WO1994027360A1 - Method for controlling current for synchronous motor - Google Patents

Method for controlling current for synchronous motor Download PDF

Info

Publication number
WO1994027360A1
WO1994027360A1 PCT/JP1994/000751 JP9400751W WO9427360A1 WO 1994027360 A1 WO1994027360 A1 WO 1994027360A1 JP 9400751 W JP9400751 W JP 9400751W WO 9427360 A1 WO9427360 A1 WO 9427360A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
gain
value
loop
synchronous motor
Prior art date
Application number
PCT/JP1994/000751
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Uchida
Yasusuke Iwashita
Takashi Okamoto
Hidetoshi Uematsu
Original Assignee
Hiroyuki Uchida
Yasusuke Iwashita
Takashi Okamoto
Hidetoshi Uematsu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroyuki Uchida, Yasusuke Iwashita, Takashi Okamoto, Hidetoshi Uematsu filed Critical Hiroyuki Uchida
Publication of WO1994027360A1 publication Critical patent/WO1994027360A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Definitions

  • the present invention relates to a current control method for a synchronous motor, and more particularly, to a current control method for a synchronous motor that performs PWM (Pulse Width Modulation) control by software control (digital control).
  • PWM Pulse Width Modulation
  • digital control digital control
  • Figure 1 is a block diagram of the current loop of a synchronous motor that has been conventionally executed.
  • 1 is the integrator term in the IP control of the current loop processing
  • K 1 is the integral gain.
  • 2 is a term of the proportional gain K 2 in the current loop processing
  • 3 is a term for generating a PWM signal by a PWM command obtained in the current loop
  • a transfer function is set to “1 j.”
  • 4 is a mode.
  • R is the resistance of the coil
  • L is the inductance
  • s is the Labrus operator. Only the block diagram of the loop is shown, and the other S phase, T phase, etc. are also the block diagram of the same current loop.
  • Optimum values of the integral gain K 1 and the proportional gain K 2 of these current loops are calculated from various parameters of the motor, that is, the values of the winding resistance, the inductance, etc. Is greatly influenced by the structure of the magnetic circuit, especially the structure of the magnetic circuit, and is determined by making appropriate corrections through evaluation tests with actual machines based on the value calculated as the optimum value. .
  • the values of the integral gain K 1 and the proportional gain K 2 must be adjusted within a range where the current loop is kept stable. It is desirable to increase it to the maximum in order to maximize the characteristics of this current loop. For this purpose, it is necessary to evaluate the stability of the current loop based on the maximum current. Generally, when a large current is applied, armature reaction occurs, magnetic saturation occurs at the teeth of the stator, and the inductance decreases. This is because there is considerable oscillation.
  • An object of the present invention is to provide a current control method for a synchronous motor that can solve the above-mentioned problems of the conventional example, suppress oscillation, and eliminate a shortage of band.
  • a current control method for a synchronous motor that performs PWM control.
  • the current loop gain for the current command value is obtained by a function approximating the relationship between the current loop maximum gain that does not cause oscillation and the current magnitude, and the current loop processing is performed using the current loop gain to generate the PWM command. I'm asking.
  • a correction value of the current loop gain with respect to the current command value is obtained by a function that approximates the relationship between the drive current and the maximum gain of the current loop in which oscillation does not occur.
  • Current loop processing is performed by the current loop gain to obtain the PWM command.
  • a function similar to the relationship of the maximum gain of a current loop in which oscillation does not occur with respect to the magnitude of a drive current is used.
  • the product of the current loop and the current command value The correction value of the minute gain and the correction value of the proportional gain are obtained, and in the processing in the current loop, the value obtained by multiplying the reference gain in which the proportional gain is set by the correction value of the proportional gain is obtained.
  • the value obtained by multiplying the reference integration gain by the correction value of the above integration gain is defined as an integration gain, and the value obtained by multiplying the integration gain by the current deviation is integrated to obtain an integration value. And ask for it.
  • the correction value of the current loop gain of the current loop processing of the next speed loop processing cycle or the integration gain is determined by the current command value of the speed loop processing cycle obtained for each speed loop processing cycle. Determine the correction value of the gain and the correction value of the proportional gain.
  • the actual current value is used in place of the current command value, and the actual current value is obtained by approximating the relationship between the magnitude of the drive current and the maximum gain of the current loop where no oscillation occurs with respect to the magnitude of the drive current.
  • a current loop gain for the value is obtained, and a current loop process is performed by the current loop gain to obtain a PWM command.
  • the current according to the current command value or the actual current is determined by a function approximating the maximum gain at which oscillation does not occur with respect to the magnitude of the drive current. Since the loop gain is set and the current loop process is executed, no oscillation occurs, and the gain uses the maximum value for the current command value at that time, so that no band shortage occurs.
  • FIG. 1 shows a block diagram of a conventional current loop.
  • FIG. 2 is a block diagram of a current loop according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram of a current loop according to a second embodiment of the present invention.
  • Fig. 4 shows the maximum torque with respect to the motor drive current.
  • Fig. 5 shows the winding inductance with respect to the motor drive current.
  • Figure 6 shows the maximum gain of the current loop where no oscillation occurs for the drive current.
  • FIG. 7 is a diagram showing an example of a gain function of a current loop with respect to a current approximating the curve of FIG. 6,
  • Figure 8 shows an example of the approximate function of the maximum current loop gain with respect to the current.
  • Fig. 9 is a flow chart of the processing in the current loop processing cycle when the processor of the digital servo circuit (software servo circuit) implements the first embodiment.
  • FIG. 12 is a diagram of an experimental result in which feed unevenness is observed when the motor is rotated at a low speed (10 rpm) in the second embodiment of the present invention. Best mode for carrying out the invention
  • the maximum gain curve for the current is represented by a simple polygonal line as shown in FIG. 7 (the polygonal line itself shown in FIG. 7 switches the gain as described later). (The value of the function k (I)) as the correction value for).
  • oscillation is generated by multiplying a PWM command obtained by ordinary current loop processing by a function value k (I) for gain correction. Try to get the maximum gain that doesn't change.
  • FIG. 2 in the first embodiment is different from FIG. 1 only in that a transfer function 5 of a gain correction function k (I) is added. Then, the corrected PWM command obtained by multiplying the PWM command output from the normal current loop processing by the value of the function k (I) for gain correction, which is a fraction of the current value, is obtained. It is designed to obtain a signal.
  • the second embodiment shown in FIG. 3 is different from the conventional example of FIG. 1 in terms 1 ′ and 2 ′ corresponding to the terms 1 and 2. That is, in the second embodiment, the integral gain is changed to K1 ⁇ k1 (I), and the proportional gain is changed to K2 ⁇ k2 (I).
  • the gain K 1 ⁇ k 1 (1) (where kl (I) is the current deviation in the process cycle) is obtained by adding the current deviation £ between the current command and the feedback current in the process cycle. The gain is multiplied by a gain correction value (corresponding to the flow command Ic), and the integration process is performed.
  • the proportional gain is obtained by multiplying the gain correction function shown in Fig. 7 by K1 times. K2 based on K1 and K2 set based on the small current. That is, when the command current I c is OI c and I 1, the integral gain and the proportional gain are Kl and K 2, respectively, and the command current I c is 12 ⁇ I c ⁇ I max Then, the integral gain is K 1 ⁇ ⁇ and the proportional gain is ⁇ 2 ⁇ ⁇ .
  • I 1 ⁇ I c ⁇ I 2 the value k (I) determined by the value of the command current value I c in the above equation is multiplied by the set values K 1 and K 2.
  • the parameter required for setting the gain is determined by the integral at a small current serving as a reference. Only the gain K 1, the proportional gain K 2, the gain switching current values II and 12, and the parameter value ⁇ that reduces the gain are required.
  • the gain switching current values II and 12 select and set the values according to the machine that uses the motor.
  • a servomotor used for feeding a machine tool requires smooth feed during machining, that is, at low current.
  • the current is large, it is mainly during rapid traverse acceleration / deceleration. Therefore, if the switching of the current loop gain occurs during machining, the machining accuracy may be affected. Therefore, the switching current values II and 12 should not be set too low.
  • Fig. 8 shows an example where II is 50% of the maximum current and 12 is 75% of the maximum current.
  • FIG. 9 is a flow chart of a process executed by the servo CPU (a processor of a digital servo circuit) when executing the first embodiment shown in the block diagram of FIG. It is one.
  • the servo CPU a processor of a digital servo circuit
  • the current command (torque command) Ic obtained by the speed loop processing is read (step S), and the value of the gain correction value k is obtained from the magnitude of the current command Ic ( Step S2). That is, as described above,
  • the current commands I rc, I sc, and I tc of each phase are obtained, and the feedback currents I rf, I sf, and I tf of each phase are read (steps S 3 and S 4).
  • a current loop process is performed to obtain a PWM command (step S5).
  • the corrected PWM command is obtained by multiplying the gain correction value k obtained in step S2 by the obtained PWM command (step S6).
  • a PWM command is output to the PWM circuit, and the processing in the cycle ends. Hereinafter, this process is repeated for each cycle.
  • FIG. 10 is a flowchart of a process for each current loop performed by the processor of the digital servo circuit in the second embodiment shown in FIG.
  • the current command (torque command) Ic obtained by the speed loop processing is read (step T1), and the gain correction values kl and k are determined based on the magnitude of the current command Ic. ⁇ of 2 is obtained (step T 2).
  • the current commands I rc, I s:, I tc of each phase are obtained, and the feedback currents I ri, I sf, It f of each phase are read (steps T3, 34), and the current loop processing is performed. And obtain the PWM command.
  • the feedback current values I rf, I sf, and I tf are subtracted from the phase current command values I rc, I sc, and I tc, respectively, to find the current deviations £ ⁇ , £ 5, and ⁇ 1 of each phase. ⁇ 5), multiply the register A r, As, and At for each phase constituting the integrator by the gain correction value kl obtained in step T2 to the set integration gain K1.
  • step T6 a value obtained by multiplying each of the current deviations £ r ⁇ s and ⁇ t for each phase is added to obtain an integral value (step T6).
  • step T6 the set proportional gain ⁇ 2 is multiplied by the gain correction value k 2 obtained in step T 2, and the value obtained by multiplying each of the phase feedback currents I rf, I sf, and I tf is integrated by the integral value (Ar , As, At), respectively, to obtain a PWM command (step T7), output this PWM command, and end the processing of the cycle.
  • this processing is sequentially repeated.
  • the current command value Ic was used to determine the gain, but an actual current value flowing through the motor may be used instead of this current command value.
  • FIGS. 11 and 12 show examples of experimental results comparing feed irregularities of a feed shaft in a machine tool according to the method of the present invention and a conventional method.
  • Fig. 11 shows the conventional method.
  • the proportional gain is also a value obtained by multiplying the calculated value by 06, and shows the unevenness of transmission when the motor is driven at a low speed of 10 rpm Indicates the time, and the vertical axis indicates the speed. If there is no transmission, the straight line shows the wavy speed due to the uneven transmission. Then, this transmission has a change of (SZIOOOCMrev or more).
  • FIG. 12 illustrates a second embodiment of the present invention, in which the integral gain K 1 is 1.3 times the calculated value (the gain can be increased at low speeds because the gain is switched), and the proportional gain is increased.
  • the motor K is driven at a low speed of l O rpm, with K 2 as 0.8 times the calculated value.
  • the non-uniformity of the transmission was calculated, and as shown in Fig. 12, it can be seen that the non-uniformity of the transmission was suppressed to about (1/100) rev.
  • the magnitude of the drive current is approximated by the function approximating the relation of the maximum current gain that does not cause oscillation.
  • the current loop gain is determined according to the actual current value.Thus, while maintaining the stability of the current loop when the maximum current flows, the speed loop processing is performed by increasing the gain at low current. Since it is executed, the bandwidth of the current loop and the speed loop can be extended, and uneven transmission at low speed rotation and vibration at stop can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

An approximate function is obtained for indicating the relationship between the magnitude of driving current and the maximum current loop gain which does not cause undesired oscillation. A gain correction value k(I) is obtained from this function corresponding to the magnitude of the command current Ic. A PWM command obtained by the usual current loop processes (1) and (2) is multiplied by the gain correction value k(I) to execute a PWM process for the provision of a corrected PWM command, and thus the PWM signals are obtained to drive a motor. In this way, the band shortage of the current and velocity loops is eliminated while oscillation is being suppressed.

Description

明 細 書  Specification
同期電動機の電流制御方法  Current control method for synchronous motor
技 術 分 野  Technical field
本発明は、 同期電動機の電流制御方法に関 し、 特に、 ソ フ ト ウ ェア制御 ( ディ ジタ ル制御 ) に よっ て P W M ( Pulse Width Modulation) 制御を行う 同期電動機の電 流制御方法に関する。  The present invention relates to a current control method for a synchronous motor, and more particularly, to a current control method for a synchronous motor that performs PWM (Pulse Width Modulation) control by software control (digital control).
背 景 技 術  Background technology
図 1 は、 従来から実行されてい ·る同期電動機の電流ル ーブのブロ ッ ク図である。 図中、 1は電流ループ処理の I P制御における積分器の項で、 K 1 は積分ゲイ ンであ る。 2は電流ループ処理の比例ゲイ ン K 2 の項で、 3は 該電流ループで求め られる P WM指令によって PWM信 号を作る項で伝達関数を 「 1 j と している。 また、 4は モー夕のコイ ルの伝達関数を表す項で、 Rはコイ ルの抵 抗、 Lはイ ンダク夕 ンスである。 なお、 sはラブラス演 算子である。 図 1 においては、 R相分の電流ループのブ ロ ヅ ク図のみを現してお り、 他の S相、 T相等も同一の 電流ループのブロ ヅ ク図である。  Figure 1 is a block diagram of the current loop of a synchronous motor that has been conventionally executed. In the figure, 1 is the integrator term in the IP control of the current loop processing, and K 1 is the integral gain. 2 is a term of the proportional gain K 2 in the current loop processing, 3 is a term for generating a PWM signal by a PWM command obtained in the current loop, and a transfer function is set to “1 j.” 4 is a mode. In the term representing the transfer function of the evening coil, R is the resistance of the coil, L is the inductance, and s is the Labrus operator. Only the block diagram of the loop is shown, and the other S phase, T phase, etc. are also the block diagram of the same current loop.
図 1の電流ループ処理では、 速度ループから出力され た電流指令 ( トルク指令) I c 値及び口一夕位置に基づ いて得られる R相に対する電流指令 I reと R相の帰還電 流 I rfか ら電流偏差を求め該電流偏差を積分し、 積分ゲ イ ン K 1 を乗 じた値 (項 1の処理) に、 R相の帰還電流 I rfに比例ゲイ ン K 2 を乗 じた値 (項 2の処理) を減じ て R相の P W M指令を求める。 そ して この P W M指令に よ り、 P W M信号を作成 し (項 3 の処理) 、 その P W M 信号によってィ ンバ一夕 を駆動 して R相の電流を制御す る。 なお、 他の S相、 T相の処理も同様である。 In the current loop processing shown in Fig. 1, the current command (torque command) I c output from the speed loop and the current command I re for the R phase obtained based on the mouth position and the feedback current I rf for the R phase The current deviation is calculated from this, the current deviation is integrated, and the value obtained by multiplying by the integral gain K 1 (the processing of item 1) is multiplied by the proportional gain K 2 by the R-phase feedback current I rf. (Processing of item 2) To find the R-phase PWM command. Then, a PWM signal is created by this PWM command (processing in section 3), and the inverter is driven by the PWM signal to control the R-phase current. The same applies to the processing of other S and T phases.
これら電流ループの積分ゲイ ン K 1 、 比例ゲイ ン K 2 の値は、 モー夕の諸定数すなわち巻線抵抗、 イ ンダク夕 ンス等の値か ら最適値が算出されるが、 実際にはモータ の構造、 特にその磁気回路の構造によって大き く 影響を 受けるので、 最適値と して算出された値を基準に して、 実際の機械によ り評価試験によって適宜修正を行って決 めている。  Optimum values of the integral gain K 1 and the proportional gain K 2 of these current loops are calculated from various parameters of the motor, that is, the values of the winding resistance, the inductance, etc. Is greatly influenced by the structure of the magnetic circuit, especially the structure of the magnetic circuit, and is determined by making appropriate corrections through evaluation tests with actual machines based on the value calculated as the optimum value. .
上記電流ループの積分ゲイ ン K 1 、 比例ゲイ ン K 2 の 値の修正に際 しては、 積分ゲイ ン K 1 、 比例ゲイ ン K 2 の値を電流ループが安定に保たれる範囲内で最大に上げ てお く こ とが、 この電流ループの特性を最大限に引き出 す意味で望ま しい。 そのためには、 電流ループの安定性 を最大電流時を基準に評価する必要がある。 それは、 一 般に大電流通電時には電機子反作用の発生によ り ステー タの齒部で磁気飽和が生 じィ ンダク夕 ンスが低下 して、 ハイ ゲイ ン状態 (ゲイ ンが高すぎる状態) とな り発振す るからである。  When modifying the values of the integral gain K 1 and the proportional gain K 2 in the above current loop, the values of the integral gain K 1 and the proportional gain K 2 must be adjusted within a range where the current loop is kept stable. It is desirable to increase it to the maximum in order to maximize the characteristics of this current loop. For this purpose, it is necessary to evaluate the stability of the current loop based on the maximum current. Generally, when a large current is applied, armature reaction occurs, magnetic saturation occurs at the teeth of the stator, and the inductance decreases. This is because there is considerable oscillation.
しか し、 最大電流通電時に発振を避けるために低めの ゲイ ン設定を行う と、 電流ループ自体が帯域不足とな り 速度ループゲイ ンも上げられない と いう不具合が生 じる, その結果、 速度ループが帯域不足とな り、 低速回転時の W / 7 However, if a low gain setting is made to avoid oscillations when the maximum current is applied, the current loop itself will have insufficient bandwidth and the speed loop gain will not be raised. Becomes insufficient band, W / 7
- 3 送 り む ら、 停止時の振動等が大き く なる等、 良好なサー ボ特性を発揮する こ とができな く なる。 このよ うな傾向 は、 磁束密度の高いモ一夕 ほど顕著となる。 -3 It becomes impossible to exhibit good servo characteristics, for example, the vibration during stoppage becomes large due to uneven feeding. This tendency becomes more pronounced as the magnetic flux density increases.
発 明 の 開 示  Disclosure of the invention
5 本発明の目的は、 上記従来例の不具合を解消 し、 発振 を抑える と共に、 帯域不足を解消する こ とができ る同期 電動機の電流制御方法を提供する こ と にある。  5 An object of the present invention is to provide a current control method for a synchronous motor that can solve the above-mentioned problems of the conventional example, suppress oscillation, and eliminate a shortage of band.
上記目的を達成するため、 本発明の一態様では、 P W M制御を行う同期電動機の電流制御方法において、 駆動 In order to achieve the above object, according to one embodiment of the present invention, there is provided a current control method for a synchronous motor that performs PWM control.
10 電流の大きさ に対する発振が生じない電流ループ最大ゲ イ ンの閱係を近似 した関数によ り、 電流指令値に対する 電流ループゲイ ンを求め、 該電流ループゲイ ンによって 電流ループ処理を行い P W M指令を求めて いる。 10 The current loop gain for the current command value is obtained by a function approximating the relationship between the current loop maximum gain that does not cause oscillation and the current magnitude, and the current loop processing is performed using the current loop gain to generate the PWM command. I'm asking.
また、 本発明の別の態様では、 P WM制御を行う同期 In another aspect of the present invention, a synchronous
15 電動機の電流制御方法において、 駆動電流め大きさに対 する発振が生 じない電流ループ最大ゲイ ンの関係を近似 した関数によ り、 電流指令値に対する電流ループゲイ ン の補正値を求め、 基準の電流ループゲイ ンによって電流 ループ処理を行い P W M指令を求め、 該 P WM指令に上15 In the motor current control method, a correction value of the current loop gain with respect to the current command value is obtained by a function that approximates the relationship between the drive current and the maximum gain of the current loop in which oscillation does not occur. Current loop processing is performed by the current loop gain to obtain the PWM command.
20 記補正値を乗 じて補正 P W M指令と して出力するよう に している。 Multiplied by the 20th correction value and output as a correction PWM command.
さ ら に本発明の別の態様では、 P W M制御を行う同期 電動機の電流制御方法において、 駆動電流の大きさ に対 する発振が生 じない電流ループの最大ゲイ ンの関係を近 25 似 した関数によ り、 電流指令値に対する電流ループの積 分ゲイ ンの補正値及び比例ゲイ ンの補正値を求め、 電流 ループでの処理では、 比例ゲイ ンを設定されて いる基準 ゲイ ンに上記比例ゲイ ンの補正値を乗 じた値と し、 積分 処理では、 基準積分ゲイ ン に上記積分ゲイ ンの補正値を 乗 じて値を積分ゲイ ン と し、 該積分ゲイ ンを電流偏差に 乗 じて得られる値を積算して積分値と して求めるよ う に している。 Further, in another aspect of the present invention, in a current control method for a synchronous motor that performs PWM control, a function similar to the relationship of the maximum gain of a current loop in which oscillation does not occur with respect to the magnitude of a drive current is used. The product of the current loop and the current command value The correction value of the minute gain and the correction value of the proportional gain are obtained, and in the processing in the current loop, the value obtained by multiplying the reference gain in which the proportional gain is set by the correction value of the proportional gain is obtained. In the integration processing, the value obtained by multiplying the reference integration gain by the correction value of the above integration gain is defined as an integration gain, and the value obtained by multiplying the integration gain by the current deviation is integrated to obtain an integration value. And ask for it.
なお、 好ま し く は、 速度ループ処理周期毎に求められ る当該速度ループ処理周期の電流指令値によって、 次の 速度ループ処理周期の電流ループ処理の電流ループゲイ ンの補正値、 ま たは積分ゲイ ンの補正値及び比例ゲイ ン の補正値を決定する。  Preferably, the correction value of the current loop gain of the current loop processing of the next speed loop processing cycle or the integration gain is determined by the current command value of the speed loop processing cycle obtained for each speed loop processing cycle. Determine the correction value of the gain and the correction value of the proportional gain.
ざら に好ま し く は、 電流指令値の代わ り に実鸳流値を 用いて、 駆動電流の大きさ に対する発振が生じない電流 ループ最大ゲイ ンの関係を近似 した閱数によ り、 実電流 値に対する電流ループゲイ ンを求め、 該電流ループゲイ ンによって電流ループ処理を行い P W M指令を求める。 以上のよう に、 本発明によれば、 駆動電流の大きさ に 対 し、 発振が生 じない最大のゲイ ンを近似 した関数によ つて、 電流指令値も し く は実電流に応じた電流ループの ゲイ ンが設定されて電流ループ処理が実行されるので、 発振は生ぜず、 かつゲイ ンがその時の電流指令値に対 し て最大の値を用 いるので、 帯域不足は生 じない。  More preferably, the actual current value is used in place of the current command value, and the actual current value is obtained by approximating the relationship between the magnitude of the drive current and the maximum gain of the current loop where no oscillation occurs with respect to the magnitude of the drive current. A current loop gain for the value is obtained, and a current loop process is performed by the current loop gain to obtain a PWM command. As described above, according to the present invention, the current according to the current command value or the actual current is determined by a function approximating the maximum gain at which oscillation does not occur with respect to the magnitude of the drive current. Since the loop gain is set and the current loop process is executed, no oscillation occurs, and the gain uses the maximum value for the current command value at that time, so that no band shortage occurs.
図 面 の 簡 単 な 説 明  Brief explanation of drawings
図 1 は従来の電流ループのブロ ッ ク図、 図 2 は本発明の第 1 の実施例によ る電流ループのプロ ヅ ク図、 Figure 1 shows a block diagram of a conventional current loop. FIG. 2 is a block diagram of a current loop according to the first embodiment of the present invention.
図 3 は本発明の第 2 の実施例によ る電流ループのブロ ヅ ク図、  FIG. 3 is a block diagram of a current loop according to a second embodiment of the present invention,
図 4 は電動機の駆動電流に対する最大 ト ルク を表す図. 図 5 は電動機の駆動電流に対する巻線ィ ンダク夕 ンス を表す図、  Fig. 4 shows the maximum torque with respect to the motor drive current. Fig. 5 shows the winding inductance with respect to the motor drive current.
図 6 は駆動電流に対する発振が生 じない電流ループの 最大ゲイ ンを表す図  Figure 6 shows the maximum gain of the current loop where no oscillation occurs for the drive current.
図 7 は図 6 の曲線を近似 した電流に対する電流ループ のゲイ ンの関数の例を示す図、  FIG. 7 is a diagram showing an example of a gain function of a current loop with respect to a current approximating the curve of FIG. 6,
図 8 は電流に対する最大電流ループゲイ ンの近似関数 の一例を示す図、  Figure 8 shows an example of the approximate function of the maximum current loop gain with respect to the current.
図 9 はディ ジタルサーボ回 ¾ ( ソフ ト ウェアサーボ回 路) のプロセ ッサが第 1 の実施例を実施す""る と きの電流 ループ処理周期における処理のフローチャー ト、 図 1 0 はディ ジタルサーボ回路 ( ソフ ト ウェアサーボ回路) のプロセ ッサが第 2 の実施例を実施する と きの電流ルー ブ処理周期における処理のフ ローチャー ト、 図 1 1 は 従来の電流ルーブ処理において電動機を低速 ( l O r p m ) で回転させた と きの送 り むら を見た実験結果の図、 及び、  Fig. 9 is a flow chart of the processing in the current loop processing cycle when the processor of the digital servo circuit (software servo circuit) implements the first embodiment. The flow chart of the processing in the current lube processing cycle when the processor of the digital servo circuit (software servo circuit) implements the second embodiment. (1 O rpm) Rotation at (l O rpm)
図 1 2 は本発明の第 2 の実施例において電動機を低速 ( 1 0 r p m ) で回転させた と きの送り む らを見た実験 結果の図である。 発 明 を 実施 す る た め の最良 の形態 FIG. 12 is a diagram of an experimental result in which feed unevenness is observed when the motor is rotated at a low speed (10 rpm) in the second embodiment of the present invention. Best mode for carrying out the invention
ステ一夕 における磁気飽和の様子を駆動電流に対する 最大 トルク及び駆動電流に対するィ ンダク夕 ンスの関係 を各曲線で表 してみる と、 その概略傾向は一般的に図 4 . 図 5 に示すよ う になる。 図 5 に示す電流値に対するイ ン ダク夕 ンスが正確に求まれば、 所定の計算式によって電 流ループの積分ゲイ ン K 1 、 比例ゲイ ン K 2 の最大値が 得られる害であるが、 実際には、 電流ループの安定性は ステップ入力に対する応答性を実測 して評価し、 これら のゲイ ンの値を決定する方法が一般的に多く採用されて いる。 、  The relationship between the maximum torque with respect to the drive current and the relationship between the inductance with respect to the drive current and the curve of the magnetic saturation during one stage is shown by the curves. The general trends are generally shown in Figs. become. If the inductance for the current value shown in Fig. 5 is accurately obtained, the maximum value of the integral gain K1 and the proportional gain K2 of the current loop can be obtained by a predetermined calculation formula. In practice, the method of measuring the stability of the current loop by actually measuring the response to a step input and determining these gain values is generally adopted. ,
各電流値において このよ うな測定を繰 り返し、 各電流 値に対 して発振が生 じない最大ゲイ ンの曲線を求める と, その概略傾向は図 6 に示すよ う になる。 そこで、 電流値 に対して この曲線で示されるゲイ ンになるよう に関数を 定め、 この閱数によって電流値に対 して発振が生 じない 最大ゲイ ンが得られ、 発振が生ぜず、 かつ帯域不足も生 じない電流ループの各ゲイ ンを得る こ とができる。  When such measurements are repeated at each current value and the maximum gain curve at which no oscillation occurs is obtained for each current value, the general tendency is as shown in Fig. 6. Therefore, a function is defined so that the current value becomes the gain indicated by this curve, and this function provides the maximum gain at which no oscillation occurs for the current value, and no oscillation occurs, and It is possible to obtain each gain of the current loop without causing band shortage.
しか し、 現実問題と しては、 関数の設定方法が簡単な こ とが要求されるので、 上記曲線に近似 した簡単な関数 を設定する こ とが望ま しい。 そこで、 この関数の一例と して、 本実施例では、 電流に対する最大ゲイ ン曲線を図 7 に示すよ う な簡易折れ線 (図 7 に示す折れ線自体は、 後述するよ う に、 ゲイ ンを切換えるための補正値と して の関数値 k ( I ) の値) によって近似した。 そ して、 本 発明の第 1の実施例は図 2のブロ ッ ク図に示すよ う に、 通常の電流ループ処理で求め られる PWM指令にゲイ ン 補正用関数値 k ( I ) を乗 じて、 発振が生 じない最大ゲ イ ンを得るよ う に した。 ま た、 図 3は本発明の第 2の実 施例で、 電流ループの積分ゲイ ン K 1 、 比例ゲイ ン K 2 にそれぞれゲイ ン補正用の関数値 k l(I)、 k2(I)を乗 じ て振動が発生 しない最大ゲイ ンを得るよう に した。 However, as a practical matter, it is required that the setting method of the function be simple. Therefore, it is desirable to set a simple function that approximates the above curve. Thus, as an example of this function, in the present embodiment, the maximum gain curve for the current is represented by a simple polygonal line as shown in FIG. 7 (the polygonal line itself shown in FIG. 7 switches the gain as described later). (The value of the function k (I)) as the correction value for). And the book In the first embodiment of the present invention, as shown in the block diagram of FIG. 2, oscillation is generated by multiplying a PWM command obtained by ordinary current loop processing by a function value k (I) for gain correction. Try to get the maximum gain that doesn't change. FIG. 3 shows a second embodiment of the present invention.Integral gain K 1 and proportional gain K 2 of the current loop are given gain correction function values kl (I) and k2 (I), respectively. The maximum gain that does not generate vibration when multiplied is obtained.
すなわち、 第 1の実施例における図 2において、 図 1 と比較 して相違する点は、 ゲイ ン補正用の関数 k ( I ) の 伝達関数 5が加わった点だけである。 そ して、 通常の電 流ループ処理から出力される PWM指令に対して、 電流 値の閱数であるゲイ ン補正用の関数 k (I) の値が乗じ ら れて得られる補正された PWM信号を得るよう に したも のである。  That is, FIG. 2 in the first embodiment is different from FIG. 1 only in that a transfer function 5 of a gain correction function k (I) is added. Then, the corrected PWM command obtained by multiplying the PWM command output from the normal current loop processing by the value of the function k (I) for gain correction, which is a fraction of the current value, is obtained. It is designed to obtain a signal.
—方、 図 3に示す第 2の実施例は、 図 1の従来例と比 較する とその項 1、 2 に対応する項 1 '、 2 ' が相違す る。 すなわち、 第 2実施例ではその積分ゲイ ンが K 1 · k 1 ( I )に、 また比例ゲイ ンが K 2 · k 2 ( I )に変更されて いる。 そ して、 この項 1 ' による積分処理は、 当該処理 周期における電流指令と帰還電流との電流偏差 £ にゲイ ン K 1 · k 1(1) ( この k l(I)は当該処理周期における電 流指令 I c に対応したゲイ ン補正値) を乗 じた値を積算 する こ と によって積分処理を行う よ う に している。 した がって、 指令電流 I c の変化によるゲイ ン補正用の関数 k (I) の変化の影響が、 積分値すべて に影饗せず、 サー ボ C P Uで処理する当該周期の電流偏差のみに影饗する よ う になつて いる。 すなわち、 その周期の電流偏差に対 応する分の影響 しかない。 —On the other hand, the second embodiment shown in FIG. 3 is different from the conventional example of FIG. 1 in terms 1 ′ and 2 ′ corresponding to the terms 1 and 2. That is, in the second embodiment, the integral gain is changed to K1 · k1 (I), and the proportional gain is changed to K2 · k2 (I). In addition, in the integration process according to the term 1 ′, the gain K 1 · k 1 (1) (where kl (I) is the current deviation in the process cycle) is obtained by adding the current deviation £ between the current command and the feedback current in the process cycle. The gain is multiplied by a gain correction value (corresponding to the flow command Ic), and the integration process is performed. Therefore, the effect of the change in the gain correction function k (I) due to the change in the command current I c does not affect all integrated values, and B) Only the current deviation of the cycle processed by the CPU is affected. That is, there is only an effect corresponding to the current deviation in that cycle.
これに対 して、 図 2 に示す第 1 の実施例では、 ゲイ ン 補正用の関数 k (I) の値の変化が積分器の積分値に影響 して しま う。 その結果、 図 2 の第 1 実施例では図 3 に示 す第 2 の実施例と比較 して電流指令の変化に対 し、 P W M指令の変化が大き く なる と いう差異がある。  On the other hand, in the first embodiment shown in FIG. 2, a change in the value of the gain correction function k (I) affects the integrated value of the integrator. As a result, in the first embodiment of FIG. 2, there is a difference that the change of the PWM command is larger than the change of the current command as compared with the second embodiment shown in FIG.
そ して、 本実施例では、 上記ゲイ ン補正用の関数 k U k 1(1), k 2(I)は、 k (I) = k 1(1)= k 2(1)と し、 図 7 に示すよ う に、 霪流指令 I c に対 して次の M係になるよ う に している (なお、 図 7 において、 I I 、 I 2 はゲイ ン切 り換えの電流値 ( I I < 1 2) であって、 設定値で ある) 。  In the present embodiment, the gain correction functions k U k 1 (1) and k 2 (I) are set as k (I) = k 1 (1) = k 2 (1), As shown in Fig. 7, the following M factor is applied to the flow command Ic (in Fig. 7, II and I2 are the current values of the gain switching ( II <1 2), which is the set value).
電流指令 I c が O I c < I 1 のと き、  When the current command I c is O I c <I 1,
k (I) = 1  k (I) = 1
電流指令 I c が I I i c < I 2 のと き、 k (I) = · ( I c- I 1) + 1  When the current command I c is I I i c <I 2, k (I) =
1 2- 1 1  1 2- 1 1
… ( 1 ) 電流指令 I c が 1 2 ≤ I c < I iax の と き、  … (1) When the current command I c is 1 2 ≤ I c <I iax,
k (I ) =  k (I) =
なお、 ctは、 0 < α ぐ 1 である。  Note that ct is 0 <α <1.
このよ う に、 ゲイ ン補正用の関数 k (I) 、 k 1(1), k 2(1)を設定する こ と によって、 電流ループの積分ゲイ ン、 比例ゲイ ンは、 小電流時を基準に して設定された K 1 、 K2 を基準と して、 図 7のゲイ ン補正用の関数を K 1 倍. K2 倍 したもの となる。 すなわち、 指令電流 I c が O I c く I 1 の と き には、 積分ゲイ ン、 比例ゲイ ンはそれ ぞれ K l 、 K 2 とな り、 指令電流 I c が 12 ≤ I c < I max では、 積分ゲイ ンは K 1 · α、 比例ゲイ ンは Κ 2 · αとなる。 ま た、 I 1 ≤ I c < I 2 では上記 1式で指令 電流値 I c の値で決ま る値 k (I) に設定値 K 1 , K 2 を 乗 じたものとなる。 In this way, by setting the functions k (I), k1 (1), and k2 (1) for gain correction, the integral gain of the current loop, The proportional gain is obtained by multiplying the gain correction function shown in Fig. 7 by K1 times. K2 based on K1 and K2 set based on the small current. That is, when the command current I c is OI c and I 1, the integral gain and the proportional gain are Kl and K 2, respectively, and the command current I c is 12 ≤ I c <I max Then, the integral gain is K 1 · α and the proportional gain is Κ 2 · α. When I 1 ≤ I c <I 2, the value k (I) determined by the value of the command current value I c in the above equation is multiplied by the set values K 1 and K 2.
また、 図 6で示す最大ゲイ ン曲線を図 7に示すような 折れ線で近似 した場合には、 このゲイ ン設定のために必 要となるパラメ 一夕値は、 基準となる小電流時の積分ゲ イ ン K 1 、 比例ゲイ ン K2 、 ゲイ ン切換の電流値 I I 、 12 、 ゲイ ンを減少させるパラメ ータ値 αの値だけです む。  In addition, when the maximum gain curve shown in FIG. 6 is approximated by a polygonal line as shown in FIG. 7, the parameter required for setting the gain is determined by the integral at a small current serving as a reference. Only the gain K 1, the proportional gain K 2, the gain switching current values II and 12, and the parameter value α that reduces the gain are required.
ゲイ ン切換の電流値に I I 、 12 は、 電動機を使用す る機械に応じてその値を選択設定する。 工作機械の軸送 り に使用されるサ一ボモー夕では、 一般に、 加工時、 す なわち、 低電流時に送 り の滑らかさが要求される。 一方, 大電流時は早送り加減速時が主である。 そのため、 加工 時に電流ループゲイ ンの切換が生 じる と加工精度に影響 する場合も考え られるので、 上記切換電流値 I I 、 12 はあま り低く 設定 しない方がよい。 一例と して、 I I は 最大電流の 5 0 %、 1 2 は最大電流の 7 5 %と して場合 の例を図 8に示す。 次に、 ディ ジタルサ一ボ回路 ( ソ フ ト ウェアサーボ回 路) のプロセ ッサが、 電流ループ処理周期毎に実施する 処理について述べる。 For the gain switching current values II and 12, select and set the values according to the machine that uses the motor. In general, a servomotor used for feeding a machine tool requires smooth feed during machining, that is, at low current. On the other hand, when the current is large, it is mainly during rapid traverse acceleration / deceleration. Therefore, if the switching of the current loop gain occurs during machining, the machining accuracy may be affected. Therefore, the switching current values II and 12 should not be set too low. Fig. 8 shows an example where II is 50% of the maximum current and 12 is 75% of the maximum current. Next, the processing performed by the processor of the digital servo circuit (software servo circuit) in each current loop processing cycle will be described.
図 9 は、 図 2 のブロ ッ ク図で示す第 1 の実施例を実施 する時のサーボ C P U (ディ ジタルサ一ボ回路のプロセ ッサ) が、 電流ループ処理周期毎実施する処理のフ ロー チヤ一 ト である。  FIG. 9 is a flow chart of a process executed by the servo CPU (a processor of a digital servo circuit) when executing the first embodiment shown in the block diagram of FIG. It is one.
ま ず、 速度ループ処理 によ っ て求め ら れた電流指令 ( トルク指令) I c を読み (ステップ S ) 、 該電流指 令 I c の大き さ よ り ゲイ ン補正値 kの値を求める (ステ ッブ S 2 ) 。 すなわち、 前述したよ う に、  First, the current command (torque command) Ic obtained by the speed loop processing is read (step S), and the value of the gain correction value k is obtained from the magnitude of the current command Ic ( Step S2). That is, as described above,
O I c < I l の と きは、  When O I c <I l,
k = 1、  k = 1,
I I ≤ I c < I 2 の と きは、  When I I ≤ I c <I 2,
1 — a  1 — a
k = - I 1) +  k =-I 1) +
1 2- 1 1  1 2- 1 1
I 2 ≤ I c < I max と きは、  When I 2 ≤ I c <I max,
k = α  k = α
とする。 And
次に、 各相の電流指令 I rc、 I sc、 I tcを求める と共 に、 各相帰還電流 I rf、 I sf、 I tfを読み取り (ステ ヅ ブ S 3、 S 4 ) 、 従来と同様に電流ループ処理を行い P W M指令を求める ( ステップ S 5 ) 。 そ して、 ステップ S 2で求めたゲイ ン補正値 k を求め られた P W M指令に 乗 じて補正 P W M指令を求め (ステ ップ S 6 ) 、 該補正 P W M指令を P W M回路に出力 して、 当該周期の処理を 終了する。 以下、 各周期毎この処理を繰 り返すこ と にな る。 Next, the current commands I rc, I sc, and I tc of each phase are obtained, and the feedback currents I rf, I sf, and I tf of each phase are read (steps S 3 and S 4). Then, a current loop process is performed to obtain a PWM command (step S5). Then, the corrected PWM command is obtained by multiplying the gain correction value k obtained in step S2 by the obtained PWM command (step S6). A PWM command is output to the PWM circuit, and the processing in the cycle ends. Hereinafter, this process is repeated for each cycle.
図 1 0 は図 3 に示す第 2の実施例におけるディ ジタル サ一ボ回路のプロセ ッサが実施する電流ループ毎の処理 のフ ロ ーチヤ一 ト である。  FIG. 10 is a flowchart of a process for each current loop performed by the processor of the digital servo circuit in the second embodiment shown in FIG.
第 1 の実施例と同様に、 速度ループ処理によって求め られた電流指令 ( トルク指令) I c を読み (ステ ップ T 1 ) 、 該電流指令 I c の大き さよ り ゲイ ン補正値 k l 、 k 2 の磕を求める (ステップ T 2 ) 。 なお、 k l = k 2 と して同一関数を使用 して もよ く、 また、 切換電流値 I 1 、 I 2 やゲイ ン減少パラメ 一夕値 αの値を変えて、 前 述したよ う に、 これらのゲイ ン補正値 k l 、 k 2 の値を 電流指令 I c の値よ り求める。  As in the first embodiment, the current command (torque command) Ic obtained by the speed loop processing is read (step T1), and the gain correction values kl and k are determined based on the magnitude of the current command Ic.磕 of 2 is obtained (step T 2). Note that the same function may be used as kl = k2, and the switching current values I 1 and I 2 and the value of the gain reduction parameter α may be changed as described above. Then, the values of these gain correction values kl and k2 are obtained from the value of the current command Ic.
次に、 各相の電流指令 I rc、 I s:、 I tcを求める と共 に、 各相帰還電流 I ri、 I sf、 I tfを読み取り (ステツ プ T 3、 Τ 4 ) 、 電流ループ処理を行い P WM指令を求 める。 すなわち、 各相電流指令値 I rc、 I sc、 I tcから それぞれ帰還電流値 I rf、 I sf, I tfを減じて各相の電 流偏差 £ Γ 、 £ 5 、 ε 1 を求め、 (ステップ Τ 5 ) 、 積 分器を構成する各相毎のレジスタ A r 、 A s 、 A t に、 設定された積分ゲイ ン K 1 にステ ップ T 2で求めたゲイ ン補正値 k l を乗 じ、 さ ら に各相毎に上記電流偏差 £ r ε s 、 ε t をそれぞれ乗 じた値を加算して積分値を求め る (ステ ップ T 6 ) 。 そ して、 設定された比例ゲイ ン Κ 2 にステ ップ T 2で求めたゲイ ン補正値 k 2 を乗 じ、 さ ら に、 それぞれ各相帰還電流 I rf、 I sf、 I tfを乗 じた 値を各相の積分値 ( Ar 、 As 、 At ) から、 それぞれ 減 じて P WM指令を求め ( ステップ T 7 ) 、 この PWM 指令を出力 して当該周期の処理を終了する。 以下この処 理を順次繰 り返す。 Next, the current commands I rc, I s:, I tc of each phase are obtained, and the feedback currents I ri, I sf, It f of each phase are read (steps T3, 34), and the current loop processing is performed. And obtain the PWM command. In other words, the feedback current values I rf, I sf, and I tf are subtracted from the phase current command values I rc, I sc, and I tc, respectively, to find the current deviations £ Γ, £ 5, and ε 1 of each phase. Τ5), multiply the register A r, As, and At for each phase constituting the integrator by the gain correction value kl obtained in step T2 to the set integration gain K1. Further, a value obtained by multiplying each of the current deviations £ rεs and εt for each phase is added to obtain an integral value (step T6). Then, the set proportional gain Κ 2 is multiplied by the gain correction value k 2 obtained in step T 2, and the value obtained by multiplying each of the phase feedback currents I rf, I sf, and I tf is integrated by the integral value (Ar , As, At), respectively, to obtain a PWM command (step T7), output this PWM command, and end the processing of the cycle. Hereinafter, this processing is sequentially repeated.
上記実施例では、 ゲイ ン決定する にあた り、 電流指令 値 I c を用いたが、 この電流指令値の代 り に、 モータ に 流れる実電流値を用 いても よ い。  In the above embodiment, the current command value Ic was used to determine the gain, but an actual current value flowing through the motor may be used instead of this current command value.
図 1 1及び図 1 2は本発明の方法と従来の方法による 工作機械における送り軸の送り む らを比較した実験結果 の例である。 図 1 1 は従来の方法による もので、 積分ゲ イ ン K 1 を、 モータの巻線抵抗、 巻線イ ンダク夕 ンス等 の緖定数から理論的に算出された計算値に 0. 9を乗 じ た値と し、 比例ゲイ ンも同様に計算値に 0 6 を乗 じた 値と して、 モ一夕 を l O r p mの低速で駆動 した時の送 り むら を示すもので、 横軸は時間、 縦軸は速度を表すも ので、 送 り む らがなければ、 直線で表されるものが、 送 り む らがあるために波打った速度となって いる。 そ して. この送 り む らは、 ( S Z l O O O CM r e v以上の変化 がある。  FIGS. 11 and 12 show examples of experimental results comparing feed irregularities of a feed shaft in a machine tool according to the method of the present invention and a conventional method. Fig. 11 shows the conventional method. Similarly, the proportional gain is also a value obtained by multiplying the calculated value by 06, and shows the unevenness of transmission when the motor is driven at a low speed of 10 rpm Indicates the time, and the vertical axis indicates the speed. If there is no transmission, the straight line shows the wavy speed due to the uneven transmission. Then, this transmission has a change of (SZIOOOCMrev or more).
' 図 1 2は本発明の第 2の実施例を実施 し、 積分ゲイ ン K 1 を計算値の 1. 3倍 ( ゲイ ンを切換えるので、 低速 時にはゲイ ンを大き く でき る ) 、 比例ゲイ ン K 2 を計算 値の 0. 8倍と して、 モ一夕 を l O r p mの低速で駆動 した時の送り む ら を求めたもので、 この図 1 2 に示すよ う に、 送 り む らは ( 1 / 1 0 0 0 0 ) r e v程度に抑え られて いる こ とが分かる。 'FIG. 12 illustrates a second embodiment of the present invention, in which the integral gain K 1 is 1.3 times the calculated value (the gain can be increased at low speeds because the gain is switched), and the proportional gain is increased. The motor K is driven at a low speed of l O rpm, with K 2 as 0.8 times the calculated value. The non-uniformity of the transmission was calculated, and as shown in Fig. 12, it can be seen that the non-uniformity of the transmission was suppressed to about (1/100) rev.
以上のよ う に、 本発明は、 駆動電流 (電流指令) の大 きさ に対 し、 発振が生 じない最大の電流ル一ブゲイ ンの 関係を近似 した関数に よって、 ¾ ¾L指令値も し く は実電 流値に応 じて電流ル一ブゲイ ンを決定したから、 最大電 流通電時の電流ループの安定性を保ちながら、 低電流時 にはゲイ ンを上げで速度ループ処理を実行するので、 電 流ループ、 速度ループの帯域を伸ばし、 低速回転時の送 り むら、 停止時の振動等を防止する こ とができる。  As described above, according to the present invention, the magnitude of the drive current (current command) is approximated by the function approximating the relation of the maximum current gain that does not cause oscillation. In other words, the current loop gain is determined according to the actual current value.Thus, while maintaining the stability of the current loop when the maximum current flows, the speed loop processing is performed by increasing the gain at low current. Since it is executed, the bandwidth of the current loop and the speed loop can be extended, and uneven transmission at low speed rotation and vibration at stop can be prevented.

Claims

請 求 の 範 囲 The scope of the claims
. P W Μ制御を行う 同期電動機の電流制御方法におい て、 駆動電流の値とその値で同期電動機を駆動する と き に発振を生 じさせない電流ループのゲイ ン最大値と の関係を予め求めておき、 In a current control method for a synchronous motor that performs PW Μ control, the relationship between the value of the drive current and the maximum value of the gain of the current loop that does not cause oscillation when the synchronous motor is driven with that value is determined in advance. Every
Figure imgf000016_0001
ルーブ処理を行う と きの電流ゲイ ンを、 電流指 令値ま たは帰還電流値を駆動電流に置き換えた と き に 上記の関係か ら得られる電流ループのゲイ ン最大値に 対応した値に決定 して、 電流ループ処理を行って、 Ρ
Electricity
Figure imgf000016_0001
The current gain when performing the lube process is changed to a value corresponding to the maximum value of the current loop gain obtained from the above relationship when the current command value or the feedback current value is replaced with the drive current.決定 決定 処理 電流 電流
W Μ指令を求めるよ に した、 同期電動機の電流制御 方法。 W ΜA method for controlling the current of a synchronous motor, in which a command is obtained.
P W Μ制御を行う 同期電動機の電流制御方法におい て、 駆動電流の大きさ に対する発振が生 じない電流ル ープ最大ゲイ ンの関係を近似 した関数によ り、 電流指 令値に対する電流ループゲイ ンを求め、 —該電流ル一ブ ゲイ ン によって電流ループ処理を行い P W M指令を求 める こ と を特徴とする同期電動機の電流制御方法。 速度ループ処理周期毎に求め られる電流指令値によ り、 次の速度ループ処理周期間における電流ルーブ処 理の電流ループゲィ ンを決定する請求の範囲第 1項ま たは第 2項に記載の同期電動機の電流制御方法。  In the current control method of a synchronous motor that performs PW Μ control, a function approximating the relationship between the magnitude of the drive current and the maximum gain of the current loop where oscillation does not occur is used as the current loop gain for the current command value. A current control method for a synchronous motor, characterized in that a current loop process is performed by the current loop gain to obtain a PWM command. The synchronous circuit according to claim 1 or 2, wherein a current loop gain of current lube processing during the next speed loop processing cycle is determined based on a current command value obtained for each speed loop processing cycle. Electric motor current control method.
P W Μ制御を行う 同期電動機の電流制御方法におい て、 駆動電流の大き さ に対する発振が生 じない電流ル ーブ最大ゲイ ンの関係を近似 した関数によ り、 電流指 令値に対する電流ループゲイ ンの補正値を求め、 基準 の電流ル一ブゲイ ン によって電流ループ処理を行い P W M指令を求め、 該 P W M指令に上記補正値を乗 じて 補正 P W M指令と して出力する こ とを特徴とする同期 電動機の電流制御方法。 In the current control method of a synchronous motor that performs PW Μ control, a function approximating the relationship between the magnitude of the drive current and the maximum gain of the current loop where oscillation does not occur is used as the current loop gain for the current command value. Find the correction value of A current control method for a synchronous motor, comprising: obtaining a PWM command by performing a current loop process by using a current loop gain of the present invention, multiplying the PWM command by the above correction value, and outputting as a corrected PWM command.
5 . 上記電流指令値に対する電流ループゲイ ンの補正値 を決定するのは、 速度ル一ブ処理周期毎に求め られる 当該速度ループ処理周期の電流指令値によって、 次の 速度ループ処理周期の電流ループ処理の電流ルーブゲ ィ ンの補正値を決定するよ う に している、 請求の範囲 第 4項に記載の同期電動機の電流制御方法。 5. The current loop gain correction value for the above current command value is determined based on the current command value of the speed loop processing cycle obtained in each speed loop processing cycle, and the current loop processing of the next speed loop processing cycle. The current control method for a synchronous motor according to claim 4, wherein the correction value of the current lube gain is determined.
6 . P W M制御を行う 同期電動機の電流制御方法におい て、 駆動電流の大きさ に対する発振が生 じない電流ル ーブの最大ゲイ ンの関係を近似 した閲数によ り、 電流 指令値に対する電流ループの積分ゲイ ンの補正値及び 比例ゲイ ンの補正値を求め、 電流ループでの処理では, 比例ゲイ ンを設定されて いる基準ゲイ ンに上記比例ゲ イ ンの補正値を乗 じた値と し、 積分処理では、 基準積 分ゲイ ンに上記積分ゲイ ンの補正値を乗 じて値を積分 ゲイ ン と し、 該積分ゲイ ンを電流偏差に乗じて得られ る値を積算 して積分値と して求める こ と を特徴とする 同期電動機の電流制御方法。  6. In the current control method of the synchronous motor that performs PWM control, the current with respect to the current command value is obtained by approximating the relationship between the drive current and the maximum gain of the current loop in which oscillation does not occur with the magnitude of the drive current. The correction value of the integral gain of the loop and the correction value of the proportional gain are obtained, and in the processing in the current loop, the value obtained by multiplying the reference gain for which the proportional gain is set by the correction value of the proportional gain is used. In the integration process, the value obtained by multiplying the reference integration gain by the correction value of the integration gain is set as an integration gain, and the value obtained by multiplying the integration gain by the current deviation is integrated. A current control method for a synchronous motor, characterized in that it is obtained as an integral value.
7 . 上記電流指令値に対する電流ループの積分ゲイ ンの 補正値及び比例ゲイ ンの補正値を決定するのは、 速度 ループ処理周期毎に求め られる当該速度ループ処理周 期の電流指令値によって、 次の速度ループ処理周期の 電流ループ処理の積分ゲイ ンの補正値及び比例ゲイ ン の補正値を決定する よ う に して いる、 請求の範囲第 6 項に記載の同期電動機の電流制御方法。 7. The correction value of the integral gain of the current loop and the correction value of the proportional gain with respect to the above current command value are determined based on the current command value of the speed loop processing cycle obtained for each speed loop processing cycle. Of the speed loop processing cycle 7. The current control method for a synchronous motor according to claim 6, wherein the correction value of the integral gain and the correction value of the proportional gain in the current loop processing are determined.
8 . 上記駆動電流の大きさ に対する発振が生 じない電流 ループの最大ゲイ ンの関係を近似 した関数とは、 駆動 電流をい く つかの領域に分割 しその各分割領域に対 し それぞれ直線式を与えたものからなる、 請求の範囲第 2項、 4項、 6項のいずれか 1 項に記載の同期電動機 の電流制御方法。  8. The function approximating the relationship of the maximum gain of the current loop where oscillation does not occur to the magnitude of the drive current is as follows: the drive current is divided into several regions, and each divided region has a linear equation. The current control method for a synchronous motor according to any one of claims 2, 4, and 6, comprising:
9 . 上記比例ゲイ ンの補正値と積分ゲイ ンの補正値と を 等 し く 決定する、 請求の範囲第 6項または 7項記載の 同期電動機の電流制御方法。  9. The current control method for a synchronous motor according to claim 6, wherein the correction value of the proportional gain and the correction value of the integral gain are determined equally.
1 0 . 上記霪流指令値に対する電流ループゲイ ンを求め その求めた電流ル一ブゲイ ンによって電流ループ処理 を行うのに代えて、 実電流値に対する電流ループゲイ ンを求めその求めた電流ループゲイ ンによって電流ル ーブ処理を行う よ う に した、 請求の範囲第 2項、 4項. 6項のいずれか 1 項に記載の同期電動機の電流制御方 法。  10. Instead of calculating the current loop gain for the above-mentioned current flow command value and performing the current loop processing by the obtained current loop gain, the current loop gain for the actual current value is calculated and the current loop gain is calculated by the obtained current loop gain. 7. The current control method for a synchronous motor according to any one of claims 2, 4, and 6, wherein a loop process is performed.
PCT/JP1994/000751 1993-05-18 1994-05-09 Method for controlling current for synchronous motor WO1994027360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5138980A JPH06335279A (en) 1993-05-18 1993-05-18 Synchronous motor current control method
JP5/138980 1993-05-18

Publications (1)

Publication Number Publication Date
WO1994027360A1 true WO1994027360A1 (en) 1994-11-24

Family

ID=15234669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000751 WO1994027360A1 (en) 1993-05-18 1994-05-09 Method for controlling current for synchronous motor

Country Status (2)

Country Link
JP (1) JPH06335279A (en)
WO (1) WO1994027360A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611738B2 (en) * 1999-03-12 2005-01-19 株式会社三協精機製作所 Current control device
JP3505424B2 (en) * 1999-03-12 2004-03-08 株式会社三協精機製作所 Current control device
JP3710328B2 (en) * 1999-06-16 2005-10-26 光洋精工株式会社 Motor control device
JP2011254700A (en) * 2011-09-22 2011-12-15 Panasonic Corp Control apparatus with motor controller
CN103281027B (en) * 2013-06-09 2016-01-20 中南大学 Frequency converting air-conditioner compressor starts and low-frequency torque compensation method
JP6106226B2 (en) * 2015-07-31 2017-03-29 ファナック株式会社 Machine learning device for learning gain optimization, motor control device including machine learning device, and machine learning method
JP6790760B2 (en) * 2016-11-24 2020-11-25 日産自動車株式会社 Variable flux motor current control method and current control device
JP7100971B2 (en) * 2017-11-20 2022-07-14 ファナック株式会社 Motor drive with current detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215038B2 (en) * 1979-12-10 1987-04-06 Fuji Electric Co Ltd
JPS63136992A (en) * 1986-11-28 1988-06-09 Toshiba Corp Speed controller for motor
JPH01103184A (en) * 1987-10-14 1989-04-20 Fanuc Ltd Control system for servo motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215038B2 (en) * 1979-12-10 1987-04-06 Fuji Electric Co Ltd
JPS63136992A (en) * 1986-11-28 1988-06-09 Toshiba Corp Speed controller for motor
JPH01103184A (en) * 1987-10-14 1989-04-20 Fanuc Ltd Control system for servo motor

Also Published As

Publication number Publication date
JPH06335279A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
US5410234A (en) Motor drive control apparatus
JP3164580B2 (en) Digital servo controller
US7863853B2 (en) Electric motor control device
US5196778A (en) Control apparatus suitable for use in induction motor
JP2002330600A (en) Control system for induction motor drive with no speed sensor, observer, and control method
JPS6331492A (en) Controller for induction motor
WO1994027360A1 (en) Method for controlling current for synchronous motor
JP2948887B2 (en) Motor speed control device
JPH01103184A (en) Control system for servo motor
JPH0993999A (en) Current control method for servomotor
US20060186851A1 (en) Method and system for limiting the current output by a speed controller operating according to a U/F control law
US5691614A (en) Servo system adjusting method and servo control system
JPH0923700A (en) Servo motor current control
JPH04304183A (en) Vector controller for induction motor
JP3468123B2 (en) Servo motor controller
JP2734095B2 (en) Motor control device
JPH07284286A (en) Torque ripple compensation system of servo motor
JP2003333900A (en) Controller for synchronous motor
JPH07327382A (en) Control system for ac motor
JP4839552B2 (en) Induction motor control method
JPH09272663A (en) Drive controller for elevator
JP3236607B2 (en) Digital servo controller
JPS63316687A (en) Vector controlling arithmetic device for induction motor
Krasovsky et al. Average Torque Control of the Switched Reluctance Motor in High Speed Zone
JPH07231700A (en) Variable-speed driver of induction motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US VN

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 362533

Date of ref document: 19950104

Kind code of ref document: A

Format of ref document f/p: F