JPH07231700A - Variable-speed driver of induction motor - Google Patents

Variable-speed driver of induction motor

Info

Publication number
JPH07231700A
JPH07231700A JP6021668A JP2166894A JPH07231700A JP H07231700 A JPH07231700 A JP H07231700A JP 6021668 A JP6021668 A JP 6021668A JP 2166894 A JP2166894 A JP 2166894A JP H07231700 A JPH07231700 A JP H07231700A
Authority
JP
Japan
Prior art keywords
magnetic flux
command
induction motor
correction coefficient
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021668A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6021668A priority Critical patent/JPH07231700A/en
Publication of JPH07231700A publication Critical patent/JPH07231700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To shorten the operation time required for performing the correction of exciting inductance by a digital operation by operating the correction with two multipliers, one of which corrects the component corresponding to the exciting inductance by multiplying it by the reciprocal of the correction factor of a correction factor generator and the other which corrects magnetic flux command output by multiplying it by the reciprocal of correction factor. CONSTITUTION:As the operations equivalent to a multiplier 15A and a multiplier 15B, this driver multiplies a magnetic flux command phi2/M and a magnetic flux estimate (phi2/M)' of one sample before by correction factor 1/KM each. Next, as the operation equivalent to a magnetic flux feedback controller 12, this performs the corrective operation according to the deviation between the magnetic flux command phi2/M determined before and the magnetic flux estimate (phi2/M)'. Lastly, as the operation equivalent to a magnetic flux operation mode 11A, the present magnetic flux estimate (phi2/M)' is found, using a present excitation current command i0, constants DELTAT, M, and R2, a magnetic flux estimate (phi2/M)Z<-1>, and a correction factor 1/KM. Hereby, the correction can be made with two times of multiplication, so the operation time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機の可変速駆
動装置に係り、特に誘導電動機の定出力範囲でのベクト
ル制御のための励磁電流指令をディジタル演算で得る可
変速駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable speed driving device for an induction motor, and more particularly to a variable speed driving device for obtaining an exciting current command for vector control in a constant output range of the induction motor by digital calculation.

【0002】[0002]

【従来の技術】誘導電動機の可変速駆動装置には、現在
ではベクトル制御方式が広く用いられている。ベクトル
制御では、図3の定トルク範囲では二次鎖交磁束成分を
一定とするように制御することにより、トルク電流と出
力トルクとを線形に制御可能とする。
2. Description of the Related Art At present, a vector control system is widely used for a variable speed drive device of an induction motor. In the vector control, the torque current and the output torque can be linearly controlled by controlling the secondary interlinkage magnetic flux component to be constant in the constant torque range of FIG.

【0003】回転数の高い領域になる定出力範囲では汎
用のV/f一定制御とは異なり、磁束を制御するための
励磁軸電流指令値の制御演算を行うようにしている。
Unlike the general-purpose V / f constant control, in the constant output range where the rotation speed is high, a control calculation of the excitation axis current command value for controlling the magnetic flux is performed.

【0004】図4は、定出力範囲を考慮した場合のベク
トル制御系のブロック図である。直交する成分としての
励磁電流指令i0とトルク電流指令iTは、それぞれの軸
電流検出値をフィードバック信号とする電流制御アンプ
1、2による演算を行い、この演算結果を回転座標変換
部3によって2相/3相の変換を行い、PWM電力変換
器4によってパルス幅変調した出力を得て誘導電動機5
を駆動する。
FIG. 4 is a block diagram of a vector control system when the constant output range is taken into consideration. The exciting current command i 0 and the torque current command i T , which are orthogonal components, are calculated by the current control amplifiers 1 and 2 using the respective detected values of the axis current as feedback signals, and the calculation result is calculated by the rotary coordinate conversion unit 3. The two-phase / three-phase conversion is performed, and the PWM power converter 4 obtains the pulse width-modulated output to obtain the induction motor 5
To drive.

【0005】誘導電動機5の励磁電流及びトルク電流の
検出は、誘導電動機5の入力電流検出信号から逆回転座
標変換部6による3相/2相変換によって行われる。
The exciting current and the torque current of the induction motor 5 are detected by the three-phase / two-phase conversion by the reverse rotation coordinate conversion unit 6 from the input current detection signal of the induction motor 5.

【0006】これら回転座標変換部3及び逆回転座標変
換部6の演算に必要な回転位相角θは、すべり周波数演
算部7によるすべり周波数ωslipを求め、このすべり周
波数に誘導電動機5のロータ回転速度ωrを加算して出
力角周波数ω1を求め、これを積分演算部8で積分演算
することにより求める。
For the rotational phase angle θ required for the calculation of the rotational coordinate conversion unit 3 and the inverse rotational coordinate conversion unit 6, the slip frequency ω slip is calculated by the slip frequency calculation unit 7, and the rotor rotation of the induction motor 5 is set to this slip frequency. The output angular frequency ω 1 is calculated by adding the speed ω r , and the output angular frequency ω 1 is calculated by the integral calculation unit 8.

【0007】この構成において、定出力範囲の運転に
は、励磁電流指令i0が電動機5の出力軸の回転速度ωr
に反比例の関係を保つよう、励磁電流指令i0を磁束指
令部9によって磁束指令として調節している。
In this configuration, in the operation in the constant output range, the exciting current command i 0 is the rotational speed ω r of the output shaft of the electric motor 5.
The exciting current command i 0 is adjusted as a magnetic flux command by the magnetic flux commanding section 9 so as to maintain an inversely proportional relationship with.

【0008】この励磁電流指令i0の調節において、誘
導電動機5の2次磁束φ2を励磁インダクタンスMで除
したものを用いると都合が良いため、磁束指令部9は、
磁束演算部9Aによって回転速度ωrに応じたφ2/Mの
パターンデータ又は演算結果を励磁電流指令として発生
する。
In adjusting the exciting current command i 0 , it is convenient to use a secondary magnetic flux φ 2 of the induction motor 5 divided by the exciting inductance M. Therefore, the magnetic flux command section 9
The magnetic flux calculator 9A generates the pattern data of φ 2 / M or the calculation result corresponding to the rotation speed ω r as an exciting current command.

【0009】また、励磁電流に対して磁束は一次遅れで
追従するため、磁束の応答性を改善するため、磁束指令
の微分成分を微分演算部9Bで求めてフィードフォワー
ドとして磁束指令に重畳させる。
Further, since the magnetic flux follows the exciting current with a first-order lag, in order to improve the responsiveness of the magnetic flux, the differential component of the magnetic flux command is obtained by the differential operation section 9B and superposed on the magnetic flux command as feedforward.

【0010】トルク電流指令iTは、図示省略する速度
制御系やトルク制御系によって得られるが、励磁電流指
令との比率を合わせるために、割算器10によて割り算
を行う。
The torque current command i T is obtained by a speed control system or torque control system (not shown), but division is performed by the divider 10 in order to match the ratio with the excitation current command.

【0011】[0011]

【発明が解決しようとする課題】磁束指令部9は、図5
に波形図も示すように、微分演算部9Bによって磁束指
令の微分を行うため、回転速度ωrの変化が急であると
磁束指令の微分成分の値も大きくなる。
The magnetic flux command section 9 shown in FIG.
As shown in the waveform diagram, since the magnetic flux command is differentiated by the differential calculation unit 9B, the value of the differential component of the magnetic flux command increases when the rotation speed ω r changes rapidly.

【0012】しかし、電流の出力限界があるため、磁束
指令部9や電流制御アンプ1等に設けられる電流制限リ
ミッタで励磁電流制限がかかった場合には、回転速度変
化に応じた励磁電流指令i0通りの出力が得られなくな
る。このとき、すべり周波数演算部7ですべり演算に用
いた二次磁束φ2と実際の二次磁束にずれが生じ、ベク
トル制御条件から外れてトルク誤差や不安定制御を起こ
してしまう。
However, since there is a current output limit, when the exciting current limit is applied by the current limiting limiter provided in the magnetic flux command section 9 or the current control amplifier 1, etc., the exciting current command i corresponding to the change in the rotation speed is applied. You cannot get 0 outputs. At this time, the slip frequency calculation unit 7 causes a deviation between the secondary magnetic flux φ 2 used for slip calculation and the actual secondary magnetic flux, which deviates from the vector control condition and causes a torque error or unstable control.

【0013】この対策として、図6に示すように、微分
のフィードフォワードに代えて、励磁電流指令より磁束
を推定演算する磁束演算モデル11と、この磁束演算モ
デル11の磁束推定値(φ2/M)’が指令φ2/Mと一
致するようフィードバックする磁束制御部12を設ける
ことがある。13は励磁電流制限リミッタである。
As a countermeasure against this, as shown in FIG. 6, a magnetic flux calculation model 11 for estimating and calculating a magnetic flux from an exciting current command instead of the differential feedforward, and a magnetic flux estimation value (φ 2 / A magnetic flux control unit 12 may be provided to feed back so that M) ′ coincides with the command φ 2 / M. Reference numeral 13 is an exciting current limiting limiter.

【0014】この場合には、励磁電流指令がリミッタ1
3で制限されるも、実磁束と同等の指令が推定可能とな
る。
In this case, the exciting current command is the limiter 1
Although limited by 3, a command equivalent to the actual magnetic flux can be estimated.

【0015】ここで、磁束の変化により励磁インダクタ
ンスMの値が変動するため、図7に示すように、励磁イ
ンダクタンス補正係数KMをテーブルデータ等として持
つ補正係数発生部14を設け、励磁インダクタンスMに
関係する部分を補正する。
Here, since the value of the exciting inductance M fluctuates due to the change of the magnetic flux, as shown in FIG. 7, the correcting coefficient generating section 14 having the exciting inductance correcting coefficient K M as table data is provided, and the exciting inductance M is set. Correct the part related to.

【0016】この補正は、割算器15と乗算器16及び
磁束モデル11の演算係数として割り算または掛け算で
行われる。
This correction is performed by division or multiplication as the operation coefficient of the divider 15, the multiplier 16, and the magnetic flux model 11.

【0017】以上までのことから、磁束演算モデルによ
って推定する磁束推定値で磁束指令をフィードバック制
御し、このうちの励磁インダクタンスMの補正を行う方
式では、補正が3カ所で必要となり、その補正演算も乗
算と割り算が混在する。
From the above, in the method in which the magnetic flux command is feedback-controlled by the estimated magnetic flux value estimated by the magnetic flux calculation model, and the exciting inductance M is corrected, the correction is required at three places. Also mixes multiplication and division.

【0018】このため、制御装置の各部演算・制御を高
精度にするためマイクロ・プロセッサ等で行うディジタ
ル制御装置とする場合には、割り算が乗算に比べて演算
時間が長くなり、ベクトル制御の応答性を確保できなく
なる場合がある。
For this reason, in the case of a digital control device in which a microprocessor or the like is used for highly accurate calculation and control of each part of the control device, the calculation time for division is longer than that for multiplication, and the response of the vector control is increased. In some cases, it may not be possible to secure the sex.

【0019】本発明の目的は、励磁インダクタンスの補
正をディジタル演算で行うのに演算時間を短縮した誘導
電動機の可変速駆動装置を提供することにある。
An object of the present invention is to provide a variable speed drive device for an induction motor, which shortens the calculation time for digitally correcting the excitation inductance.

【0020】[0020]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、誘導電動機を定出力範囲でベクトル制御
する可変速駆動装置において、誘導電動機の回転速度に
応じて誘導電動機の二次磁束φ2と励磁インダクタンス
Mの比φ2/Mの磁束パターンを磁束指令として発生す
る磁束演算部と、二次磁束φ2の変動による励磁インダ
クタンスMの変動を補正する補正係数KMをその逆数1
/KMとして誘導電動機の回転速度に応じて発生する補
正係数発生部と、励磁電流指令i0に対する二次磁束φ2
の一次遅れゲインを励磁電流指令のサンプリング周期Δ
Tと二次抵抗R2及び励磁インダクタンスMの比ΔT/
(M/R2)で近似して磁束推定値(φ2/M)’を得る
離散値系の磁束演算モデルと、前記磁束演算モデルで求
める磁束推定値(φ2/M)’に前記補正係数発生部の
補正係数1/KMを乗算して励磁インダクタンスM分を
補正する第1の乗算部と、前記磁束演算部の磁束指令出
力に前記補正係数発生部の補正係数1/KMを乗算して
励磁インダクタンスM分を補正する第2の乗算部と、前
記磁束演算モデルの磁束推定値と前記磁束演算部の磁束
指令値との偏差に応じて前記第2の乗算部の出力に加算
補正する磁束フィードバック制御部と、前記加算補正し
た値を電流制限して前記励磁電流指令とするリミッタ部
と、を備えたことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a secondary speed control of an induction motor in a variable speed drive device for vector-controlling an induction motor in a constant output range. A magnetic flux calculation unit that generates a magnetic flux pattern of a ratio φ 2 / M of the magnetic flux φ 2 and the exciting inductance M as a magnetic flux command, and a correction coefficient K M that corrects the change of the exciting inductance M due to the change of the secondary magnetic flux φ 2 is the reciprocal thereof. 1
/ K M as a correction coefficient generator that is generated according to the rotation speed of the induction motor, and a secondary magnetic flux φ 2 for the exciting current command i 0 .
Sampling cycle of exciting current command Δ
Ratio of T to secondary resistance R 2 and exciting inductance M ΔT /
'And the discrete values based flux calculation model to obtain, the flux estimation value obtained by the magnetic flux calculation model (φ 2 / M)' flux estimate is approximated by (M / R 2) (φ 2 / M) the correction A first multiplication unit that multiplies the correction coefficient 1 / K M of the coefficient generation unit to correct the excitation inductance M, and the correction coefficient 1 / K M of the correction coefficient generation unit to the magnetic flux command output of the magnetic flux calculation unit. A second multiplication unit that multiplies and corrects the excitation inductance M, and adds to the output of the second multiplication unit according to the deviation between the magnetic flux estimation value of the magnetic flux calculation model and the magnetic flux command value of the magnetic flux calculation unit. A magnetic flux feedback control unit for correction, and a limiter unit for limiting the current of the added and corrected value to the excitation current command are provided.

【0021】[0021]

【作用】図7の磁束演算モデル11を離散値系(サンプ
リング周期ΔT)で表すと図8に11Aで示すブロック
に置き換えることができる。ここで、Z-1のブロックは
1サンプル前の磁束推定演算結果(φ2/M)Z-1であ
る。
When the magnetic flux calculation model 11 of FIG. 7 is represented by a discrete value system (sampling period ΔT), it can be replaced with the block shown by 11A in FIG. Here, the block of Z −1 is the magnetic flux estimation calculation result (φ 2 / M) Z −1 one sample before.

【0022】この置換ブロック11Aを図7の相当部分
に置換した結果は図9に示すようになる。このときの補
正係数KMによる補正のための演算量は依然として多
い。
The result of replacing the replacement block 11A with the corresponding portion of FIG. 7 is as shown in FIG. The amount of calculation for the correction by the correction coefficient K M at this time is still large.

【0023】ここで、一般の誘導電動機では磁束演算モ
デル11Aの係数部には(M/R2)≫ΔTの関係が成
立するため、磁束演算モデル11Aを図10の(a)の
ように近似することができ、さらに同図の(b)のよう
に1つの割算器に減じた演算ブロック構成に変形でき
る。
Here, in a general induction motor, the relationship of (M / R 2 ) >> ΔT is established in the coefficient part of the magnetic flux calculation model 11A, so the magnetic flux calculation model 11A is approximated as shown in FIG. 10 (a). Further, it is possible to transform into an arithmetic block configuration in which one divider is reduced as shown in FIG.

【0024】この変形した磁束演算モデルを図9に適用
するに際し、補正係数KMに代えてその逆数1/KMを用
いると、各割算の部分を乗算に変更した図1のようにな
り、1/KMの補正に2カ所の乗算のみで済ませること
ができる。
In applying this modified magnetic flux calculation model to FIG. 9, if the reciprocal 1 / K M is used instead of the correction coefficient K M , it becomes as shown in FIG. 1 in which each division part is changed to multiplication. , 1 / K M can be corrected by only multiplying at two places.

【0025】したがって、本発明では、補正係数発生部
14Aは補正係数KMの逆数1/KMを発生し、磁束演算
モデル11AはΔT/(M/R2)で近似して磁束推定
値(φ2/M)’を得る構成とし、2カ所の乗算器15
Aと15Bによる乗算によって励磁インダクタンスMの
補正演算ができるようにする。
[0025] Therefore, in the present invention, the correction coefficient generating unit 14A generates the inverse 1 / K M of the correction coefficient K M, the magnetic flux calculation model 11A magnetic flux estimation value is approximated by ΔT / (M / R 2) ( φ 2 / M) ′ is obtained, and the multipliers 15 at two locations are used.
A correction calculation of the exciting inductance M is made possible by multiplication by A and 15B.

【0026】[0026]

【実施例】図2は、本発明の一実施例を示すフローチャ
ートであり、励磁電流指令をマイクロ・プロセッサによ
るディジタル演算で得る部分のみを示す。
FIG. 2 is a flow chart showing an embodiment of the present invention, and shows only a portion for obtaining an exciting current command by digital calculation by a microprocessor.

【0027】プロセッサは、励磁電流指令の演算のため
のサンプリング周期ΔTの時刻になるとき(ステップS
1)、磁束指令部9Aの演算として、誘導電動機5の回
転速度ωrの検出値に応じた磁束指令φ2/Mのデータを
テーブルデータ等から読み出し(ステップS2)、さら
に補正係数発生部14Aの演算として、検出される回転
速度ωrに応じた補正係数1/KMのデータを読み出す
(ステップS3)。
When the processor reaches the time of the sampling period ΔT for calculating the exciting current command (step S
1) As the calculation of the magnetic flux command unit 9A, the data of the magnetic flux command φ 2 / M corresponding to the detected value of the rotation speed ω r of the induction motor 5 is read from the table data or the like (step S2), and the correction coefficient generation unit 14A is also used. As the calculation of, the data of the correction coefficient 1 / K M corresponding to the detected rotation speed ω r is read (step S3).

【0028】次に、乗算器15A及び乗算器15Bに相
当する演算として、磁束指令φ2/M及び1サンプル前
の磁束推定値(φ2/M)’にそれぞれ補正係数1/KM
を乗算する(ステップS4)。
Next, as an operation corresponding to the multiplier 15A and the multiplier 15B, the magnetic flux command φ 2 / M and the magnetic flux estimated value (φ 2 / M) 'one sample before are respectively corrected by the correction coefficient 1 / K M.
Is multiplied by (step S4).

【0029】次に、磁束フィードバック制御部12に相
当する演算として、ステップS2で求めた磁束指令φ2
/Mと、ステップS4で求めた磁束推定値(φ2
M)’との偏差に応じた補正演算を行う(ステップS
5)。
Next, as a calculation corresponding to the magnetic flux feedback control unit 12, the magnetic flux command φ 2 obtained in step S2.
/ M and the estimated magnetic flux value (φ 2 /
M) 'and the correction calculation according to the deviation (step S
5).

【0030】次に、電流制限リミッタ13に相当する演
算として、ステップS4で求めた値にステップS5で求
めた値を加算し、この加算値にリミッタ処理を行って励
磁電流指令i0として出力する(ステップS6)。
Next, as an operation corresponding to the current limiter 13, the value obtained in step S4 is added to the value obtained in step S4, and the added value is subjected to limiter processing and output as an exciting current command i 0 . (Step S6).

【0031】最後に、磁束演算モデル11Aに相当する
演算として、現在の励磁電流指令i 0や定数ΔT、M、
2、1サンプル前の磁束推定値(φ2/M)Z-1、補正
係数1/KMを使って現在の磁束推定値(φ2/M)’を
求める(ステップS7)。
Finally, it corresponds to the magnetic flux calculation model 11A.
As the calculation, the current exciting current command i 0And constants ΔT, M,
R2Magnetic flux estimation value (φ2/ M) Z-1,correction
Coefficient 1 / KMCurrent flux estimate (φ2/ M) ’
Obtained (step S7).

【0032】したがって、励磁インダクタンスを補正し
た励磁電流指令を得るのに、励磁インダクタンスMの補
正に割り算の演算を不要にし、2回の乗算で補正でき、
演算時間を短縮できる。
Therefore, in order to obtain the exciting current command in which the exciting inductance is corrected, the calculation of the dividing of the exciting inductance M is not required, and it can be corrected by multiplying twice.
The calculation time can be shortened.

【0033】[0033]

【発明の効果】以上のとおり、本発明によれば、誘導電
動機を定出力範囲でベクトル制御するための励磁電流指
令を磁束演算モデルを利用しかつ励磁インダクタンスを
補正した演算で得るのに、励磁インダクタンスMの変動
を補正する補正係数KMをその逆数1/KMとし、磁束演
算モデルには励磁電流指令i0に対する二次磁束φ2の一
次遅れゲインを励磁電流指令のサンプリング周期ΔTと
二次抵抗R2及び励磁インダクタンスMの比ΔT/(M
/R2)で近似して磁束推定値(φ2/M)’を得るよう
にしたため、励磁インダクタンスの補正に2つの乗算の
みで済み、プロセッサ等によるディジタル演算処理の演
算時間を短縮できる効果がある。
As described above, according to the present invention, the excitation current command for vector-controlling the induction motor in the constant output range can be obtained by the calculation using the magnetic flux calculation model and the excitation inductance corrected. The correction coefficient K M for correcting the fluctuation of the inductance M is set to its reciprocal 1 / K M, and in the magnetic flux calculation model, the first-order lag gain of the secondary magnetic flux φ 2 with respect to the exciting current command i 0 and the sampling cycle ΔT of the exciting current command are used. Ratio of secondary resistance R 2 and exciting inductance M ΔT / (M
/ R 2 ) is used to obtain the estimated magnetic flux value (φ 2 / M) ', so that only two multiplications are required to correct the exciting inductance, and the calculation time of digital calculation processing by a processor or the like can be shortened. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクレーム対応図。FIG. 1 is a diagram corresponding to a claim of the present invention.

【図2】本発明の一実施例を示すフローチャート。FIG. 2 is a flowchart showing an embodiment of the present invention.

【図3】誘導電動機の定トルク運転、定出力運転特性。FIG. 3 shows constant torque operation and constant output operation characteristics of the induction motor.

【図4】定出力運転範囲を持つ従来のベクトル制御系の
ブロック図。
FIG. 4 is a block diagram of a conventional vector control system having a constant output operation range.

【図5】従来の磁束指令部の説明図。FIG. 5 is an explanatory diagram of a conventional magnetic flux command section.

【図6】磁束演算モデルによる構成例。FIG. 6 shows an example of a configuration based on a magnetic flux calculation model.

【図7】励磁インダクタンスMの補正例。FIG. 7 shows an example of correcting the excitation inductance M.

【図8】磁束演算モデルの置換。FIG. 8: Replacement of magnetic flux calculation model.

【図9】磁束演算モデルを置換した図。FIG. 9 is a diagram in which a magnetic flux calculation model is replaced.

【図10】磁束演算モデルの変形。FIG. 10 is a modification of the magnetic flux calculation model.

【符号の説明】[Explanation of symbols]

9A…磁束演算部 11A…磁束演算モデル 12…磁束フィードバック制御系 13…電流制限リミッタ 14A…補正係数発生部 15A、15B…乗算器 9A ... Flux calculation unit 11A ... Flux calculation model 12 ... Flux feedback control system 13 ... Current limiter 14A ... Correction coefficient generation unit 15A, 15B ... Multiplier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機を定出力範囲でベクトル制御
する可変速駆動装置において、 誘導電動機の回転速度に応じて誘導電動機の二次磁束φ
2と励磁インダクタンスMの比φ2/Mの磁束パターンを
磁束指令として発生する磁束演算部と、 二次磁束φ2の変動による励磁インダクタンスMの変動
を補正する補正係数KMをその逆数1/KMとして誘導電
動機の回転速度に応じて発生する補正係数発生部と、 励磁電流指令i0に対する二次磁束φ2の一次遅れゲイン
を励磁電流指令のサンプリング周期ΔTと二次抵抗R2
及び励磁インダクタンスMの比ΔT/(M/R2)で近
似して磁束推定値(φ2/M)’を得る離散値系の磁束
演算モデルと、 前記磁束演算モデルで求める磁束推定値(φ2/M)’
に前記補正係数発生部の補正係数1/KMを乗算して励
磁インダクタンスM分を補正する第1の乗算部と、 前記磁束演算部の磁束指令出力に前記補正係数発生部の
補正係数1/KMを乗算して励磁インダクタンスM分を
補正する第2の乗算部と、 前記磁束演算モデルの磁束推定値と前記磁束演算部の磁
束指令値との偏差に応じて前記第2の乗算部の出力に加
算補正する磁束フィードバック制御部と、 前記加算補正した値を電流制限して前記励磁電流指令と
するリミッタ部と、を備えたことを特徴とする誘導電動
機の可変速駆動装置。
1. A variable-speed drive device for vector-controlling an induction motor in a constant output range, comprising: a secondary magnetic flux φ of the induction motor depending on a rotation speed of the induction motor.
2 and a magnetic flux calculation unit that generates a magnetic flux pattern with a ratio φ 2 / M of the exciting inductance M as a magnetic flux command, and a correction coefficient K M that corrects the change of the exciting inductance M due to the change of the secondary magnetic flux φ 2 is its reciprocal 1 / A correction coefficient generating section that is generated according to the rotation speed of the induction motor as K M , a primary delay gain of the secondary magnetic flux φ 2 with respect to the exciting current command i 0, a sampling cycle ΔT of the exciting current command, and a secondary resistance R 2
And a magnetic flux calculation model of a discrete value system which is approximated by a ratio ΔT / (M / R 2 ) of the excitation inductance M to obtain a magnetic flux estimation value (φ 2 / M) ′, and a magnetic flux estimation value (φ 2 / M) '
To a correction coefficient 1 / K M of the correction coefficient generation section to correct the exciting inductance M, and a magnetic flux command output of the magnetic flux calculation section to the correction coefficient 1 / K of the correction coefficient generation section. A second multiplication unit that multiplies K M to correct the exciting inductance M, and a second multiplication unit of the second multiplication unit according to a deviation between a magnetic flux estimation value of the magnetic flux calculation model and a magnetic flux command value of the magnetic flux calculation unit. A variable speed drive device for an induction motor, comprising: a magnetic flux feedback control unit that performs addition correction on an output; and a limiter unit that current limits the value obtained by the addition correction to obtain the excitation current command.
JP6021668A 1994-02-21 1994-02-21 Variable-speed driver of induction motor Pending JPH07231700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021668A JPH07231700A (en) 1994-02-21 1994-02-21 Variable-speed driver of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021668A JPH07231700A (en) 1994-02-21 1994-02-21 Variable-speed driver of induction motor

Publications (1)

Publication Number Publication Date
JPH07231700A true JPH07231700A (en) 1995-08-29

Family

ID=12061428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021668A Pending JPH07231700A (en) 1994-02-21 1994-02-21 Variable-speed driver of induction motor

Country Status (1)

Country Link
JP (1) JPH07231700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611124B2 (en) 2000-02-29 2003-08-26 Hitachi, Ltd. Control apparatus of induction motor
JP2012050233A (en) * 2010-08-26 2012-03-08 Fuji Electric Co Ltd Motor drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611124B2 (en) 2000-02-29 2003-08-26 Hitachi, Ltd. Control apparatus of induction motor
JP2012050233A (en) * 2010-08-26 2012-03-08 Fuji Electric Co Ltd Motor drive

Similar Documents

Publication Publication Date Title
US6927548B2 (en) Electric power steering apparatus
JP4685509B2 (en) AC motor drive control device and drive control method
US7157878B2 (en) Transient compensation voltage estimation for feedforward sinusoidal brushless motor control
JP3152058B2 (en) Variable speed control device for induction motor
JP3467961B2 (en) Control device for rotating electric machine
JPH09219999A (en) Variable speed drive device
EP1035645B1 (en) Control device of induction motor
JP2002330600A (en) Control system for induction motor drive with no speed sensor, observer, and control method
JP3429010B2 (en) Magnetic flux feedback device
US4477762A (en) Servomotor control method and apparatus therefor
JP2010273400A (en) Device for control of induction motor
US20220306133A1 (en) Method for Online Direct Estimation and Compensation of Flux and Torque Errors in Electric Drives
JP2943377B2 (en) Vector controller for induction motor
JP2579119B2 (en) Vector controller for induction motor
US6897633B2 (en) Stepping motor driver
JPH07231700A (en) Variable-speed driver of induction motor
JPH06225574A (en) Method and apparatus for controlling motor
JP3555965B2 (en) Inverter control method
JP3424836B2 (en) AC motor current control device
JP4839552B2 (en) Induction motor control method
JPH06165562A (en) Method and system for controlling torque of induction motor
JPH07284286A (en) Torque ripple compensation system of servo motor
JP3123235B2 (en) Induction motor vector control device
JP2933733B2 (en) Induction motor control device
JPH05300791A (en) Current control system for ac motor