WO1994026812A1 - Procede de degradation de dechets de polyesters insatures en vue de leur recyclage - Google Patents

Procede de degradation de dechets de polyesters insatures en vue de leur recyclage Download PDF

Info

Publication number
WO1994026812A1
WO1994026812A1 PCT/FR1994/000590 FR9400590W WO9426812A1 WO 1994026812 A1 WO1994026812 A1 WO 1994026812A1 FR 9400590 W FR9400590 W FR 9400590W WO 9426812 A1 WO9426812 A1 WO 9426812A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
wastes
alcohol
copolymerized
polyester
Prior art date
Application number
PCT/FR1994/000590
Other languages
English (en)
Inventor
Antioco Piras
Maryvonne Brigodiot-Ignazi
Thierry Lalot
Original Assignee
Cray Valley S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cray Valley S.A. filed Critical Cray Valley S.A.
Priority to AU68487/94A priority Critical patent/AU6848794A/en
Publication of WO1994026812A1 publication Critical patent/WO1994026812A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to the field of unsaturated polyesters, which are used in numerous fields of application, in particular for the molding of objects reinforced with glass fibers, such as automobile parts, bathroom furniture elements, electrical appliance boxes, kitchen sinks, boat hulls, etc. More particularly, the present invention relates to the treatment of waste from semi-finished or finished parts into these polyesters in order to degrade them, with the aim of reusing the degradation products of lower molecular mass.
  • Patent O-92/04392 discloses polymers containing, as crosslinking units, diester units of a particular type, stable in the absence of enzymes and degradable by esterases in the natural environment to form non-toxic products even if the structural elements (skeleton) of the polymer retain their integrity. It is therefore a question here of building biodegradable polymers by nature and not of degrading waste polyesters which / a priori, are not biodegradable.
  • US-A-4,722,948 describes a biodegradable "in vivo" sealant for implants, hardenable at physiological temperatures, comprising an unsaturated polyester formed from biocompatible acid (s) and an alcohol, vinylpyrrolidone , a charge and a free radical initiator capable of initiating crosslinking.
  • Patent application JP-A-52 / 082,773 describes the degradation, by means of certain lipases and / or enzymes, of saturated aliphatic polyesters (adipates) or aromatics (phthalates) which are sources of plastic waste, in particular the polyethylene terephthalate.
  • the polymers subjected to biochemical decomposition according to this document do not contain a copolymerizable crosslinking monomer.
  • the unsaturated polyesters concerned by the present invention are prepared by condensing at least one dicarboxylic acid or its ethylenically unsaturated alpha, beta anhydride or mixtures of these with at least one dialcohol or allylene oxide.
  • unsaturated dicarboxylic acids or anhydrides include maleic anhydride, fumaric acid, itaconic acid, citraconic acid and chloromaleic acid.
  • a small proportion of unsaturated dicarboxylic acid (up to 25 mole percent) can be replaced by saturated dicarboxylic acids, such as orthophthalic, isophthalic, terephthalic, succinic, adipic, sebacic, methyl succinic acids, etc, or anhydrides of saturated dicarboxylic acids, such as phthalic anhydride.
  • saturated dicarboxylic acids such as orthophthalic, isophthalic, terephthalic, succinic, adipic, sebacic, methyl succinic acids, etc, or anhydrides of saturated dicarboxylic acids, such as phthalic anhydride.
  • saturated dicarboxylic acids such as orthophthalic, isophthalic, terephthalic, succinic, adipic, sebacic, methyl succinic acids, etc, or anhydrides of saturated dicarboxylic acids, such as phthalic anhydride.
  • the alkylene dialcohols or oxides used are, for example, 1,
  • the unsaturated polyester has a molecular weight factor per double bond of between approximately 142 and 215, preferably between 147 and 186. Its molecular mass can vary between approximately 350 and 5000, its water content is preferably not greater than approximately 3000 ppm.
  • Poly (propylene fumarate), poly (ethylene and propylene fumarate), poly (dipropylene fumarate), poly (propylene and dipropylene fumarate) and poly (isophthalate / propylene fumarate) are more particularly preferred.
  • polyesterurethanes obtained by reaction of a polyester glycol - as defined above - and a polyisocyanate, generally an organic diisocyanate, such as for example those described by patent US-A-4 280 979 .
  • Such polyesterurethanes can also be modified by the incorporation of a polyfunctional nitrogenous compound having at least one hydrogen atom active on each of the nitrogen atoms, as described in patent US-A-5,153,261. They can also be modified by the incorporation of a hydroxyl (alk) acrylate as for example in patent FR-A-2 696 751 and patent OA-94/06 841. These modified polyesterurethanes are also concerned by the present invention.
  • the unsaturated polyester is stabilized (in general by addition of hydroquinone), then mixed with at least one copolymerization monomer in order to generate a crosslinked structure.
  • monomers are, in known manner, styrene, substituted styrenes such as vinyl toluene or tert-butylstyrene, esters of lower alkyl (C j ⁇ alkyl) acrylic or methacrylic acid, alpha-methylstyrene, acrylates and cycloaliphatic, aromatic and bi-cyclic methacrylates, halogenated styrenes such as chlorostyrene and dichlorostyrene, diallyl phthalate, diallyl maleate, diallyl fumarate, triallyl cyanurate, acetate, crotonate and vinyl propionate , divinyl ether, conjugated dienes such as 1,3-butadiene, isoprene, 1,3-pentadiene
  • At least one agent capable of forming free radicals is added to the unsaturated polyester and to the copolymerizable monomer, at the time of use. .
  • This agent by heating at the time of shaping, triggers the crosslinking of the assembly.
  • organic peroxides such as benzoyl peroxide, tertiary butyl hydroperoxide, tertiary butyl peroxide, dicumyl peroxide, 2,2 bis (ter-butyl -peroxy) butane, paracetal, 1,1-bis (t-butylperoxy) 3,3,5-trimethyl cyclohexane, tertiary butyl perbenzoate, tertiary butyl peroxyoctoate, ter-butyl peroxy isopropylcarbonate, perisononanoate tertiary butyl, tertiary butyl permaleinate, cyclic peracetal, 2,5-dimethyl-2,5-bis (2-ethylhexolperoxy) hexane, methyl ethyl ketone peroxide, tertioamyl peroxyo
  • additives can be incorporated into unsaturated polyesters, such as: - internal mold release agents, such as, in particular, a salt of fatty acid and of alkali or alkaline earth metal or of zinc, such as for example zinc stearates , calcium, lithium, barium and magnesium, as well as the calcium salt of montanic acid; thermoplastic materials making it possible to reduce shrinkage during molding, such as in particular a copoly era of methyl methacrylate with minor amounts of one or more comonomers chosen, for example, from the lower alkyl esters of acrylic and methacrylic acids, acrylamide, methacrylamide, hydroxyethyl methacrylate, styrene, methacrylic acid and methylol acrylamide; mention may also be made of polyethylene, polystyrene, polycaprolactone, saturated polyesters and polyvinyl acetate; thixotropic agents, such as colloidal silica or pyrolyzed clay; an effective amount of at least one
  • molding compositions are formulated which are formulated and used according to the type of part which it is desired to obtain, for example according to one of the techniques set out below.
  • this paste is, as a rule, sent to a formatting tool, such as a piston sizing machine, which allows it to be placed in the form of a rod which is cut at determined intervals to obtain blocks. or doses.
  • a formatting tool such as a piston sizing machine
  • doses are intended to be introduced into preloading systems, for example, of the bucket type, of injection molding machines.
  • preloading systems for example, of the bucket type, of injection molding machines.
  • This waste is of the non-copolymerized (non-crosslinked) type.
  • the waste from this impregnation constitutes waste in the non-co-polymerized (non-crosslinked) state. These compositions are then transformed by compression under heating into semi-finished pieces of the plate type. Before compression, these may require cuts, thus giving rise to non-copolymerized (non-crosslinked) waste. As for the finished parts, those which do not comply with the specifications are discarded as copolymerized (crosslinked) waste. Those at the end of their life also belong to this last category of waste.
  • the Depositing Company studied the degradation of unsaturated polyesters by the enzymatic route, this route being advantageous from the point of view of implementation and savings 'energy.
  • the present invention embodies the result of this research.
  • thermosetting unsaturated polyesters it was not obvious to a person skilled in the art specialized in thermosetting unsaturated polyesters that enzymes, even those known to degrade thermoplastic, saturated or aromatic aliphatic polyesters, can have an action on unsaturated polyesters, in the non- -copolymerized (non-crosslinked) and / or in the copolymerized (crosslinked) state.
  • the present invention therefore firstly relates to a process for degrading unsaturated polyester waste, consisting of mixtures obtained as manufacturing waste in the non-copolymerized state, of unsaturated polyester, of at least one crosslinking monomer, at least one catalyst for the formation of free radicals, and, where appropriate, at least one mineral filler and / or at least one fiber-type reinforcing agent and / or the additives and adjuvants normally used in the compositions molding based on unsaturated polyesters, or even by these same mixtures, loaded and reinforced, in the copolymerized state, obtained as manufacturing waste, defective parts or end-of-life parts, characterized in that the waste to be treated in small particles, that the divided waste is suspended in a medium comprising water and / or at least one alcohol, and that the reaction of this waste with water is carried out.
  • the waste in the non-copolymerized state is broken down, in particular by grinding, into small particles with a size generally between approximately 0.01 and 50 mm, in particular between approximately 0.1 and 10 mm, and the waste is ground in the copolymerized state to obtain small particles with a size generally of the order of 50 to 1000 ⁇ m, in particular of the order of 100 to 500 ⁇ m.
  • the alcohol used for the alcoholysis lead is chosen in particular from alkanols C ⁇ ⁇ C6 alkyl, linear or branched. Preferred examples are methanol and ethanol.
  • the suspension medium at least one solvent of polar nature, not degrading the enzyme used, miscible with said suspension medium, which can cause swelling of the divided waste of unsaturated polyester, in particular in the case where they are the copolymerized state, and possibly optionally dissolving at least one of the starting unsaturated polyester and the degradation products.
  • solvents which can be used for this purpose, mention may be made of toluene, acetonitrile, acetone and dichloromethane.
  • an amount of 1 to 50% by weight of waste divided with respect to the total weight of the suspension is used, consequently including additional solvents if they are present. Mention may be made of an amount preferably between 5% and 20% by weight, for example of the order of 10% by weight of waste divided with respect to the total weight of the suspension.
  • water is preferably used to carry out the degradation process according to the invention. However, it is also possible to use a water-alcohol mixture. An amount by weight of alcohol is then used such that, if it were used alone as a degrading reagent, it would be present at a rate of approximately 2 to 6 times the weight of the polyester in the divided waste. It can be said that the unsaturated polyester is preferably present in an amount of approximately 20% to 50% by weight generally within the divided waste.
  • lipases which can be of various origins, for example of fungal, bacterial or animal origin.
  • lipases of bacterial origin mention may be made of Chromobacterium viscosum lipases. of Asper illus ni ⁇ er, of Mucor miehi. Rhizopus arrhizus, Candida cylindracea. from Pseud ⁇ monas species. from Rhizopus delemar, from Mucor iavanicus r from Pseudomonas fluorescens.
  • lipase of animal origin mention may be made of pig pancreas lipase.
  • active units of enzyme In general, approximately 2000 to 10 000 active units of enzyme are used per gram of unsaturated polyester contained in the waste to be degraded.
  • 1 active unit is the quantity which releases 1 microequivalent of fatty acid from a triglyceride in 1 hour at pH 7.7 at 37 "C, the triglyceride being indicated in each case by the supplier of the enzyme used.
  • Chromobacterium viscosum lipase used in the Examples below, the activity is given as being able to vary from 2000 to 8000 units per mg of protein using olive oil as substrate.
  • the hydrolysis or alcoholysis is advantageously carried out at a temperature not exceeding the value at which the enzyme used would destabilize, and for a period of time sufficient to obtain the products of low molecular mass (c ' that is to say mainly between 150 and 350 approximately) sought.
  • c ' that is to say mainly between 150 and 350 approximately
  • intermediate oligomeric species chosen from ⁇ , ⁇ -diacids or salts, ⁇ -acids ⁇ -alcohols or ⁇ , ⁇ -diols, or the acid or salt or alcohol of the unsaturated polyester.
  • hydrolysis or advanced alcoholysis of poly (1,2-propanediyl fumarate) makes it possible to obtain 1,2-propane diol and fumaric acid or one of its salts, and not to maleic anhydride used initially.
  • the salts come from carbonates that have been used as fillers.
  • the hydrolysis is carried out at a temperature not exceeding approximately 40 ° C.
  • the alcoholysis is carried out at a temperature not exceeding approximately 50 ° C., in particular in the case where the enzymes used are those indicated as preferred above. .
  • the pH is stabilized at a value corresponding to the optimum pH of the enzyme used.
  • this pH is between approximately 6 and 8.
  • the regulation is done simply by adding a base.
  • a buffer can be introduced, but it is easier to periodically add a base to stabilize the pH value.
  • Example 1 relates to the enzymatic hydrolysis of poly (1,2-propanediyl fumarate), Examples 2 to 4, the enzymatic alcoholysis of this polyester with ethanol, Examples 5 and 6, the enzymatic hydrolysis of waste respectively of SMC and BMC, in the non-copolymerized state, and Examples 7 and 8, the enzymatic hydrolysis of polyesters reacted with azobisisobutyronitrile, respectively without styrene and in the presence of styrene.
  • a suspension of solid particles is then obtained in an aqueous phase, which is subjected to centrifugation to separate on the one hand, a solid which is dried for 2 hours at 50 ° C., which is dissolved in tetrahydrofuran (solution of fraction A), and, on the other hand, an aqueous phase which l it is evaporated to recover a residue which is placed in solution in tetrahydrofuran (fraction B solution).
  • Oligomers representing the first product resulting from degradation which is not of the monomer are Oligomers representing the first product resulting from degradation which is not of the monomer.
  • Example 3 The same reaction was carried out as in Example 3, successively replacing the pig pancreas lipase by the lipases of Aspercrillus niger, Candida cylindracea and Mucor miehei.
  • the suspension is separated by centrifugation into an organic phase containing the residue of the polyester resin, fibers and fillers, and an aqueous phase.
  • the organic phase is solubilized in CH 2 C1 2 (washing 3 times), then subjected to an evaporation of CH 2 C1 2 , and to a solubilization in THF (fraction A).
  • the aqueous phase is subjected to evaporation of the buffer and dissolved in THF (fraction B).
  • Example 5 was reproduced, using a mass-moldable composition waste (in the non-crosslinked state) of composition: poly (1,2-propanediyl fumarate) 40 calcium carbonate 260 anti-shrinkage additive (polyacetate of vinyl) .. 15 - glass fibers 90 styrene 45
  • the suspension obtained is acidified with concentrated HCl to pH 1.
  • a suspension of solid particles is then obtained in an aqueous phase which is subjected to centrifugation to separate, on the one hand, a solid insoluble in tetrahydrofuran, which is weighed, which makes it possible to find a loss of mass of 98%, and, on the other hand, an aqueous phase which is evaporated to recover a residue which 1 • is placed in solution in tetrahydrofuran. Chromatography of this fraction was carried out under the same conditions as above. As a result, this fraction was found to have an Mn of 280.
  • Example 8 The procedure was as in Example 7, using, instead of poly (1,2-propanediyl fumarate), a mixture of 95% poly (1,2-propanediyl fumarate) and 5% of styrene.
  • Example 7 The same analyzes were carried out as in Example 7 and found a percentage of reacted polyester double bonds of 34%. The loss of mass observed is 55%. Chromatography of the fraction soluble in tetrahydro ⁇ furan showed that this fraction had an Mn of 230 and represented 47% of the degradation products. The other fraction, insoluble in tetrahydrofuran, representing 45% of the degradation products, it is believed that propanediol is lost at the same time as the evaporation of water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Pour dégrader des déchets de polyesters insaturés, constitués par des mélanges à l'état non-copolymérisé, obtenus comme rebuts de fabrication, de polyester insaturé, d'au moins un monomère de réticulation, d'au moins un catalyseur de formation de radicaux libres, et, le cas échéant, d'au moins une charge minérale et/ou d'au moins un agent de renforcement de type fibre et/ou des additifs et adjuvants usuels, ou encore par ces mêmes mélanges, chargés et renforcés, à l'état copolymérisé, obtenus comme rebuts, pièces défectueuses ou pièces en fin de vie, on réduit les déchets à traiter en petites particules, on met en suspension les déchets divisés dans un milieu comprenant de l'eau et/ou au moins un alcool, et on conduit la réaction de ces déchets avec l'eau et/ou le ou les alcools en présence, comme catalyseur, d'au moins une enzyme dont le site actif reconnaît la fonction ester du ou des polyesters soumis au traitement dans le milieu de traitement, jusqu'à obtention de produits de masse moléculaire faible, à nouveau utilisables dans des applications classiques.

Description

PROCEDE DE DEGRADATION DE DECHETS DE POLYESTERS INSATURES EN VUE DE LEUR RECYCLAGE
La présente invention concerne le domaine des polyesters insaturés, lesquels sont utilisés dans de nombreux domaines d'application, en particulier pour le moulage d'objets renforcés par des fibres de verre, comme des pièces automobiles, des éléments de mobilier de salles de bain, des coffres pour appareils électriques, des éviers de cuisine, des coques de bateaux, etc. Plus particulièrement, la présente invention concerne le traitement de déchets de pièces semi-finies ou finies en ces polyesters pour les dégrader, dans le but de réutiliser les produits de dégradation de plus faible masse moléculaire.
Ces déchets se présentent à 1'état non-copolymérisé (non-réticulé) ou copolymérisé (réticulé) , selon le stade de la fabrication des pièces moulées en polyester auquel ils sont récupérés, et à l'état copolymérisé (réticulé) lorsque ce sont des déchets de pièces en fin de vie.
On connaît par le brevet O-92/04392 des polymères contenant, à titre de motifs réticulants, des unités diester d'un type particulier, stables en l'absence d'enzymes et dégradables par des estérases dans 1'environnement naturel pour former des produits non toxiques même si les éléments structuraux (squelette) du polymère conservent leur intégrité. Il s'agit donc là de construire des polymères biodégradables par nature et non pas de dégrader des déchets de polyesters qui/ a priori, ne sont pas biodégradables.
Le brevet US-A-4 722 948 décrit un mastic biodégradable "in vivo" pour implants, durcissable aux températures physiologiques, comprenant un polyester insaturé formé à partir d'acide(s) biocompatible(s) et d'un alcool, de vinylpyrrolidone, d'une charge et d'un initiateur de radicaux libres capable d'amorcer la réticulation.
La demande de brevet JP-A-52/082 773 décrit la dégradation, au moyen de certaines lipases et/ou enzymes, de polyesters aliphatiques saturés (adipates) ou aromatiques (phtalates) sources de déchets plastiques, en particulier le polyéthylène téréphtalate. Les polymères soumis à décomposition biochimique selon ce document ne contiennent pas de monomère réticulant copolymérisable.
Les polyesters insaturés concernés par la présente invention sont préparés en condensant au moins un acide dicarboxylique ou son anhydride à insaturation éthylénique en alpha, bêta ou des mélanges de ces derniers avec au moins un dialcool ou oxyde d'al ylène. Comme exemples d'acides ou d'anhydrides dicarboxyliques non saturés, on peut citer 1'anhydride maléique, l'acide fumarique, l'acide itaconique, l'acide citraconique et l'acide chloromaléique. On peut remplacer une faible proportion de l'acide dicarboxylique non saturé (jusqu'à 25 moles pour cent) , par des acides dicarboxyliques saturés, tels que les acides ortho-phtalique, isophtalique, téréphtalique, succinique, adipique, sebacique, méthyl succinique, etc, ou des anhydrides d'acides dicarboxyliques saturés, tels que l'anhydride phtalique. Les dialcools ou oxydes d'alkylène mis en oeuvre sont par exemple le 1,2-propanediol, le dipropylene glycol, le diéthylène glycol, l'éthylène glycol, le 1,3-butanediol, le 1,4- butanediol, le néopentyl glycol, le triéthylène glycol, le tripropylène glycol, l'oxyde d'éthylène, l'oxyde de propylène. De préférence, le polyester insaturé a un facteur de poids moléculaire par double liaison compris entre 142 et 215 environ, de préférence entre 147 et 186. Sa masse moléculaire peut varier entre 350 et 5000 environ, sa teneur en eau n'est de préférence pas supérieure à 3 000 ppm environ. Les poly (fumarate de propylène) , poly (fumarate d'éthylène et de propylène), poly (fumarate de dipropylene), poly (fumarate de propylène et de dipropylene) et poly (isophtalate/fumarate de propylène) , sont plus particulièrement préférés.
Sont aussi concernés par la présente invention des polyesteruréthanes obtenus par réaction d'un polyester glycol - tel que précédemment défini - et d'un polyisocyanate, généralement un diisocyanate organique, tels que par exemple ceux décrits par le brevet US-A-4 280 979. De tels polyesteruréthanes peuvent en outre être modifiés par l'incorporation d'un composé azoté polyfonctionnel ayant au moins un atome d'hydrogène actif sur chacun des atomes d'azote, tel que décrit dans le brevet US-A-5 153 261. Ils peuvent aussi être modifiés par l'incorporation d'un (alk)acrylate d'hydroxyle comme par exemple dans le brevet FR-A-2 696 751 et le brevet O-A-94/06 841. Ces polyesteruréthanes modifiés sont aussi concernés par la présente invention. Immédiatement après sa synthèse, le polyester insaturé est stabilisé (en général par addition d'hydro- quinone) , puis mélangé avec au moins un monomère de copolymérisation afin de générer une structure réticulée. De tels monomères sont, de façon connue, le styrène, les styrènes substitués comme le vinyl toluène ou le tertiobutylstyrène, les esters d'alkyle inférieur (Cj^ à Cg) d'acide acrylique ou méthacrylique, l'alphaméthylstyrène, les acrylates et méthacrylates cycloaliphatiques, aromatiques et bi-cycliques, les styrènes halogènes comme le chlorostyrène et le dichlorostyrène, le phtalate de diallyle, le maléate de diallyle, le fumarate de diallyle, le cyanurate de triallyle, l'acétate, le crotonate et le propionate de vinyle, le divinyléther, les diènes conjugués tels que le butadiène-1,3, l'isoprène, le 1,3-pentadiène, le 1,4-pentadiène, le 1,4- hexadiène, le 1,5-hexadiène, le 1,9-décadiène, le 5- méthylène-2-norbornène, le 5-vinyl-2-norbornène, les 2-alkyl- 2,5-norbornadiènes, le 5-éthylidène-2-norbornène, le 5-(2- propényl)-2-norbornène, le 5-(5-hexényl)-2-norbornène, le 1,5-cyclooctadiène, le bicyclo [2,2,2]octa-2,5-diène, le cyclopentadiène, le 4,7,8,9-tétrahydroindène et 1'isopropylidène tétrahydroindène, et les nitriles insaturés tels que 1'acrylonitrile et le méthacrylonitrile ainsi que les (méth)acrylates de polyol comme les diacrylates et diméthacrylates de 1'éthylène glycol, du propylène glycol, du 1,3-butanediol, du 1,4-butanediol, du 1,6-hexanediol, du néopentyl-glycol, du 1,4-cyclohexane-diol, du 1,4-cyclo- hexane-diméthanol, du 2,2,4-triméthyl-l,3-pentanediol, du 2-éthyl-2-méthyl-l,3-propanediol, du 2,2-diéthyl-l,3-propane- diol, du diéthylèneglycol, du dipropylèneglycol, du triéthylèneglycol, du tripropylèneglycol, du tétraéthylène- glycol, du tétrapropylèneglycol, du triméthyloléthane, du triméthylolpropane, du glycérol, du pentaérythritol, les triacrylates et les tri éthacrylates du triméthyloléthane, du triméthylolpropane, du glycérol, du pentaérythritol, les tétraacrylates et tétraméthacrylates du pentaérythritol, les di(méth)acrylates àhexa(méth)acrylates dudipentaérythritol, les poly(méth)acrylates de polyols mono- ou polyéthoxyles ou mono- ou polypropoxylés tels que le triacrylate et le triméthacrylate du triméthylolpropane triéthoxylé, du triméthylolpropane tripropoxylé, le triacrylate et le triméthacrylate du glycérol tripropoxylé, le triacrylate, le triméthacrylate, le tétraacrylate et le tétraméthacrylate du pentaérythritol tétraéthoxylé et leurs mélanges en toutes proportions. Le monomère de copolymérisation le plus utilisé est le styrène.
On ajoute au polyester insaturé et au monomère copolymérisable, au moment de l'emploi, au moins un agent capable de former des radicaux libres, choisi selon la température de durcissement requise en gardant à 1'esprit les températures rencontrées dans le procédé de moulage ultérieur. Cet agent, par chauffage au moment de la mise en forme, déclenche la réticulation de l'ensemble. Comme agents appropriés, on peut citer entre autres des peroxydes organiques, peroxydicarbonates et peroxyesters tels que le peroxyde de benzoyle, 1'hydroperoxyde de butyle tertiaire, le peroxyde de butyle tertiaire, le peroxyde de dicumyle, le 2,2 bis (ter-butyl-peroxy)butane, le paracétal, le 1,1-bis (t- butylperoxy) 3,3,5-triméthyl cyclohexane, le perbenzoate de butyle tertiaire, le peroxyoctoate de butyle tertiaire, le ter-butyl peroxy isopropylcarbonate, le perisononanoate de butyle tertiaire, le permaléinate de butyle tertiaire, le peracétal cyclique, le 2,5-diméthyl-2,5-bis (2- éthylhexolperoxy) hexane, le peroxyde de méthyléthylcétone, le peroxyoctoate de tertioamyle, le 2,5-diperoxyoctoate ou encore le peroxyde de 2,4-pentanedione. On peut également citer l'azobisisobutyronitrile et l'octoate de cobalt.
D'autres additifs peuvent être incorporés aux polyesters insaturés, comme : - des agents internes de démoulage, tels que, notamment, un sel d'acide gras et de métal alcalin ou alcalino- terreux ou de zinc, comme par exemple les stéarates de zinc, de calcium, de lithium, de baryum et de magnésium, ainsi que le sel de calcium de l'acide montanique ; - des matières thermoplastiques permettant de réduire le retrait au moulage, telles que notamment un copoly ère de méthacrylate de méthyle avec des quantités mineures d'un ou plusieurs comonomères choisis par exemple parmi les esters d'alkyle inférieur des acides acrylique et méthacrylique, l'acrylamide, le méthacrylamide, le méthacrylate d'hydroxyéthyle, le styrène, l'acide méthacrylique et le méthylol acrylamide ; on peut également citer le polyéthylène, le polystyrène, la polycaprolactone, les polyesters saturés et le polyacétate de vinyle ; des agents thixotropiques, tels que la silice colloïdale ou l'argile pyrolysée ; une quantité efficace d'au moins un inhibiteur de réticulation, tel que notamment la phénothiazine, l'éther méthylique de 1'hydroquinone, la N,N- diéthylhydroxylamine, le nitrobenzène, le di-tertio- butylcatéchol, 1'hydroquinone, le p-anilinophénol, le phosphite de di-(2-éthylhexyl)-octylphényle, le 2,5- ditertiobutyl-4-hydroxytoluène, le bleu de méthylène et leurs mélanges en toutes proportions ; au moins un retardateur de flamme, tel qu'un hydrate d*alumine ; au moins un pigment organique ou minéral ; au moins un agent d'épaississe ent, tel qu'un oxyde ou hydroxyde alcalino-terreux. Dans ce qui suit, on entend par "résine polyester", le mélange du polyester insaturé, du monomère de copolymé- risation et du catalyseur avec les additifs éventuels.
A partir de la résine polyester, on réalise ensuite des compositions de moulage formulées et mises en oeuvre selon le type de pièce que l'on veut obtenir, par exemple selon l'une des techniques exposées ci-après.
On peut tout d'abord citer les compositions de moulage en masse, à base de résine polyester, de fibres de verre courtes, c'est-à-dire de longueur au plus égale à 15 mm environ (pouvant être remplacées entièrement ou partiellement par des fibres de carbone, des fibres organiques synthétiques ou des fibres naturelles comme du jute ou de la bourre de coton) , et de charges minérales pulvérulentes, présentes à raison de 25 à 300 parties environ en poids pour 100 parties en poids de résine polyester, telles que du carbonate de calcium naturel ou précipité, de la silice, du kaolin, de la dolomite, du talc, des barytes, de l'hydrate d'alumine. Ces compositions sont obtenues par malaxage de leurs constituants, conduisant à une pâte qui doit être homogène. Une fois formée, cette pâte est, en règle générale, adressée à un outil de formatage, tel qu'une calibreuse à piston, qui permet de la placer sous la forme d'un boudin qui est coupé à des intervalles déterminés pour obtenir des blocs ou doses. Ces doses sont destinées à être introduites dans des systèmes de préchargement, par exemple, du type à godets, de machines de moulage par injection. A ce stade, il peut se présenter des doses, morceaux ou grumeaux de pâte que l'on doive mettre au rebut, par exemple pour défaut de qualité. Ces déchets sont du type non copolymérisé (non réticulé) .
Les doses de pâte satisfaisantes sont alors soumises aux opérations désirées de moulage par injection, avec application d'un chauffage et d'une compression. Sur les pièces moulées, on exécute une opération d'ébavurage, produisant des déchets à l'état copolymérisé (réticulé). Enfin, les pièces en fin de vie, mises au rebut, constituent elles aussi des déchets à l'état copolymérisé (réticulé) .
On peut également citer la technique de moulage par transfert de résine, suivant laquelle des mats de verre sont imprégnés par de la résine polyester éventuellement chargée et soumis à une compression sous chauffage. Les pièces doivent ensuite être soumises à un ébavurage et à un détourage, ou à des évidements, ce qui produit les déchets correspondants, à l'état copolymérisé (réticulé) . De la même façon que précédemment, les pièces après utilisation, se trouvant en fin de vie, constituent aussi des déchets à l'état copolymérisé (réticulé).
La technique de projection simultanée d'une formulation de résine, de charge(s) et de fibres est par ailleurs utilisée pour fabriquer des pièces de type coques de bateaux. Les pièces comportant des défauts de fabrication, ainsi que celles en fin de vie, constituent des déchets à l'état copolymérisé (réticulé). On peut enfin citer les compositions de moulage en feuilles, mélanges de résine et de charges minérales en poudre, dont on imprègne des fibres, généralement des fibres de verre longues, c'est-à-dire de longueur au moins égale à 25 mm environ, en continu, sur tapis roulant. Ces mélanges contiennent éventuellement un agent mûrissant (charge active) , tel que de la magnésie, permettant d'augmenter la viscosité de la résine. Les déchets de cette imprégnation constituent des déchets à l'état non-copolvmérisé (non- réticulé) . Ces compositions sont ensuite transformées par compression sous chauffage en pièces semi-finies de type plaques. Avant compression, celles-ci peuvent nécessiter des découpes, donnant alors naissance à des déchets non- copolymérisés (non-réticulés) . Quant aux pièces finies, celles non conformes aux spécifications sont mises au rebut comme déchets copolymérisés (réticulés) . Celles en fin de vie appartiennent aussi à cette dernière catégorie de déchets. Par souci écologique et par intérêt économique dans la perspective d'une récupération de matières premières, la Société Déposante a étudié la dégradation des polyesters insaturés par la voie enzymatique, cette voie étant avantageuse du point de vue de la mise en oeuvre et des économies d'énergie. La présente invention concrétise le résultat de ces recherches.
Il n'était pas évident pour l'homme du métier spécialiste des polyesters insaturés thermodurcissables, que des enzymes, même celles connues pour dégrader des polyesters thermoplastiques, aliphatiques saturés ou aromatiques, puissent avoir une action sur des polyesters insaturés, à l'état non-copolymérisé (non-réticulé) et/ou à l'état copolymérisé (réticulé) . La présente invention a donc d'abord pour objet un procédé de dégradation de déchets de polyesters insaturés, constitués par des mélanges obtenus comme rebuts de fabrication à l'état non-copolymérisé, de polyester insaturé, d'au moins un monomère de réticulation, d'au moins un catalyseur de formation de radicaux libres, et, le cas échéant d'au moins une charge minérale et/ou d'au moins un agent de renforcement de type fibre et/ou des additifs et adjuvants normalement utilisés dans les compositions de moulage à base de polyesters insaturés, ou encore par ces mêmes mélanges, chargés et renforcés, à l'état copolymérisé, obtenus comme rebuts de fabrication, pièces défectueuses ou pièces en fin de vie, caractérisé par le fait que l'on réduit les déchets à traiter en petites particules, que 1'on met en suspension les déchets divisés dans un milieu comprenant de l'eau et/ou au moins un alcool, et que l'on conduit la réaction de ces déchets avec l'eau et/ou le (ou les) alcool(s) en présence, comme catalyseur, d'au moins une enzyme dont le site actif reconnaît la fonction ester du (ou des) polyester(s) soumis au traitement dans le milieu de traitement, jusqu'à obtention de produits de masse molécu¬ laire faible, à nouveau utilisables dans des applications classiques. A la première étape, on désagrège, notamment par broyage, les déchets à l'état non-copolymérisé en petites particules d'une dimension généralement comprise entre 0,01 et 50 mm environ, en particulier entre 0,1 et 10 mm environ, et l'on broie les déchets à l'état copolymérisé pour obtenir des petites particules d'une dimension généralement de l'ordre de 50 à 1000 μm, en particulier de l'ordre de 100 à 500 μm.
L'alcool utilisé pour conduire l'alcoolyse est choisi notamment parmi les alcanols en C^^-Cg, linéaires ou ramifiés. Des exemples préférés sont le méthanol et 1'éthanol.
On peut également ajouter au milieu de suspension au moins un solvant à caractère polaire, ne dégradant pas l'enzyme utilisée, miscible avec ledit milieu de suspension, pouvant provoquer un gonflement des déchets divisés de polyester insaturé, notamment dans le cas où ils sont à l'état copolymérisé, et pouvant le cas échéant solubiliser au moins l'un parmi le polyester insaturé de départ et les produits de dégradation. Parmi les solvants utilisables à cet effet, on peut citer le toluène, 1'acétonitrile, l'acétone et le dichlorométhane.
On met généralement en oeuvre une quantité de 1 à 50% en poids de déchets divisés par rapport au poids total de la suspension, incluant par conséquent les solvants supplémentaires s'ils sont présents. On peut citer une quantité comprise de préférence entre 5% et 20% en poids, par exemple de 1'ordre de 10% en poids de déchets divisés par rapport au poids total de la suspension. Pour des raisons de commodité et de coût, on utilise de préférence l'eau pour conduire le procédé de dégradation selon l'invention. Toutefois, on peut aussi bien utiliser un mélange eau-alcool. On utilise alors une quantité pondérale d'alcool telle que, si celui-ci était utilisé seul comme réactif de dégradation, il serait présent à raison de 2 à 6 fois environ le poids du polyester dans le déchet divisé. On peut indiquer que le polyester insaturé est de préférence présent à raison de 20% à 50% environ en poids généralement au sein du déchet divisé.
A titre d'exemples d'enzymes utilisables pour la mise en oeuvre du procédé selon la présente invention, on peut citer les lipases, lesquelles peuvent être d'origines diverses, par exemple d'origine fongique, bactérienne, animale. Comme lipases d'origine bactérienne, on peut citer les lipases de Chromobacterium viscosum. d'Asper illus niσer, de Mucor miehi. de Rhizopus arrhizus, de Candida cylindracea. de Pseudσmonas species. de Rhizopus delemar, de Mucor iavanicusr de Pseudomonas fluorescens. Comme lipase d'origine animale, on peut citer la lipase de pancréas de porc.
D'une manière générale, on utilise environ 2000 à 10 000 unités actives d'enzyme par gramme de polyester insaturé contenu dans le déchet à dégrader. 1 unité active est la quantité qui libère 1 microéquivalent d'acide gras à partir d'un triglycéride en 1 heure à pH 7,7 à 37"C, le triglycéride étant indiqué dans chaque cas par le fournisseur de l'enzyme employée. Ainsi, dans le cas de la lipase de Chromobacterium viscosum. mise en oeuvre dans les Exemples ci-après, l'activité est donnée comme pouvant varier de 2000 à 8000 unités par mg de protéine en utilisant l'huile d'olive comme substrat.
Par ailleurs, on conduit avantageusement l'hydro- lyse ou l'alcoolyse à une température ne dépassant pas la valeur à laquelle l'enzyme utilisée se déstabiliserait, et pendant un laps de temps suffisant pour obtenir les produits de masse moléculaire faible (c'est-à-dire principalement comprise entre 150 et 350 environ) recherchés. Dans le cas du traitement de déchets à l'état non-copolymérisé, on peut aller jusqu'à obtenir des espèces intermédiaires oligomères choisies parmi les α,ω-diacides ou sels, α-acides ω-alcools ou α,ω-diols, voire l'acide ou sel ou l'alcool du polyester insaturé. On note cependant que l'hydrolyse ou l'alcoolyse poussée du poly(fumarate de propanediyle-1,2) permet de parvenir au propane diol-1,2 et à l'acide fumarique ou l'un de ses sels, et non à l'anhydride maléique mis en oeuvre initialement. Les sels proviennent des carbonates ayant été utilisés comme charges.
Ainsi, on conduit l'hydrolyse à une température ne dépassant pas environ 40°C, et l'alcoolyse, à une température ne dépassant pas environ 50°C, notamment dans le cas où les enzymes utilisées sont celles indiquées comme préférées ci- dessus.
Dans le cas de l'hydrolyse, on stabilise le pH à une valeur correspondant au pH optimum de l'enzyme utilisée. Dans le cas de lipases, ce pH est compris entre 6 et 8 environ. La régulation s'effectue simplement par addition d'une base. Au début de la réaction, on peut introduire un tampon, mais il est plus facile d'ajouter périodiquement une base pour stabiliser la valeur du pH. Dans le cas de déchets de pièces en polyesters chargés, il est moins nécessaire de réguler le pH en raison de la présence de charges telles que les carbonates, à moins que l'on ne souhaite accélérer la réaction.
Pour mieux illustrer l'objet de la présente invention, on va en décrire ci-après, à titre indicatif et non limitatif, plusieurs exemples de réalisation. Dans ces exemples, les masses molaires moyennes en nombre sont données en équivalents polystyrène et les pourcentages sont donnés en poids sauf indication contraire. L'Exemple 1 concerne l'hydrolyse enzymatique du poly(fumarate de propanediyle-1,2) , les Exemples 2 à 4, l'alcoolyse enzymatique de ce polyester par l'éthanol, les Exemples 5 et 6, l'hydrolyse enzymatique de déchets respectivement de SMC et de BMC, à l'état non copolymérisé, et les Exemples 7 et 8, l'hydrolyse enzymatique de polyesters ayant réagi avec 1'azobisisobutyronitrile, respectivement sans styrène et en présence de styrène.
Exemple 1
Du poly(fumarate de propanediyle-1,2) (2 g), présentant une masse molaire moyenne en nombre de
2500 mg/mole en équivalent polystyrène a été mis en suspension dans 20 ml de tampon phosphate pH 7,8, en présence de 2,8 mg de lipase de Chromobacterium viscosum (n° L0763 marque Sigma) , soit 3580 unités actives par gramme de polyester insaturé contenu dans ledit déchet, à une température de 35°C. On a laissé agir la lipase pendant 48 heures, en régulant le pH à la valeur constante de 7,8 par addition d'une solution d'hydroxyde de sodium à 2,50 moles/ litre. Au bout de ces 48 heures, le milieu comprend une suspension, sans résidu solide. En vue de l'analyse de ce milieu à un moment choisi, la suspension est acidifiée avec HC1 concentré jusqu'à pH 1. On obtient alors une suspension de particules solides dans une phase aqueuse, que l'on soumet à une centrifugation pour séparer, d'une part, un solide que l'on sèche pendant 2 heures à 50°C, que l'on remet en solution dans le tétrahydrofuranne (solution de fraction A) , et, d'autre part, une phase aqueuse que l'on fait évaporer pour récupérer un résidu que 1'on place en solution dans le tétrahydrofuranne (solution de fraction B) . Les résultats d'une GPC conduite dans les conditions suivantes :
Colonne : PI Gel 50 + 100 À Eluant : Tétrahydrofuranne Débit : 1 ml min-1 sont les suivants (prélèvement de la suspension à 11 jours) : - chromatogramme 1 : résine de polyester de départ : Mn=2500, chromatogramme 2 : fraction A : Mn = 950, cette fraction représentant 1,8% des produits totaux de dégradation, - chromatogramme 3 : fraction B : Mn = 250, cette fraction représentant 76,7% des produits totaux de la dégradation.
On constate que la somme des deux pourcentages ci- dessus ne donne pas 100% ; la raison en est qu'il se forme un azéotrope entre l'eau et le propanediol-1,2. Une analyse RMN 1H dans 1'acétone d6 a confirmé les résultats obtenus en GPC.
On observe donc qu'il s'est produit une hydrolyse totale en deux jours de réaction. A titre de comparaison, on peut indiquer que, dans des conditions expérimentales identiques de température, le traitement du polyester insaturé de départ par une solution aqueuse de soude à 2,5 moles/litre a conduit à la disparition totale du résidu, non plus en l'espace de 2 jours, mais après une semaine.
Dans le cas où 1'on n'asservit pas la valeur du pH à 7,8 tout au cours de la réaction d'hydrolyse, on note un effet catalytique marqué de l'enzyme puisque 35% de la résine de polyester insaturé de départ disparaissent dès le premier jour. Toutefois, on observe la présence d'un résidu, et le pH diminuant, il se produit un blocage de l'activité enzymatique.
Exemple 2
Le même poly(fumarate de propanediyle-1,2) (2 g) est mis en suspension dans 6 g d'éthanol et du complément à
100 ml d'acétonitrile, en présence de 6 g de lipase de pancréas de porc à 40°C, sous agitation. Trois prélèvements sont effectués à t = 5, 12 et 26 jours.
On a caractérisé ces prélèvements ainsi que le poly(fumarate de propanediyle-1,2) par chromatographie GPC : Colonne : PI Gel 50 + 100 À Eluant : Tétrahydrofuranne Débit : 0,8 ml.min-1.
La comparaison avec le poly(fumarate de propane- diyle-1,2) initial permet de mettre en évidence une évolution de la distribution des masses molaires du polyester. On constate en effet une augmentation des pics situés vers les faibles masses, au détriment du pic principal situé en limite d'exclusion. De plus, en injectant du propanediol-1,2 et du fumarate de diéthyle purs, on a pu attribuer les deux pics correspondants aux temps d'élution les plus longs.
Afin de comparer quantitativement les chromato¬ grammes, la surface des pics définis ci-après 1, 2 et 3 (produit isomoléculaire) a été rapportée à celle du pic 4 situé en limite d'exclusion. Les valeurs des surfaces normalisées sont rassemblées dans le Tableau I.
Tableau I
Temps Pic 1 Pic 2 Pic 3 * (jours) propanediol-1,2 fumarate de oli.gomères diéthyle
5 0,014 0,099 0,225 12 0,066 0,226 0,377 26 0,184 0,673 0,714
Oligomères représentant le premier produit issu de la dégradation qui n'est pas du monomère.
Exemple 3
On a conduit la même réaction qu'à l'Exemple 2, en remplaçant 1'acétonitrile par le toluène. La comparaison des chromatogrammes correspondants au prélèvement après 5 jours de réaction montre qualitativement qu'il y a de plus faibles masses (et en particulier de propanediyle-1,2 et de fumarate de diéthyle) .
Les valeurs des surfaces normalisées sont rassemblées dans le Tableau II.
Tableau II
Temps Pic 1 Pic 2 Pic 3 (jours) propanediol-1,2 fumarate de oligomères diéthyle
5 0,013 0,200 0,293 Exemple 4
On a conduit la même réaction qu'à l'Exemple 3, en remplaçant successivement la lipase de pancréas de porc par les lipases d'Aspercrillus niger, de Candida cylindracea et de Mucor miehei.
Une analyse par chromatographie dans les mêmes conditions qu'à l'Exemple 2 a été conduite et les valeurs correspondantes sont rapportées dans le Tableau III :
Tableau III
Catalyseur (temps) Pic 1 Pic 2 Pic 3 Propane- Fumarate de Oligomères diol-1,2 diéthyle
Lipase d'Aspergillus niger 0,018 0,125 0,089
(15 jours)
Lipase de Candida cvlindracea 0,017 0,136 0,085
(15 jours)
Lipase de pancréas de porc 0,014 0,113 0,211 (5 jours)
Lipase de Mucor miehei 0,35 0,575 0,45
(5 jours)
La réaction d'alcoolyse pour ce dernier système
(lipase de Mucor miehei) a été suivie plus avant, l'analyse par chromatographie dans les mêmes conditions que précédemment, ayant donné les résultats rapportés dans le
Tableau IV : Tableau IV
Temps Pic 1 Pic 2 Pic 3 (jours) Propane- Fumarate de Oligomères diol-1,2 diéthyle
5 0,35 0,575 0,45 11 0,606 1,485 0,545
Exemple 5
2 g d'un déchet de composition moulable en feuille, à l'état non copolymérisé (fraction soluble dans CH2C12 : 10% en poids) ayant la composition suivante :
- poly(fumarate de propanediyle-1,2) 40 carbonate de calcium 220 additif anti-retrait (polyacétate de vinyle) .. 15 agent de mûrissement (magnésie) 1,5 fibres de verre 130 - styrène 45
a été mis en suspension dans 20 ml de tampon phosphate pH 7,8 en présence de 2,8 mg de lipase de Chromobacterium viscosum (n° L0763 marque Sigma), à une température de 40°C. On a laissé agir la lipase pendant 7 jours sans qu'il ne soit nécessaire de réguler le pH vu la présence de carbonate de calcium.
En vue de l'analyse du milieu obtenu, la suspension est séparée par centrifugation en une phase organique contenant le résidu de la résine de polyester, des fibres et des charges, et une phase aqueuse. La phase organique est solubilisée dans CH2C12 (lavage 3 fois) , puis soumises à une evaporation de CH2C12, et à une solubilisation dans le THF (fraction A) . La phase aqueuse est soumise à une evaporation du tampon et solubilisée dans le THF (fraction B) . Les résultats (confirmés par RMN du proton) d'une GPC conduite dans les conditions suivantes : Colonne : PI Gel 100 + 50 À Eluant : Tétrahydrofuranne Débit : 1 ml min-1 sont les suivants : chromatogramme 1 résine de polyester de départ :
Mn ≈ 2650 chromatogramme 2 fraction A = Mn = 480, cette fraction représentant 10,6% des produits totaux de dégradation - chromatogramme 3 fraction B = Mn = 300, cette fraction représentant 89,4% des produits de dégradation.
Exemple 6
On a reproduit l'exemple 5, en utilisant un déchet de composition moulable en masse (à l'état non réticulé) de composition : poly(fumarate de propanediyle-1,2) 40 carbonate de calcium 260 additif anti-retrait (polyacétate de vinyle) .. 15 - fibres de verre 90 styrène 45
(fraction soluble dans CH2C12 : 10%) .
Les résultats (confirmés par RMN du proton) d'une
GPC conduite dans les mêmes conditions sont les suivants : chromatogramme 1 : poly (fumarate de propanediyle) de la composition : Mn = 2500 chromatogramme 2 : fraction A représentant 24,1% des produits totaux de dégradation chromatogramme 3 : fraction B = Mn = 280, cette fraction représentant 75,9% des produits de dégradation. Exemple 7
On a conduit, à 60°C, pendant 4 heures, la réaction de 20 g de poly(fumarate de propanediyle-1,2) (Mn = 2500), dilué dans 16 g d'acétate d'éthyle, avec 0,5% d'azobisiso- butyronitrile (AIBN) , puis on fait évaporer le solvant pendant 16 heures, à 50"C, dans une étuve à vide.
La caractérisation en DSC du pourcentage des doubles liaisons de polyester ayant réagi sous l'action de l'AIBN, a donné la valeur de 14,6%.
En vue de l'analyse, la suspension obtenue est acidifiée avec HC1 concentré jusqu'à pH 1. On obtient alors une suspension de particules solides dans une phase aqueuse que l'on soumet à une centrifugation pour séparer, d'une part, un solide insoluble dans le tétrahydrofuranne, que l'on pèse, ce qui permet de trouver une perte de masse de 98%, et, d'autre part, une phase aqueuse que l'on fait évaporer pour récupérer un résidu que 1•on place en solution dans le tétrahydrofuranne. Une chromatographie de cette fraction a été effectuée dans les mêmes conditions que précédemment. Comme résultat, on a trouvé que cette fraction présentait une Mn de 280.
Exemple 8 On a procédé comme à l'Exemple 7 en utilisant, à la place du poly(fumarate de propanediyle-1,2) , un mélange de 95% de poly(fumarate de propanediyle-1,2) et de 5% de styrène.
On a conduit les mêmes analyses qu'à l'Exemple 7 et trouvé un pourcentage de doubles liaisons de polyester ayant réagi de 34%. La perte de masse observée est de 55%. Une chromatographie de la fraction soluble dans le tétrahydro¬ furanne a montré que cette fraction avait une Mn de 230 et représentait 47% des produits de dégradation. L'autre fraction, insoluble dans le tétrahydrofuranne, représentant 45% des produits de dégradation, on pense que du propanediol est perdu en même temps que 1'evaporation de l'eau.

Claims

REVENDICATIONS
1 - Procédé de dégradation de déchets de polyesters insaturés, constitués par des mélanges à l'état non- copolymérisé, obtenus comme rebuts de fabrication, de polyester insaturé, d'au moins un monomère de réticulation, d'au moins un catalyseur de formation de radicaux libres, et, le cas échéant d'au moins une charge minérale et/ou d'au moins un agent de renforcement de type fibre et/ou des additifs et adjuvants normalement utilisés dans les compositions de moulage à base de polyesters insaturés, ou encore par ces mêmes mélanges, chargés et renforcés, à 1'état copolymérisé, obtenus comme rebuts, pièces défectueuses ou pièces en fin de vie, caractérisé par le fait que l'on réduit les déchets à traiter en petites particules, que l'on met en suspension les déchets divisés dans un milieu comprenant de l'eau et/ou au moins un alcool, et que l'on conduit la réaction de ces déchets avec l'eau et/ou le (ou les) alcool(s) en présence, comme catalyseur, d'au moins une enzyme dont le site actif reconnaît la fonction ester du (ou des) polyester(s) soumis au traitement dans le milieu de traitement, jusqu'à obtention de produits de masse molé¬ culaire faible, à nouveau utilisables dans des applications classiques.
2 - Procédé selon la revendication 1, caractérisé par le fait que l'on désagrège les déchets à l'état non copolymérisé en petites particules d'une dimension de 0,01 à 50 mm, et l'on broie les déchets à l'état copolymérisé en petites particules d'une dimension de 50 à 1000 μm.
3 - Procédé selon 1'une des revendications 1 et 2, caractérisé par le fait que l'on choisit l'alcool parmi les alcanols en C^Cg, linéaires ou ramifiés.
4 - Procédé selon 1'une des revendications 1 à 3, caractérisé par le fait que l'on ajoute au milieu de suspension au moins un solvant à caractère polaire, ne dégradant pas l'enzyme utilisée, miscible avec ledit milieu de suspension, pouvant provoquer un gonflement des déchets divisés de polyester insaturé, notamment dans le cas où ils sont à l'état copolymérisé, et pouvant le cas échéant solubiliser au moins l'un parmi le polyester insaturé de départ et les produits de dégradation.
5 - Procédé selon la revendication 4, caractérisé par le fait que l'on choisit le solvant parmi le toluène,
1'acétonitrile, l'acétone et le dichlorométhane.
6 - Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que l'on met en oeuvre une quantité de 1 à 50% en poids de déchets divisés par rapport au poids total de la suspension.
7 - Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que l'on utilise un mélange eau- alcool, avec une quantité pondérale d'alcool telle que, si celui-ci était utilisé seul comme réactif de dégradation, il serait présent à raison de 2 à 6 fois le poids du polyester à l'état copolymérisé ou non contenu dans le déchet divisé.
8 - Procédé selon l'une des revendications 1 à 7, caractérisé par le fait qu'on utilise, comme enzyme, au moins une lipase choisie notamment parmi les lipases de Chromobacterium viscosum. d'Asperσillus niger, de Mucor miehi, de Rhizopus arrhizus. de Candida cylindracea, de Pseudomonas species. de Rhizopus delemar, de Mucor iavanicus, de Pseudomonas fluorescens. et la lipase de pancréas de porc.
9 - Procédé selon 1'une des revendication 1 à 8, caractérisé par le fait qu'on utilise de 2000 à 10000 unités actives d'enzyme par gramme de polyester insaturé contenu dans le déchet divisé.
10 - Procédé selon l'une des revendications 1 à 9, caractérisé par le fait qu'on conduit l'hydrolyse à une température ne dépassant pas 40 "C, en stabilisant au besoin le pH à une valeur correspondant au pH optimum de 1'enzyme utilisée, et l'alcoolyse, à une température ne dépassant pas 50°C.
PCT/FR1994/000590 1993-05-19 1994-05-18 Procede de degradation de dechets de polyesters insatures en vue de leur recyclage WO1994026812A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU68487/94A AU6848794A (en) 1993-05-19 1994-05-18 Method for the degradation of wastes of unsaturated polyesters in order to recycle such wastes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/06070 1993-05-19
FR9306070A FR2705352B1 (fr) 1993-05-19 1993-05-19 Procédé de dégradation de déchets de polyesters insaturés en vue de leur recyclage.

Publications (1)

Publication Number Publication Date
WO1994026812A1 true WO1994026812A1 (fr) 1994-11-24

Family

ID=9447308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000590 WO1994026812A1 (fr) 1993-05-19 1994-05-18 Procede de degradation de dechets de polyesters insatures en vue de leur recyclage

Country Status (3)

Country Link
AU (1) AU6848794A (fr)
FR (1) FR2705352B1 (fr)
WO (1) WO1994026812A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036086A1 (fr) * 1997-02-17 1998-08-20 Bayer Aktiengesellschaft Decomposition de polymeres biodegradables avec des enzymes
DE19834359A1 (de) * 1998-07-30 2000-02-03 Bayer Ag Reinigung von Gebinden, Produktionsanlagen und Werkzeugen
US8524471B2 (en) 2007-03-19 2013-09-03 Sud-Chemie Ip Gmbh & Co. Kg Generation of chemical building blocks from plant biomass by selective depolymerization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282773A (en) * 1975-12-26 1977-07-11 Agency Of Ind Science & Technol Polyester decomposing agenc
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
WO1991015520A1 (fr) * 1990-03-30 1991-10-17 Imperial Chemical Industries Plc Decomposition d'esters carboxyliques insatures ethyleniquement
WO1992004392A1 (fr) * 1990-09-07 1992-03-19 Holmes, Michael, John Polymeres contenant des unites de diesters
EP0502194A1 (fr) * 1990-10-01 1992-09-09 Toppan Printing Co., Ltd. Polymere de cyclodextrine et film de cyclodextrine forme a partir de celui-ci

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282773A (en) * 1975-12-26 1977-07-11 Agency Of Ind Science & Technol Polyester decomposing agenc
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
WO1991015520A1 (fr) * 1990-03-30 1991-10-17 Imperial Chemical Industries Plc Decomposition d'esters carboxyliques insatures ethyleniquement
WO1992004392A1 (fr) * 1990-09-07 1992-03-19 Holmes, Michael, John Polymeres contenant des unites de diesters
EP0502194A1 (fr) * 1990-10-01 1992-09-09 Toppan Printing Co., Ltd. Polymere de cyclodextrine et film de cyclodextrine forme a partir de celui-ci

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 77-60144Y[34] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036086A1 (fr) * 1997-02-17 1998-08-20 Bayer Aktiengesellschaft Decomposition de polymeres biodegradables avec des enzymes
DE19834359A1 (de) * 1998-07-30 2000-02-03 Bayer Ag Reinigung von Gebinden, Produktionsanlagen und Werkzeugen
US8524471B2 (en) 2007-03-19 2013-09-03 Sud-Chemie Ip Gmbh & Co. Kg Generation of chemical building blocks from plant biomass by selective depolymerization

Also Published As

Publication number Publication date
FR2705352A1 (fr) 1994-11-25
AU6848794A (en) 1994-12-12
FR2705352B1 (fr) 1995-08-04

Similar Documents

Publication Publication Date Title
JP2009527597A (ja) 環境分解性ポリマー組成物及び環境分解性ポリマー組成物を得る方法
Wu Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues
JP2009527592A (ja) 環境分解性ポリマーブレンド及び環境分解性ポリマーブレンドを得る方法
Coats et al. Production of natural fiber reinforced thermoplastic composites through the use of polyhydroxybutyrate-rich biomass
WO2007095709A1 (fr) Composition polymérique biodégradable et méthode de production d'une composition polymérique biodégradable
CN1513918A (zh) 一种木塑复合材料及其制备方法和应用
JPH07126449A (ja) 澱粉が化学結合された生分解性ポリエチレン組成物及びその製造方法
JP2004285258A (ja) 熱可塑性樹脂組成物
JP2009527593A (ja) 環境分解性ポリマーブレンド及び環境分解性ポリマーブレンドを得る方法
CN1170880C (zh) 热塑性模塑组合物的制备方法
CN101870774B (zh) 生物淀粉降解塑料母粒及塑料
WO1994026812A1 (fr) Procede de degradation de dechets de polyesters insatures en vue de leur recyclage
CN113308128A (zh) 一种芦苇生物全降解复合材料及其制备方法
KR100332163B1 (ko) 생분해성 수지 조성물 및 이의 제조방법
CN1544525A (zh) 可生物降解的聚乳酸泡沫塑料制备方法
KR100458042B1 (ko) 전분함유 폴리에틸렌 생붕괴성 수지 조성물 및 그 제조방법
EP0426782A1 (fr) Copolymeres reticules de l'ethylene et d'un ester d'acide insature et leur procede d'obtention
JP2003268222A (ja) 自然崩壊性を有するプラスチック成形品
KR20010027692A (ko) 열가소성 전분의 제조방법 및 이 방법에 의해 얻어진 열가소성 전분으로부터 분해성 플라스틱 마스터배치를 제조하는 방법
WO2017017336A1 (fr) Procede de fabrication d'un agent anti-retrait pour le moulage d'un polyester insature en presence d'un diluant reactif, agent anti-retrait susceptible d'etre obtenu par ledit procede de fabrication
EP0179702B1 (fr) Procédé de fabrication de résines polyesters insaturés présentant un mûrissement linéaire avec la magnésie
FR2461727A1 (fr) Compositions resineuses durcissables contenant de l'alumine trihydratee et procede pour leur mise en oeuvre
EP0662982B1 (fr) Compositions de resines chargees moulables en masse aptes a etre transformees par injection et leur application a la production de pieces moulees
EP0052946A1 (fr) Compositions de polyester stabilisées
FR2769632A1 (fr) Melange de polymeres et cable electrique le contenant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ FI HU JP KR LV NO NZ PL RO RU SI SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA