflow prevention, but the diode 21b,
  • the capacitor 47a is charged to the polarity shown in the figure via 2la, and this is set to a high voltage. Therefore, the magnetic energy disappears rapidly and the current drops rapidly.
  • the first-stage curves 26a, 26b, and 26c of the time chart in Fig. 7 are the current curves flowing through the armature coil 39a, and the dotted lines on both sides of the curves. 2 6 — 1 _, 2 6 — 2 Force s 1 2 0 degrees.
  • the conduction current drops rapidly as shown by the curve 26b to prevent the generation of anti-torque, and the capacitor 47a is charged and held at a high voltage.
  • the transistors 20 a and 20 b conduct, and the armature coil 39 a is energized again.
  • the applied voltage at this time is the capacitor 47 a Since the charging voltage and the power supply voltage (the voltages at the terminals 2a and 2b) are added, the current of the armature coil 39a rises rapidly. Due to this phenomenon, it rises rapidly as shown by curve 26a. As described above, the generation of the reduced torque and the anti-torque is eliminated, and the energization is close to a rectangular wave, so that the output torque increases.
  • the armature coil 39 b in FIG. 8 has a transistor 20 c, the width of which corresponds to the position detection signal curve 49 a, 49 b,. Energized by conduction of 20 d, chopper control by operational amplifier 40 c, resistor 22 b, absolute value circuit 30 b, and AND circuit 41 b Is performed. 'The effect of the diode 49b-1 and the capacitor 47b is the same as that of the armature coil 39a. The situation described above is completely the same for the armature coil 39c, and the position detection signal curves 50a, 50b,.
  • each armature coil may be performed either at the point where the salient pole enters the magnetic pole or at the point where a section of 30 degrees has passed. Adjust by considering the rotation speed, efficiency, and output torque, and change the position of the coils 10a, 10b, and 10c, which are position detection elements, that are fixed to the fixed armature side.
  • one object of the present invention is achieved because a three-phase single-wave energized motor can efficiently perform large output and high-speed rotation.
  • a problem remains depending on the purpose of use because there is a large ripple in the output torque.
  • the present invention is characterized in that the above-mentioned problem is solved by using three-phase dual-wave energization.
  • Fig. 11 shows the torque curve in the case of three-phase single-wave conduction.
  • the horizontal axis shows the rotation angle of the rotor and the vertical axis shows the output torque.
  • Curves 27a, 27b, and 27c show the cases where the armature current is 1 amp, 1.5 amp, and 2 amp, respectively.
  • the rotor is 22 millimeters in diameter
  • the fixed armature has an outer diameter of 50 millimeters
  • its length is 50 millimeters.
  • the horizontal axis is indicated by the angle of rotation.
  • the ripple torque is around 70%.
  • the concave part of the torque curve is the point where the end of the salient pole enters the slot. Left end of curve 2 7 c or zero In terms of degrees, the output torque is zero.
  • Figure 12 shows the output torque curve, with the horizontal axis representing the armature current and the vertical axis representing the torque.
  • This motor has the configuration described above.
  • the magnetic flux is saturated at the point indicated by the dotted line 43a, and the output torque becomes equal to or less than the dotted line 43a.
  • the device of the present invention has a feature that the output torque is about seven times that of other electric motors of the same type since the torque increases linearly thereafter.
  • a three-phase single-wave energized motor whose salient pole or slot phase is shifted by an odd multiple of 30 degrees has a common rotation axis. It may be attached. Next, the means will be described.
  • FIG. 5 is a sectional view showing the entire configuration.
  • a metal outer housing (cylindrical) 25-1 is fitted on the right side with an outer bent portion of a circular side plate 25-2, and ball bearings 29 a provided in the center of both sides are provided. , 29b, the rotating shaft 5 is rotatably supported.
  • a rotor 1 is fixed to the rotating shaft 5 via a support 5-1.
  • the salient poles (not shown) of the rotor 1 have the same configuration as the salient poles of the rotor 1 of FIG. Magnetic pole faces salient pole
  • the fixed armature C is fixed inside the outer casing 25-1, and its configuration is the same as that of the fixed armature 16 in Figs.
  • an aluminum rotor 3 having the same outer peripheral protrusion is fixed and rotates synchronously with the rotor 1. Since the coils 10a, 10b, and 10c face the outer periphery, the position detection signal shown in FIG. 13 can be obtained as described above with reference to FIG.
  • the fixed armatures C and C-1 are fixed to the outer casing 25-1 in the same phase, and the rotor 1 has the same configuration as the rotor 1 and the phase is set to 30 relative to the salient poles of the rotor 1. Deviate by a degree (rotate 30 degrees around the axis) and rotate synchronously.
  • the magnetic poles of the fixed armatures C and C-11 oppose the outer salient poles of the rotor via a gap.
  • the armature coil of the magnetic pole of the fixed armature C-1 has three phases, and these are called armature coils 39d, 39e, and 39f.
  • the armature coils 39 d, 39 e, and 39 f are converted to the position detection signals 51 a, 51 b,..., 52 a, By controlling the energization of the armature coils 39d, 39e, 39f via 52b, ..., 53a, 53b, ..., a three-phase, single-wave energized motor is obtained. Can be operated. Both fixed armatures C and C-11 form a three-phase full-wave energized motor.
  • the above-mentioned fixed armature C-11 is shown as a symbol in FIG. 3, the rotor is shown as a symbol ⁇ , and the salient poles are shown as symbols ⁇ , 1b, 1c,....
  • the salient poles 1a, J_b, 1c, ... rotate synchronously with a phase shift of 30 degrees with respect to the salient poles 1a, lb, 1c, ....
  • the same purpose can be achieved even if each salient pole is in phase and the phase with fixed armature 16 is shifted by 30 degrees.
  • the configuration of the fixed armature J_ is the same as that of the fixed armature 16 and is schematically shown by a dotted line. If the number of salient poles is 3 or more, The fixed armature is also extended to the right of dotted line B.
  • FIG. 3 Components with the same reference numerals as those in Fig. 3 are the same members and have the same functions and effects, and therefore description thereof is omitted. The difference is that only one armature 16 and three one-phase single-wave energizers are used, and one rotor is also indicated as symbol 1.
  • the rotor 4 is made of a magnetic material, is configured to rotate synchronously coaxially with the rotor 1, and is provided with salient poles 4a, 4b, ... protruding outside, and the width of the salient pole is 24 degrees. At 36 degrees apart.
  • the fixed armature 6 is coaxially adjacent to the fixed armature 16 and is fixed inside the outer casing.
  • the magnetic poles 6a, 6b protrude from the inside of the fixed armature 6, and face the salient poles 4a, 4b, ... via a gap.
  • the fixed armature 6 and the rotor 4 are made of a laminated silicon steel sheet.
  • Excitation coils 6-1 and 6-2 are wound around the magnetic poles 6a and 6b, and are excited so as to have mutually different polarities.
  • the width of magnetic poles 6a and 6b is 30 degrees, which is the same as the number of salient poles .1a, lb, .... Also, the number may be twice as large as the salient poles l a and lb.
  • the number of salient poles 1 a, lb is increased by extending to the right of the dotted line B, and the number of salient poles 4 a, 4 b,. It can be implemented even if it is added.
  • the output torque curve of the fixed armature 16 and the rotor 1 is as shown by the curve 27c in FIG. 11 and has a ripple torque.
  • the torque curve due to salient poles 4a, 4b,... in Fig. 4 shows the protrusion in the concave part of curve 27c as shown by the dotted curve 33a. Therefore, there is an effect that the output torque becomes flat.
  • the relative phases of salient poles la, lb,..., salient poles 4a, 4b,..., magnetic poles 6a, 6b, and fixed armature 16 in Fig. 4 satisfy the above conditions for eliminating ripple torque. Need to be set. Two more magnetic poles can be arranged between the magnetic poles 6a and 6b. In this case, the peak value of the torque shown by the curve 33 in FIG. 11 becomes large, so that the length of the magnetic poles 6a, 6b,. Therefore, there is an effect that the length of the motor can be shortened. For example, if the fixed armature C-1 in Fig. 5 is the fixed armature 6 in Fig. 4 and the rotor 1 is the rotor 4 in Fig.
  • the width of the arrow 29d is the same as the width of the arrow 29c. Since it is the second place, the length in the direction of the rotating shaft 5 can be shortened. Increasing the ampere-turn of the exciting coils 6-1, 6-12 has the effect of further reducing the length.
  • Fig. 8 explains the energization control means for the excitation coils 6-1 and 6-2.
  • the exciting coils 6-1 and 6-2 are connected in series or in parallel, and a transistor 20g, 20h, and a die diode 49d-1 are connected to both ends. Is done.
  • the resistor 22 d, the absolute value circuit 30 d, the operational amplifier 40 e, and the capacitor 47 d have the same configuration as the energization control of the armature coils 39 a, 39 b, and 39 c described above, respectively. Is the same.
  • Block circuit D is a position detecting device for salient poles 4a, 4b,... in Fig. 4, and a small-diameter position detecting coil 10d faces the side of salient poles 4a, 4b,.... However, the impedance is changed by iron loss when facing each other. Therefore, with the same configuration as the circuit in Fig. 6, the output width of the operational amplifier corresponding to the op-amp 13 is equal to the salient poles 4a, 4b, ... The output becomes the input of the AND circuit 4Id in FIG. The other input is the output of the op amp 40 e, so that the excitation coils 6-1 and 6-2 carry the current corresponding to the voltage of the reference voltage source 40. It is preferable to adjust the peak value of the torque curve due to such a flowing current, that is, the peak value of the dotted line 33a in FIG. 11 to be the same as the peak value of the curve 27c.
  • the present invention is applied to the case where only one transistor is used on the negative voltage side of the power armature coil whose conduction is controlled by the transistors provided at both ends of the armature coil. Can be implemented.
  • Fig. 9 gives an explanation.
  • transistors 20a, 20b and 20c are inserted at the lower ends of the armature coils 39a, 39b and 39c, respectively.
  • the transistors 20a, 20b, and 20c serve as switching elements, and may be other semiconductor elements having the same effect.
  • DC power is supplied from the positive and negative terminals 2a and 2b.
  • the transistors 20a, 20b, and 20c are located at the lower end of the armature coil, that is, on the negative electrode side of the power supply, the input circuit for conduction control is simplified.
  • the position detection signal curves 48a, 48b, ..., curves 49a, 49b, ..., curves 50a, 5 in Fig. 13 are obtained.
  • 0 b,... is input.
  • base inputs can be obtained via the transistors 20a, 20b, 20c and the s-and circuits 41a, 41b, 41c.
  • the armature coils 39a, 39b, 39c are conducted.
  • Terminal 40 is a reference voltage for specifying the exciting current. Terminal 40 By changing the voltage, the output torque can be changed.
  • the power switch (not shown) is turned on, the input of one terminal of the operational amplifier 40b is lower than that of the + terminal, so that the output of the operational amplifier 40b becomes a high level and the transistor 20b is turned on. a becomes conductive, and the voltage is applied to the energization control circuit of the armature coil.
  • the resistance 22 and the absolute value circuit 30a are devices for detecting the armature current of the armature coils 39a, 39b, and 39c.
  • the following means is adopted to prevent the above-described counter torque and reduced torque from occurring and to achieve high speed and high torque.
  • the feature is that only one switching element (symbol 20a, 20b, 20c) for energization control is used on the negative voltage side of the power supply.
  • the magnetic energy stored in the armature coil 39a is not returned to the DC power supply side but passes through the diodes 21a and 33a. Then, the capacitor 47a is charged to the polarity shown in FIG. Therefore, the magnetic energy disappears rapidly and the current drops rapidly.
  • the first-stage curves 26 a, 26 b, and 26 c of the timing chart in FIG. 7 are the current curves flowing through the armature coil 39 a and are the dotted lines 26 _ 1 and 26 -Between the two is 120 degrees.
  • the conduction current drops rapidly as shown by the curve 26b to prevent the generation of anti-torque, and the capacitor 47a is charged and held at a high voltage.
  • the energization control circuit having the same configuration as the armature coil 39a is also provided. These are shown as block circuits G and H. Therefore, the anti-torque described above is prevented from occurring.
  • the transistor 20 a is turned on and the armature coil is again turned on.
  • a differential pulse at the start end of the position detection signal 48b is obtained by the block circuit 4 in FIG. 9, and an electric pulse of a short width is obtained by a monostable circuit to which this is input.
  • the transistors 34 b, 34 a, and SCR 19 a are made conductive by this electric pulse, so that the capacitor
  • a high voltage of 47a is applied to the armature coil 39a to make the rising current rapid, and then the current of the curve 26a (Fig. 7) is obtained by the voltage of the DC power supply. With the termination of the discharge of the capacitor 47a, the SCR 19a is turned off.
  • the exciting current of the armature coil 39a increases, the resistance 22 for its detection, the voltage of the insulation value circuit 30a increases, and the voltage of the reference voltage terminal 40 (the + terminal of the operational amplifier 40b)
  • the lower input of the AND circuit 4la becomes low level, so that the transistor 20a is turned off and the exciting current decreases. Due to the hysteresis characteristic of the operational amplifier 40b, the predetermined value is reduced. Slightly, the output of the operational amplifier 40b returns to the high level, and the transistor 20a conducts to increase the exciting current. By repeating such a cycle, the exciting current is maintained at the set value.
  • the armature coil 39 b in FIG. 9 has a transistor 20 b corresponding to the width of the position detection signal curves 49 a, 49 b,... And the op-amp 40 b, resistor 22, and absolute value circuit
  • Chopper control is performed by 30a and the AND circuit 41b.
  • the situation described above is completely the same for armature coil 39c.
  • the position detection signal curves 5a, 50b, ... in Fig. 13 are input to 42c, and the energization control of the armature coil 39c is performed.
  • the operation and effect of the transistor 20c, the AND circuit 41c, the operational amplifier 40b, the resistor 22 and the absolute value circuit 30a are exactly the same as those described above.
  • the disadvantages of the reluctance motor Can be eliminated. It is preferable to use a capacitor with a small capacity as long as the charging voltage does not damage the transient of the circuit.
  • the block circuit J is an electric circuit for controlling the energization of the excitation coils 6-1 and 6-2, and is the same as the energization control circuit of the excitation coils 6-1 and 6-2 in FIG. Therefore, there is an effect of removing the ripple torque, and the object of the present invention is achieved.
  • the position detection signals input from terminals 42a, 42b, and 42c are curves 48a, 48b,..., And curve 49a, respectively, in FIG. , 49 b,..., Curves 50 a, 5.0 b,.
  • the transistor 20a conducts through the AND circuit 4la, and the energization of the armature coil 39a is started.
  • the current is controlled to the current value corresponding to the reference voltage of the terminal 40.
  • the transistor 20 a When the input at the terminal 42 a disappears, the transistor 20 a is turned off and the magnetic energy of the armature coil 39 a is transferred to the capacitor via the diodes 21 a and 33 a. 4 Charge 7a to high voltage. Since the capacitor 47a is charged in a small amount even when the above-mentioned chopper action is performed, its magnetic energy is added to increase the charging voltage of the capacitor 47a. This voltage must be adjusted according to the withstand voltage of the transistor used.
  • the transistor 20c Even when the transistor 20c is turned on by the input of the terminal 42c, the current is controlled by the chopper action. When the transistor 20c is turned off, the armature coil is turned off. The magnetic energy of 39 c charges the capacitor 47 c to a high voltage via the diodes 21 c and 33 c.
  • the transistor 34b via the output of the block circuit 4 (a circuit including a monostable circuit through a differentiated pulse) is output. Since 34 a and the SCR 19 a conduct, the high voltage of the capacitor 47 a is applied to the armature coil 39 c to make the current rise rapidly. Terminals 19d and 19e receive the electric pulses obtained at the beginning of the input to terminals 42a and 42b, respectively, by similar means. Therefore, the high voltage of the capacitors 47b and 47c is applied to the armature coils 39a and 39b, and the energization rises rapidly.
  • the armature coils 39 d, 39 e, and 39 f are the armature coils of the first, second, and third phases mounted on the fixed armature J_ ⁇ in FIG. 3, and the block circuit 39 is The electric circuit has exactly the same configuration as the armature coils 39a, 39b, and 39c, and the current is controlled by the position detection inputs of terminals 42d, 42e, and 42f. .
  • the inputs of the terminals 42 d, 42 e, and 42 f are the curves 51 a, 51 b,..., curves 52 a, 52 b,..., curves 53 a, 53 in FIG. Since b,..., three-phase single-wave conduction of the corresponding armature coil is performed.
  • the phase of the output torque due to the current flowing through the armature coils 39 d, 39 e, and 39 f is 30 times the output torque due to the current flowing through the armature coils 39 a, 39 b, and 39 c. As described above, the effect of eliminating the ripple torque can be obtained.
  • FIG. 14 is a plan view of the fixed armature and the rotor.
  • symbol 1 is a rotor, the width of salient poles 1a and 1b is 180 degrees (90 degrees in mechanical angle), and they are arranged at the same pitch with a phase difference of 360 degrees. Established ing.
  • the rotor 1 is made by well-known means in which silicon steel sheets are laminated.
  • Symbol 5 is the axis of rotation.
  • the fixed armature 16 is provided with eight slots at equal separation angles, and is indicated by symbols 17a, 17b, ..., respectively.
  • Symbol 9 is a cylinder serving as an outer casing.
  • Slots 17a and 17c and slots 17e and 17g each have one coil wound, and the two coils are connected in series or in parallel.
  • Slots 17b and 17d and slots 17f and 17h each have one coil wound, and the other two coils are connected in series. It becomes an armature coil of two phases. Slots 17c and 17e and slots 17g and 17a are each wound with one coil, and the two coils are connected in series to form a third phase motor. Child coil.
  • Slots 17d and 17f and slots 17h and 17b each have one coil wound and connected in series to form a fourth-phase armature coil. Becomes
  • a two-phase motor is composed of armature coils of the first and second phases.
  • the first phase is Two sets are used, and the second phase is also a set of two armature coils. These are called the first and third phase and the second and fourth phase armature coils.
  • the order of energization is in the order of "first phase-second phase”-> third phase-fourth phase armature coil, and this is returned to obtain the output torque.
  • Arrow A indicates the direction of rotation of rotor 1.
  • the width of salient poles 1a and 1b is 90 degrees in mechanical angle, and they are separated by the same angle.
  • Figure 15 is a developed view of the rotor 1 and armature coil.
  • armature coils 9 a and 9 b indicate the armature coils of the first phase described above, and include armature coils 9 c and 9 d and armature coils 9 e and 9 f. And the armature coils 9 g and 9 h indicate the second, third and fourth phase armature coils, respectively.
  • Derivation terminals of the armature coils of the first, second, third and fourth phases are indicated by symbols 8a, 8e and 8b, 8f and 8c, 8g and 8d and 8h. .
  • the fixed armature 16 is also made of a silicon steel sheet laminate like the rotor 1.
  • armature coil 32a The armature coils of the first, second, third, and fourth phases described above are hereinafter referred to as armature coil 32a, armature coil 32b, armature coil 32c, and armature coil 32c, respectively. Call it coil 32d.
  • the armature coil 32c When the armature coil 32c is energized, the salient poles 1a and 1b are attracted, and the rotor 1 rotates in the direction of arrow A. When the armature coil rotates 90 degrees, the armature coil 32 c is de-energized, and the armature coil 32 d is energized. When the armature coil is further rotated 90 degrees, the energization of the armature coil 32 d is cut off, and the armature coil 32 a is energized.
  • the energizing mode alternates cyclically with armature coil 32 a ⁇ armature coil 32 b ⁇ armature coil 32 c-armature coil 32 d ⁇ at every 90 ° rotation It is driven as a two-phase full-wave motor.
  • the magnetic pole at the axially symmetric position is magnetized to the N and S poles. Since the two magnetic poles that are excited are always of different polarities, the leakage flux passing through the non-excited magnetic poles is in the opposite direction. In other words, the generation of anti-torque is prevented.
  • the coils 10 a and 10 b are position detecting elements for detecting the positions of the salient poles la and lb, and are fixed to the armature 16 at the positions shown in the drawing, and the coil surfaces are the salient poles 1 a and It faces the side of 1b via a gap.
  • the coils 10a and 10b are 90 degrees apart.
  • the coil is an air core with a diameter of 5 turns and a diameter of about 30 turns.
  • FIG. 16 shows a device for obtaining a position detection signal from the coils 10a and 10b.
  • the coil 10a and the resistors 15a, 15b, and 15c form a bridge circuit. When the coil 10a does not face the coil 10a or the salient poles 1a and 1b.
  • Symbol 10 indicates an oscillator, which oscillates at about one megacycle.
  • the coil 10a faces the salient poles 1a, lb,..., the impedance decreases due to iron loss (eddy current loss and hysteresis loss), and the voltage drop across the resistor 15a increases. Therefore, the output of the operational amplifier 13 becomes a high level.
  • the input of the block circuit 18 becomes the curve 56 a, 56 b,... Of the timing chart of FIG. 18, and the input via the inverting circuit 13 a becomes the curve 56 a, 56 b,... are the curves 58 a, 58 b,.
  • the block circuit 14a in FIG. 16 has the same configuration as the above-described circuit including the coil 1Ob.
  • the oscillator 10 can be commonly used.
  • the output of the block circuit 14a and the output of the inverting circuit 13b are input to the block circuit 18, and their output signals are represented by curves 57a and 57b in FIG. ,..., And curves 57 a, 57 b,...
  • the inverted curves 59a, 59b, ... are obtained.
  • the curves 57a, 57b, ... are 90 degrees less than the curves 56a, 56b, .... curve
  • the output of the AND circuit having two inputs of 56 a, 56 b,... and the curves 59 a, 59 b,... becomes the curves 60 a, 60 b,..., and the curves 56 a
  • the output of the AND circuit with two inputs, 56 b,... and the curves 57 a, 57 b,... is the curve 61 a, 61 b,.... Curve by the same means
  • circuit 18 The circuit described above is shown as block circuit 18 and has terminals 18a,
  • the output of 18 b,... Is the signal shown by the curves 60 a, 60 b,.
  • Transistors 20a, 20b, 20c, and 2Od are inserted at the lower ends of the armature coils 32a, 32b, 32c, and 32d, respectively.
  • the transistors 20a, 20b, 20c, and 20d serve as switching elements, and may be other semiconductor elements having the same effect. Power is supplied from the DC power supply terminals 2a and 2b.
  • the transistors 20a, 20b, 20c, and 20d are located at the lower end of the armature coil, that is, on the negative side of the power supply, the input circuit for conduction control is simplified. is there.
  • the position detection signal curves 60a, 60b, ..., ffi lines 61a, 61b, ..., curves of Fig. 18 are obtained.
  • 6 2 a, 6 2 b, ..., curves 6 3 a, 6 3 b, ... are input.
  • the base inputs are obtained via the transistors 20a, 20b, 20c, 20d and the output circuits 41a, 41b, 41c, 4Id.
  • the armature coils 32a, 32b, 32c and 32d are energized.
  • Terminal 40 is a reference voltage for specifying the armature current. By changing the voltage at terminal 40, the output torque can be changed.
  • the power switch (not shown) is turned on, the input of the + terminal of the op-amp 40b is lower than that of the-terminal, so that the output of the operational amplifier 40b becomes a single level and the inverting circuit 2 Since the input of 8b is also at a low level, its output is at a high level, and the transistor 20a conducts, and the voltage is applied to the energization control circuit of the armature coil.
  • the resistor 22 is a resistor for detecting the armature currents of the armature coils 32a, 32b, 32c, and 32d.
  • Block circuits K, L, and M are circuits for controlling the energization of armature coils 32b, 32c, and 32d, and have the same configuration as the circuit of armature coils 32a. I have.
  • the armature current rises at the beginning of the position detection signal, and falls at the end.
  • the former has reduced torque and the latter has anti-torque. This is because the magnetic path is closed by the magnetic poles and the salient poles, so that it has a large inductance.
  • the reluctance motor has the advantage of generating a large output torque, but has the disadvantage that the rotational speed cannot be increased because of the above-mentioned counter torque and reduced torque.
  • the device of the present invention is composed of diodes 49a-1 and 49b-1,..., And a small-capacitance capacitor 47a and diodes 21a and 21 shown in FIG. 1d and semiconductor elements 34a, 34b, 19a, etc.
  • the position detection signals input to the terminals 42a, 42b, ... are curves 60a, 60b, ..., curves 61a, 61 in Fig. 18 having a width of 90 degrees.
  • curves 62a, 62b, ..., curves 63a, 63b, ... are input.
  • Block circuit 4 is composed of a monostable circuit that is energized by the differentiated pulse at the beginning of curve 60b, so that block 4 is driven by the electrical pulse at the beginning of the input at terminal 42a.
  • the transistors 34b, 34a, and SCR 19a conduct, and the high voltage of the capacitor 47a is applied to the armature coil 32a, causing the energization to rise rapidly.
  • the above-described discharge current of the capacitor 47a is prevented from returning to the DC power supply side by the backflow prevention diode 49a-1.
  • both the charging voltage of the capacitor 47a and the power supply voltage (the voltages of the terminals 2a and 2b) are applied voltages.
  • Current rises rapidly.
  • the energization curve of the rise is slow in the middle. This is due to the copper loss of the coil and the iron loss of the magnetic pole when the magnetic energy moves between the armature coils. This is because they are converted into heat energy and disappear. The means for eliminating such inconvenience will be described later.
  • the output torque is increased because the generation of the reduced torque and the torque is eliminated, and the current is applied in a manner similar to a rectangular wave.
  • the block circuits K, L, and M are energization control circuits for the armature coils 32b, 32c, and 32d, and have the same configuration as the armature coil 32a described above. The same is true.
  • the armature coils 3 2b, 32 c, and 32 d become the input position detection signals of the terminals 42 b, 42 c, and 42 d, and the curves 6 la, 61 b,.
  • 62a, 62b, ... and curves 63a, 63b, ... sequential energization control with a width of 90 degrees is performed.
  • the current of the armature coil 32a increases, and the voltage drop of the resistor 22 for detection increases, exceeding the voltage of the reference voltage terminal 40 (input voltage of one terminal of the operational amplifier 4Ob).
  • the output of the operational amplifier 40b is changed to a high level, so that a differential pulse is obtained from the differential circuit 28c, and the monostable circuit 28a is energized to obtain a pulse electric signal of a predetermined width.
  • the output of the inverting circuit 28b is converted to the low level by that width, the output of the AND circuit 41a is also at the low level by the same width, and the transistor 20a is also turned off by that width.
  • the current of the armature coil drops, and charges the capacitor 47a via the diode 2la.
  • the output signal of the simple stabilizing circuit 28a disappears, the output of the inverting circuit 28b and the output of the AND circuit 41a return to the high level again, and the transistor 20a conducts.
  • the armature current starts to increase.
  • the output of operational amplifier At the high level the transistor 20a is turned non-conductive by the output pulse width of the monostable circuit 28a, and the armature current drops.
  • the chopper circuit repeats such a cycle, and the armature current has a current value regulated by the voltage of the reference voltage terminal 40.
  • Constant speed control can also be performed by well-known means for controlling the voltage of the reference voltage terminal 40 with a voltage proportional to the rotation speed.
  • the capacitor 47a is charged repeatedly and the voltage is increased by the number of output pulses of the monostable circuit 28a, and the electrostatic energy is accumulated.
  • the transistor 20a is turned off at the end of the position detection signal, the entire magnetic energy of the armature coil 32a is charged to the capacitor 47a.
  • the electrostatic energy corresponding to the chopper frequency and the fall time of the armature current is further added to the electrostatic energy of the capacitor 47a.
  • the current rises when the armature coil 32a is next energized, so that it is possible to compensate for the energy loss caused by the copper loss of the armature coil and the iron loss of the magnetic pole described above. it can. Therefore, the armature current rises rapidly, becomes almost a rectangular wave, and has the effect of increasing the output torque. It is necessary to adjust the capacity of the capacitor 47a, the frequency of the capacitor and the frequency of the sopa current, and the output pulse width of the monostable circuit 28a so as to have the above-described effects.
  • the armature coils 32b, 32c, and 32d are also connected to the AND circuits 41b, 41c, and 41d by the transistors 20b, 20c, and 20d. Current chopper control is performed.
  • the armature coil may be energized at any point in the section up to 45 degrees from the point where the salient pole enters the magnetic pole, but the rotational speed, efficiency, and output torque are considered. Adjust the position of the coils 10a and 10b, which are the position detection elements, to be fixed to the fixed armature side. As can be understood from the above description, the object of the present invention is achieved because large output and high-speed rotation can be performed efficiently.
  • the disadvantages of the reluctance motor are as follows. Can be eliminated.
  • the capacity of the capacitor mentioned above should be small as long as the charging voltage does not damage the transistor of the circuit.
  • the graph in FIG. 19 is an output torque curve obtained when the two-phase reluctance motor is energized. Since the energization of the armature coil is alternated every 90 ° rotation, there is a disadvantage that a concave portion is generated in the torque curve at the alternation point as shown in curves 54a and 54b. This disadvantage is eliminated according to the measures of the present invention. Next, the details will be described.
  • a rotor 4 that is coaxial with the rotor 1 and that rotates synchronously is provided.
  • the rotor 4 has salient poles 4a, 4b,... Protruding therefrom and is made of a laminated silicon steel sheet.
  • the fixed armature 6 is fixed to the outer casing in juxtaposition with the fixed armature 16, and the magnetic poles 6 a and 6 b are provided to protrude inside, and the exciting coils 6-1 and 6-2 are wound.
  • the fixed armature 6 is made by the same means as the fixed armature 16.
  • the salient poles 4a, 4b, ... have a width of 18 degrees and are 27 degrees apart from each other.
  • the energizing means of the exciting coils 6-1 and 6-2 are the same as in the previous embodiment, and the energizing control means of the exciting coils 6-1 and 6-2 described in FIG. 8 are used.
  • This means is shown as a block circuit J in FIG. Salient pole
  • the torque generated by the magnetic poles 6a and 6b generated when 4a, 4b,... rotates in the direction of arrow A becomes a peak value at the point of the concave portion of the torque curve 54b in FIG. Adjust the relative position of each component so that the torque curve shown by the dotted line 55 appears. Therefore, the resultant torque curve becomes flat, and the object of the present invention is achieved. Even when the number of salient poles is three or more, the present invention can be implemented by similar means.
  • a cylindrical fixed armature 16 is fixed inside the outer casing 9.
  • the fixed armature 16 is made by a known means in which silicon steel sheets are laminated. Six slots are arranged on this inner peripheral surface at equal spacing angles, and an armature coil is wound and mounted on each slot. Armature coils are wound around slots 17a and 17b, and are mounted on two slots separated by 120 degrees in electrical angle. All subsequent angle displays are electrical angles. Armature coils are also wound on slots 17b and 17c and slots 17c and 17d, respectively. The other armature coils have the same configuration, and are wound and mounted on adjacent slots.
  • the rotating shaft 5 is rotatably supported by bearings on both sides of the outer casing 9, and the magnetic rotor 1 is fixed to the rotating shaft 5.
  • the rotor 1 is made of a silicon steel sheet laminate like the fixed armature 16.
  • Protruding salient poles 1a and 1b are provided on the outer circumference of rotor 1 with a width of 180 degrees and separated by 180 degrees, and the outer circumference is formed with a magnetic pole through a gap of about 0.5 millimeter. 16 a, 16 b,....
  • Figure 21 shows the development of Figure 20.
  • the left side of the dotted line B is the developed view of FIG.
  • the rotor is designated as symbol 1 and the fixed armature is designated as symbol 16.
  • the armature coil wound around the slots 17a and 17b can be displayed as the lowermost armature coil 9a.
  • Armature coils wound around slots 17b and 17c can be displayed as armature coils 9c.
  • other armature coils can be displayed as symbols 9e, 9b, 9d, and 9f.
  • Armature coils 9a and 9b are connected in series and supplied with power from terminals 8a and 8d.
  • Armature coils 9c and 9d and armature coils 9e and 9f are also connected in series, respectively, and power is supplied from terminals 8b and 8e and terminals 8c and 8f.
  • the armature coils are separated by 120 degrees, and the armature coils 9a and 9b, the armature coils 9c and 9d, and the armature coils 9e and 9f are the first, second, and third phases, respectively.
  • Armature coil. When the rotor 1 moves to the left s 12 0 degrees and stops, when the armature coils 9 a and 9 b of the first phase are energized, the salient poles la and lb become magnetic poles 16 a , 16 d, and rotate in the direction of arrow A.
  • salient pole 1c By adding salient pole 1c, three salient poles can be obtained. In this case, the dotted line B moves 360 degrees to the right.
  • the number of salient poles can be two or more, and the output torque increases proportionately.
  • the output torque from six salient poles This has the effect of increasing the output torque by a factor of three.
  • the armature 16 is fixed by salient poles la and le.
  • the armature 16 is deformed by receiving magnetic attraction in the directions of arrows 4-1 and 4-1-4.
  • the attraction force in the directions of arrows 42, 4 and 5 due to salient poles lb and If.
  • arrows 4 — 3, 4 and 16 It is deformed by the suction force in the direction of. Therefore, the fixed armature 16 has a drawback that the direction of deformation changes with rotation and vibration is generated.
  • the fixed armature 16 since the attraction force is simultaneously generated in all of the salient poles, the fixed armature 16 is not deformed because only the compressive force is generated in the same circumferential direction. is there.
  • the polarity of the magnetic pole magnetized by the armature coil is magnetized such that the magnetic pole located at an axially symmetric position in FIG.
  • armature coils 9a and 9b are replaced by armature coils 39a, 9c and 9d, and armature coils 9e and 9f are replaced by armature coils 39b and 39f, respectively.
  • Rotor 3 in Fig. 21 is configured to rotate synchronously coaxially with rotor 1, and is made of a conductor such as aluminum.
  • the salient poles 3a, 3b, 3c ... have a width of 180 degrees and rotate with the relative phases shown.
  • the coils 10 a, 10 b, 10 c are position detecting elements for detecting the positions of the salient poles 3 a, 3 b,..., And are fixed to the armature 16 at the positions shown in FIG.
  • the surface faces the side surfaces of the salient poles 3a, 3b, ... with a gap.
  • the coils 10a, 10b, and 10c are 120 degrees apart.
  • the coil is a 5-millimetre monster with 30 turns of air. You.
  • FIG. 6 shows a device for obtaining a position detection signal from the coils 10a, 10b, and 10c.
  • the coil 10a and the resistors 15a, 15b, 15c form a bridge circuit, and face the coil 10a or the salient poles 3a, 3b,.
  • Symbol 10 is an oscillator that oscillates about two megacycles. When the coil 10a faces the salient poles 3a, 3b, ..., the impedance decreases due to copper loss, so that the voltage drop of the resistor 15a increases and the op amp 13 Output goes high.
  • Block circuits 14a and 14b in FIG. 6 have the same configuration as the above-described block circuit including coils 10b and 10c, respectively.
  • the oscillator 10 can be used in common.
  • the output of the block circuit 14a and the output of the inverting circuit 13b are input to the block circuit 18 and their output signals are represented by the curves 46a and 46a in FIG. 46 b,..., and curves 46 a, 46 b,....
  • the output of the block circuit 14b and the output of the inverting circuit 13c are input to the block circuit 18, and their output signals are represented by curves 47a, 47b,. And the reverse of this.
  • the curves 46a, 46b,... are in phase force s 120 degrees
  • the curves 46a, 46b,... Curves 47a, 47b, ... have a phase of 120 degrees.
  • the block circuit 18 is a circuit commonly used for a control circuit of a three-phase Y-type semiconductor motor.
  • the terminals 18a, 18b,..., 18f It is a logic circuit that can obtain a square-wave electric signal with a width of more than 120 degrees.
  • the outputs of terminals 18a, 18b, and 18c are shown in FIG. 25 as curves 48a, 48b,.
  • the signal in the lower six stages can be obtained from the signal in the upper three stages of the time chart.
  • the following means are adopted.
  • the phase difference between the output signals at terminals 18a and 18d, the output signals at terminals 18b and 18e, and the output signals at terminals 18c and 18f is 60 degrees.
  • the output signals of terminals 18a, 18b, and 18c are sequentially shifted by 120 degrees, and the output signals of terminals 18d, 18e, and 18f are also sequentially shifted by 120. Have been delayed.
  • Transistors 20a, 20b, 20c, 20d, 20e, and 20f are inserted at both ends of the armature coils 39a, 39b, and 39c, respectively. ing.
  • the transistors 20a, 20b, 20c,... Are switching elements, and may be other semiconductor elements having the same effect. Power is supplied from the DC power supply positive and negative terminals 2a and 2b. When the lower input of the AND circuit 41a is at a high level, When the electric signal of the bell is input, the transistors 20a and 2Ob conduct, and the armature coil 39a is energized.
  • Terminal 40 is a reference voltage for specifying the exciting current. By changing the voltage of terminal 40, the output torque can be changed.
  • the power switch (not shown) is turned on, the input of one terminal of the operational amplifier 4 Ob is lower than that of the + terminal, so that the output of the operational amplifier 40 b becomes a high level, and the transistor 20 a , 20b conduct, and a voltage is applied to the energization control circuit of the armature coil 39a.
  • the resistor 22a is a resistor for detecting the exciting current of the armature coil 39a.
  • Symbol 30a is an absolute value circuit.
  • the input signal of the terminal 42a is the position detection signal 48a, 48b in FIG. 25, and the input signal of the terminal 42b, 42c is the position detection signal 49a, 49b,. And 50 a, 50 b,...
  • a curve 48a in the first stage of the time chart in FIG.
  • the armature coil 39a is energized by the width of the curve 48a.
  • Arrow 23a indicates a conduction angle of 120 degrees. In the initial stage of energization, the rise of the armature coil is caused by the inductance, and when the energization is cut off, the stored magnetic energy is dissipated by the diode 49 a — 1 in FIG.
  • the section where the positive torque is generated is a section of 180 degrees as shown by the arrow 23, and therefore, there is a counter torque, which reduces the output torque and the efficiency. This phenomenon is noticeable at high speeds. It becomes too large to be used.
  • the device of the present invention is composed of diodes 49a-1 and 49b-1 and 49c-1 for backflow prevention and capacitors 47a, 47b and 47c in FIG. It is characterized by eliminating the above-mentioned drawbacks by being provided.
  • the magnetic energy stored in 39a is prevented from flowing back to the DC power supply side through diodes 21b and 2la without flowing back to the DC power supply according to diode 4.9a-1. Charge the capacitor 47a to the polarity shown. 4.8
  • the first-stage curves 26 a, 26 b, and 26 c of the time chart in FIG. 23 are the current curves flowing through the armature coil 39 a and are the dotted lines 26-1, 2 on both sides of the current curve.
  • the angle between 6 and 2 is 120 degrees.
  • the conduction current drops rapidly as shown by the curve 26b to prevent the generation of anti-torque, and the capacitor 47a is charged and held at a high voltage.
  • the transistors 20 a and 20 b conduct, and the armature coil 39 a is energized again.
  • the applied voltage at this time is the capacitor 47 a Since the charging voltage of the armature coil 39a and the power supply voltage (the voltages at the terminals 2a and 2b) are added, the current of the armature coil 39a rises rapidly. Due to this phenomenon, it rises rapidly as shown by curve 26a. As described above, the generation of the reduced torque and the anti-torque is eliminated, and the energization is close to a rectangular wave, so that the output torque increases.
  • the current in the armature coil 39a increases, and the voltage drop across the resistor 22a for detection increases, exceeding the voltage at the reference voltage terminal 40 (input voltage at the + terminal of the operational amplifier 40b).
  • the lower input of the AND circuit 41a becomes a singular level, so that the transistors 20a and 20b are turned off, and the exciting current decreases.
  • the output of the operational amplifier 40b returns to a high level due to the decrease of the predetermined value, and the transistors 20a and 20b conduct.
  • the exciting current increases. By repeating such a cycle, the exciting current is maintained at the set value.
  • the armature coil 39 b of the eight transistors has a width corresponding to the width of the transistor 20 c, 2 according to the position detection signal curve 49 a, 49 b, ... input from the terminal 42 b.
  • the current is supplied by the conduction of 0 d, the op amp 40 c and the resistance
  • Chopper control is performed by 22b, absolute value circuit 30b, and AND circuit 41b.
  • the effects of diode 49b-1 and capacitor 47b are the same as in the case of armature coil 39a.
  • Armature coil 39a Armature coil
  • each armature coil may be at the point where the salient pole enters the magnetic pole or at a point slightly before it. Adjust by considering the rotation speed, efficiency, and output torque, and fix the coils 10a, 10b, and 10c that are the position detection elements. As will be understood from the above description, one of the objects of the present invention is achieved because a large-output and high-speed rotation can be performed efficiently as a three-phase single-wave energized motor. However, there is a large ripple in the output torque, and the problem remains depending on the intended use.
  • the present invention is characterized in that the above-mentioned problem has been solved by using three-phase dual-wave energization.
  • Figure 24 shows the torque curve in the case of three-phase single-wave conduction.
  • the horizontal axis indicates the rotation angle of the rotor and the vertical axis indicates the output torque.
  • Curves 27a, 27b, and 27c show the cases where the armature current is 1 amp, 1.5 amp, and 2 amp, respectively.
  • the horizontal axis is indicated by the angle of rotation.
  • the ripple torque is around 70%.
  • the concave part of the torque curve is the point where the end of the salient pole enters the slot.
  • the output torque is small at the left end of curve 27c, that is, at the point of zero degree. Therefore, if the salient poles are in the above-mentioned position when the power is turned on, it becomes difficult to start.
  • Figure 12 shows the output torque curve, with the horizontal axis representing the armature current and the vertical axis representing the torque.
  • This motor has the configuration described above.
  • the initial curve of the curve 43 becomes a squared curve, and thereafter becomes a squared curve.
  • the magnetic flux is saturated at the point indicated by the dotted line 43a, and the output torque becomes equal to or less than the dotted line 43a.
  • the device of the present invention has a feature that the output torque is about seven times that of other electric motors of the same type because the torque increases linearly thereafter.
  • a three-phase single-wave energized motor whose salient pole or slot phase is shifted by an odd multiple of 60 degrees is used with a common rotation axis. It may be attached. Next, the means will be described.
  • FIG. 5 is a sectional view showing the entire configuration.
  • a metal outer casing (cylindrical) 25-1 is fitted on the right side with an outer bent portion of a circular side plate 25-2, and ball bearings 29a provided in the center of both sides are provided.
  • the rotating shaft 5 is rotatably supported.
  • Rotor 1 is supported on rotating shaft 5 Fixed through body 5-1.
  • Figure 1 shows the salient poles (not shown) of rotor 1.
  • the fixed armature C whose magnetic pole faces the salient pole, is fixed inside the outer casing 25-1, and its configuration is the same as that of the fixed armature 16 in Figs. 20 and 21.
  • an aluminum rotor 3 having the same outer projection is fixed and rotates synchronously with the rotor 1. Since the coils 10a, 10b, and 10c face the outer periphery, the position detection signal shown in FIG. 25 can be obtained as described above with reference to FIG.
  • the fixed armatures C and C-11 are fixed to the outer casing 25-1 in the same phase, and the rotor ⁇ has the same configuration as the rotor 1 and the phase is 60 ° relative to the salient poles of the rotor 1. Rotate by 60 degrees (rotate 60 degrees around the axis) and rotate synchronously.
  • the magnetic poles of the fixed armatures C and C-1 face the outer peripheral salient poles of the rotor via a gap.
  • the armature coil of the magnetic pole of the fixed armature C-1 has three phases, and these are called armature coils 39d, 39e, and 39f.
  • the electric coils 39 d, 39 e, and 39 f are converted to the position detection signals 51 a, 51 b, ..., 52 a, 5 in FIG. Armature coiling 39 d, 39 e, via 2 b,..., 53 a, 53 b,...
  • the motor By controlling the energization of 39 f, the motor can be operated as a three-phase single-wave energized motor. Both the fixed armatures C and C-11 form a three-phase dual-wave energized motor.
  • the above-mentioned fixed armature C-11 is shown as a symbol in FIG. 21, the rotor is shown as a symbol ⁇ , and the salient poles are shown as symbols _ ⁇ , 1b, 1c,.... I have.
  • the salient poles, l_b, J__c, ... rotate synchronously with a phase shift of 60 degrees with respect to the salient poles 1a, 1b, 1c, .... Even if the phases of fixed armatures 16 and 16 are shifted by 60 degrees with each salient pole in phase The goal can be achieved.
  • the torque shown by the curve 33 is added to each of the concave portions of the output torque curve 27c in FIG. 24, so that the combined torque curve is flat. And the disadvantages are eliminated.
  • the phase difference between curves 27c and 33 is 60 degrees. .
  • FIG. 21 Those having the same symbols as those in FIG. 21 are the same members and have the same functions and effects, and therefore description thereof is omitted.
  • the difference is that only one armature 16 is energized in three-phase, single-wave mode, and one rotor is also indicated as symbol 1.
  • the rotor 4 is made of a magnetic material, is configured to rotate synchronously coaxially with the rotor 1, and is provided with salient poles 4a, 4b,. 72 degrees apart.
  • the fixed armature 6 is coaxially adjacent to the fixed armature 16 and is fixed inside the outer casing.
  • the magnetic poles 6a, 6b protrude from the inside of the fixed armature 6, and face the salient poles 4a, 4b, ... via a gap.
  • the fixed armature 6 and the rotor 4 are made of a laminated silicon steel sheet.
  • Excitation coils 6-1 and 6-2 are wound around the magnetic poles 6a and 6b, and are excited so that they have different polarities.
  • the width of the magnetic poles 6a and 6b is 60 degrees, which is the same as the number of salient poles la, lb, ... The number may be twice as large as the salient poles l a and lb.
  • the number of salient poles 1a, 1b is increased by extending to the right of dotted line B, and the number of salient poles 4a, 4b, ... and the number of magnetic poles 6a, 6b are correspondingly increased. ⁇ Can be implemented even if added.
  • the output torque curves of the fixed armature 16 and the rotor 1 are the same as those shown in the curve 27c in Fig. 24. There is considerable ripple torque.
  • the torque curve due to the salient poles 4a, 4b,... in Fig. 22 has the effect of flattening the output torque, as shown by the dotted curve 33a, because there is a protrusion in the concave part of the curve 27c. .
  • the relative phases of the salient poles la, lb,..., salient poles 4a, 4b,..., magnetic poles 6a, 6b, and fixed element 16 in Fig. 2 are based on the conditions that can eliminate the ripple torque described above. It must be set to satisfy. Two more magnetic poles can be provided between the magnetic poles 6a and 6b. In this case, the peak value of the torque indicated by the curved line 33a in FIG. 24 becomes large, so that the length of the magnetic poles 6a, 6b,. it can. Therefore, the length of the motor can be shortened. For example, if the fixed armature C-1 in Fig. 5 is the fixed armature 6 in Fig. 22 and the rotor 1 is the rotor 4 in Fig.
  • the width of the arrow 29d is smaller than the width of the arrow 29c. Since it is the 1st and 2nd place, the length in the direction of the rotating shaft 5 can be shortened. Increasing the ampere-turn of the exciting coils 6-1 and 6-2 has the effect of further shortening the length.
  • Fig. 8 explains the energization control means of the magnetizing coils 6-1 and 6-2.
  • the excitation coils 6-1 and 6-2 are connected in series or in parallel, and a transistor 20g, 2Oh, and a diode 49d-1 are connected to both ends. Is done.
  • the resistance 22 d, the absolute value circuit 30 d, the operational amplifier 40 e, and the capacitor 47 d have the same configuration as the energization control of the armature coils 39 a, 39 b, and 39 c described above, respectively. Is the same.
  • Block circuit D is a position detecting device for salient poles 4 &, 4 b,... in Fig. 22.
  • a small-diameter position detecting coil 10 d is attached to the side of salient poles 4 a, 4 b,.... Opposed, the impedance changes due to iron loss when facing It is configured to Therefore, with the same configuration as the circuit in FIG. 6, the output width of the operational amplifier corresponding to the opamp 13 is the width of the salient poles 4a, 4b,..., And this output is the AND circuit 4 I in FIG. It becomes the input of d. The other input is the output of the operational amplifier 40 e, so that the current flowing through the excitation coils 6-1 and 6-2 corresponds to the voltage of the reference voltage source 40.
  • the peak value of the torque curve due to such a flowing current that is, the peak value of the dotted line 33a in FIG. 24 may be adjusted so as to remove the concave portion of the curve 27c.
  • the energization control is performed by the transistors provided at both ends of the armature coil.
  • the present invention can be implemented even if only one transistor is used on the negative voltage side of the armature coil. Can be implemented.
  • transistors 20a, 20b, and 20c are inserted at the lower ends of the armature coils 39a, 39b, and 39c, respectively.
  • the transistors 20a, 20b, and 20c serve as switching elements, and may be other semiconductor elements having the same effect.
  • DC power is supplied from the positive and negative terminals 2a and 2b.
  • the transistors 20a, 20b, and 20c are located at the lower end of the armature coil, that is, at the negative electrode side of the power supply, the input circuit for conduction control is simplified.
  • the position detection signals input from terminals 42a, 42b, and 42c are curves 48a, 48b,..., Curves 49a, 49c in FIG. b,..., curves 50 a, 50 b,.
  • the transistor is connected via the AND circuit 41a.
  • the conduction of the armature coil 39a is started by conduction of 20a, and thereafter, the terminal 42 is connected to the terminal 40 by the operation of the chopper by the resistor 22 and the absolute value circuit 30a and the operational amplifier 40b. It is controlled to the current value corresponding to the reference voltage.
  • the capacitor 47a is charged via 33a to a high voltage. Since the capacitor 47a is charged in a small amount even when the above-mentioned chitsubasa action is present, the magnetic energy is added to increase the charging voltage of the capacitor 47a. This voltage must be adjusted according to the withstand voltage of the transistor used.
  • the energization control is performed by the chopper action, and when the transistor is turned off, the magnetic energy of the armature coil 39b is turned off. Charges the capacitor 47b to a high voltage via the diodes 21b and 33b.
  • the energization control is performed by the chopper action, and when the transistor is turned off, the armature coil 39 The magnetic energy of c charges the capacitor 47c to a high voltage via the diodes 21c and 33c.
  • the transistors 34b, 34a, and SCR 19a are output via the output of the block circuit 4 (a circuit including a monostable circuit through a differential pulse). Since conduction occurs, the high voltage of the capacitor 47a is applied to the armature coil 39c, and the current rises rapidly. Terminals 19d and 19e receive the electric pulses obtained at the beginning of the input to terminals 42a and 42b, respectively, by similar means. Therefore, the capacitor A high voltage of 47b and 47c is applied to the armature coils 39a and 39b, and the energization rises rapidly.
  • the armature coils 39 d, 39 e, and 39 f are the first, second, and third phase armature coils mounted on the fixed armature 16 in FIG. 39 is an electric circuit with the same configuration as the armature coils 39a, 39b, and 39c, and energization is controlled by the position detection inputs of terminals 42d, 42e, and 42f. It is.
  • the inputs of the terminals 42 d, 42 e, and 42 f are respectively the curves 51 a, 51 b,..., the curves 52 a, 52 b,..., the curves 53 a, 53 in FIG. b,..., three-phase single-wave conduction of the corresponding armature coil is performed.
  • the phase of the output torque generated by energizing the armature coils 39d, 39e, and 39f is 60% of the output torque generated by energizing the armature coils 39a, 39b, and 39c. As shown in FIGS. 21 and 24, the effect of eliminating the ripple torque is obtained.
  • the purpose of the present invention is achieved even if the width of the salient poles 1a and 1b in Fig. 21 is between 120 degrees and 180 degrees.
  • a switching switch 40a is provided, and when the output is switched to the output of the block circuit 40-1, the following operation can be performed.
  • the block circuit 40-1 provides the required output voltage when the motor rotation speed is at the set value, and when the motor speed rises or falls below the set value, the output voltage decreases correspondingly. Or a well-known circuit that rises and maintains the set rotational speed. Therefore, constant speed control can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Description

曰月 糸田 ¾ リ ラクタ ンス型電動機 技術分野
本発明は、 大きい出力で、 しかも トルク リプルが少ないので動力 源と して、 例えば、 電気自動車、 電気自転車、 ク レーン、 電気掃除 機等に利用される リ ラグタ ンス型電動機に関する。 背景技術
リ ラクタ ンス型電動機は、 出力 トルクの大きい特性があるが、 回 転速度がおそいこ と、 振動が発生するこ と等の欠点の為に実用化さ れた例はない。
第 1 の課題は、 リ ラクタ ンス型の電動機の場合には、 電機子コィ ルの磁路が、 突極と磁極の磁路が殆んど閉じられているのでイ ンダ クタンスが大き く従って磁極と突極に蓄積され若し く は放出される 磁気エネルギの量が大き く 、 又 1 回転毎の蓄積と放出の回数が多 い。 従って、 出力 トルクは大きい長所がある反面に低速となる問題 点がある。 大出力の電動機となると上述した問題は解決するこ とが 更に困難となる。
次に、 第 2の課題は、 図 1 は周知の 3相片波通電のリ ラクタンス 型電動機の平面図である。 記号 1 6は固定電機子で、 珪素鋼板積層 体で作られ、 磁極 1 6 a, 1 6 b, …には電機子コイル 1 7 a— 1 , 1 7 b - 1 , …が装着される。 回転子 1 は矢印 A方向に回転す る。 記号 5は回転軸である。 電機子コィル 1 7 b— 1 , 1 7 e - 1 が通電される と 、 回転子 1 は矢印 A方向に回転 し、 電気角で 1 2 0 度 回 転 す る と 通電 が停止 さ れ 、 次 に電機子 コ イ ル 1 7 c - 1 , 1 7 f — 1 が通電され、 電気角で 1 2 0度通電すると 同じ角度回転する。
上述 し た よ う に、 電機子 コ イ ル 1 7 a — 1 , 1 7 d - 1 → 1 7 b— 1 , 1 7 e — l → 1 7 c — 1 , 1 7 f — 1 の順の通電によ り矢印 A方向に回転する。
上述した回転の トルクは、 突極が 2個づっ関与し、 他の 4個は関 与しない。
6個の突極が同時に トルクを発生すればトルクは 3倍となるが、 こ れが達成できない問題点がある。
次に、 第 3の課題は、 電機子コイル 1 7 a - 1 , 1 7 0— 1 が通 電されると、 磁極 1 6 a , 1 6 dは突極 l a , l eに径方向に吸引 されるので、 固定電機子 1 6は吸引力によ り変形歪曲する。 回転し て磁極 1 6 b, 1 6 6 と磁極 1 6 〇, 1 6 f と対向突極との吸引に よ り固定電機子 1 6は変形する。 かかる変形によ り振動が発生する 問題点がある。 又突極と磁極間の空隙を一定とするこ とが技術的に 困難なので回転子 1 の受ける吸引力は回転と ともに変化して回転子 1が径方向に振動する。 従って振動音を発生し、 又回転子 1 の回転 軸の軸受の耐用時間を少なく する問題点がある。 大型で大出力のも のとなると上述した問題点は解決が困難となる。
次に、 第 4の課題は、 第 2の課題を解決すると、 図 1 1 について 後述するように大きいリプルトルクを発生する問題点がある。
そこで、 本発明は、 振動が少なく 、 高速回転で、 しかも、 大きい 出力 トルクで、 トルク特性の平坦な出力 トルクのリ ラクタ ンス型電 動機を提供するこ とを目的とする。
本発明は、 3相両波通電のリ ラクタンス型電動機において、 磁性 体回転子の外周面の両側部に等しい巾と等しい離間角で配設された n個 ( nは 2以上の正整数) の第 1 , 第 2 の突極と、 円筒状の第 1 の固定電機子の内周部に等しい離間角で配設された 6 n個のス ロ ッ 卜に位相が電気角で 1 2 0度づっ順次にずらして装着された第 1 , 第 2 , 第 3の相の電機子コイルと、 該第 1 の固定電機子と全く 同じ構成で、 そのスロ V トに位相が電気角で 1 2 0度づっ順.次にず らして第 _上, 2 , 第 3の相の電機子コイルが装着された第 2の固 定電機子と、 第 1 , 第 2 の固定電機子のスロ ッ トの位置をずらし て、 対応する第 1 , 第 2 , 第 3の相の電機子コイルと、 1_ , 簠 2. , 望 _ の相の電機子コィルの相対位置を電気角で 3 0度の奇数倍 だけずらして配設するか若しく はこれ等を同相と して、 対向する第 1 の突極と第 2の突極の位置を 3 0度の奇数倍だけずらして配設す る手段と、 第 1 の突極の回転位置を検出して、 電気角で 1 2 0度の 巾で互いに 2 4 0度離間した第 1 の相の位置検知信号ならびにこれ 等よ り位相が電気角で 1 2 0度おく れた第 2の相の位置検知信号な らびにこれ等よ り位相が電気角で 1 2 0度おくれた第 3の相の位置 検知信号ならびに第 1 , 第 2,. 第 3の相の位置検知信号よ りそれぞ れ位相が電気角で 3 0度の奇数倍おくれた簠一丄, 2 , 第 3の相の 位置検知信号が得られる位置検知装置と、 第 1 , 第 2 , 第 3 , 丄, 望 , 簠_ の相の電機子コイルのそれぞれに直列接続された半 導体スイ ッチング素子と、 該電機子コイルと半導体スイ ッチングと く
の直列接続体に供電する直流電源と、 第 1 , 第 2 , 第 3, 1 , 1 2 , 第 3の相の位置検知信号を介してそれぞれ第 1 , 第 2, 第 3, 第 l , _ , _3の相の電機子コィ ルに直列に接続した半導体ス ィ ツチング素子を位置検知信号の巾だけ導通して電機子コイルを通 電する通電制御回路と、 半導体スイ ッチング素子が位置検知信号の 末端で不導通に転化したときに、 該半導体スイ ッチング素子と電機 子コイルとの接続点よ り、 ダイオー ドを介して電機子コイルによ り 蓄積された磁気エネルギを小容量のコ ンデンサに流入充電して保持 するこ とによ り電機子コイルの通電電流の降下を急速とする第 1 の 電気回路と、 設定された角度だけ磁性体回転子が回転して次に通電 される電機子コイルが位置検知信号によ りその巾だけ通電されると きに、 その通電の開始されると同時に前記した小容量のコ ンデンサ に蓄積された静電工ネルギを、 該電機子コイルに流入せしめて、 通 電電流の立上がりを急速とする第 2の電気回路とよ り構成されたも のである。
さらに、 本発明は、 3相片波通電のリ ラクタンス型電動機におい て、 磁性体回転子の外周面に等しい巾と等しい離間角で配設された n個 ( nは 2以上の正整数) の第 1 の突極と、 磁性体回転子と同軸 で同期回転する磁性体回転子の外周面に等しい巾と等しい離間角で 配設された 6 n個の第 2の突極と、 円筒状の固定電機子の内周部に 等しい離間角で配設された 6 n個のスロ ッ 卜 に位相が電気角で 1 2 0度づっ順次にずらして装着された第 1 , 第 2, 第 3の相の電 機子コイルと、 固定電機子に並置された円筒状磁性体の内周部に等 しい離間角で突出されると ともに所定の巾の少なく と も n個の磁極 ならびにこれ等に装着された励磁コイルと、 第 1 , 第 2の突極のそ れぞれを僅かな空隙を介して前記した固定電機子内周面と円筒状磁 性体の磁極と対向して保持する手段と、 第 1 の突極の回転位置を検 出して、 電気角で 1 2 0度の巾で互いに 2 4 0度離間した第 1 の相 の位置検知信号ならびにこれ等よ り位相が電気角で 1 2 0度おくれ た第 2 の相の位置検知信号な らびにこれ等よ り位相が電気角で 1 2 0度おく れた第 3の相の位置検知信号が得られる位置検知装置 と、 第 1 , 第 2 , 第 3の相の電機子コイルと励磁コイルのそれぞれ に直列接続された半導体スイ ッチング素子と、 電機子コイルと励磁 コイルのそれぞれと半導体スィ ッチング素子の直列接続体 _に供電す る直流電源と、 第 1 , 第 2 , 第 3の相の位置検知信号を介してそれ ぞれ第 1 , 第 2 , 第 3の相の電機子コイルに直列接続した半導体ス イ ッチング素子を位置検知信号の巾だけ導通して電機子コイルを通 電する通電制御回路と、 第 2の突極の位置を検出して得られる位置 検知信号によ り、 第 2の突極に対向する磁極に該突極が侵入する点 よ り励磁コイルを通電し、 両者が対向した点で通電を断つ第 1 の電 気回路と、 半導体スイ ッチング素子が位置検知信号の末端で不導通 に転化したときに、 該半導体スイ ッチング素子と電機子コイルとの 接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁 気エネルギを小容量のコ ンデンサに流入充電して保持するこ とによ り電機子コイルの通電電流の降下を急速とする第 2の電気回路と、 設定された角度だけ磁性体回転子が回転して次に通電される電機子 コイルが位置検知信号によ りその巾だけ通電されるときに、 その通 電の開始されると同時に前記した小容量のコ ンデンサに蓄積された 静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立上 がりを急速とする電気回路と前記した励磁コイルの通電を電機子コ ィルの通電電流に対応した値に保持する通電電流制御回路と、 電機 子コイルの通電による出力 トルクのリプル トルクの凹部に励磁コィ ルの通電による リ プル トルクの突部を合致せしめるよ う に トルクを 発生する部材の相対位置を調整する手段とよ り構成されたものであ る。
さらに、 本発明は、 2相両波通電のリ ラクタンス型電動機におい て、 磁性体回転子の外周面の両側部に等しい巾と等しい離間角で配 設された n個 ( nは 2以上の正整数) の第 1 の突極と、 該磁性体回 転子と同軸で同期回転する磁性体回転子の外周面に等しい離間角で 配設された 4 n個の第 2の突極と、 円筒状の固定電機子の内周部に 等しい離間角で配設された 4 n個のスロ ッ 卜 に位相が電気角で 9 0度づっ順次にずらして装着された第 1 , 第 2 , 第 3 , 第 4の相 の電機子コイルと、 固定電機子に並置された円筒状磁性体の内周部 に等しい離間角で突出されると ともに所定の巾の少なく と も n個の 磁極ならびにこれ等に装着された励磁コイルと、 第 1 , 第 2の突極 のそれぞれを僅かな空隙を介して前記した固定電機子内周面と円筒 状磁性体の磁極と対向して保持する手段と、 第 1 の突極の回転位置 を検出して、 電気角で 9 0度の巾で互いに連続した第 1 , 第 2 , 第 3 , 第 4の相の位置検知信号が得られる装置と、 第 1 , 第 2 , 第. 3 , 第 4の相の電機子コイルと励磁コイルのそれぞれに直列接続さ れた半導体スィ ツチング素子と電機子コイルと励磁コイルのそれぞ れと半導体スイ ッチング素子の直列接続体に供電する直流電源と、 第 1 , 第 2 , 第 3 , 第 4の相の位置検知信号を介してそれぞれ第 1 , 第 2 , 第 3, 第 4の相の電機子コイルに直列接続した半導体ス ィ ツチング素子を位置検知信号の巾だけ導通して電機子コイルに通 電する通電制御回路と、 第 2の突極の位置を検出して得られる位置 検知信号によ り、 第 2の突極に対向する磁極に該突極が侵入する点 よ り励磁コイルを通電し、 両者が対向した点で通電を断つ第 1 の電 気回路と、 半導体スイ ッチング素子が位置検知信号の末端で不導通 に転化したと きに、 該半導体スイ ッチング素子と電機子コイルとの 接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁 気エネルギを小容量のコ ンデンサに流入充電して保持するこ とによ り電機子コイルの通電電流の降下を急速とする第 2の電気回路と、 設定された角度だけ磁性体回転子が回転して次に通電される電機子 コイルが位置検知信号によ りその巾だけ通電されるときに、 その通 電の開始されると同時に前記した小容量のコ ンデンサに蓄積された 静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立上 がりを急速とする電気回路と前記した励磁コイルの通電を電機子コ ィルの通電に対応した値に保持する通電電流制御回路と、 電機子コ ィルの通電による出力 トルクのリプル トルクの凹部に励磁コイルの 通電による リプル トルクの突部を合致せしめるように トルクを発生 する部材の相対位置を調整する手段とよ り構成されたものである。
さらに、 本発明は、 3相両波通電のリ ラクタンス型電動機におい て、 磁性体回転子の外周面の両側部に等しい巾と等しい離間角で配. 設された n個 ( nは 2以上の正整数) の第 1 , 第 2の突極と、 円筒 状の第 1 の固定電機子の内周部に等しい離間角で配設された 3 n個 のスロ ッ ト と、 隣接する 2個のスロ ッ トのそれぞれに装着された 3 ri個の第 1 , 第 2 , 第 3の相の電機子コイルと、 第 1 の固定電機 子と全く 同じ構成で、 そのスロ ッ トに位相が電気角で 1 2 0度づっ 順次にずらして第 _丄, 2 , 星 _ の相の電機子コイルが装着された 第 2の固定電機子と、 第 1 , 第 2の固定電機子のスロ ッ トの相対位 置をずらして、 対応する第 1 , 第 2 , 第 3の相の電機子コイルと第 丄, 第— , Hの相の電機子コイルの相対位置を電気角で 6 0度の 奇数倍だけずらして配設するか若しく はこれ等を同相と して、 対向 する第 1 の突極と第 2の突極の位置を 6 0度の奇数倍だけずらして 配設する手段と 、 第 1 の突極の回転位置を検出して、 電気角で 1 2 0度の巾で互いに 2 4 0度離間した第 1 の相の位置検知信号な らびにこれ等よ り位相が電気角で 1 2 0度おく れた第 2の相の位置 検知信号ならびにこれ等よ り位相が電気角で 1 2 0度おく れた第 3の相の位置検知信号ならびに第 1 , 第 2 , 第 3の相の位置検知信 号よ り それぞれ位相が電気角で 6 0度の奇数倍おく れた塞 _丄, 1 2 , 第一 の相の位置検知信号が得られる位置検知装置と、 第 1 , 第
2 , 第 3 , 1 , 第 2 , 第 3の相の電機子コイルのそれぞれに直列 接続された半導体スイ ッ チング素子と、 該電機子コイルと半導体ス イ ッチングとの直列接続体に供電する直流電源と、 第 1 , 第 2 , 第
3 , 1 , 第 2 , 第 _ の相の位置検知信号を介してそれぞれ第 1 , 第 2 , 第 3 , 1 , 第 2 , 第 3の相の電機子コイルに直列に接続し た半導体スィ ツチング素子を位置検知信号の巾だけ導通して電機子 コイルを通電する通電制御回路と、 半導体スイ ッ チング素子が位置 検知信号の末端で不導通に転化したときに、 該半導体スイ ッチング 素子と電機子コイルとの接続点よ り、 ダイオー ドを介して電機子コ ィルによ り蓄積された磁気エネルギを小容量のコ ンデンサに流入充 電して保持するこ とによ り電機子コイルの通電電流の降下を急速と する第 1 の電気回路と、 設定された角度だけ磁性体回転子が回転し て次に通電される電機子コイルが位置検知信号によ りその巾だけ通 電されると きに、 その通電の開始されると同時に前記した小容量の コ ンデンサに蓄積された静電工ネルギを、 該電機子コイルに流入せ しめて、 通電電流の立上がりを急速とする第 2の電気回路とよ り構 成されたものである。
さらに、 本発明は、 3相片波通電の リ ラクタンス型電動機におい て、 磁性体回転子の外周面に等しい巾と等しい離間角で配設された n個 ( nは 2以上の正整数) の第 1 の突極と、 磁性体回転子と同軸 で同期回転する磁性体回転子の外周面に等しい巾と等しい離間角で 配設された 3 n個の第 2の突極と、 円筒状の固定電機子の内周部に 等しい離間角で配設された 3 n個のスロ ッ ト と、 隣接する 2個のス ロ ッ トのそれぞれに装着された 3 n個の第 1 , 第 2 , 第 3の相の電 子コイルと、 固定電機子に並置された円筒状磁性体の内周部に等し い離間角で突出されると と もに所定の巾の少なく とも n個の磁極な らびにこれ等に装着された励磁コイルと、 第 1 , 第 2の突極のそれ ぞれを僅かな空隙を介して前記した固定電機子内周面と円筒状磁性 体の磁極と対向して保持する手段と、 第 1 の突極の回転位置を検出 して、 電気角で 1 2 0度の巾で互いに 2 4 0度離間した第 1 の相の 位置検知信号ならびにこれ等よ り位相が電気角で 1 2 0度おく れた 第 2 の相の位置検知信号な らびに こ れ等よ り 位相が電気角で 1 2 0度おくれた第 3の相の位置検知信号が得られる位置検知装置 と、 第 1 , 第 2 , 第 3の相の電機子コイルと励磁コイルのそれぞれ に直列接続された半導体スイ ッチング素子と、 電機子コイルと励磁 コイルのそれぞれと半導体スィ ツチング素子の直列接続体に供電す る直流電源と、 第 1 , 第 2 , 第 3の相の位置検知信号を介してそれ ぞれ第 1 , 第 2 , 第 3の相の電機子コイルに直列接続した半導体ス ィ ツチング素子を位置検知信号の巾だけ導通して電機子コイルを通 電する通電制御回路と、 第 2の突極の位置を検出して得られる位置 検知信号によ り、 第 2の突極に対向する磁極に該突極が侵入する点 よ り励磁コイルを通電し、 両者が対向した点で通電を断つ第 1 の電 気回路と、 半導体スイ ッチング素子が位置検知信号の末端で不導通 に転化したと きに、 該半導体スイ ッチング素子と電機子コイルとの 接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁 気エネルギを小容量のコ ンデンサに流入充電して保持するこ とによ り電機子コイルの通電電流の降下を急速とする第 2の電気回路と、 設定された角度だけ磁性体回転子が回転して次に通電される電機子 コイルが位置検知信号によ りその巾だけ通電されるときに、 その通 電の開始されると同時に前記した小容量のコ ンデンサに蓄積された 静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立上 がりを急速とする電気回路ならびに前記した励磁コイルの通電を電 機子コイルの通電電流に対応した値に保持する通電電流制御回路 と、 電機子コイルの通電による出力 トルクのリプル トルクの凹部に 励磁コイルの通電による リプルトルクの突部を合致せしめるように トルクを発生する部材の相対位置を調整する手段とよ り構成された ものである。
本発明によれば、 リ ラクタ ンス型の電動機は、 電機子コイルの通 電による電機子磁心と回転子の突極の磁路が殆ど閉じられているの で、 そのイ ンダクタンスが大きい。 従って電機子コイルの通電の初 期の立上りがおそく 、 又通電が断たれたと きに電流の降下が延長さ れる。 従って高速回転が不可能となる欠点がある。 大出力の電動機 とするとこの欠点は助長される。
本発明装置では、 電機子コイルの通電が断たれたときに、 電機子 コイルの磁気エネルギを小容量のコ ンデンサに充電して電流降下を 急速と し、 該コ ンデンサの高電圧を利用して次に通電される電機子 コイルの通電の立上りを急速と している。 従って大きい出力の電動 機でも高速回転とするこ とができる。
次に、 回転子の突極のすべてが出力 トルクに休止するこ となく寄 与しているので、 大きい出力 トルクが得られる作用がある。
次に、 回転子の突極のすべてが径方向に外側方向に磁気的に吸引 されているので振動の発生が防止される。
次に、 上述した第 2の作用を達成するように構成すると次に述べ る欠点を発生する。 即ち図 1 1 にっき後述するように磁極巾に対応 した大きいリプル トルクを発生する。 本発明装置では、 リプル トル クの凹部の位置に リプル トルクの突部のある出力 トルク曲線を有す る装置を付加して出力 トルクを平坦と して上述した欠点を除去する 作用がある。
本発明は、 以上説明したように、 同形の誘導電動機と比較して出 力 トルクが 1 0倍位となり、 必要によ り毎分 2万回転位までの回転 速度が得られる。 図 1 に示す周知のリ ラクタンス型の電動機と比較 して振動が減少し回転が円滑となる。
さらに、 出力 トルク特性が平坦となる。 図面の簡単な説明
図 1 は、 従来のリ ラクタ ンス型電動機の固定電機子と回転子の断 面図、 図 2は、 本発明による 3相 リ ラクタ ンス型電動機の固定電機 子と回転子の断面図、 図 3は、 本発明による 3相リ ラクタンス型電 動機の回転子、 固定電機子、 電機子コイルの展開図、 図 4は、 本発 明による 3相リ ラクタ ンス型電動機の他の実施例の回転子、 固定電 機子、 電機子コイルの展開図、 図 5は、 本発明装置の横断面図、 図 6は、 3相 リ ラ クタ ンス型電動機の位置検知信号を得る電気回路 図、 図 7は、 位置検知信号と対応する トルクのグラフ、 図 8は、 3相リ ラクタ ンス型電動機の通電制御回路図、 図 9は、 3相リ ラク タ ンス型電動機の通電制御回路の他の実施例の回路図、 図 1 0は、 3 相両波通電の リ ラ ク タ ン ス型電動機の通電制御回路図、 図 1 1 は、 3相リ ラクタ ンス型電動機の出力 トルク曲線のグラフ、 図 1 2は、 リ ラクタ ンス型電動機の通電電流と出力 トルクのグラフ、 図 1 3は、 3相リ ラクタ ンス型電動機の位置検知信号曲線のタイム チャー ト、 図 1 4は、 2相両波リ ラクタンス型電動機の固定電機子 と回転子の断面図、 図 1 5は、 本発明による 2相両波リ ラクタ ンス 型電動機の回転子、 固定電機子、 電機子コ イ ルの展開図、 図 1 6は、 2相両波リ ラクタンス型電動機の位置検知信号を得る電機 回路図、 図 1 7は、 2相両波リ ラクタンス型電動機の通電制御回路 図、 図 1 8は、 2相両波リ ラクタ ンス型電動機の位置検知信号曲線 のタイムチャー ト、 図 1 9は、 2相両波リ ラクタ ンス型電動機の出 力 トルク曲線のグラフ、 図 2 0は、 本発明による 3相リ ラクタ ンス 型電動機の固定電機子と回転子の断面図、 図 2 1 は、 本発明による 3相リ ラクタンス型電動機の回転子、 固定電機子、 電機子コイルの 展開図、 図 2 2は、 本発明による 3相リ ラクタンス型電動機の他の 実施例の回転子、 固定電機子、 電機子コイルの展開図、 図 2 3は、 位置検知信号と対応する トルクのグラフ、 図 2 4は、 3相リ ラクタ ンス型電動機の出力 トルク曲線のグラフ、 図 2 5は、 3相リ ラクタ ンス型電動機の位置検知信号曲線のタイムチャー トである。 発明を実施するための最良の形態
次に実施例につき本発明装置の詳細を説明する。 各図面の同一記 号の部材は同じ部材なので重複した説明は省略する。
図 2 において、 外筐 9の内側には、 円筒状の固定電機子 1 6が固 着されている。 固定電機子 1 6は、 珪素鋼板を積層した周知の手 段によ り作られている。 この内周面にはスロ ッ ト 1 2個が等しい離 間角で配設され、 各スロ ッ ト に電機子コイルが捲回して装着され る。 スロ ッ ト 1 7 a, 1 7 dには電機子コイルが捲回され、 電気角 で 1 8 0度離間した 2個のスロ ッ トに装、着される。 以降の角度表示 はすべて電気角 と する。 スロ ッ ト 1 7 b, 1 7 e及びスロ ッ ト 1 7 c , 1 7 f にもそれぞれ電機子コイルが捲回される。 他の電機 子コイルも同様な構成となっている。 外筐 9の両側の軸受には回 転軸 5が回動自在に支持され、 これに磁性体回転子 1 が固定され る。 回転子 1 は固定電機子 1 6 と同じく珪素鋼板積層体で作られて いる。
回転子 1 の外周には突極 1 a, l bが突出して設けられ、 この外 周は 0. 5 ミ リ メー トル位の空隙を介して磁極 1 6 a, 1 6 b , … と対向する。
図 2 の展開図を図 3 に示す。 点線 Bの左側が図 2の展開図であ る。 回転子は記号 1 と して固定電機子は記号 1 6 と して示される。 図 3 において、 スロ ッ 卜 1 7 a, 1 7 dに捲回される電機子コィ ルは最下段の電機子 コ イ ル 9 a と し て表示でき る。 ス ロ ッ ト 1 7 c , 1 7 f に捲回される電機于コイルは、 電機子コイル 9 c と して表示できる。 同様に他の電機子コイ ルも記号 9 b, 9 d, 9 e , 9 f と して表示できる。 電機子コイル 9 a, 9 bは直列に接 続され端子 8 a , 8 dよ り供電される。 電機子コイル 9 c , 9 d及 び電機子コイル 9 e, 9 f もそれぞれ直列に接続され、 端子 8 b, 8 e と端子 8 c , 8 f よ り供電される。 各電機子コイルは 1 2 0度 離間し、 電機子コイル 9 a , 9 b , 電機子コイル 9 c , 9 d , 電機 子コイル 9 e, 9 f はそれぞれ第 1 , 第 2 , 第 3の相の電機子コィ ルとなる。 回転子 1 が 1 8 0度左方に移動して停止している と き に、 第 1 の相の電機子コイル 9 a, 9 bに通電すると、 突極 l a , l bは磁極 1 6 a, 1 6 b , 1 6 c と他の対向磁極によ り磁気的に 吸引されて矢印 A方向に回転する。 1 2 0度回転したときに通電を 停止し、 電機子コイル 9 c, 9 d (第 2の相の電機子コイル) を通 電する と更に右方に回転し、 1 2 0度回転したと きに通電を停止 し、 第 3の相の電機子コイル 9 e, 9 f に通電すると更に右方に回 転する。 上述した説明よ り判るように第 1 , 第 2 , 第 3の相の電機 子コイルに 1 2 0度の区間だけ順次に通電すると、 回転子 1 は矢印 A方向に回転して 3相片波通電のリ ラクタンス型電動機となる。 突極 1 cを付加して 3突極とするこ とができる。 この場合には点 線 Bは右方に 3 6 0度移動する。 突極数は 2個以上複数個の突極と するこ とができ、 比例して出力 トルクが増大する。 図 1の電動機の 場合には、 突極 1 a, 1 b, …は 6個あるが出力 トルクに有効なも のは 2個である。 本発明の手段によると、 6個の突極よ り出力 トル クが得られるので 3倍の出力 トルクとなる効果がある。
従来の図 1 に示す電動機の場合には、 突極 1 a , 1 eによ り固定 電機子 1 6は磁気吸引力を矢印 4一 1 , 4一 4の方向に受けて変形 し、 1 2 0度回転する と 、 突極 l b , I f によ り矢印 4一 2, 4一 5の方向の吸引力によ り変形し、 次に 1 2 0度回転すると、 矢 印 4一 3, 4一 6の方向の吸引力によ り変形する。 従って固定電機 子 1 6は回転と ともに変形の方向が変化して振動を発生する欠点が ある。 本発明装置では、 突極のすべてに同時に吸引力が発生する ので固定電機子 1 6は同周方向の圧縮力が発生するのみで変形がな く 、 従って振動の発生が抑止される作用効果がある。
電機子コイルによ り磁化される磁極の極性は、 図 2において軸対 称の位置にある磁極が異極となるように磁化される。
次に図 3の回転子 1 が対向する固定電機子 1 6によ り駆動される 電機子コイルの通電制御手段を説明する。
図 3の電機子コイ ル 9 a, 9 bを電機子コイル 3 9 a, 電機子コ ィル 9 c, 9 d, 電機子コイル 9 e, 9 f をそれぞれ電機子コイル 3 9 b , 3 9 c と呼称する。 図 3の回転子 3は回転子 1 と同軸で 同期回転するように構成され、 アルミニュームのような導体で作ら れる。 突極 3 a, 3 b , 3 c…は 1 5 0度の巾となり、 図示の相対 位相で回転する。
コイル 1 0 a, 1 0 b, 1 0 cは、 突極 3 a, 3 b, ···の位置を 検出する為の位置検知素子で、 図示の位置で電機子 1 6の側に固定 され、 コイル面は、 突極 3 a, 3 b, …の側面に空隙を介して対向 している。 コイル 1 0 a , 1 0 b , 1 0 cは 1 2 0度離間してい る。 コイルは 5 ミ リ メー トル径で 3 0 ターン位の空心のものであ る。 図 6に、 コイル 1 0 a, 1 0 b, 1 0 cよ り、 位置検知信号を 得る為の装置が示されている。 図 6において、 コイル 1 0 a, 抵抗 1 5 a , 1 5 b , 1 5 cはブリ ッ ジ回路となり、 コイリレ 1 0 aか突 極 3 a, 3 b, …に対向していないときには平衡するように調整さ れている。 従って、 ダイオー ド 1 1 a, コ ンデンサ 1 2 aならびに ダイオー ド 1 l b , コ ンデンサ 1 2 bよ り なる口一パスフィルタの 出力は等し く 、 オペアンプ 1 3の出力はローレベルとなる。 記号 1 0は発振器で 2メガサイ クル位の発振が行なわれている。 コイル 1 0 aが突極 3 a, 3 b, …に対向すると、 銅損によ りイ ンピーダ ンスが減少するので、 抵抗 1 5 aの電圧降下が大き く なり、 ォペア ンプ 1 3の出力はハイ レベルとなる。
ブロ ッ ク回路 1 8 の入力は、 図 1 3 のタイ ムチヤ一 卜 の曲線 4 5 a , 4 5 b , …となり、 反転回路 1 3 aを介する入力は、 曲線 4 5 a , 4 5 b , …を反転したものとなる。 図 6のブロ ッ ク回路 1 4 a , 1 4 bは、 それぞれコイル 1 0 b, 1 0 cを含む上述した ブロ ッ ク回路と同じ構成のものを示すものである。 発振器 1 0は共 通に利用するこ とができる。 ブロ ッ ク回路 1 4 aの出力及び反転回 路 1 3 bの出力は、 ブロ ック回路 1 8に入力され、 それらの出力信 号は、 図 1 3 において、 曲線 4 6 a, 4 6 b , … , 及び曲線 4 6 a, 4 6 b, …を反転したものとなる。 ブロ ッ ク回路 1 4 bの 出力及び反転回路 1 3 cの出力は、 ブロ ッ ク回路 1 8に入力され、 それらの出力信号は、 図 1 3において、 曲線 4 7 a, 4 7 b , …及 びこれを反転したものとなる。 曲線 4 5 a, 4 5 b , …に対して、 曲線 4 6 a , 4 6 b , …は位相が 1 2 0度おく れ、 曲線 4 6 a, 4 6 b , …に対して、 曲線 4 7 a , 4 7 b , …は位相が 1 2 0度お く れている。 ブロ ッ ク回路 1 8は、 3相 Y型の半導体電動機の制御 回路に慣用されている回路で、 上述した位置検知信号の入力によ り 端子 1 8 a, 1 8 b , …, 1 8 f よ り 1 2 0度の巾の矩形波の電気 信号が得られる論理回路である。 端子 1 8 a, 1 8 b , 1 8 cの出 力は、 図 1 3 において、 それぞれ曲線 4 8 a, 4 8 b , …, 曲線 4 9 a , 4 9 b , …, 曲線 5 0 a, 5 0 b , …と して示されてい る。 端子 1 8 d, 1 8 e , 1 8 f の出力は、 それぞれ曲線 5 1 a,
5 1 b , …, 曲線 5 2 a, 5 2 b , …, 曲線 5 3 a, 5 3 b , …と して示されている。 端子 1 8 a と 1 8 dの出力信号、 端子 1 8 b と 1 8 e の出力信号, 端子 1 8 c と 1 8 f の出力信号の位相差は 3 0度である。 又端子 1 8 a, 1 8 b , 1 8 cの出力信号は、 順次 に 1 2 0度おく れ、 端子 1 8 d, 1 8 e , 1 8 f の出力信号も同じ く順次に 1 2 0度おくれている。
矢印 4 4 aは 1 8 0度の巾を示し、 矢印 4 4 bは 1 5 0度の巾を 示している。 曲線 4 8 a, 4 8 b , …を得る手段は、 曲線 4 6 a, 4 6 b , …を反転した出力と曲線 4 5 a , 4 5 b , をアン ド回路 の入力とすると、 その出力が曲線 4 8 a, 4 8 b , となる。 他の 下段の曲線も同様な手段によ り得るこ とができる この手段がブ ロ ッ ク回路 1 8 と して示されているものである。
電機子コイルの通電手段を図 8にっき次に説明する。 電機子コィ ル 3 9 a , 3 9 b, 3 9 c の両端には、 それぞれ ト ラ ンジスタ 2 0 a, 2 0 b及び 2 0 c, 2 0 d及び 2 0 e, 2 0 f が挿入され - ている。 トランジスタ 2 0 a, 2 0 b , 2 0 c, …は、 スィ ッチン グ素子となるもので、 同じ効果のある他の半導体素子でもよい。 直 流電源正負端子 2 a , 2 bよ り供電が行なわれている。 アン ド回路 ' 4 1 aの下側の入力がハイ レベルのときに、 端子 4 2 aよ りハイ レ ベルの電気信号が入力されると、 トランジスタ 2 0 a, 2 O bが導 通して、 電機子コイル 3 9 aが通電される。 同様に端子 4 2 b, 4 2 c よ りハイ レベルの電気信号が入力される と、 ト ラ ンジスタ 2 0 c, 2 0 d及び トランジスタ 2 0 e, 2 0 f が導通して、 電機 子コイル 3 9 b, 3 9 cが通電される。 端子 4 0は励磁電流を指定 する為の基準電圧である。 端子 4 0の電圧を変更することによ り、 出力 トルクを変更するこ とができる。 電源スィ ッチ (図示せず) を 投入すると、 オペアンプ 4 0 bの一端子の入力は +端子のそれよ り 低いので、 オペアンプ 4 0 bの出力はハイ レベルとなり、 トランジ スタ 2 0 a, 2 0 bが導通して、 電圧が電機子コイル 3 9 aの通電 制御回路に印加される。 抵抗 2 2 aは、 電機子コイル 3 9 aの励磁 電流を検出する為の抵抗である。 記号 3 0 aは絶対値回路'である。
端子 4 2 a の入力信号は、 図 1 3 の位置検知信号 4 8 a, 4 8 b …又端子 4 2 b , 4 2 c の入力信号は、 位置検知信号 4 9 a , 4 9 b , …及び 5 0 a, 5 0 b , …となっている。 上述し た位置検知信号曲線の 1 つが図 7のタイムチャー トの 1段目に曲線 4 8 a と して示されている。 この曲線 4 8 aの巾だけ電機子コイル 3 9 aが通電される。 矢印 2 3 aは通電角 1 2 0度を示している。 通電の初期では、 電機子コイルのイ ンダクタ ンスの為に立上がりが おく れ、 通電が断たれると、 蓄積された磁気エネルギが、 図 8のダ ィ オー ド 4 9 a — 1 が除去されている と、 ダイ オー ド 2 1 a, 2 1 bを介して電源に還流放電されるので、 点線 K一 1 の右側の曲 線 2 5の後半部のように降下する。 正 トルクの発生する区間は、 矢 印 2 3で示す 1 8 0度の区間なので、 反 トルクの発生があり、 出力 トルクと効率を減少する。 高速回転となるとこの現象は著し く 大き く なり使用に耐えられぬものとなる。
反 トルク発生の時間巾は、 高速となっても変化しないが、 正 トル ク発生の区間 2 3の時間巾は回転速度に比例して小さ く なるからで ある。 他の位置検知信号 4 9 a , 5 0 a に よ る電機子コ イ ル 3 9 b , 3 9 cの通電についても上述した事情は同様である。 曲線
2 5の立上がり もおく れるので、 出力 トルクが減少する。 即ち減ト ルクが発生する。 これは、 磁極と突極によ り磁路が閉じられている ので大きいイ ンダクタンスを有しているからである。 リ ラクタンス 型の電動機は大きい出力 トルクを発生する利点がある反面に回転速 度を上昇せしめるこ とができない欠点があるのは、 上述した反 トル クと減トルクの発生の為である。 かかる欠点を除去する為の周知の 手段は、 突極が磁極に侵入する以前に進相して、 電機子コイルの通 電を始めることである。
進相通電をすると、 磁極のイ ンダクタンスが著しく小さいので、 急速に立上がるが、 出力 トルクの発生する点即ち突極が磁極に侵入 し始めると、 イ ンダクタンスが急速に大きく なり、 電流も急速に降 下する。 従って出力 トルクが減少する欠点がある。 正逆転の運転を する場合には、 位置検知素子の数が 2倍必要となる欠点がある。 本 発明装置は 、 図 8 の逆流防止用 の ダイ オ ー ド 4 9 a — 1 ,
4 9 b - 1 , 4 9 c一 1 とコ ンデンサ 4 7 a, 4 7 b , 4 7 cを付 設するこ とによ り、 上述した欠点を除去したことに特徴を有するも のである。 曲線 2 5 aの末端で通電が断たれると、 電機子コイル
3 9 a に蓄積された磁気エネルギは、 逆流防止用 ダイ ォ一 ド 4 9 a— 1 によ り、 直流電源側に還流しないでダイオー ド 2 1 b,
2 l aを介して、 コ ンデンサ 4 7 aを図示の極性に充電して、 これ を高電圧とする。 従って、 磁気エネルギは急速に消滅して電流が急 速に降下する。
図 7 の タ イ ム チ ャー ト の 1 段 目 の曲線 2 6 a , 2 6 b , 2 6 cは、 電機子コイル 3 9 aを流れる電流曲線でその両側の点線 2 6 — 1 _, 2 6 — 2 間力 s 1 2 0度となっている。 通電電流は曲線 2 6 bのように急速に降下して反 トルクの発生が防止され、 コ ンデ ンサ 4 7 a は高電圧に充電して保持される。 次に位置信号曲線 4 8 bによ り、 トラ ンジスタ 2 0 a, 2 0 bが導通して再び電機子 コイル 3 9 aが通電されるが、 このときの印加電圧は、 コ ンデンサ 4 7 aの充電電圧と電源電圧 (端子 2 a , 2 bの電圧) が加算され るので、 電機子コイル 3 9 aの電流の立上がりが急速となる。 この 現象によ り、 曲線 2 6 aのように急速に立上がる。 以上の説明のよ うに、 減 トルク と反 トルクの発生が除去され、 又矩形波に近い通電 となるので、 出力 トルクが増大する。
次にチヨ ッパ回路について説明する。 電機子コイル 3 9 aの電流 が増大して、 その検出の為の抵抗 2 2 aの電圧降下が増大し、 基準 電圧端子 4 0の電圧 (オペアンプ 4 0 bの +端子の入力電圧) を越 えると、 アン ド回路 4 l aの下側の入力がローレベルとなるので、 トラ ンジスタ 2 0 a, 2 0 bは不導通に転化し、 励磁電流が減少す る。 オペアンプ 4 0 bのヒステ リ シス特性によ り、 所定値の減少に よ り、 オペアンプ 4 0 bの出力はハイ レベルに復帰して、 トランジ スタ 2 0 a, 2 0 bを導通して励磁電流が増大する。 かかるサイク ルを繰返 し て、 励磁電流は設定値に保持される。 図 7 の曲線 2 6 cで示す区間がチヨ ッパ制御の行なわれている区間である。 曲 線 2 6 cの高さは基準電圧端子 4 0の電圧によ り規制される。 図 8の電機子コイル 3 9 bは、 端子 4 2 bよ り入力される位置検知信 号曲線 4 9 a , 4 9 b , … に よ り 、 その巾だけ ト ラ ン ジス タ 2 0 c, 2 0 dの導通によ り通電され、 オペアンプ 4 0 c , 抵抗 2 2 b , 絶対値回路 3 0 b, アン ド回路 4 1 bによ りチヨ ッパ制御 が行なわれる。' ダイオー ド 4 9 b — 1 , コ ンデンサ 4 7 bの作用効 果 も電機子 コ イ ル 3 9 a の場合 と 同様である。 電機子 コ イ ル 3 9 c について も上述 し た事情は全 く 同様で、 端子 4 2 c に図 1 3の位置検知信号曲線 5 0 a, 5 0 b , ···が入力されて電機子コ ィ ル 3 9 c の通電制御が行なわれる。 ト ラ ン ジス タ 2 0 e , 2 0 f , アン ド回路 4 1 c, オペアンプ 4 0 d , 抵抗 2 2 c, 絶対 値回路 3 0 c, ダイオー ド 4 9 c一 1 , コ ンデンサ 4 7 cの作用効 果も前述した場合と全く 同様である。
各電機子コ イ ルの通電は、 突極が磁極に侵入する点若し く は 3 0度の区間を経過した点のいずれでもよい。 回転速度、 効率、 出 力 ト ルクを考慮して調整し、 位置検知素子となる コイル 1 0 a, 1 0 b, 1 0 cの固定電機子側に固定する位置を変更する。 以上の 説明よ り理解されるよう に 3相片波通電の電動機と して効率良く 、 大きい出力と高速回転を行なう こ とができるので本発明の 1 つの目 的が達成される。 しかし出力 トルクに大きい リ プルがあるので使用 目的によ り問題が残る。 本発明は 3相両波通電とするこ とによ り上 述した問題を解決したこ とに特徴を有するものである。
図 1 1 は、 3相片波通電の場合の トルク曲線で、 よこ軸は回転子 の回転角度たて軸は出力 ト ルク を示 し ている。 曲線 2 7 a , 2 7 b , 2 7 cは電機子電流がそれぞれ 1 ア ンペア、 1 . 5 アンべ ァ、 2 ア ンペアの場合を示している。 回転子の怪が 2 2 ミ リ メー ト ル、 固定電機子の外径が 5 0 ミ リ メ ー ト ル、 その長さ も 同 じ く 5 0 ミ リ メー トルの場合である。 よこ軸は回転する角度で示してあ る。 リ プル トルクは 7 0 %位となる。 トルク曲線の凹部は突極の端 部がスロ ッ トに侵入した点となっている。 曲線 2 7 cの左端即ち零 度の点では出力 トルクが零である。 従って電源投入時に突極が上記 した位置にあると起動困難となる。 突極端部がスロ ッ 卜の空間を経 過した直後に電機子コイルに通電開始すると所要方向の トルクが得 られて上記した不都合が除去される。
図 1 2 にっき後述するよ うに大きい出力 トルクが得られる反面に 上述した欠点がある。 従って 3相全波通電若し く は他の手段によ り 点線曲線 3 3若し く は 3 3 aで示す出力 トルクが得られる装置を付 加するこ とによ り、 上述した欠点が除去される。 これが本件発明の 1 つの目的である。
図 1 2は出力 トルク曲線で、 よこ軸は電機子電流、 たて軸は トル クである。 この電動機は上述した構成のものである。
曲線 4 3の初期は 2乗曲線となり、 その後は 1乗曲線となる。 一 般の電動機の場合には、 点線 4 3 aの点で磁束が飽和して点線 4 3 a以下の出力 トルク となる。 本発明装置ではその後も リニヤ に トルクが増大するので、 同型の他の電動機の 7倍位の出力 トルク が得られる特徴がある。
図 1 1 の点線 3 3 で示す ト ルクを付加するには突極若し く はス ロ ッ 卜の位相が 3 0度の奇数倍ずれた 3相片波通電の電動機を回転 軸を共通と して付設すればよい。 次にその手段を説明する。
図 5は全体の構成を示す断面図である。 図 5において、 金属製の 外筐 (円筒状) 2 5 - 1 の右側には円形の側板 2 5 - 2の外周折曲 部が嵌着され、 両側の中央部に設けたボール軸受 2 9 a, 2 9 bに は回転軸 5が回動自在に支持される。 回転軸 5には回転子 1 が支持 体 5 — 1 を介して固定される。 回転子 1 の突極 (図示せず) は、 図 2の回転子 1 の突極と同じ構成となっている。 突極に磁極が対向す ね固定電機子 Cは外筐 2 5 - 1 の内側に固定され、 その構成は図 2 , 図 3の固定電機子 1 6 と同じ構成となっている。 回転子 1 の右 側面には同形の外周部の突出部を有するアルミニューム製の回転子 3が固着し回転子 1 と 同期回転する。 外周部にはコイル 1 0 a, 1 0 b , 1 0 c が対向 しているので、 図 3 で前述 したよ う に図 1 3 に示される位置検知信号を得るこ とができる。
固定電機子 C と C一 1 は同じ位相で外筐 2 5 — 1 に固定され、 回 転子 1 は回転子 1 と同じ構成で位相を回転子 1 の突極に対して相対 的に 3 0度ずらして (軸方向のまわり に 3 0度回転する) 同期回転 する。 固定電機子 C, C一 1 の磁極は回転子の外周突極と空隙を介 して対向する。 固定電機子 C一 1 の磁極の電機子コイルは 3相とな り、 これ等を電機子コイル 3 9 d, 3 9 e , 3 9 f と呼称する。 電 機子コ イ ル 3 9 d , 3 9 e , 3 9 f を図 8 と同様な電気回路によ り、 図 1 3の位置検知信号 5 1 a, 5 1 b , …, 5 2 a , 5 2 b , … , 5 3 a , 5 3 b , …を介して電機子コイル 3 9 d, 3 9 e , 3 9 f の通電制御を行なう こ と によ り 3相片波通電の電動機と して 運転するこ とができる。 固定電機子 C, C一 1 の両者によ り 3相全 波通電の電動機となる。
前述した固定電機子 C一 1 は図 3 において記号 と して示さ れ、 回転子は記号丄と して、 その突極は記号丄 , 1 b , 1 c , … と して示されている。 突極 1 a , J_b , 1 c , …は突極 1 a , l b , 1 c, …に対して位相が 3 0度ずれて同期回転する。 各突極 を同相と して固定電機子 1 6 と の位相を 3 0度ずらしても同じ 目的が達成できる。 固定電機子 J_ の構成は固定電機子 1 6 と同じ 構成なので点線で略示してある。 突極の数が 3個以上の場合には、 固定電機子も点線 Bの右側に対応して延長される。
以上の説明のように 3相全波通電を行なう こ とによ り、 図 1 1 の 出力 トルク曲線 2 7 cの凹部のそれぞれに曲線 3 3で示す トルクが 付加されるので合成 トルク曲線は平坦化され欠点が除去される。 曲 線 2 7 c と 3 3の位相差は 3 0度となっている。
次に図 4にっき リ プル トルクを除去する他の手段を説明する。 図 3 と同じ記号のものは同じ部材で作用効果も同じなので説明を省略 する。 異なっているのは電機子 1 6、 1個のみの 3相片波通電とな り、 回転子も 1個で記号 1 と して示されている。 回転子 4は磁性体 で作られ、 回転子 1 と同軸で同期回転するように構成され、 外側に 突極 4 a , 4 b , …が突出 して設けられ、 突極の巾は 2 4度で 3 6度離間している。 固定電機子 6は固定電機子 1 6 と同軸で隣接 して外筐内側に固定される。 固定電機子 6の内側には磁極 6 a , 6 bが突出され、 突極 4 a, 4 b , …と空隙を介して対向する。 固 定電機子 6 と 回転子 4 は珪素鋼板積層体で作られている。 磁極 6 a , 6 bには励磁コイル 6 — 1 , 6 - 2が捲着され互いに異極と なる よ う に励磁される。 磁極 6 a , 6 bの巾は 3 0度で、 突極 . 1 a , l b , …の数と同じである。 又突極 l a , l bの 2倍の数と してもよい。
前実施例と同様に点線 Bの右側に延長して突極 1 a, l bの数を 増加し、 又対応して突極 4 a, 4 b, …と磁極 6 a , 6 bの数を增 加しても実施するこ とができる。 固定電機子 1 6 と回転子 1 による 出力 トルク曲線は前述したように図 1 1 の曲線 2 7 cに示すものと な り リ プル トルクがある。 図 4の突極 4 a , 4 b, …による トルク 曲線は点線曲線 3 3 aで示すように、 曲線 2 7 cの凹部に突出部が あ り従って出力 ト ルクが平坦となる作用効果がある。 図 4の突極 l a , l b , …と突極 4 a, 4 b , …と磁極 6 a, 6 b と固定電機 子 1 6 との相対位相は上述した リ プル トルクを除去できる条件を満 足するよ う に設定する必要がある。 磁極 6 a, 6 bの中間に更に 2個の磁極を配設するこ とができる。 この場合には図 1 1 の曲線 3 3で示す トルクのピーク値が大き く なるので、 磁極 6 a, 6 b , …の回転軸方向の長さを 1 2位とするこ とができる。 従って電動 機の長さ を短 く で き る効果がある。 例えば図 5 の固定電機子 C— 1 を図 4の固定電機子 6 と し、 回転子 1 を図 4の回転子 4 とす ると、 矢印 2 9 dの巾は矢印 2 9 cの巾の 1 2位となるので、 回 転軸 5の方向の長さを短く するこ とができる。 励磁コイル 6 — 1 , 6一 2のア ンペアターンを大き く すると更に長さを短く できる効果 がある。
図 8 にっき励磁コ イ ル 6 — 1 , 6 — 2 の通電制御手段を説明す る。 図 8において、 励磁コイル 6 — 1 , 6 — 2は直列若し く は並列 に接続され、 この両端には ト ラ ンジスタ 2 0 g, 2 0 h , ダイ才ー ド 4 9 d - 1 が接続される。 抵抗 2 2 d, 絶対値回路 3 0 d, オペ アンプ 4 0 e, コ ンデンサ 4 7 dはそれぞれ前述した電機子コイル 3 9 a , 3 9 b , 3 9 cの通電制御と同じ構成となり作用効果も同 じである。
ブロ ッ ク回路 Dは、 図 4の突極 4 a, 4 b , …の位置検知装置 で、 小さい径の位置検知用のコイル 1 0 dが突極 4 a, 4 b , …の 側面に対向し、 対向したと きに鉄損によ り イ ン ピーダンスが変化す るよ うに構成されている。 従って図 6の回路と同じ構成で、 ォペア ンプ 1 3 に対応するオペアンプの出力の巾は突極 4 a , 4 b, …の 巾 と な り 、 この出力が図 8のアン ド回路 4 I dの入力となる。 他の 1 つの入力はオペア ンプ 4 0 eの出力なので、 基準電圧源 4 0の電 圧に対応した励磁コ イル 6 — 1 , 6 — 2の通電電流となる。 かかる 通電電流による ト ルク曲線の ピーク値即ち図 1 1 の点線 3 3 aの ピーク値が曲線 2 7 cのピーク値と同じ高さ となるよ う に調整する こ とがよい。
図 8では、 電機子コイ ルの両端に設けた ト ラ ンジスタによ り通電 制御が行なわれている力 電機子コィ ルの負電圧側に ト ラ ンジスタ を 1 個のみ使用 しても本発明を実施できる。
図 9 にっきその説明をする。
図 9 において、 電機子コ イ ル 3 9 a , 3 9 b, 3 9 cの下端に は、 それぞれ ト ラ ンジスタ 2 0 a , 2 0 b及び 2 0 cが挿入されて いる。 ト ラ ンジスタ 2 0 a , 2 0 b , 2 0 cは、 スイ ッチング素子 となるもので、 同じ効果のある他の半導体素子でもよい。 直流電源 正負端子 2 a, 2 bよ り供電が行なわれている。 本実施例では、 卜 ラ ンジス夕 2 0 a, 2 0 b, 2 0 cは電機子コイ ルの下端即ち電源 負極側にあるので、 その導通制御の入力回路は簡素化される特徴が ある。
端子 4 2 a, 4 2 b , 4 2 c よ り 、 図 1 3 の位置検知信号曲線 4 8 a , 4 8 b , … , 曲線 4 9 a , 4 9 b , … , 曲線 5 0 a , 5 0 b , …が入力される。 上述した入力信号によ り 、 ト ラ ンジスタ 2 0 a, 2 0 b, 2 0 c力 sア ン ド回路 4 1 a, 4 1 b , 4 1 cを介 し てベー ス 入力が得 ら れて導通 し て 、 電機子 コ イ ル 3 9 a , 3 9 b , 3 9 cが導通される。
端子 4 0は励磁電流を指定する為の基準電圧である。 端子 4 0の 電圧を変更するこ とによ り、 出力 トルクを変更するこ とができる。 電源スィ ッチ (図示せず) を投入すると、 オペアンプ 4 0 bの一端 子の入力は +端子のそれよ り低いので、 オペアンプ 4 0 bの出力は ハイ レベルとな り、 ト ラ ンジスタ 2 0 aが導通して、 電圧が電機子 コ イ ルの通電制御回路 に印加 さ れる 。 抵抗 2 2 , 絶対値回路 3 0 aは、 電機子コイル 3 9 a, 3 9 b , 3 9 cの電機子電流を検 出する為の装置である。
本実施例では、 前述した反 トルク と減 トルクの発生を防止して高 速高 トルクとする為に次の手段が採用される。
図 9の小容量のコ ンデンサ 4 7 a及びダイオー ド 2 1 a及び半導 体素子 1 9 a, 3 4 a , 3 4 b等を付設して上述した欠点を除去 し、 又電機子コイルの通電制御のスイ ッチング素子 (記号 2 0 a, 2 0 b , 2 0 c ) を電源負電圧側に 1 個のみ使用したこ とに特徴を 有するものである。
位置検知信号曲線 2 5 aの末端で通電が断たれる と、 電機子コィ ル 3 9 aに蓄積された磁気エネルギは、 直流電源側に還流しないで ダイオー ド 2 1 a, 3 3 aを介して、 コ ンデンサ 4 7 aを図示の極 性に充電して、 これを高電圧とする。 従って、 磁気エネルギは急速 に消滅して電流が急速に降下する。
図 7 の タ イ ム チ ャー ト の 1 段 目 の曲線 2 6 a , 2 6 b , 2 6 cは、 電機子コイル 3 9 aを流れる電流曲線でその両側の点線 2 6 _ 1 と 2 6 - 2 間が 1 2 0度となっている。 通電電流は曲線 2 6 bのよ うに急速に降下して反 トルクの発生が防止され、 コ ンデ ンサ 4 7 aは高電圧に充電して保持される。 電機子コイル 3 9 b, 3 9 cについても電機子コイル 3 9 a と同じ構成の通電制御问路が 使用され、 これ等がブロ ッ ク回路 G, H と して示される。 従って上 述 し た反 ト ル ク発生の防止が行なわれる。 次に位置信号曲線 4 8 b によ り 、 ト ラ ン ジスタ 2 0 aが導通して再び電機子コ イ ル
3 9 a が通電さ れるが、 こ の と き の印加電圧は、 コ ン デ ンサ 4 7 aの充電電圧と電源電圧 (端子 2 a, 2 bの電圧) の両者とな るので、 電機子コイル 3 9 aの電流の立上がりが急速となる。 この 現象によ り、 曲線 2 6 aのように急速に立上がる。 この理由を次に 説明する。 図 9のプロ ッ ク回路 4によ り位置検知信号 4 8 bの始端 部の微分パルスが得られ、 これを入力とする単安定回路によ りみじ かい巾の電気パルスが得られる。 この電気パルスによ り トラ ンジス タ 3 4 b , 3 4 a , S C R 1 9 aが導通するので、 コ ンデンサ
4 7 aの高電圧が電機子コイル 3 9 aに印加されて立上がりの電流 を急速と し、 その後は直流電源の電圧によ り曲線 2 6 a (図 7 ) の 電流が得 られる。 コ ン デ ンサ 4 7 a の放電の終了 と と も に、 S C R 1 9 aは不導通に転化する。
以上の説明のよ うに、 減 トルク と反 トルクの発生が除去され、 又 矩形波に近い通電となるので、 出力 トルクが増大する。 他の電機子 コイル 3 9 b, 3 9 cの通電制御も全く 同様に行なわれその作用効 果も同様である。
次にチヨ ッパ回路の説明をする。 電機子コイル 3 9 aの励磁電流 が増大して、 その検出の為の抵抗 2 2、 絶縁値回路 3 0 aの電圧が 増大し、 基準電圧端子 4 0の電圧 (オペアンプ 4 0 bの +端子の入 力電圧) を越えると、 ア ン ド回路 4 l aの下側の入力がローレベル となるので、 ト ラ ンジスタ 2 0 aは不導通に転化し、 励磁電流が減 少する。 オペアンプ 4 0 bのヒステ リ シス特性によ り、 所定値の減 少によ り、 オペアンプ 4 0 bの出力はハイ レベルに復帰して、 トラ ンジスタ 2 0 aを導通して励磁電流が増大する。 かかるサイ クルを 繰返して、 励磁電流は設定値に保持される。 図 7の曲線 2 6 cで示 す区間がチヨ ッパ制御の行なわれている区間である。 曲線 2 6 cの 高さは基準電圧端子 4 0の電圧によ り規制される。 図 9の電機子コ ィ ル 3 9 b は 、 端子 4 2 b よ り 入力 さ れる位置検知信号曲線 4 9 a , 4 9 b, …によ り、 その巾だけの 卜 ラ ンジス夕 2 0 bの導 通によ り通電され、 オペア ンプ 4 0 b 、 抵抗 2 2 、 絶対値回路
3 0 a、 アン ド回路 4 1 bによ りチヨ ッパ制御が行なわれる。 電機 子 コ イ ル 3 9 c について も上述 し た事情は全 く 同様で、 端子
4 2 cに図 1 3の位置検知信号曲線 5 ひ a, 5 0 b , …が入力され て電機子コ イ ル 3 9 c の通電制御が行なわれる。 ト ラ ン ジス タ 2 0 c、 アン ド回路 4 1 c、 オペアンプ 4 0 b、 抵抗 2 2、 絶対値 回路 3 0 aの作用効果も前述した場合と全く 同様である。 コ ンデン サ 4 7 aは小容量の方が充電電圧が高電圧となるので、 通電曲線の 立上がり と降下を急速と し、 高速回転の電動機を得るこ とができ、 リ ラクタ ンス型電動機の欠点となっている低速度となる欠点が除去 できる。 上述したコ ンデンサの容量は充電電圧が回路の ト ラ ンジ夕 を破損しない範囲で小容量のものを使用するこ とがよい。
ブロ ッ ク回路 Jは励磁コイル 6 — 1 , 6 — 2を通電制御する為の 電気回路で、 図 8の励磁コイル 6 — 1 , 6 — 2の通電制御回路と同 じである。 従って リ プル トルクを除去する作用効果があり本発明の 目的が達成される。
次に図 3で説明した 3相全波通電による本発明装置の電機子コィ ルの通電制御回路の詳細を図 1 0によ り説明する。 図 1 0 におレヽて、 端子 4 2 a, 4 2 b, 4 2 c よ り入力される位 置検知信号はそれぞれ図 1 3 の曲線 4 8 a , 4 8 b , … , 曲線 4 9 a , 4 9 b , … , 曲線 5 0 a , 5.0 b , … である 。 端子 4 2 a よ り入力がある と、 ア ン ド回路 4 l aを介して ト ラ ンジスタ 2 0 aが導通して電機子コ イ ル 3 9 aの通電が開始され、 その後は 抵抗 2 2 , 絶対値回路 3 0 a, オペア ンプ 4 0 b によるチ ヨ ッパ作 用 によ り 、 端子 4 0 の基準電圧に対応した通電電流値に制御され る。
端子 4 2 aの入力が消滅する と、 ト ラ ンジスタ 2 0 aは不導通に 転化し、 電機子コイ ル 3 9 aの磁気エネルギはダイ オー ド 2 1 a , 3 3 aを介してコ ンデンサ 4 7 aを充電して高電圧とする。 前述し たチ ヨ ッ パ作用のある と きにも小量づっコ ンデンサ 4 7 aが充電さ れているので、 その磁気エネルギが付加されてコ ンデンサ 4 7 aの 充電電圧を上昇する。 この電圧は使用する ト ラ ンジスタの耐電圧に よ り調整する必要がある。
端子 4 2 bの入力によ り 、 ト ラ ンジスタ 2 0 bが導通したと き も チ ヨ ッ パ作用によ り通電制御が行なわれ、 不導通に転化する と、 電 機子コイ ル 3 9 bの磁気エネルギは、 ダイ オー ド 2 l b , 3 3 bを 介してコ ンデンサ 4 7 bを高電圧に充電する。
端子 4 2 cの入力によ り 、 ト ラ ンジスタ 2 0 cが導通した と きに も、 チ ヨ ッ パ作用によ り通電制御が行なわれ、 不導通に転化する と 、 電機子コ イ ル 3 9 c の磁気エネルギは、 ダイ オー ド 2 1 c , 3 3 c を介してコ ンデンサ 4 7 cを高電圧に充電する。
端子 4 2 cの入力の初期で、 ブロ ッ ク回路 4 (微分パルスを介す る単安定回路を含む回路) の出力を介して、 ト ラ ンジスタ 3 4 b, 3 4 a , S C R 1 9 aが導通するので、 コ ンデンサ 4 7 aの高電圧 が電機子コイル 3 9 c に印加されて電流の立上りを急速とする。 端 子 1 9 d, 1 9 eにはそれぞれ端子 4 2 a , 4 2 bの入力の初期に 得られる電気パルスが同様な手段で入力される。 従ってコ ンデンサ 4 7 b , 4 7 cの高電圧が電機子コイル 3 9 a, 3 9 bに印加され て、 通電の立上りを急速とする。
以上の説明よ り判るように、 前実施例と同様に高速で反 トルクと 減 トルクの発生のない高効率の電動機を得るこ とができる。
電機子コイル 3 9 d , 3 9 e , 3 9 f は図 3の固定電機子 J_ ^に 装着された第 1 , 第 2 , 第 3の相の電機子コイルで、 ブロ ッ ク回路 3 9は電機子コイル 3 9 a , 3 9 b , 3 9 c と全く 同じ構成の電気 回路とな り、 端子 4 2 d, 4 2 e , 4 2 f の位置検知入力によ り通 電制御が行なわれる。
端子 4 2 d, 4 2 e , 4 2 f の入力は、 それぞれ図 1 3の曲線 5 1 a , 5 1 b , … , 曲線 5 2 a , 5 2 b , …, 曲線 5 3 a , 5 3 b , … となっているので、 対応する電機子コイルの 3相片波通 電が行なわれる。 電機子コイル 3 9 a , 3 9 b , 3 9 cの通電によ る出力 トルクに対して、 電機子コイル 3 9 d, 3 9 e , 3 9 f の通 電による出力 トルクは位相が 3 0度おく れているので、 図 3 にっき 前述したように、 リ プル トルクが除去される作用効果が得られる。
次に本発明の手段を 2相両波通電の リ ラクタ ンス型電動機に使用 した実施例につき説明する。
図 1 4は固定電機子と回転子の平面図である。 図 1 4において、 記号 1 は回転子で、 その突極 1 a, 1 bの巾は 1 8 0度 (機械角で 9 0度) でそれぞれは 3 6 0度の位相差で等しいピッチで配設され ている。 回転子 1 は、 珪素鋼板を積層した周知の手段によ り作られ ている。 記号 5 は回転軸である。 固定電機子 1 6 には、 スロ ッ ト 8個が等しい離間角で設けられそれぞれ記号 1 7 a, 1 7 b , …で 示されている。 記号 9は外筐となる円筒である。
スロ ッ ト 1 7 a, 1 7 c及びスロ ッ ト 1 7 e, 1 7 gにはそれぞ れ 1 個のコイルが捲回され、 2個のコイルは直列若し く は並列に接 続されて第 1 の相の電機子コイルとなる。 本実施例では直列接続さ れている。
スロ ッ ト 1 7 b, 1 7 d及びスロ ッ ト 1 7 f,, 1 7 hにはそれぞ れ 1 個のコ イ ルが捲回され、 2個のコイ ルは直列に接続されて第 2の相の電機子コイルとなる。 スロ ッ ト 1 7 c, 1 7 e及びスロ ッ 卜 1 7 g, 1 7 aにはそれぞれ 1個のコイルが捲回され、 2個のコ ィルは直列に接続され第 3の相の電機子コイルとなる。
スロ ッ ト 1 7 d, 1 7 f 及びスロ ッ ト 1 7 h , 1 7 bにはそれぞ れ 1 個のコイルが捲回されて直列に接続されて第 4の相の電機子コ ィルとなる。
一般に 2相の電動機は第 1 , 第 2の相の電機子コイルによ り構成 されているものであるが、 各相が 1 8 0度の位相差の通電と考える と、 第 1 の相は 2個 1組となり、 第 2の相も 2個 1 組の電機子コィ ルとなる。 これ等を第 1 , 第 3の相及び第 2 , 第 4の相の電機子コ ィルと呼称する。 通電の順序は第 1 の相—第 2の相"→第 3の相—第 4の相の電機子コイルの順となり これが镍返されて出力 トルクが得 られる。
矢印 Aは回転子 1 の回転方向で、 突極 1 a, 1 bの巾は機械角で 9 0度となり、 互いに同じ角度だけ離間する。 図 1 5は回転子 1 と電機子コイ ルの展開図である。
図 1 5において、 電機子コイル 9 a, 9 bは前述した第 1 の相の 電機子コ イ ルを示し、 電機子コ イ ル 9 c , 9 d及び電機子コ イ ル 9 e , 9 f 及び電機子コ イ ル 9 g, 9 hはそれぞれ前述した第 2 , 第 3 , 第 4の相の電機子コイルを示している。 第 1 , 第 2 , 第 3, 第 4の相の電機子コ イルの導出端子は記号 8 a , 8 e及び 8 b, 8 f 及び 8 c, 8 g及び 8 d, 8 hで示される。 .
固定電機子 1 6 も回転子 1 と同じく珪素鋼板積層体によ り作られ ている。
第 1 , 第 2 , 第 3, 第 4の相の電機子コイルの装着されるスロ ッ 卜が図 1 5で記号 1 7 a , 1 7 b , …と して、 又対応する磁極が記 号 1 6 a , 1 6 b , …と して示される。
上述した第 1 , 第 2 , 第 3 , 第 4の相の電機子コイルを以降はそ れぞれ電機子コイル 3 2 a , 電機子コイ ル 3 2 b, 電機子コイル 3 2 c , 電機子コイ ル 3 2 d と呼称する。
電機子コイル 3 2 cが通電されていると、 突極 1 a, 1 bが吸引 されて、 矢印 A方向に回転子 1 が回転する。 9 0度回転すると、 電 機子コイル 3 2 cの通電が断たれ、 電機子コイル 3 2 dが通電され る。 更に 9 0度回転する と、 電機子コイ ル 3 2 dの通電が断たれ て、 電機子コイル 3 2 aが通電される。 通電モー ドは 9 0度の回転 毎に、 電機子コイ ル 3 2 a→電機子コイ ル 3 2 b→電機子コイル 3 2 c—電機子コイル 3 2 d→とサイ ク リ ッ クに交替され、 2相全 波の電動機と して駆動される。 このと きに軸対称の位置にある磁極 は、 N, S極に着磁されている。 励磁される 2個の磁極が常に異極 となっている為に、 非励磁磁極を通る洩れ磁束は互いに反対方向と な り'、 反 トルクの発生が防止される。
コイル 1 0 a , 1 0 bは、 突極 l a , l bの位置を検出する為の 位置検知素子で、 図示の位置で電機子 1 6の側に固定され、 コイル 面は、 突極 1 a, 1 bの側面に空隙を介して対向している。 コイル 1 0 a , 1 0 bは 9 0度離間している。 コイルは 5 ミ リ メー トル径 で 3 0 ター ン位の空心のものである。 図 1 6 に、 コイル 1 0 a, 1 0 b よ り 、 位置検知信号を得る為の装置が示されている。 図 1 6 において、 コイル 1 0 a, 抵抗 1 5 a, 1 5 b , 1 5 cはブ リ ッ ジ回路となり、 コイル 1 0 aか突極 1 a, 1 bに対向していな いと きには平衡するよ う に調整されている。 従って、 ダイ オー ド 1 1 a , コ ンデンサ 1 2 aならびにダイオー ド 1 1 b, コ ンデンサ 1 2 b よ り なる 口 一パス フィ ルタの出力は等し く 、 オペア ンプ 1 3の出力は口一レベルとなる。 記号 1 0は発振器で 1 メ ガサイ ク ル位の発振が行なわれている。 コイル 1 0 aが突極 1 a, l b , … に対向すると、 鉄損 (渦流損と ヒステ リ シス損) によ りイ ン ピーダ ンスが減少するので、 抵抗 1 5 aの電圧降下が大き く なり、 ォペア ンプ 1 3の出力はハイ レベルとなる。
ブロ ッ ク 回路 1 8 の入力は、 図 1 8 のタ イ ムチャー ト の曲線 5 6 a , 5 6 b , …とな り、 反転回路 1 3 aを介する入力は、 曲線 5 6 a , 5 6 b , …を反転した曲線 5 8 a, 5 8 b, …どなる。 図 1 6のブロ ッ ク回路 1 4 aはコイ ル 1 O bを含む上述した回路と同 じ構成のものを示すものである。 発振器 1 0は共通に利用するこ と ができる。 ブロ ッ ク回路 1 4 aの出力及び反転回路 1 3 bの出力 は、 ブロ ッ ク回路 1 8に入力され、 それらの出力信号は、 図 1 8に おいて、 曲線 5 7 a , 5 7 b , …, 及び曲線 5 7 a, 5 7 b , …を 反転した曲線 5 9 a, 5 9 b , …となる。 曲線 5 7 a, 5 7 b , … は曲線 5 6 a, 5 6 b , …よ り位相力 9 0度お く れている。 曲線
5 6 a , 5 6 b , …と曲線 5 9 a , 5 9 b , …を 2つの入力とする ア ン ド回路の出力は曲線 6 0 a, 6 0 b , …となり、 曲線 5 6 a, 5 6 b , …と曲線 5 7 a, 5 7 b , …を 2つの入力とするア ン ド回 路の出力は曲線 6 1 a, 6 1 b , … と なる。 同じ手段によ り 曲線
6 2 a , 6 2 b , …と曲線 6 3 a, 6 3 b , …が得られる。
上述した回路がブロ ッ ク回路 1 8 と して示され、 端子 1 8 a,
1 8 b , …の出力はそれぞれ曲線 6 0 a, 6 0 b , …と下段の曲線 で示す信号となっている。
コイル 1 O a, 1 O bの対向する図 1 5の回転子 1 の代り に同じ 形状のアルミニューム板を使用しても同じ目的が達成される。
電機子コイルの通電手段を図 1 7にっき次に説明する。 電機子コ ィル 3 2 a, 3 2 b , 3 2 c, 3 2 dの下端には、 それぞれ トラン ジスタ 2 0 a, 2 0 b , 2 0 c , 2 O dが挿入されている。 卜ラン ジスタ 2 0 a, 2 0 b, 2 0 c , 2 0 dは、 スイ ッチング素子とな るもので、 同じ効果のある他の半導体素子でもよい。 直流電源正負 端子 2 a, 2 bよ り供電が行なわれている。 本実施例では、 トラン ジスタ 2 0 a, 2 0 b, 2 0 c , 2 0 dは電機子コイルの下端即ち 電源負極側にあるので、 その導通制御の入力回路は簡素化される特 徵がある。
次に図 1 7 にっ き詳細を説明する。 端子 4 2 a , 4 2 b , 4 2 c , 4 2 dよ り 、 図 1 8の位置検知信号曲線 6 0 a , 6 0 b, …, ffi線 6 1 a, 6 1 b , … , 曲線 6 2 a, 6 2 b , …, 曲線 6 3 a, 6 3 b , …が入力される。 上述した入力信号によ り、 トラ ン ジス タ 2 0 a , 2 0 b , 2 0 c , 2 0 d力 ア ン ド回路 4 1 a , 4 1 b , 4 1 c , 4 I dを介してベース入力が得られて導通して、 電機子コイル 3 2 a, 3 2 b , 3 2 c , 3 2 dが通電される。
端子 4 0 は電機子電流を指定する為の基準電圧である。 端子 4 0の電圧を変更するこ とによ り、 出力 トルクを変更するこ とがで き る 。 電源ス ィ ッ チ (図示せず) を投入する と 、 オペア ンプ 4 0 bの +端子の入力は—端子のそれよ り低いので、 オペアンプ 4 0 bの出力は口一レベルとなり、 反転回路 2 8 bの入力もローレ ベルなのでその出力はハイ レベルとなり、 トランジスタ 2 0 aが導 通して、 電圧が電機子コイ ルの通電制御回路に印加される。 抵抗 2 2は、 電機子コ イ ル 3 2 a, 3 2 b, 3 2 c , 3 2 dの電機子電 流を検出する為の抵抗である。
ブロ ッ ク回路 K , L , Mは 電機子コ イ ル 3 2 b , 3 2 c , 3 2 dの通電制御の為の回路で 電機子コイル 3 2 aの回路と同じ 構成のものを示している。
リ ラクタ ンス型の電動機では 位置検知信号の始端部で電機子電 流の立上りがおく れ、 又末端部で電機子電流の降下がおく れる。 前 者は減 トルク となり後者は反 トルクとなる。 これは、 磁極と突極に よ り磁路が閉じられているので大きいィ ンダクタ ンスを有している からである。 リ ラクタ ンス型の電動機は大きい出力 トルクを発生す る利点がある反面に回転速度を上昇せしめるこ とができない欠点が あるのは、 上述した反 トルク と減 トルクの発生の為である。 本発明 装置は、 図 1 7の逆流防止用のダイオー ド 4 9 a— 1 , 4 9 b - 1 , … , 及び小容量の コ ン デ ン サ 4 7 a及びダイ オー ド 2 1 a , 2 1 d及び半導体素子 3 4 a, 3 4 b , 1 9 a等を付設して上述し た欠点を除去し、 又電機子コイ ルの通電制御のスイ ッ チング素子 (記号 2 0 a , 2 0 b , 2 0 c , 2 0 d ) を電源負電圧側に 1 個の み使用 し た こ と に特徴を有する ものである。 本実施例では端子 4 2 a , 4 2 b , …に入力される位置検知信号は 9 0度の巾の図 1 8の曲線 6 0 a , 6 0 b , …, 曲線 6 1 a, 6 1 b , ···, 曲線 6 2 a , 6 2 b , …, 曲線 6 3 a, 6 3 b , …が入力される。
端子 4 2 aの入力信号曲線 6 0 aの末端で通電が断たれると、 電 機子 コ イ ル 3 2 a に蓄積さ れた磁気エネルギは、 ダイ オー ド 2 l aを介して、 コ ンデンサ 4 7 aを図示の極性に充電して、 これ を高電圧とする。 従って、 磁気エネルギは急速に消滅して電流が急 速に降下する。
次の位置検知信号曲線 6 O bが端子 4 2 aに入力されると、 トラ ンジスタ 2 0 aが導通して電機子コイル 3 2 aが通電される。 ブ 口 ッ ク回路 4は曲線 6 0 bの始端部の微分パルスによ り付勢される 単安定回路によ り構成されているので、 端子 4 2 aの入力の始端部 の電気パルスによ り 卜 ラ ンジス夕 3 4 b, 3 4 a, S C R 1 9 aが 導通して、 コ ンデンサ 4 7 aの高電圧が電機子コイル 3 2 aに印加 されて通電の立上りを急速とする。 コ ンデンサ 4 7 aの上述した放 電電流は、 逆流防止用ダイオー ド 4 9 a— 1 によ り、 直流電源側に 還流するこ とが防止される。
上述した電機子コイル 3 2 aの通電時に、 コ ンデンサ 4 7 aの充 電電圧と電源電圧 (端子 2 a , 2 bの電圧) の両者が印加電圧とな るので、 電機子コイル 3 2 aの電流の立上りが急速となる。 立上り の通電曲線は中途で立上りがおそく なる。 これは磁気エネルギが電 機子コイル間を移動するときに、 コイルの銅損と磁極の鉄損によ り 熱ェネルギに転化して消滅するからである。 かかる不都合を除去す る手段については後述する。 以上の説明のよ う に、 減 トルク と反 卜 ルクの発生が除去され、 又矩形波に近い通電となるので、 出力 トル クが増大する。
ブロ ッ ク 回路 K , L , Mは電機子 コ イ ル 3 2 b , 3 2 c , 3 2 dの通電制御回路で、 前述した電機子コイル 3 2 a と同じ構成 のものでその作用効果も同様である。
電機子コイル 3 2 b, 3 2 c, 3 2 dは、 端子 4 2 b, 4 2 c , 4 2 dの入力位置検知信号となる図 1 8の曲線 6 l a , 6 1 b , … と曲線 6 2 a, 6 2 b , …と曲線 6 3 a, 6 3 b , …によ り 9 0度 の巾の順次の通電制御が行なわれる。
次にチヨ ッパ回路について説明する。 電機子コイル 3 2 aの電流 が増大して、 その検出の為の抵抗 2 2の電圧降下が増大し、 基準電 圧端子 4 0の電圧 (オペアンプ 4 O bの一端子の入力電圧) を越え る と、 オペアンプ 4 0 bの出力がハイ レベルに転化するので、 微分 回路 2 8 c よ り微分パルスが得られ、 単安定回路 2 8 aを付勢して 所定の巾のパルス電気信号が得られる。 反転回路 2 8 bの出力は ローレベルにその巾だけ転化するので、 アン ド回路 4 1 aの出力も 同じ巾だけローレベルとな り、 トランジスタ 2 0 aもその巾だけ不 導通に転化する。 従って電機子コイルの電流 (電機子電流) は降下 し、 ダイオー ド 2 l aを介してコ ンデンサ 4 7 aを充電する。 単安 定回路 2 8 aの出力信号が消滅すると、 反転回路 2 8 b, ア ン ド回 路 4 1 a の出力は再びハイ レベルに転化 し て、 ト ラ ン ジス タ 2 0 aが導通して電機子電流が増大し始める。
電機子電流が設定値を越えると、 オペアンプ 4 0 bの出力が再び ハイ レベルに転化して ト ラ ンジスタ 2 0 aは、 単安定回路 2 8 aの 出力パルス巾だけ不導通に転化して電機子電流は降下する。 かかる サイ クルを繰返すチヨ ッパ回路となり、 電機子電流は基準電圧端子 4 0の電圧に規制された電流値となる。 基準電圧端子 4 0の電圧を 回転速度に比例した電圧によ り制御する周知の手段によ り定速制御 を行な こ と もできる。
上述したチヨ ッパ作用があると きに、 単安定回路 2 8 aの出力パ ルスの回数だけコ ンデンサ 4 7 aは繰返して充電されて電圧が上昇 し、 静電工ネルギが蓄積される。 位置検知信号の末端で、 卜 ラ ンジ ス夕 2 0 aが不導通に転化すると、 電機子コイル 3 2 aの磁気エネ ルギの全部がコ ンデンサ 4 7 aに充電される。
コ ンデンサ 4 7 aの静電工ネルギは、 チヨ ッパ周波数と電機子電 流の降下時間に対応した静電エネルギが更に付加される。
かかる静電工ネルギによ り、 電機子コイル 3 2 aが次に通電され たと きに電流が立上るので、 前述した電機子コイルの銅損と磁極の 鉄損によるエネルギ損失を補填するこ とができる。 従って電機子電 流は急速に立上り、 ほぼ矩形波に近いものとな り出力 トルクを増大 する作用効果がある。 コ ンデンサ 4 7 aの容量、 チヨ 、ソパ電流の周 波数、 単安定回路 2 8 aの出力パルス巾は上述し作用効果があるよ う に調整する必要がある。
電機子コ イ ル 3 2 b , 3 2 c , 3 2 d も ア ン ド回路 4 1 b , 4 1 c, 4 1 d トランジスタ 2 0 b, 2 0 c, 2 0 dによ り同じく 電機子電流のチヨ ッパ制御が行なわれる。
電機子コイルの通電は、 突極が磁極に侵入する点よ り 4 5度まで の区間のいずれの点でもよいが、 回転速度, 効率, 出力 トルクを考 慮して調整し、 位置検知素子となるコイル 1 0 a, 1 0 bの固定電 機子側に固定する位置を変更する。 以上の説明よ り理解されるよう に効率良く 、 大きい出力と高速回転を行なう こ とができるので本発 明の目的が達成される。
コ ンデンサ 4 1 aは小容量の方が充電電圧が高電圧となるので、 通電曲線の立上り と降下を急速と し、 高速回転の電動機を得るこ と ができ、 リ ラクタ ンス型電動機の欠点となっている低速度となる欠 点が除去できる。 上述したコ ンデンサの容量は充電電圧が回路の 卜 ラ ンジスタを破損しない範囲で小容量のものを使用するこ とがよ い。
図 1 9のグラフは、 2相 リ ラクタンス電動機の通電による出力 卜 ルク曲線である。 9 0度の回転毎に電機子コイルの通電が交替され るので、 曲線 5 4 a, 5 4 bに示すように交替点で トルク曲線に凹 部が発生する欠点がある。 本発明の手段によればこの欠点が除去さ れる。 次にその詳細を説明する。
図 1 5において、 回転子 1 と同軸で同期回転する回転子 4が設け られる。 回転子 4には突極 4 a, 4 b, …が突出され、 珪素鋼板積 層体で作られる。 外筐には固定電機子 1 6 に並置して固定電機子 6が固定され、 内側に磁極 6 a, 6 bが突出して設けられ励磁コィ ル 6 — 1 , 6 — 2が捲回される。 固定電機子 6 も固定電機子 1 6 と 同じ手段で作られている。 突極 4 a, 4 b , …の巾は 1 8度で互い に 2 7度離間している。
励磁コイル 6 — 1 , 6 — 2の通電手段は、 前実施例と同様で、 図 8で前述した励磁コイル 6 — 1 , 6 - 2の通電制御手段が使用され る。 この手段が図 1 7でブロ ッ ク回路 J と して示されている。 突極 4 a , 4 b , …が矢印 A方向に回転したと きに発生する磁極 6 a, 6 bによる トルクが図 1 9の トルク曲線 5 4 bの凹部の点でピーク 値となるよう に、 即ち点線 5 5で示す トルク曲線となるように各部 材の相対位置を調整する。 従って合成 トルク曲線は平坦とな り本発 明の目的が達成される。 突極数を 3個以上と しても本発明を同様な 手段によ り実施するこ とができる。
図 2 0 において、 外筐 9の内側には、 円筒状の固定電機子 1 6が 固着されている。 固定電機子 1 6は、 珪素鋼板を積層した周知の 手段によ り作られている。 この内周面にはスロ ッ ト 6個が等しい離 間角で配設され、 各スロ ッ ト に電機子コイ ルが捲回して装着され る。 スロ ッ 卜 1 7 a, 1 7 bには電機子コイルが捲回され、 電気角 で 1 2 0度離間した 2個のスロ ッ 卜に装着される。 以降の角度表示 はすべて電気角 と する。 スロ ッ 卜 1 7 b , 1 7 c及びスロ ッ 卜 1 7 c , 1 7 dにもそれぞれ電機子コイルが捲回される。 他の電機 子コイルも同様な構成と な り 、 隣接するスロ ッ ト に捲回装着され る。
外筐 9の両側の軸受には回転軸 5が回動自在に支持され、 これに 磁性体回転子 1 が固定される。 回転子 1 は固定電機子 1 6 と同じく 珪素鋼板積層体で作られている。
回転子 1 の外周には 1 8 0度の巾で 1 8 0度離間した突極 1 a , 1 bが突出して設けられ、 この外周は 0 . 5 ミ リ メー トル位の空隙 を介して磁極 1 6 a, 1 6 b , …と対向する。
図 2 0の展開図を図 2 1 に示す。 点線 Bの左側が図 2 0の展開図 である。 回転子は記号 1 と して固定電機子は記号 1 6 と して示され る。 図 2 1 において、 スロ ッ ト 1 7 a , 1 7 bに捲回される電機子コ ィ ルは最下段の電機子コ イ ル 9 a と して表示でき る。 ス ロ ッ 卜 1 7 b , 1 7 c に捲回される電機子コイルは、 電機子コィル 9 c と して表示でき る。 同様に他の電機子コ イ ルも記号 9 e , 9 b , 9 d, 9 f と して表示できる。 電機子コイル 9 a, 9 bは直列に接 続され端子 8 a, 8 dよ り供電される。 電機子コイル 9 c, 9 d及 び電機子コイル 9 e, 9 f もそれぞれ直列に接続され、 端子 8 b, 8 e と端子 8 c, 8 f よ り供電される。 各電機子コイルは 1 2 0度 離間し、 電機子コイル 9 a , 9 b , 電機子コイル 9 c, 9 d , 電機 子コイル 9 e, 9 f はそれぞれ第 1 , 第 2 , 第 3の相の電機子コィ ルと なる。 回転子 1 力 s 1 2 0度左方に移動して停止している と き に、 第 1 の相の電機子コイル 9 a , 9 bに通電すると、 突極 l a, l bは磁極 1 6 a , 1 6 dによ り磁気的に吸引されて矢印 A方向に 回転する。 1 2 0度回転したと きに通電を停止し、 電機子コイル 9 c , 9 d (第 2の相の電機子コイル) を通電すると更に右方に回 転し、 1 2 0度回転したと きに通電を停止し、 第 3の相の電機子コ ィル 9 e , 9 f に通電すると更に右方に回転する。 上述した説明よ り判るよう に第 1 , 第 2 , 第 3の相の電機子コイルに 1 2 0度の区 間だけ順次に通電すると、 回転子 1 は矢印 A方向に回転して 3相片 波通電の リ ラクタンス型電動機となる。
突極 1 cを付加して 3突極とするこ とができる。 この場合には点 線 Bは右方に 3 6 0度移動する。 突極数は 2個以上複数個の突極と するこ とができ、 比例して出力 トルクが増大する。 図 1 の電動機の 場合には、 突極 1 a, 1 b, …は 6個あるが出力 トルクに有効なも のは 2個である。 本発明の手段によると、 6個の突極よ り出力 トル クが得られるので 3倍の出力 トルクとなる効果がある。
従来の図 1 に示す電動機の場合には、 突極 l a, l e によ り固定 電機子 1 6は磁気吸引力を矢印 4 — 1 , 4一 4の方向に受けて変形 し、 1 2 0度回転する と 、 突極 l b, I f によ り矢印 4 一 2 , 4 — 5の方向の吸引力によ り変形し、 次に 1 2 0度回転すると、 矢 印 4 — 3, 4一 6の方向の吸引力によ り変形する。 従って固定電機 子 1 6は回転と と もに変形の方向が変化して振動を発生する欠点が ある。 本発明装置では、 突極のすべてに同時に吸引力が発生する ので固定電機子 1 6は同周方向の圧縮力が発生するのみで変形がな く 、 従って振動の発生が抑止される作用効果がある。
電機子コイルによ り磁化される磁極の極性は、 図 2 0において軸 対称の位置にある磁極が異極となるように磁化される。
次に図 2 1 の回転子 1 が対向する固定電機子 1 6によ り駆動され る電機子コイルの通電制御手段を説明する。
図 2 1 の電機子コイル 9 a, 9 bを電機子コイ ル 3 9 a , 電機子 コイル 9 c, 9 d , 電機子コイル 9 e, 9 f をそれぞれ電機子コィ ル 3 9 b, 3 9 c と呼称する。
図 2 1 の回転子 3は回転子 1 と同軸で同期回転するように構成さ れ、 アルミニュームのよ うな導体で作られる。 突極 3 a , 3 b , 3 c…は 1 8 0度の巾となり、 図示の相対位相で回転する。
コイル 1 0 a, 1 0 b , 1 0 cは、 突極 3 a, 3 b, …の位置を 検出する為の位置検知素子で、 図示の位置で電機子 1 6の側に固定 され、 コイル面は、 突極 3 a, 3 b, …の側面に空隙を介して対向 している。 コイ ル 1 0 a, 1 0 b , 1 0 cは 1 2 0度離間してい る。 コイ ルは 5 ミ リ メー トル怪で 3 0 ターン位の空心のものであ る。 図 6 に、 コイ ル 1 0 a, 1 0 b , 1 0 c よ り 、 位置検知信号を 得る為の装置が示されている。 図 6 において、 コイ ル 1 0 a, 抵抗 1 5 a , 1 5 b , 1 5 c はブリ ッ ジ回路とな り 、 コ イル 1 0 aか突 極 3 a, 3 b , …に対向していないと きには平衡するよ う に調整さ れている。 従って、 ダイ オー ド 1 1 a, コ ンデンサ 1 2 aならびに ダイ オー ド 1 l b , コ ンデンサ 1 2 b よ り なるローパスフィルタの 出力は等し く 、 オペア ンプ 1 3 の出力は口一 レベルと なる。 記号 1 0 は発振器で 2 メ ガサイ クル位の発振が行なわれている。 コイル 1 0 aが突極 3 a , 3 b , …に対向する と、 銅損によ り イ ン ピーダ ンスが減少するので、 抵抗 1 5 aの電圧降下が大き く な り 、 ォペア ンプ 1 3の出力はハイ レベルとなる。
ブロ ッ ク 回路 1 8 の入力は、 図 2 5 の タ イ ム チャー ト の曲線 4 5 a , 4 5 b , … と な り 、 反転回路 1 3 aを介する入力は、 曲線 4 5 a, 4 5 b , …を反転 した もの と なる。 図 6のブロ ッ ク回路 1 4 a , 1 4 bは、 それぞれコイル 1 0 b , 1 0 cを含む上述した ブロ ッ ク回路と 同じ構成のものを示すものである。 発振器 1 0は共 通に利用するこ とができる。 ブロ ッ ク回路 1 4 aの出力及び反転回 路 1 3 bの出力は、 ブロ ッ ク回路 1 8 に入力され、 それらの出力信 号は 、 図 2 5 に お レヽて 、 曲線 4 6 a , 4 6 b , … , 及び曲線 4 6 a , 4 6 b , …を反転したものとなる。 ブロ ッ ク回路 1 4 bの 出力及び反転回路 1 3 cの出力は、 ブロ ッ ク回路 1 8に入力され、 それらの出力信号は、 図 2 5 において、 曲線 4 7 a, 4 7 b , …及 びこれを反転したものと なる。 曲線 4 5 a, 4 5 b , …に対して、 曲線 4 6 a, 4 6 b , …は位相力 s 1 2 0度お く れ、 曲線 4 6 a, 4 6 b , …に対して、 曲線 4 7 a, 4 7 b , …は位相が 1 2 0度お くれている。 ブロ ッ ク回路 1 8は、 3相 Y型の半導体電動機の制御 回路に慣用されている回路で、 上述した位置検知信号の入力によ り 端子 1 8 a, 1 8 b , …, 1 8 f よ り 1 2 0度の巾の矩形波の電気 信号が得られる論理回路である。 端子 1 8 a , 1 8 b , 1 8 cの出 力は、 図 2 5 において、 それぞれ曲線 4 8 a, 4 8 b , …, 曲線
4 9 a , 4 9 b , …, 曲線 5 0 a , 5 0 b , … と して示されてい る。 端子 1 8 d , 1 8 e , 1 8 f の出力は、 それぞれ曲線 5 1 a,
5 1 b , …, 曲線 5 2 a , 5 2 b , …, 曲線 5 3 a, 5 3 b , …と して示されている。 タイムチャー トの上部 3段の信号よ り下部 6段 の信号を得るこ とができる。 例えば曲線 5 1 a, 5 1 b , …を得る 為には、 次の手段が採用される。 曲線 4 5 a, 4 5 b , …と曲線 4 7 a , 4 7 b , …を反転した曲線を 2つの入力とするアン ド回路 の出力が曲線 5 1 a , 5 1 b, …となる。
端子 1 8 a と 1 8 dの出力信号、 端子 1 8 b と 1 8 eの出力信号, 端子 1 8 c と 1 8 f の出力信号の位相差は 6 0度である。 又端子 1 8 a , 1 8 b , 1 8 cの出力信号は、 順次に 1 2 0度おくれ、 端 子 1 8 d, 1 8 e , 1 8 f の出力信号も同じ く順次に 1 2 0度おく れている。
電機子コイルの通電手段を図 8にっき次に説明する。 電機子コィ ノレ 3 9 a, 3 9 b , 3 9 c の両端には、 それぞれ ト ラ ンジスタ 2 0 a , 2 0 b及び 2 0 c, 2 0 d及び 2 0 e, 2 0 f が挿入され ている。 ト ラ ンジスタ 2 0 a, 2 0 b , 2 0 c , …は、 スィ ッ チン グ素子となるもので、 同じ効果のある他の半導体素子でもよい。 直 流電源正負端子 2 a , 2 bよ り供電が行なわれている。 アン ド回路 4 1 aの下側の入力がハイ レベルのときに、 端子 4 2 aよ りハイ レ ベルの電気信号が入力される と、 ト ラ ンジスタ 2 0 a, 2 O bが導 通して、 電機子コイ ル 3 9 aが通電される。 同様に端子 4 2 b, 4 2 c よ り ハイ レベルの電気信号が入力される と、 ト ラ ンジスタ 2 0 c , 2 0 d及び ト ラ ンジスタ 2 0 e, 2 0 f が導通して、 電機 子コイル 3 9 b , 3 9 cが通電される。 端子 4 0は励磁電流を指定 する為の基準電圧である。 端子 4 0の電圧を変更するこ とによ り、 出力 トルクを変更するこ とができる。 電源スィ ッチ (図示せず) を 投入すると、 オペアンプ 4 O bの一端子の入力は +端子のそれよ り 低いので、 オペアンプ 4 0 bの出力はハイ レベルとなり、 ト ラ ンジ スタ 2 0 a , 2 0 bが導通して、 電圧が電機子コイル 3 9 aの通電 制御回路に印加される。 抵抗 2 2 aは、 電機子コイル 3 9 aの励磁 電流を検出する為の抵抗である。 記号 3 0 aは絶対値回路である。
端子 4 2 a の入力信号は、 図 2 5 の位置検知信号 4 8 a , 4 8 b …又端子 4 2 b , 4 2 c の入力信号は、 位置検知信号 4 9 a , 4 9 b, …及び 5 0 a, 5 0 b , …となっている。 上述し た位置検知信号曲線の 1 つが図 2 3のタイムチャー トの 1 段目に曲 線 4 8 a と して示されている。 この曲線 4 8 aの巾だけ電機子コィ ル 3 9 aが通電される。 矢印 2 3 aは通電角 1 2 0度を示してい る。 通電の初期では、 電機子コイルのイ ンダクタ ンスの為に立上が りがお く れ、 通電が断たれる と、 蓄積された磁気エネルギが、 図 8 の ダイ ォ一 ド 4 9 a — 1 が除去されている と 、 ダイ オー ド 2 1 a, 2 1 bを介して電源に還流放電されるので、 点線 K一 1 の 右側の曲線 2 5の後半部のように降下する。 正 トルクの発生する区 間は、 矢印 2 3で示す 1 8 0度の区間なので、 反 トルクの発生があ り、 出力 トルク と効率を減少する。 高速回転となるとこの現象は著 し く 大き く な り使用に耐えられぬものと なる。
反 ト ルク発生の時間巾は、 高速と なっても変化しないが、 正 トル ク発生の区間 2 3の時間巾は回転速度に比例して小さ く なるからで あ る 。 他の位置検知信号 4 9 a , 5 0 a に よ る電機子 コ イ ル 3 9 b , 3 9 cの通電についても上述した事情は同様である。 曲線
2 5の立上がり もお く れるので、 出力 トルクが減少する。 即ち減 卜 ルクが発生する。 これは、 磁極と突極によ り磁路が閉じ られている ので大きいイ ンダク タ ンスを有しているからである。 リ ラ ク タ ンス 型の電動機は大きい出力 トルクを発生する利点がある反面に回転速 度を上昇せしめるこ とができない欠点があるのは、 上述した反 トル ク と減 トルクの発生の為である。 かかる欠点を除去する為の周知の 手段は、 突極が磁極に侵入する以前に進相して、 電機子コイ ルの通 電を始めるこ とである。
進相通電をする と、 磁極のイ ンダクタ ンスが著し く 小さいので、 急速に立上がるが、 出力 トルクの発生する点即ち突極が磁極に侵入 し始める と、 イ ンダクタ ンスが急速に大き く な り 、 電流も急速に降 下する。 従って出力 トルクが減少する欠点がある。 正逆転の運転を する場合には、 位置検知素子の数が 2倍必要となる欠点がある。 本 発 明 装置 は 、 図 8 の逆流 防止 用 の ダ イ オ ー ド 4 9 a — 1 , 4 9 b — 1 , 4 9 c — 1 と コ ンデンサ 4 7 a, 4 7 b, 4 7 cを付 設するこ と によ り 、 上述した欠点を除去したこ と に特徴を有するも のである。 曲線 4 8 aの末端で通電が断たれる と 、 電機子コ イ ル
3 9 a に蓄積 さ れた磁気エネ ルギは 、 逆流防止甩ダイ オー ド 4. 9 a — 1 によ り 、 直流電源側に還流しないでダイ オー ド 2 1 b, 2 l aを介して、 コ ンデンサ 4 7 aを図示の極性に充電して、 これ 4.8
を高電圧とする。 従って、 磁気エネルギは急速に消滅して電流が急 速に降下する。
図 2 3 の タ イ ム チヤ一 卜 の 1 段目 の曲線 2 6 a , 2 6 b , 2 6 cは、 電機子コイル 3 9 aを流れる電流曲線でその両側の点線 2 6 — 1 , 2 6 — 2 間が 1 2 0度と なっている。 通電電流は曲線 2 6 bのよ うに急速に降下して反 トルクの発生が防止され、 コ ンデ ンサ 4 7 a は高電圧に充電して保持される。 次に位置信号曲線 4 8 bによ り、 トラ ンジスタ 2 0 a, 2 0 bが導通して再び電機子 コイル 3 9 aが通電されるが、 このときの印加電圧は、 コ ンデンサ 4 7 aの充電電圧と電源電圧 (端子 2 a, 2 bの電圧) が加算され るので、 電機子コイル 3 9 aの電流の立上がりが急速となる。 この 現象によ り、 曲線 2 6 aのように急速に立上がる。 以上の説明のよ う に、 減 トルク と反 トルクの発生が除去され、 又矩形波に近い通電 となるので、 出力 トルクが增大する。
次にチヨ ッパ回路について説明する。 電機子コイル 3 9 aの電流 が増大して、 その検出の為の抵抗 2 2 aの電圧降下が増大し、 基準 電圧端子 4 0の電圧 (オペアンプ 4 0 bの +端子の入力電圧) を越 えると、 アン ド回路 4 1 aの下側の入力が口一レベルとなるので、 トランジスタ 2 0 a, 2 0 bは不導通に転化し、 励磁電流が減少す る。 オペアンプ 4 0 bのヒステ リ シス特性によ り、 所定値の減少に よ り、 オペアンプ 4 0 bの出力はハイ レベルに復帰して、 ト ラ ンジ スタ 2 0 a, 2 0 bを導通して励磁電流が増大する。 かかるサイ ク ルを繰返 して、 励磁電流は設定値に保持される。 図 2 3 の曲線 2 6 cで示す区間がチヨ ッパ制御の行なわれている区間である。 曲 線 2 6 cの高さは基準電圧端子 4 0の電圧によ り規制される。 図 8の電機子コイル 3 9 bは、 端子 4 2 bよ り入力される位置検知信 号曲線 4 9 a , 4 9 b , … に よ り 、 その巾だけ ト ラ ン ジス タ 2 0 c , 2 0 dの導通によ り通電され、 オペア ンプ 4 0 c , 抵抗
2 2 b , 絶対値回路 3 0 b, アン ド回路 4 1 bによ りチヨ ッパ制御 が行なわれる。 ダイオー ド 4 9 b— 1 , コ ンデンサ 4 7 bの作用効 果 も電機子 コ イ ル 3 9 a の場合 と 同様である。 電機子 コ イ ル
3 9 c について も上述 した事情は全 く 同様で、 端子 4 2 c に図 2 5の位置検知信号曲線 5 0 a, 5 0 b , …が入力されて電機子コ ィ ル 3 9 c の通電制御が行なわれる。 ト ラ ン ジス タ 2 0 e , 2 0 f , アン ド回路 4 1 c, オペアンプ 4 0 d, 抵抗 2 2 c, 絶対 値回路 3 0 c , ダイオー ド 4 9 c一 1 , コ ンデンサ 4 7 cの作用効 果も前述した場合と全く 同様である。
各電機子コィルの通電は、 突極が磁極に侵入する点若し く は少し 前の点のいずれでもよい。 回転速度、 効率、 出力 トルクを考慮して 調整し、 位置検知素子となるコイ ル 1 0 a, 1 0 b , 1 0 cの固定 電機子側に固定する位置を変更する。 以上の説明よ り理解されるよ うに 3相片波通電の電動機と して効率良く 、 大きい出力と高速回転 を行なう こ とができるので本発明の 1 つの目的が達成される。 しか し出力 トルクに大きい リ プルがあるので使用目的によ り問題が残 る。 本発明は 3相両波通電とするこ とによ り上述した問題を解決し たこ とに特徴を有するものである。
図 2 4は、 3相片波通電の場合の トルク曲線で、 よこ軸は回転子 の回転角度たて軸は出力 ト ルク を示 している。 曲線 2 7 a , 2 7 b, 2 7 cは電機子電流がそれぞれ 1 アンペア、 1 . 5 アンべ ァ、 2 ア ンペアの場合を示している。 回転子の径が 2 2 ミ リ メー ト ル、 固定電機子の外径力 s 5 0 ミ リ メ ー ト ル、 その長さ も 同 じ く 5 0 ミ リ メー トルの場合である。 よこ軸は回転する角度で示してあ る。 リ プル トルクは 7 0 %位となる。 トルク曲線の凹部は突極の端 部がスロ ッ トに侵入した点となっている。 曲線 2 7 cの左端即ち零 度の点では出力 トルクが小さい。 従って電源投入時に突極が上記し た位置にあると起動困難となる。
図 1 2 にっき後述するように大きい出力 トルクが得られる反面に 上述した欠点がある。 従って 3相全波通電若し く は他の手段によ り 点線曲線 3 3若し く は 3 3 aで示す出力 トルクが得られる装置を付 加するこ とによ り、 上述した欠点が除去される。 これが本件発明の 1 つの目的である。
図 1 2は出力 トルク曲線で、 よこ軸は電機子電流、 たて軸は トル クである。 この電動機は前述した構成のものである。
曲線 4 3の初期は 2乗曲線とな り、 その後は 1乗曲線となる。 一 般の電動機の場合には、 点線 4 3 aの点で磁束が飽和して点線 4 3 a以下の出力 トルク となる。 本発明装置ではその後も リ ニヤ に トルクが増大するので、 同型の他の電動機の 7倍位の出力 トルク が得られる特徴がある。
図 2 5の点線 3 3 で示す トルクを付加するには突極若し く はス ロ ッ トの位相が 6 0度の奇数倍ずれた 3相片波通電の電動機を回転 軸を共通と して付設すればよい。 次にその手段を説明する。
図 5は全体の構成を示す断面図である。 図 5において、 金属製の 外筐 (円筒状) 2 5 - 1 の右側には円形の側板 2 5 — 2の外周折曲 部が嵌着され、 両側の中央部に設けたボール軸受 2 9 a , 2 9 に は回転軸 5が回動自在に支持される。 回転軸 5 には回転子 1 が支持 体 5 — 1 を介して固定される。 回転子 1 の突極 (図示せず) は、 図
2 0の回転子 1 の突極と同じ構成となっている。 突極に磁極が対向 すね固定電機子 Cは外筐 2 5 — 1 の内側に固定され、 その構成は図 2 0 , 図 2 1 の固定電機子 1 6 と 同 じ構成となっている。 回転子 1 の右側面には同形の外周部の突出部を有するアルミニューム製の 回転子 3 が固着し回転子 1 と 同期回転する。 外周部にはコ イ ル 1 0 a , 1 0 b , 1 0 cが対向しているので、 図 6で前述したよう に図 2 5に示される位置検知信号を得るこ とができる。
固定電機子 C と C一 1 は同じ位相で外筐 2 5 — 1 に固定され、 回 転子丄は回転子 1 と同じ構成で位相を回転子 1 の突極に対して相対 的に 6 0度ずら して (軸方向のまわり に 6 0度回転する) 同期回転 する。 固定電機子 C , C - 1 の磁極は回転子の外周突極と空隙を介 して対向する。 固定電機子 C一 1 の磁極の電機子コイルは 3相とな り、 これ等を電機子コイル 3 9 d, 3 9 e , 3 9 f と呼称する。 電 機子コイ ル 3 9 d, 3 9 e , 3 9 f を図 8 と同様な電気回路によ り、 図 2 5の位置検知信号 5 1 a, 5 1 b , …, 5 2 a , 5 2 b , …, 5 3 a , 5 3 b , …を介して電機子コイリレ 3 9 d , 3 9 e ,
3 9 f の通電制御を行なう こ とによ り 3相片波通電の電動機と して 運転するこ とができる。 固定電機子 C, C一 1 の両者によ り 3相両 波通電の電動機となる。
前述した固定電機子 C一 1 は図 2 1 において記号 と して示さ れ、 回転子は記号丄と して、 その突極は記号 _^, 1 b , 1 c, … と して示されている。 突極 , l_b, J__c , …は突極 1 a, 1 b, 1 c, …に対して位相が 6 0度ずれて同期回転する。 各突極 を同相と して固定電機子 1 6 と 1 6の位相を 6 0度ずらしても同じ 目的が達成できる。 固定電機子! _ ^の構成は固定電機子 1 6 と同じ 構成なので点線で略示してある。 突極の数が 3個以上の場合には、 固定電機子も点線 Bの右側に対応して延長される。
以上の説明のよう に 3相両波通電を行なう こ とによ り、 図 2 4の 出力 トルク曲線 2 7 cの凹部のそれぞれに曲線 3 3で示す トルクが 付加されるので合成 トルク曲線は平坦化され欠点が除去される。 曲 線 2 7 c と 3 3の位相差は 6 0度となっている。 .
次に図 2 2 にっき リ プル トルクを除去する他の手段を説明する。 図 2 1 と同じ記号のものは同じ部材で作用効果も同じなので説明を 省略する。 異なっているのは電機子 1 6、 1 個のみの 3相片波通電 となり、 回転子も 1 個で記号 1 と して示されている。 回転子 4は磁 性体で作られ、 回転子 1 と同軸で同期回転するように構成され、 外 側に突極 4 a, 4 b , …が突出して設けられ、 突極の巾は 4 8度で 7 2度離間している。 固定電機子 6は固定電機子 1 6 と同軸で隣接 して外筐内側に固定される。 固定電機子 6の内側には磁極 6 a , 6 bが突出され、 突極 4 a, 4 b , …と空隙を介して対向する。 固 定電機子 6 と 回転子 4 は珪素鋼板積層体で作られている。 磁極 6 a , 6 bには励磁コイル 6 — 1 , 6 — 2が捲着され互いに異極と なる よ う に励磁される。 磁極 6 a , 6 bの巾は 6 0度で、 突極 l a , l b , …の数と同じである。 又突極 l a , l bの 2倍の数と してもよい。
前実施例と同様に点線 Bの右側に延長して突極 1 a, 1 bの数を 増加し、 又対応して突極 4 a , 4 b, …と磁極 6 a, 6 bの数を增 加しても実施するこ とができる。 固定電機子 1 6 と回転子 1 による 出力 トルク曲線は前述したよ うに図 2 4の曲線 2 7 cに示すものと な り リ プル トルクがある。 図 2 2の突極 4 a, 4 b, …による トル ク曲線は点線曲線 3 3 aで示すように、 曲線 2 7 cの凹部に突出部 があり従って出力 トルクが平坦となる作用効果がある。 図 2 2の突 極 l a , l b, …と突極 4 a, 4 b , …と磁極 6 a, 6 b と固定電 機子 1 6 との相対位相は上述した リ プル トルクを除去できる条件を 満足するよう に設定する必要がある。 磁極 6 a , 6 bの中間に更に 2個づつの磁極を配設するこ とができる。 この場合には図 2 4の曲 線 3 3 aで示す トルクの ピーク値が大き く なるので、 磁極 6 a, 6 b , …の回転軸方向の長さを 1 / 2位とするこ とができる。 従つ て電動機の長さを短く できる効果がある。 例えば図 5の固定電機子 C 一 1 を図 2 2 の固定電機子 6 と し、 回転子 1 を図 2 2 の回転子 4 どすると、 矢印 2 9 dの巾は矢印 2 9 cの巾の 1 ノ 2位となるの で、 回転軸 5の方向の長さを短く する こ とができる。 励磁コイル 6 - 1 , 6 — 2のア ンペアター ンを大き く すると更に長さを短く で きる効果がある。
図 8 にっき励磁コイ ル 6 - 1 , 6 — 2 の通電制御手段を説明す る。 図 8において、 励磁コイル 6 — 1 , 6 — 2は直列若し く は並列 に接続され、 この両端には ト ラ ン ジスタ 2 0 g, 2 O h , ダイォ一 ド 4 9 d— 1 が接続される。 抵抗 2 2 d, 絶対値回路 3 0 d, オペ アンプ 4 0 e, コ ンデンサ 4 7 dはそれぞれ前述した電機子コイル 3 9 a , 3 9 b, 3 9 cの通電制御と同じ構成となり作用効果も同 じである。
ブロ ッ ク回路 Dは、 図 2 2の突極 4 &, 4 b , …の位置検知装置 で、 小さい径の位置検知用のコイル 1 0 dが突極 4 a, 4 b , …の 側面に対向し、 対向したと きに鉄損によ り イ ンピーダンスが変化す るよ う に構成されている。 従って図 6の回路と同 じ構成で、 ォペア ンブ 1 3 に対応するオペアンプの出力の巾は突極 4 a, 4 b , …の 巾とな り、 この出力が図 8のアン ド回路 4 I dの入力となる。 他の 1 つの入力はオペアンプ 4 0 eの出力なので、 基準電圧源 4 0の電 圧に対応した励磁コイル 6 — 1 , 6 — 2の通電電流となる。 かかる 通電電流による トルク曲線の ピーク値即ち図 2 4の点線 3 3 aの ピーク値は曲線 2 7 cの凹部を除去するよ う に調整するこ とがよ い。 図 8では、 電機子コイルの両端に設けた トラ ンジスタによ り 通電制御が行なわれているが、 電機子コイ ルの負電圧側に 卜ラ ンジ スタを 1 個のみ使用しても本発明を実施できる。
図 1 0にっきその説明をする。
図 1 0 において、 電機子コイル 3 9 a, 3 9 b , 3 9 cの下端に は、 それぞれ ト ラ ンジスタ 2 0 a, 2 0 b及び 2 0 cが挿入されて いる。 ト ラ ンジスタ 2 0 a, 2 0 b , 2 0 cは、 スイ ッチング素子 となるもので、 同じ効果のある他の半導体素子でもよい。 直流電源 正負端子 2 a , 2 bよ り供電が行なわれている。 本実施例では、 ト ラ ンジスタ 2 0 a , 2 0 b, 2 0 cは電機子コイルの下端即ち電源 負極側にあるので、 その導通制御の入力回路は簡素化される特徵が ある。
次に図 2 1 で説明した 3相全波通電による本発明装置の電機子コ ィルの通電制御回路の詳細を図 1 0によ り説明する。
図 1 0において、 端子 4 2 a, 4 2 b , 4 2 cよ り入力される位 置検知信号はそれぞれ図 2 5 の曲線 4 8 a , 4 8 b , …, 曲線 4 9 a , 4 9 b , … , 曲線 5 0 a , 5 0 b , …である。 端子 4 2 aよ り入力があると、 アン ド回路 4 1 aを介して トランジスタ 2 0 aが導通して電機子コイル 3 9 aの通電が開始され、 その後は 抵抗 2 2 , 絶対値回路 3 0 a , オペアンプ 4 0 bによるチヨ ッパ作 用によ り 、 端子 4 0の基準電圧に対応した通電電流値に制御され る。
端子 4 2 aの入力が消滅すると、 ト ラ ンジスタ 2 0 aは不導通に 転化し、 電機子コイル 3 9 aの磁気エネルギはダイオー ド 2 1 a ,
3 3 aを介してコ ンデンサ 4 7 aを充電して高電圧とする。 前述し たチヨ ツバ作用のあると きにも小量づっコ ンデンサ 4 7 aが充電さ れているので、 その磁気エネルギが付加されてコ ンデンサ 4 7 aの 充電電圧を上昇する。 この電圧は使用する ト ラ ンジスタの耐電圧に よ り調整する必要がある。
端子 4 2 bの入力によ り、 ト ラ ンジスタ 2 0 bが導通したと きも チヨ ッパ作用によ り通電制御が行なわれ、 不導通に転化すると、 電 機子コイル 3 9 bの磁気エネルギは、 ダイオー ド 2 1 b, 3 3 bを 介してコ ンデンサ 4 7 bを高電圧に充電する。
端子 4 2 cの入力によ り、 トラ ンジスタ 2 0 cが導通したと きに も、 チ ヨ ッパ作用によ り通電制御が行なわれ、 不導通に転化する と、 電機子コイ ル 3 9 cの磁気エネルギは、 ダイ オー ド 2 1 c , 3 3 cを介してコ ンデンサ 4 7 cを高電圧に充電する。
端子 4 2 cの入力の初期で、 ブロ ッ ク回路 4 (微分パルスを介す る単安定回路を含む回路) の出力を介して、 トラ ンジスタ 3 4 b , 3 4 a , S C R 1 9 aが導通するので、 コ ンデンサ 4 7 aの高電圧 が電機子コイル 3 9 cに印加されて電流の立上りを急速とする。 端 子 1 9 d, 1 9 eにはそれぞれ端子 4 2 a , 4 2 bの入力の初期に 得られる電気パルスが同様な手段で入力される。 従ってコ ンデンサ 4 7 b, 4 7 cの高電圧が電機子コイル 3 9 a, 3 9 bに印加され て、 通電の立上りを急速とする。
以上の説明よ り判るように、 前実施例と同様に高速で反 トルクと 減 トルクの発生のない高効率の電動機を得るこ とができる。
電機子コ イ ル 3 9 d , 3 9 e , 3 9 f は図 2 1 の固定電機子 1 6に装着された第 1 , 第 2 , 第 3の相の電機子コイルで、 ブロ ッ ク回路 3 9は電機子コイル 3 9 a, 3 9 b , 3 9 c と全ぐ同じ構成 の電気回路となり、 端子 4 2 d, 4 2 e , 4 2 f の位置検知入力に よ り通電制御が行なわれる。
端子 4 2 d, 4 2 e , 4 2 f の入力は、 それぞれ図 2 5の曲線 5 1 a , 5 1 b , …, 曲線 5 2 a , 5 2 b , …, 曲線 5 3 a , 5 3 b , …となっているので、 対応する電機子コイルの 3相片波通 電が行なわれる。 電機子コイル 3 9 a, 3 9 b, 3 9 cの通電によ る出力 トルクに対して、 電機子コイル 3 9 d, 3 9 e , 3 9 f の通 電による出力 トルクは位相が 6 0度おく れているので、 図 2 1 , 図 2 4にっき前述したように、 リ プル トルクが除去される作用効果が 得られる。
図 2 1 の突極 1 a , 1 bの巾は 1 2 0度〜 1 8 0度の巾でも本発 明の目的が達成される。
図 8 にお いて、 切換ス ィ ッ チ 4 0 a を設け、 ブロ ッ ク 回路 4 0 - 1 の出力に切換える と次の作用を行なう こ とができる。 ブ ロ ッ ク回路 4 0 - 1 は電動機の回転速度が設定値のときに所要の出 力電圧が得られ、 設定値よ り上昇し若しく は降下すると対応して出 力電圧が減少若し く は上昇して設定された回転速度を保持する周知 の回路である。 従って定速制御を行なう こ とができる。

Claims

言青 求 の 範 囲
1 . 3相両波通電の リ ラクタ ンス型電動機において、
磁性体回転子の外周面の両側部に等しい巾と等しい離間角で配設 された n個 ( nは 2以上の正整数) の第 1 , 第 2の突極と、
円筒状の第 1 の固定電機子の内周部に等しい離間角で配設された 6 n個のスロ ッ 卜に位相が電気角で 1 2 0度づっ順次にずら して装 着された第 1 , 第 2 , 第 3の相の電機子コイルと、
該第 1 の固定電機子と全く 同じ構成で、 そのスロ ッ トに位相が電 気角で 1 2 0度づっ順次にずらして室一 1, 2 , 第 3の相の電機子 コイルが装着された第 2の固定電機子と、
第 1 , 第 2の固定電機子のスロ ッ トの位置をずらして、 対応する 第 1 , 第 2 , 第 3の相の電機子コイルと、
第 1 , _2 , 1_3 の相の電機子コ イ ルの相対位置を電気角で 3 0度の奇数倍だけずらして配設するか若し く はこれ等を同相と し て、 対向する第 1 の突極と第 2の突極の位置を 3 0度の奇数倍だけ ずらして配設する手段と、 .
第 1 の突極の回転位置を検出して、 電気角で 1 2 0度の巾で互い に 2 4 0度離間した第 1 の相の位置検知信号ならびにこれ等よ り位 相が電気角で 1 2 0度おく れた第 2の相の位置検知信号ならびにこ れ等よ り位相が電気角で 1 2 0度おく れた第 3の相の位置検知信号 ならびに第 1 , 第 2 , 第 3の相の位置検知信号よ りそれぞれ位相が 電気角で 3 0度の奇数倍おく れた望 _丄, _2 , L の相の位置検知 信号が得られる位置検知装置と、
第 1 , 第 2 , 第 3 , _1, 1_ 2., _3.の相の電機子コイルのそれ ぞれに直列接続された半導体スイ ッチング素子と、 該電機子コイルと半導体スイ ッ チングどの直列接続体に供電する 直流電源と、
第 1 , 第 2 , 第 3 , 適 _上, 2 , 第 3の相の位置検知信号を介し てそれぞれ第 1 , 第 2 , 第 3 , 1 , 第 2 , 第 3の相の電機子コィ ルに直列に接続した半導体スィ ッチング素子を位置検知信号の巾だ け導通して電機子コイルを通電する通電制御回路と、
半導体スィ ッチング素子が位置検知信号の末端で不導通に転化し たと きに、 該半導体スイ ッチング素子と電機子コイルとの接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁気エネル ギを小容量のコ ンデンサに流入充電して保持するこ とによ り電機子 コイルの通電電流の降下を急速とする第 1 の電気回路と、
設定された角度だけ磁性体回転子が回転して次に通電される電機 子コイルが位置検知信号によ りその巾だけ通電されると きに、 ぞの 通電の開始されると同時に前記した小容量のコ ンデンサに蓄積され た静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立 上がりを急速とする第 2の電気回路と、
よ り構成されたこ とを特徴とする リ ラクタ ンス型電動機。
2 . 3相片波通電の リ ラクタ ンス型電動機において、
磁性体回転子の外周面に等しい巾 と等しい離間角で配設された n個 ( nは 2以上の正整数) の第 1 の突極と、
磁性体回転子と同軸で同期回転する磁性体回転子の外周面に等し い巾と等しい離間角で配設された 6 n個の第 2の突極と、
円筒状の固定電機子の内周部に等しい離間角で配設された 6 n個 のスロ ッ 卜に位相が電気角で 1 2 0度づっ順次にずらして装着され た第 1 , 第 2 , 第 3の相の電機子コイルと、
固定電機子に並置された円筒状磁性体の内周部に等しい離間角で 突出されると と もに所定の巾の少なく と も n個の磁極ならびにこれ 等に装着された励磁コイルと、
第 1 , 第 2の突極のそれぞれを僅かな空隙を介して前記した固定 電機子内周面と円筒状磁性体の磁極と対向して保持する手段と、 第 1 の突極の回転位置を検出して、 電気角で 1 2 0度の巾で互い に 2 4 0度離間した第 1 の相の位置検知信号ならびにこれ等よ り位 相が電気角で 1 2 0度おく れた第 2の相の位置検知信号ならびにこ れ等よ り位相が電気角で 1 2 0度おく れた第 3の相の位置検知信号 が得られる位置検知装置と、
第 1 , 第 2 , 第 3の相の電機子コイルと励磁コイルのそれぞれに 直列接続された半導体スィ ツチング素子と、
電機子コイルと励磁コイルのそれぞれと半導体スィ ツチング素子 の直列接続体に供電する直流電源と、
第 1 , 第 2 , 第 3の相の位置検知信号を介してそれぞれ第 1 , 第 2 , 第 3の相の電機子コイルに直列接続した半導体スイ ッ チング素 子を位置検知信号の巾だけ導通して電機子コイルを通電する通電制 御回路と、
第 2 の突極の位置を検出して得られる位置検知信号によ り 、 第 2の突極に対向する磁極に該突極が侵入する点よ り励磁コイ ルを通 電し、 両者が対向した点で通電を断つ第 1 の電気回路と、
半導体スィ ツチング素子が位置検知信号の末端で不導通に転化し たときに、 該半導体スイ ッチング素子と電機子コイルとの接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁気エネル ギを小容量のコ ンデンザに流入充電して保持するこ とによ り電機子 コイルの通電電流の降下を急速とする第 2の電気回路と、
設定された角度だけ磁性体回転子が回転して次に通電される電機 子コイルが位置検知信号によ りその巾だけ通電されるときに、 その 通電の開始されると同時に前記した小容量のコ ンデンサに蓄積され た静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立 上がりを急速とする電気回路と前記した励磁コイルの通電を電機子 コイルの通電電流に対応した値に保持する通電電流制御回路と、 電機子コイルの通電による出力 トルクの リプル トルクの凹部に励 磁コイルの通電による リ プル トルクの突部を合致せしめるよ う に 卜 ルクを発生する部材の相対位置を調整する手段と、
よ り構成されたこ とを特徴とする リ ラクタ ンス型電動機。
3 . 2相両波通電の リ ラクタ ンス型電動機において、
磁性体回転子の外周面の両側部に等しい巾と等しい離間角で配設 された n個 ( nは 2以上の正整数) の第 1 の突極と、
該磁性体回転子と同軸で同期回転する磁性体回転子の外周面に等 しい離間角で配設された 4 n個の第 2の突極と、
円筒状の固定電機子の内周部に等しい離間角で配設された 4 n個 のスロ ッ トに位相が電気角で 9 0度づっ順次にずらして装着された 第 1 , 第 2 , 第 3 , 第 4の相の電機子コイルと、
固定電機子に並置された円筒状磁性体の内周部に等しい離間角で 突出されると と もに所定の巾の少なく と も n個の磁極ならびにこれ 等に装着された励磁コイルと、
第 1 , 第 2の突極のそれぞれを僅かな空隙を介して前記した固定 電機子内周面と円筒状磁性体の磁極と対向して保持する手段と、 第 1 の突極の回転位置を検出して、 電気角で 9 0度の巾で互いに 連続した第 1 , 第 2 , 第 3, 第 4の相の位置検知信号が得られる装 置と、
第 1 , 第 2 , 第 3 , 第 4の相の電機子コイルと励磁コイルのそれ ぞれに直列接続された半導体スィ ツチング素子と、
電機子コイルと励磁コイルのそれぞれと半導体スィ ツチング素子 の直列接続体に供電する直流電源と、
第 1 , 第 2 , 第 3 , 第 4の相の位置検知信号を介してそれぞれ第 1 , 第 2 , 第 3 , 第 4の相の電機子コイルに直列接続した半導体ス ィ ツチング素子を位置検知信号の巾だけ導通して電機子コイルに通 電する通電制御回路と、
第 2 の突極の位置を検出して得られる位置検知信号によ り 、 第 2の突極に対向する磁極に該突極が侵入する点よ り励磁コイルを通 電し、 両者が対向した点で通電を断つ第 1 の電気回路と、
半導体スィ ツチング素子が位置検知信号の末端で不導通に転化し たと きに、 該半導体スイ ッチング素子と電機子コイルとの接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁気エネル ギを小容量のコ ンデンサに流入充電して保持するこ とによ り電機子 コイルの通電電流の降下を急速とする第 2の電気回路と、
設定された角度だけ磁性体回転子が回転して次に通電される電機 子コイルが位置検知信号によ りその巾だけ通電されると きに、 その 通電の開始されると同時に前記した小容量のコ ンデンサに蓄積され た静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立 上がりを急速とする電気回路と前記した励磁コイ ルの通電を電機子 コイルの通電に対応した値に保持する通電電流制御回路と、 電機子コイルの通電による出力 トルクの リ プル トルクの凹部に励 磁コイルの通電による リ プル トルクの突部を合致せしめるよ う に 卜 ルクを発生する部材の相対位置を調整する手段と、
よ り構成されたこ とを特徴とする リ ラクタ ンス型電動機。
4 . 3相両波通電の リ ラクタ ンス型電動機において、
磁性体回転子の外周面の両側部に等しい巾と等しい離間角で配設 された n個 ( nは 2以上の正整数) の第 1 , 第 2の突極と、 円筒状 の第 1 の固定電機子の内周部に等しい離間角で配設された 3 n個の スロ ッ ト と、
隣接する 2個のスロ ッ 卜のそれぞれに装着された 3 n個の第 1 , 第 2 , 第 3の相の電機子コイルと、
第 1 の固定電機子と全く 同じ構成で、 そのスロ ッ トに位相が電気 角で 1 2 0度づっ順次にずらして室 _丄, 2 , 第 3の相の電機子コ ィルが装着された第 2の固定電機子と、
第 1 , 第 2の固定電機子のスロ ッ トの相対位置をずらして、 対応 する第 1 , 第 2 , 第 3の相の電機子コイルと第 _丄, 1_2 , _3の相 の電機子コイルの相対位置を電気角で 6 0度の奇数倍だけずらして 配設するか若し く はこれ等を同相と して、 対向する第 1 の突極と第 2の突極の位置を 6 0度の奇数倍だけずらして配設する手段と、 第 1 の突極の回転位置を検出して、 電気角で 1 2 0度の巾で互い に 2 4 0度離間した第 1 の相の位置検知信号ならびにこれ等よ り位 相が電気角で 1 2 0度おく れた第 2の相の位置検知信号ならびにこ れ等よ り位相が電気角で 1 2 0度おく れた第 3の相の位置検知信号 ならびに第 1 , 第 2 , 第 3の相の位置検知信号よ りそれぞれ位相が 電気角で 6 0度の奇数倍おく れた星 J_ , _ 2_, _3の相の位置検知 信号が得られる位置検知装置と、
第 1 , 第 2, 第 3 , _, i_2 , _ の相の電機子コイルのそれ ぞれに直列接続された半導体スイ ッ チング素子と、 該電機子コイル と半導体スィ ツチングとの直列接続体に供電する直流電源と、 第 1 , 第 2 , 第 3 , 第 _丄, 2 , 第 3の相の位置検知信号を介し てそれぞれ第 1 , 第 2 , 第 3 , 1 , 第 2 , 第 3の相の電機子コィ ルに直列に接続した半導体スィ ツチング素子を位置検知信号の巾だ け導通して電機子コイルを通電する通電制御回路と、
半導体スィ ツチング素子が位置検知信号の末端で不導通に転化し たと きに、 該半導体スイ ッチング素子と電機子コイルとの接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁気エネル ギを小容量のコ ンデンザに流入充電して保持するこ とによ り電機子 コイルの通電電流の降下を急速とする第 1 の電気回路と、
設定された角度だけ磁性体回転子が回転して次に通電される電機 子コイルが位置検知信号によ りその巾だけ通電されるときに、 その 通電の開始されると同時に前記した小容量のコ ンデンサに蓄積され た静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立 上がりを急速とする第 2の電気回路と、
よ り構成されたこ とを特徴とする 3相リ ラクタ ンス型電動機。
5 . 3相片波通電の リ ラクタ ンス型電動機において、
磁性体回転子の外周面に等しい巾 と等しい離間角で配設された n個 ( nは 2以上の正整数) の第 1 の突極と、 磁性体回転子と同軸で同期回転する磁性体回転子の外周面に等し い巾と等しい離間角で配設された 3 n個の第 2の突極と、
円筒状の固定電機子の内周部に等しい離間角で配設された 3 n個 のスロ ッ ト と、
隣接する 2個のスロ ッ 卜のそれぞれに装着された 3 n個の第 1 , 第 2 , 第 3の相の電機子コィルと、
固定電機子に並置された円筒状磁性体の内周部に等しい-離間角で 突出されると と もに所定の巾の少なく と も n個の磁極ならびにこれ 等に装着された励磁コイルと、
第 1 , 第 2の突極のそれぞれを僅かな空隙を介して前記した固定 電機子内周面と円筒状磁性体の磁極と対向して保持する手段と、 第 1 の突極の回転位置を検出して、 電気角で 1 2 0度の巾で互い に 2 4 0度離間した第 1 の相の位置検知信号ならびにこれ等よ り位 相が電気角で 1 2 0度おく れた第 2の相の位置検知信号ならびにこ れ等よ り位相が電気角で 1 2 0度おく れた第 3の相の位置検知信号 が得られる位置検知装置と、
第 1 , 第 2 , 第 3の相の電機子コイルと励磁コイルのそれぞれに 直列接続された半導体スイ ッ チング素子と、
電機子コイルと励磁コイ ルのそれぞれと半導体スィ ツチング素子 の直列接続体に供電する直流電源と、
第 1 , 第 2, 第 3の相の位置検知信号を介してそれぞれ第 1 , 第 2 , 第 3の相の電機子コイルに直列接続した半導体スイ ッ チング素 子を位置検知信号の巾だけ導通して電機子コイルを通電する通電制 御回路と、
第 2 の突極の位置を検出して得られる位置検知信号によ り 、 第 2の突極に対向する磁極に該突極が侵入する点よ り励磁コイルを通 電し、 両者が対向した点で通電を断つ第 1 の電気回路と、
半導体スィ ツチング素子が位置検知信号の末端で不導通に転化し たときに、 該半導体スィ ッチング素子と電機子コイルとの接続点よ り、 ダイオー ドを介して電機子コイルによ り蓄積された磁気エネル ギを小容量のコ ンデンサに流入充電して保持するこ と によ り電機子 コイルの通電電流の降下を急速とする第 2の電気回路と、
設定された角度だけ磁性体回転子が回転して次に通電される電機 子コイルが位置検知信号によ りその巾だけ通電されると きに、 その 通電の開始されると同時に前記した小容量のコ ンデンサに蓄積され た静電工ネルギを、 該電機子コイルに流入せしめて、 通電電流の立 上がりを急速とする電気回路ならびに前記した励磁コイルの通電を 電機子コイルの通電電流に対応した値に保持する通電電流制御回路 と、
電機子コイルの通電による出力 トルクのリ プル トルクの凹部に励 磁コイルの通電による リ プル トルクの突部を合致せしめるように 卜 ルクを発生する部材の相対位置を調整する手段と、
よ り構成されたこ とを特徴とする 3相 リ ラクタ ンス型電動機。
PCT/JP1993/001879 1993-07-16 1993-12-24 Moteur a reluctance WO1995002922A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94903058A EP0662751A4 (en) 1993-07-16 1993-12-24 RELUCTANCE MOTOR.
US08/403,692 US5619113A (en) 1993-07-16 1993-12-24 Reluctance-type motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5222877A JPH0739191A (ja) 1993-07-16 1993-07-16 リラクタンス型電動機
JP5/222877 1993-07-16
JP5226302A JPH0746808A (ja) 1993-07-27 1993-07-27 3相リラクタンス型電動機
JP5/226302 1993-07-27

Publications (1)

Publication Number Publication Date
WO1995002922A1 true WO1995002922A1 (fr) 1995-01-26

Family

ID=26525139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001879 WO1995002922A1 (fr) 1993-07-16 1993-12-24 Moteur a reluctance

Country Status (4)

Country Link
US (1) US5619113A (ja)
EP (1) EP0662751A4 (ja)
TW (1) TW273056B (ja)
WO (1) WO1995002922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738035A3 (en) * 1995-04-11 1997-03-19 Switched Reluctance Drives Ltd Method, system and control circuit of a switched reluctance machine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937591A (ja) * 1995-07-18 1997-02-07 Secoh Giken Inc 複数相のリラクタンス型電動機
JPH0947079A (ja) * 1995-08-01 1997-02-14 Secoh Giken Inc リラクタンス電動機
GB9524893D0 (en) * 1995-12-05 1996-02-07 Switched Reluctance Drives Ltd Method and apparatus for producing iron losses in a switched reluctance machine
JP3571536B2 (ja) * 1997-10-20 2004-09-29 富士通株式会社 バッテリ充電装置及び方法並びに電子装置
GB9801187D0 (en) * 1998-01-20 1998-03-18 Switched Reluctance Drives Ltd Noise reduction in reluctance machines
GB9810418D0 (en) * 1998-05-14 1998-07-15 Switched Reluctance Drives Ltd A set of laminations for a switched reluctance machine
US6107764A (en) * 1998-10-30 2000-08-22 Dana Corporation Drive control for a switched reluctance motor
GB0112673D0 (en) * 2001-05-24 2001-07-18 Switched Reluctance Drives Ltd Synchronisation of machine and load characteristics
US7230360B2 (en) 2004-11-08 2007-06-12 Illinois Institute Of Technology Switched reluctance machine
WO2008047959A1 (en) * 2006-10-19 2008-04-24 Lg Electronics Inc. Switched reluctance motor
DE102009044528A1 (de) * 2008-11-14 2010-06-02 Denso Corporation, Kariya-City Reluktanzmotor
DE102009044079A1 (de) 2009-09-23 2011-03-24 Contitech Antriebssysteme Gmbh Elastischer Antriebsriemen in Form eines Keilriemens oder eines Keilrippenriemens mit einem vergrößerten Flankenwinkel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117195A (ja) * 1990-09-06 1992-04-17 Secoh Giken Inc 高速電動機
JPH04183294A (ja) * 1990-11-15 1992-06-30 Secoh Giken Inc リラクタンス型電動機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980933A (en) * 1974-12-19 1976-09-14 Ford Motor Company Control circuit for variable reluctance motor
US4684867A (en) * 1984-05-31 1987-08-04 General Electric Company Regenerative unipolar converter for switched reluctance motors using one main switching device per phase
JPH04133646A (ja) * 1990-09-20 1992-05-07 Secoh Giken Inc 3相リラクタンス型電動機
US5115181A (en) * 1990-10-05 1992-05-19 Emerson Electric Co. Power converter for a switched reluctance motor
US5223779A (en) * 1990-10-31 1993-06-29 Sundstrand Corporation High efficiency switching circuit for transferring energy stored within a snubbing circuit to an electrical load
JPH0646593A (ja) * 1991-02-12 1994-02-18 Secoh Giken Inc 高速リラクタンス型電動機
US5075610A (en) * 1991-03-28 1991-12-24 Honeywell Inc. Switched reluctance motor control circuit with energy recovery capability
US5485047A (en) * 1992-01-27 1996-01-16 Kabushikigaisha Sekogiken Reluctance-type motor and a rotor for a reluctance-type high-speed motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117195A (ja) * 1990-09-06 1992-04-17 Secoh Giken Inc 高速電動機
JPH04183294A (ja) * 1990-11-15 1992-06-30 Secoh Giken Inc リラクタンス型電動機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0662751A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738035A3 (en) * 1995-04-11 1997-03-19 Switched Reluctance Drives Ltd Method, system and control circuit of a switched reluctance machine
US5764019A (en) * 1995-04-11 1998-06-09 Switched Reluctance Drives, Ltd. Control circuit and system for a switched reluctance machine and method of operating

Also Published As

Publication number Publication date
US5619113A (en) 1997-04-08
EP0662751A1 (en) 1995-07-12
EP0662751A4 (en) 1995-11-02
TW273056B (ja) 1996-03-21

Similar Documents

Publication Publication Date Title
WO1992016046A1 (en) High-speed motor
EP0436742B1 (en) Reluctance motor
WO1995002922A1 (fr) Moteur a reluctance
WO1991003858A1 (en) Reactance type motor
JPH0646593A (ja) 高速リラクタンス型電動機
US8476799B2 (en) Pulsed multi-rotor constant air gap motor cluster
WO1993015550A1 (en) Reluctance motor and rotor of high-speed reluctance motor
JP5543185B2 (ja) スイッチドリラクタンスモータ駆動システム
WO1991004602A1 (en) Three-phase reluctance motor
WO1997004520A1 (fr) Moteur a reluctance polyphase
WO1994000909A1 (en) Reluctance motor capable of regenerative braking and direct current motor
JPH0746808A (ja) 3相リラクタンス型電動機
WO1994014235A1 (en) Controller for energization of reluctance motor
WO1993009594A1 (en) High speed motor
JPH0739191A (ja) リラクタンス型電動機
EP0349055A1 (en) Electrical multi-pole machine
US20130187580A1 (en) Controller For Back EMF Reducing Motor
JPH05219788A (ja) 高速電動機
JPH07312896A (ja) 3相リラクタンス型電動機
JPH06165577A (ja) 3相リラクタンス型電動機
JPH04289795A (ja) 高速電動機
JPH06296392A (ja) 高速電動機
JPH0622589A (ja) 回生制動のできるリラクタンス型電動機
JPH08103096A (ja) 3相リラクタンス型リニヤ電動機
JPH05308795A (ja) リラクタンス型3相電動機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994903058

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08403692

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994903058

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994903058

Country of ref document: EP