WO1995002168A1 - Weighing scale - Google Patents

Weighing scale Download PDF

Info

Publication number
WO1995002168A1
WO1995002168A1 PCT/US1994/007924 US9407924W WO9502168A1 WO 1995002168 A1 WO1995002168 A1 WO 1995002168A1 US 9407924 W US9407924 W US 9407924W WO 9502168 A1 WO9502168 A1 WO 9502168A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale according
scale
load cell
load
weighing
Prior art date
Application number
PCT/US1994/007924
Other languages
English (en)
French (fr)
Inventor
Uri Zefira
Original Assignee
Friedman, Mark, M.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedman, Mark, M. filed Critical Friedman, Mark, M.
Priority to EP94922556A priority Critical patent/EP0707707B1/en
Priority to US08/591,470 priority patent/US5739478A/en
Priority to DE69424425T priority patent/DE69424425T2/de
Publication of WO1995002168A1 publication Critical patent/WO1995002168A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/083Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles lift truck scale
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B2203/00Grasping, holding, supporting the objects
    • B62B2203/50Grasping, holding, supporting the objects comprising weighing means

Definitions

  • the present invention relates to a weighing scale in which the weighing mechanism, and specifically the load cell, is protected from damage during use.
  • the invention is particularly useful with pallet and other heavy-load carriers having built-in weighing systems.
  • Weighing scales measure the weight of a load placed on them using one or more load cells which support the load.
  • Load cells are delicate devices which can be easily damaged if subjected to mechanical shock or impact. This problem is especially acute when the weighing scale is integrated into a forklift or pallet carrier for weighing the loads carried by these vehicles. These vehicles are frequently operated under harsh conditions and subjected to violent mechanical shocks which can damage the sensitive load cell.
  • a scale for weighing a load comprising: a base member; a weighing platform for supporting the load; a load cell located below the weighing platform so as to alternate between an operational position, in which the weighing platform is supported by the load cell for measuring the weight of the load, and a neutral position, in which the weighing platform is supported by the base member for carrying the load; a contact member located below the weighing platform so as to reversibly come into contact with the load cell, wherein the load cell alternates between the operational position and the neutral position due to a relative movement between the load cell and the contact member; and a generating means for generating the movement.
  • the pallet carrier can be operated under normal working conditions, since the load cells are disengaged from contact with the weighing platform which supports the load.
  • the load cells are brought into contact with the platform and load only when it is desired to weigh the load. In this way, the load cells are placed in a sensitive position for only the minimal period of time necessary to weigh the load.
  • Figures 1 , 2 and 3 are side sectional views of a pallet carrier incorporating a scale of the invention according to a preferred embodiment, the carrier being in its rest, weighing, and transport positions, respectively;
  • Figures 4a and 4b are side, sectional views of a detail of a second preferred embodiment according to the invention;
  • Figures 5a and 5b are partial, side sectional views of a third preferred embodiment of the invention.
  • Figure 6 is a partial, side sectional view of a fourth preferred embodiment of the invention.
  • Figure 7 is a partial, side sectional view of a fifth preferred embodiment of the invention.
  • Figure 8 is a transverse cross-sectional view of the lower portion of the embodiment of Fig. 7 along line VIII-VIII.
  • a pallet carrier 2 positioned before a pallet 4.
  • the term 'pallet carrier' in this specification refers to all types of vehicles, whether motor or manually driven, for carrying loads, generally on pallets.
  • the loads will usually be relatively heavy, thus necessitating a vehicle to lift them.
  • the platform of the carrier which lifts the pallet is generally in the shape of a single plate or of twin prongs, as in a fork lift vehicle.
  • the pallet carrier 2 includes a lifting handle 6 at its rear end for raising an hydraulic piston 8 which is positioned immediately in front of the handle and above the rear steering wheels 9 of the carrier.
  • the top of the piston supports the top of a triangularly-shaped frame 10 located in front of the piston.
  • the frame 10 is fixed to a base member 12, which extends towards the front of the carrier and is the part of the carrier which lifts the load.
  • the rear end of the base member is coupled to the piston through the frame 10, while the front end of the base member is supported on load-bearing rollers 14. Its upper surface is interrupted by openings 16 whose purpose will be explained below.
  • Two L-shaped levers 18 are fixedly attached by centrally-located axle 20 to the lower portion of the frame 10, with one end 22 of each lever pivotably mounted above the rear wheels 9 and its opposite end 24 pivotably coupled to the rear end of a linking bar 26.
  • the front end 28 of the bar 26 is pivotably attached through an angled lever 30 to the load-bearing rollers 14.
  • the lever 30 is fixedly attached to the front portion of the base member 12 by axle 32 positioned at the inflection point of the lever.
  • the purpose of the linking bar 26 is to transfer the lifting power of the piston 8 to the front of the base member 12 so that the base member rises in parallel.
  • a weighing platform 34 rests on the upper surface of the base member 12 but is not fixed to it.
  • the weighing platform may be in the form of a single-plate, or in the form of two prongs such as in a fork-lift vehicle.
  • Axially mounted on the bar 26 and projecting through the openings 16 in the base member from below are two load cells 36, each having a load-bearing section 38 at one end.
  • a friction-reducing protuberance 40 projects above the load-bearing section 38.
  • Projecting down into the openings 16 from the lower surface of the weighing platform 34 are contact members 42 in the shape of inverted truncated triangles with curved corners. As illustrated in Fig. 1, the contact members are slightly anterior to the load-bearing sections 38, so that there is no contact between them.
  • Fig. 1 the pallet carrier 2 is in its rest state.
  • the base member 12 is at its lowest position so that it can be inserted under the upper surface 44 of the pallet 4.
  • the weighing platform 34 is supported by the base member 12 and there is no contact between the weighing platform and the load cells 36, so that the scale is in a non-weighing or neutral position.
  • the load cells are protected from any shocks imparted to the weighing platform or base member.
  • the piston 8 has been partially raised by action of the handle 6, lifting the frame 10, the base member 12, and the weighing platform 34.
  • the lifting of the frame causes the lever 18 to pivot around the end 22, and the rotation of the lever 18 both lifts and pushes the bar 26 and the load cell 36 mounted on it forward so that the protuberances 40 of the load cells move into contact with the contact points 42.
  • the scale is now in a weighing or operational position so that the pallet, together with any load on it, are weighed by the scale.
  • the piston 8 After weighing the load, the piston 8 is further raised as in Fig. 3 so that the carrier enters its transport state. The raising of the piston causes the bar 26 to move further forward so that the protuberance 40 passes the contact point 42 and the scale returns to a neutral position in which the weighing platfrom 34 is supported by the base member 12 and there is no contact between the platform and the load cells. The pallet and load can now be transported to other locations without the danger that the load cell will absorb damaging shocks.
  • the protuberance of the load cell is formed so as to reduce the friction between it and the contact point.
  • This function could be served, for example, by a ball bearing or a roller.
  • the contact point will preferrably have curved or slanted ends to facillitate the relative movement between the two surfaces.
  • the length of the contact point will determine the length of time during which the weighing will take place.
  • the raising of the pallet carrier platform is a continuous process, with a microswitch controlling the transmittal of the weight measurement to a display (not shown) located near the operater. This insures that the number displayed will be an accurate indication of the weight measured when the weighing platform is fully and exclusively supported by the load cells.
  • FIGs. 4a and 4b illustrate a portion of a pallet carrier in which the load cell 36 is mounted on the lower surface of the weighing platform 34 and protrudes through an opening 16 in the base member 12.
  • the bar 26 is positioned within the base member 12 and is threaded so as to engage a correspondingly threaded nut 48 which can be rotated so as to move axially along the bar.
  • the circumference 50 of the nut protrudes above and below the bar 26.
  • Fig. b the bar has moved forward, as described above in relation to Figs. 2 & 3, causing the circumference 50 of the nut to come into contact with the protuberance 40 of the load cell, so that the load cell is supported by the nut.
  • This lifts the weighing platform 34 above the base member 12 so that an interval 46 is formed between them.
  • the platform is supported by the load cell and the scale is in the operational or weighing position. Further forward movement of the bar will return the scale to the neutral position.
  • the advantage of this embodiment of the invention is that the nut can be positioned at any location along the bar.
  • the operater can determine the point during the raising of the pallet carrier at which the scale will be in the operational position. For example, if it is desired that the operatioal position occur when the carrier is fully raised, the operater will thread the nut backwards so that contact with the load cell is made only when the bar reaches its maximal forward position.
  • This advantage can also be applied to the embodiment of Figs. 1-3, whereby the contact point and/or load cell can be transfered between several positions.
  • Fig. 5a the load cell 36 is mounted as in Fig. 4a under the weighing platform 34, which is supported by the base member 12. Positioned directly below the protuberance 40 of the load cell in spaced relation is a small hydraulic piston 52 which is fixed to the base member 12. The piston 52 is connected through a conduit 54 to a larger hydraulic piston 56 which is mounted inbetween the sides of the frame 10 and the levers 18. A cam 58 fixedly attached to the middle of the axle 60 is positioned directly above the piston 56.
  • the scale illustrated in Fig. 5a is in the neutral position.
  • Fig. 5b The operation of the scale is illustrated in Fig. 5b.
  • the lever 18 As the piston 8 of the pallet carrier is raised by the lifting handle 6, the lever 18 is rotated as described above and the cam 58 rotates, pressing down on the large piston 56. The pressure is conducted to the small piston 52 through the conduit and the piston 52 rises, pushing up against the protuberance of the load cell. The weighing platform is lifted above the base 12 and an interval 46 is formed. The platform is now supported by the load cell, and the scale is in the operational position. Further rotation of the cam releases the pressure on the pistons 56 and 52 and the scale reverts to the neutral position. The shape of the cam will determine at what point and for how long the scale will be in the operational position.
  • This embodiment thus illustrates a combination mechanical-hydraulic operation of the scale.
  • FIG.6 there is illustrated a pallet carrier 70 comprising a further embodiment of the invention in which an additional control member has been added so that actuation of the scale is separated from the lifting of the pallet carrier.
  • a first hydraulic piston 72 which is raised and lowered in a first piston housing 75 by a handle 74.
  • a fluid reserve tank 76 is located below the piston housing and connected to it through a one-way valve 80 which allows the hydraulic fluid to flow from the reserve tank into the piston housing but not in the reverse direction.
  • a second one-way valve 82 On application of pressure by the piston 72 on the fluid in the housing 75, the fluid flows through a second one-way valve 82 via a conduit 84 to a second piston housing 86.
  • housing 86 Contained in housing 86 is piston 87 which is connected to the base member 88 of the carrier through frame 89, as in Fig. 1 above.
  • the conduit 84 passes through first 90 and second 92 control valves interspaced between the first piston housing 75 and the second piston housing 86.
  • a second conduit 94 leads from the second control valve 92 to a series of pistons positioned under corresponding load cells 98, as was described above with reference to Fig. 5a.
  • a third conduit 100 leads from the first control valve 90 to the reserve tank 76 through a third one-way valve 102.
  • the scale illustrated in Fig. 6 is in the neutral position.
  • the first control valve 90 controls the lifting of the base member while the second control valve.92 controls the operation of the scale.
  • Each of the control valves can be placed by the operator in a lowered position - A1 and B1 , respectively - or a raised position - A2 and B2, respectively.
  • both of the control valves are lowered (A1 , B1 ) and pressure is applied to the first piston 72, the second piston 87 lifts the base member 88 while the scale remains in the neutral position.
  • the second conduit 94 On lifting the second control valve 92 (A1 , B2), the second conduit 94 is connected to the first piston 72 and the pistons 96 make contact with the load cells 98, so that the scale enters the operational position, as described above with reference to Fig. 5b.
  • This system is advantageous in that the scale can enter the operational position during any point in the raising process, simply by lifting contol valve 92 from position B1 to position B2.
  • Figs. 7 and 8 illustrate a similar pallet carrier which operates as an hydraulic-mechanical system.
  • only one piston 110 located under the frame 89, is connected to the conduit 94.
  • Extending directly beneath the load cells 98 is the bar 112 enveloped by an eccentric sleeve 114. In the neutral position, there is no contact between the sleeve and the load cells.
  • the sleeve has extensions 116 positioned beneath the frame and above the piston.
  • the operation of the piston 110 is illustrated in Fig. 8 for a fork-lift carrier.
  • pressure is applied to the piston, it rotates the sleeves 114 by pushing up the sleeve extensions 116.
  • the sleeves then make contact with the load cells 98 and the scale enters the operational position.
  • a rotational movement controls the operational position of the scale.
  • the scale of the invention is not limited to pallet carriers, but can be used also in stationary weighing devices in which the scale can be alternated between a neutral and an operational position. It will also be obvious to those skilled in the art that the weighing function of the scale can be made independent of the lifting function of the pallet carrier.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Handcart (AREA)
PCT/US1994/007924 1993-07-09 1994-07-08 Weighing scale WO1995002168A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94922556A EP0707707B1 (en) 1993-07-09 1994-07-08 Scale with horizontal movement to neutral position and pallet carrier
US08/591,470 US5739478A (en) 1993-07-09 1994-07-08 Weighing scale
DE69424425T DE69424425T2 (de) 1993-07-09 1994-07-08 Waage mit horizontaler Bewegung in eine neutrale Stellung und Gabelhubwagen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL106303 1993-07-09
IL10630393A IL106303A (en) 1993-07-09 1993-07-09 Weighing scale

Publications (1)

Publication Number Publication Date
WO1995002168A1 true WO1995002168A1 (en) 1995-01-19

Family

ID=11065035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/007924 WO1995002168A1 (en) 1993-07-09 1994-07-08 Weighing scale

Country Status (4)

Country Link
EP (1) EP0707707B1 (enrdf_load_stackoverflow)
DE (1) DE69424425T2 (enrdf_load_stackoverflow)
IL (1) IL106303A (enrdf_load_stackoverflow)
WO (1) WO1995002168A1 (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764013A1 (fr) * 1997-06-02 1998-12-04 Eastman Kodak Co Element de protection travaillant par cisaillement et procede de verification du fonctionnement correct de cet element
CN111442826A (zh) * 2020-03-30 2020-07-24 深圳鲜选选科技有限公司 一种负载触发式感应衡量台秤及其感应衡量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754108A (en) * 1953-02-24 1956-07-10 Cecil S Brown Vehicle weighing apparatus
US2940746A (en) * 1953-10-21 1960-06-14 Union Metal Mfg Co Portable scale mechanism
US3797594A (en) * 1973-07-20 1974-03-19 J Chaffee Trailer tongue weight scale
US4137977A (en) * 1978-02-06 1979-02-06 Champion International Corporation Hydraulic weighing system
US4666004A (en) * 1986-05-01 1987-05-19 Pallet Truck Scale Corporation Pallet truck with weighing scale
US4706768A (en) * 1986-03-03 1987-11-17 Gagik Kozozian Onboard truck scale
US4899840A (en) * 1989-06-22 1990-02-13 Boubille Jacques C Apparatus for weighing a pallet with a load thereon for use with a vehicle having tines or the like

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521929B1 (fr) * 1982-02-23 1988-03-25 Brimont Marcel Vehicule pour le transport de produits et leur pesage
US4589507A (en) * 1984-10-05 1986-05-20 Morgan Corporation On board scale devices
IT1189752B (it) * 1986-05-06 1988-02-04 Giancarlo Cini Apparato applicabile agli automezzi per rilevare in qualsiasi momento il peso di carichi trasportati
DK643589D0 (da) * 1989-12-18 1989-12-18 Bjoern Holger Jensen Loeftevogn med midler til bestemmelse af vaegten af den loeftede last

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754108A (en) * 1953-02-24 1956-07-10 Cecil S Brown Vehicle weighing apparatus
US2940746A (en) * 1953-10-21 1960-06-14 Union Metal Mfg Co Portable scale mechanism
US3797594A (en) * 1973-07-20 1974-03-19 J Chaffee Trailer tongue weight scale
US4137977A (en) * 1978-02-06 1979-02-06 Champion International Corporation Hydraulic weighing system
US4706768A (en) * 1986-03-03 1987-11-17 Gagik Kozozian Onboard truck scale
US4666004A (en) * 1986-05-01 1987-05-19 Pallet Truck Scale Corporation Pallet truck with weighing scale
US4899840A (en) * 1989-06-22 1990-02-13 Boubille Jacques C Apparatus for weighing a pallet with a load thereon for use with a vehicle having tines or the like

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0707707A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764013A1 (fr) * 1997-06-02 1998-12-04 Eastman Kodak Co Element de protection travaillant par cisaillement et procede de verification du fonctionnement correct de cet element
CN111442826A (zh) * 2020-03-30 2020-07-24 深圳鲜选选科技有限公司 一种负载触发式感应衡量台秤及其感应衡量方法

Also Published As

Publication number Publication date
EP0707707B1 (en) 2000-05-10
EP0707707A4 (enrdf_load_stackoverflow) 1996-05-29
IL106303A0 (en) 1993-11-15
DE69424425D1 (de) 2000-06-15
DE69424425T2 (de) 2001-01-25
EP0707707A1 (en) 1996-04-24
IL106303A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
US5739478A (en) Weighing scale
US5417536A (en) Lift truck weighing apparatus
US4346771A (en) Low-profile, non-platform weigh scale
US7621565B2 (en) Container mounting assembly
US6124554A (en) Portable pallet scale
US5861580A (en) Load cell and weighing system
JPH0636076Y2 (ja) ハンドリフトトラック
EP2612117B1 (en) Weighing module with integrated horizontal and vertical overload protection
NL1012571C2 (nl) Palletwagen.
US20070041820A1 (en) Fork cover having weighing capability
US4491190A (en) Weight measurement apparatus
KR101346290B1 (ko) 차량용 계근장치
EP0707707B1 (en) Scale with horizontal movement to neutral position and pallet carrier
EP0535194A1 (en) METHOD FOR PROVIDING THE LIFTING EFFECT OF A LIFTING CONVEYOR TRAILER, AND LIFTING CONVEYOR TRAILER.
US2823911A (en) Portable heavy-duty weighing scale
JPH07260554A (ja) フォークリフト用重量検出装置
US5639197A (en) Universal carrier with optional integral force measuring device
JPH0458889B2 (enrdf_load_stackoverflow)
CN117263098A (zh) 一种带有称重的叉车叉臂机构
EP0244745A2 (en) Device to be mounted in autovehicles for determining at any time the weight of the carried loads
WO1982002024A1 (en) An electronic weighing device for pallet-lifting apparatuss
US4869639A (en) Method at vehicles having a lifting device for compensating departures in the position of loads on the lifting device relative to the frame of the vehicle
JP2003035591A (ja) 車載計量器
JP3684177B2 (ja) 計量器付きタンク車輌
CN215479482U (zh) 带称电动搬运车

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994922556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08591470

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994922556

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994922556

Country of ref document: EP