WO1994024524A1 - Füllstandsmessgerät - Google Patents

Füllstandsmessgerät Download PDF

Info

Publication number
WO1994024524A1
WO1994024524A1 PCT/DE1994/000339 DE9400339W WO9424524A1 WO 1994024524 A1 WO1994024524 A1 WO 1994024524A1 DE 9400339 W DE9400339 W DE 9400339W WO 9424524 A1 WO9424524 A1 WO 9424524A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
air gap
transducer
meter according
level meter
Prior art date
Application number
PCT/DE1994/000339
Other languages
English (en)
French (fr)
Inventor
Rolf Schwald
Peter KLÖFER
Manfred Eckert
Original Assignee
Endress + Hauser Gmbh + Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress + Hauser Gmbh + Co. filed Critical Endress + Hauser Gmbh + Co.
Priority to US08/351,389 priority Critical patent/US5866815A/en
Priority to AU63737/94A priority patent/AU675306B2/en
Priority to DE59408232T priority patent/DE59408232D1/de
Priority to DK94911076T priority patent/DK0644999T3/da
Priority to JP6522602A priority patent/JP2783684B2/ja
Priority to CA002137835A priority patent/CA2137835C/en
Priority to EP94911076A priority patent/EP0644999B1/de
Publication of WO1994024524A1 publication Critical patent/WO1994024524A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0674Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a low impedance backing, e.g. air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2968Transducers specially adapted for acoustic level indicators

Definitions

  • the invention relates to a filling level measuring device for measuring the filling level in a container or the storage height of a filling material in a storage location with an enclosed by a housing, alternately as a transmitting transducer for transmitting transmission pulses, and as a receiving transducer for the echo pulses reflected on the surface of the filling material , operated ultrasonic transducer and an electrical circuit to excite the transducer.
  • the fill level i.e. H. the content of the container or the storage height of the storage location is determined from the transit time of the sound pulse from the membrane of the ultrasound transducer to the surface of the filling material acting as a reflection plane and back to the transducer.
  • the ultrasound transducer which is enclosed by a housing, has a piezoelectric crystal which is excited to oscillate at the frequency of the ultrasound wave by the transmission pulse generator formed from the electrical circuit.
  • the end face and a short piece of the outer surface of the piezoelectric crystal are encased by a plastic layer which allows the acoustic impedance of the ceramic material of the crystal to match the acoustic impedance of the Medi ⁇ um, in which the sound pulse is to be emitted, is used.
  • a damping layer made of plastic fills the remaining part of the interior of the housing.
  • This plastic encloses the other end face and most of the outer surface 5 of the piezoelectric crystal.
  • the task of the damping layer is to influence the vibration behavior of the crystal in such a way that the direction of vibration is essentially directed towards the membrane and the radiation of vibration energy is damped in any other direction.
  • this damping layer can be formed from a silicone elastomer with a high proportion of metal oxides. Such a damping layer influences the swing-out behavior of the crystal and reduces the unwanted radiation of vibration energy in the radial direction and the axial direction facing away from the membrane.
  • An electroacoustic transducer of the same type is known from DE-PS 40 27 949.
  • it is proposed to vaporize the undesired sound radiation which runs parallel to the axial direction of the transducer by means of a filling ring which is made of a glass fiber reinforced plastic and surrounds the transducer to form an intermediate space.
  • This publication does not show any measures for reducing or preventing radially emitted sound waves.
  • the object of the present invention is to propose a fill level measuring device in which the radiation of sound energy which is disruptive to the measurement and which is triggered by the lateral surface of the piezoelectric crystal is prevented or at least further restricted and thereby increased of the outside diameter of the measuring device is dispensed with.
  • the invention dispenses with a reduction in sound absorption by extending the damping section, but instead uses the multiple reflections of the sound pulse which occur at material interfaces caused by jumps in sound impedance. This object is achieved by the features characterized in patent claim 1.
  • Figure 1 shows a section through the ultrasonic transducer
  • Figure 2 shows a section through the housing of the ultrasonic transducer as a single part.
  • FIG. 3 shows a plan view of the converter housing surrounding the piezoelectric crystal and the matching and damping layer.
  • 1 represents an ultrasound transducer which is used to measure the fill level in a container or the fill height in a storage location.
  • the ultrasound transducer consists of the housing 2, the transducer housing 3 and the connecting part 4 and the transmission pulse generator 5.
  • the ultrasonic transducer 1 is inserted through the opening 6 into the interior of a container, not shown.
  • the container is closed by a lid 7, of which only a short section is shown.
  • the threaded pin 41 of the connecting part 4 penetrates a cylindrical bore 71 of the connecting flange 72.
  • the threaded pin 41 forms a detachable connection with the flange 72, by means of which the ultrasonic transducer 1 is held on the connecting flange 72.
  • the piezoelectric crystal 31 is arranged inside the pot-shaped converter housing 3.
  • the bottom of the transducer housing 3 forms the membrane 32 of the ultrasound transducer.
  • the piezoelectric crystal 31 On the side facing the membrane 32, the end face and a short piece of the outer surface of the piezoelectric crystal 31 are encased by the matching layer 33. In order to achieve this, the piezoelectric crystal 31 is kept at a precisely defined distance from the membrane 32 by means of short supports 34.
  • the interior of the converter housing 3 facing away from the membrane 32 is completely filled with the damping layer 35.
  • the piezoelectric crystal 31 is thus enveloped by the damping layer 35, both on its outer surface and on the end surface facing away from the membrane 32.
  • Electrical connecting lines 51 connect the piezoelectric crystal 31 to the transmission pulse generator 5, which is formed by an electrical circuit 52. This in turn is connected via an additional electrical line 53 to an evaluation device, which is arranged remote from the measuring space.
  • the pot-shaped transducer housing 3 has locking springs 36 at its end facing away from the membrane 32. These are evenly distributed on the circumference of the converter housing 3. The function of these locking springs 36 will be discussed in more detail later.
  • the pot-shaped converter housing 3 is advantageously made as a molded part from a polypropylene.
  • the transmission pulse generator 5 generates an electrical transmission pulse and excites the piezoelectric crystal 31 via the electrical connecting lines 51 to vibrate in the frequency of the ultrasonic wave.
  • the sound energy is radiated essentially axially from the end faces of the crystal 31. A part of the energy becomes however also radially radiated from the outer surface of the crystal 31.
  • the plastic layer 33 facing the membrane 32 and filling the space between the membrane 32 and the crystal 31 effects an adaptation of the acoustic impedance of the ceramic material of the piezoelectric crystal 31 to the impedance of the media in which the sound pulse is emitted should.
  • the damping layer 35 dampens the remaining interior of the pot-shaped converter housing 3
  • transition of sound energy from one material to another causes a sound impedance jump at the material boundary surfaces, which leads to a partial reflection of the sound pressure wave. This also applies to the transition from
  • the invention makes use of this effect in that the transducer housing 3 coaxially penetrates the opening 21 of the housing 2 and is separated from the housing 2 by a precisely defined, thin, cylindrical and radially extending air gap 38 and in the region of the lateral surface of the piezoelectric crystal 31 structure-borne noise is additionally decoupled.
  • This is achieved, as shown in FIGS. 2 and 3 in detail, that three short cylindrical sections of larger diameter surround the opening 21 of the housing 2.
  • the diameter and width of the first section facing away from the connecting part 4 are selected such that it forms a groove 22 for receiving a flexible annular seal 23 with a round cross section.
  • the second, middle section also forms a groove 24, which is also intended to receive an annular seal 25.
  • the annular sealing rings 23, 25 can be formed from commercially available O-rings.
  • the third section 26 is somewhat wider and selected in cross-section such that its annular surface facing the groove 24 forms a shoulder 27 which, when the converter housing 3 is inserted, serves to support the locking springs 36 in the opening 21 in the opening 21.
  • a longer section 28 extends between the grooves 22 and 24, the diameter of which is approximately 2 mm larger than the diameter of the section 29 extending between the groove 24 and the section 26.
  • the section 29 forms in cooperation with the seals 23 and 25, the exact guidance of the lateral surface 37 of the converter housing 3 in the opening 21 of the housing 2.
  • the inner wall of the section 28 of the housing 2 and the lateral surface 37 of the converter housing 3 is a precisely defined one annular cylindrical air gap 38 of about 1 mm thick or less and a length of about 25 mm.
  • the air gap 38 runs around the central surface of the piezoelectric crystal 31.
  • the air gap 38 causes a transition from plastic to air in the material interfaces and again from air to plastic and again from plastic to air on the outer surface of the housing 2.
  • a partial reflection of the sound wave is triggered by each of these transitions, caused by the sound impedance jump.
  • the membrane 32 of the converter housing 3 extends in the radial direction beyond the lateral surface 37, so that its circumference coincides with the circumference of the housing 2.
  • the annular surface 55 of the membrane 32 facing the end surface of the housing 2 does not lie directly against the end surface of the housing 2, but between these parts there is a second, radially extending air gap 39 of approximately 0 , 2 mm.
  • the housing 2 can also be made as a molded part from a polypropylene.
  • the parts 2 and 3 are now joined together such that the connecting line 53 is first brought into electrical connection with the electrical circuit 52 and inserted into the opening 21 in the housing 2.
  • the transmit pulse generator 5 assumes the position shown in FIG. 1.
  • the seals 23 and 25 are used to insert the precompleted converter housing 3 into the opening 21 until the converter housing 3 assumes the position shown in FIG. 1 and the locking springs 36 are engaged on the shoulder 27 of the housing 2.
  • the remaining free space can be filled with a suitable potting 54.
  • the converter housing 3 is now separated from the housing 2 via a precisely defined and exactly cylindrical and a radially extending annular air gap.
  • the two sealing rings 23 and 25 permanently seal the cylindrical air gap even under difficult operating conditions and bring about an additional structure-borne sound decoupling of the area of the converter housing 3 opposite the lateral surface from the housing 2.
  • the total of three material transitions transducer housing 3 - air gap, air gap - housing 2, housing 2 - measuring space results, for example, with the sound characteristic impedances for the material plastic Z ⁇ 2'10 ° N s / m 3 and air Z L ⁇ 400 N s / m 3 a reduction of the sound pressure radially radiated on the lateral surface of the piezoelectric crystal 31 from 45 dB to 50 dB compared to a direct radiation to the air.
  • the sound impedance jumps can also be formed by interfaces of other materials,

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Es wird ein Füllstandsmeßgerät zur Messung des Füllstandes in einem Behälter oder der Lagerhöhe eines Füllgutes auf einem Lagerplatz mit einem abwechselnd als Sendewandler zur Aussendung von Sendeimpulsen und als Empfangswandler betriebenen Ultraschallwandler vorgeschlagen, bei welchem der Sende- und Empfangswandler (31, 33, 35) unter Bildung eines exakt ringzylindrischen, koaxialen Luftspaltes (38) von dem Gehäuse (2) des Füllstandsmeßgerätes umgriffen ist und zur Reflektion, der, von der Mantelfläche des piezoelektrischen Kristalles (31) abgestrahlten Schallenergie, Schallimpedanzsprünge verursachende Werkstoffgrenzflächen ausbildet.

Description

Beschreibung
Füllstandsmeßgerät
Die Erfindung betrifft ein Füllstandsmeßgerät zur Mes¬ sung des Füllstandes in einem Behälter oder der Lagerhöhe eines Füllgutes auf einem Lagerplatz mit einem, von einem Gehäuse umschlossenen, abwechselnd als Sendewandler zur Aussendung von Sendeimpulsen, und als Empfangswandler der, auf der Oberfläche des Füllgutes reflektierten Echoimpulse, betriebenen Ultraschallwandler und einer elektrischen Schaltung zur Anregung des Wandlers.
Füllstandsmeßgeräte dieser Art werden häufig bei der
Überwachung von Prozessen, z. B. der Erfassung der Füllhöhe von Behältern, oder Lagerplätzen, oder ähnliche für den Ablauf von Prozessen notwendigen Meßwerte eingesetzt. Dabei wird die Füllhöhe, d. h. der Inhalt des Behälters oder die Lagerhöhe des Lagerplatzes aus der Laufzeit des Schallim¬ pulses von der Membran des Ultraschallwandlers zu der, als Reflektionsebene wirkenden Oberfläche des Füllgutes und zu¬ rück zum Wandler ermittelt.
Zur Erzeugung des Sendeimpulses weist der, von einem Gehäuse umschlossene Ultraschallwandler einen piezoelek¬ trischen Kristall auf, welcher durch den, aus der elek¬ trischen Schaltung gebildeten Sendeimpulsgenerator zu Schwingungen mit der Frequenz der Ultraschallwelle angeregt wird. Nach dem üblichen Stand der Technik ist auf der, der Membran des Wandlers zugewandten Seite die Stirnfläche und ein kurzes Stück der Mantelfläche des piezoelektrischen Kristalles von einer Kunststoffschicht umhüllt, welche der Anpassung der akustischen Impedanz des keramischen Werk- Stoffes des Kristalles an die akustische Impedanz des Medi¬ ums, in welches der Schallimpuls abgestrahlt werden soll, dient . Auf der, der Membran abgewandten Seite, füllt eine Dämpfungsschicht aus Kunststoff den restlichen Teil des Ge¬ häuseinnenraumes aus. Dabei umschließt dieser Kunststoff die andere Stirnfläche und den größten Teil der Mantelflä- 5 ehe des piezoelektrischen Kristalles. Die Dämpfungsschicht hat zur Aufgabe, das Schwingungsverhalten des Kristalles so zu beeinflussen, daß die Schwingrichtung im wesentlichen auf die Membran gerichtet ist und die Abstrahlung von Schwingungsenergie in jede andere Richtung bedämpft wird. 0
Nach der Lehre der deutschen Patentanmeldung P 42 30
773.2 kann diese Dämpfungsschicht aus einem Silikonelasto¬ mer mit einem hohen Anteil von Metalloxyden gebildet sein. Eine solche Dämpfungsschicht beeinflußt das Ausschwingver- halten des Kristalles und vermindert die ungewollte Ab¬ strahlung von Schwingungsenergie in radiale, und der Mem¬ bran abgewandte axiale Richtung.
Bei Sensoren, dessen Innengehäuse mit einer Kunst- o Stoffschicht ausgefüllt ist, gelingt dies, wegen der Be¬ günstigung der Schallausbreitung durch die Kunststoff¬ schicht jedoch nicht vollständig, sodaß noch immer eine Restmenge von Schallenergie vor allem radial von der Man¬ telfläche des Kristalles abgestrahlt wird und nicht als, 5 auf das Füllgut gerichtete Schallenergie zur Verfügung steht. Insbesondere bei der Anwendung des Füllstandsmeßge¬ rätes zur Messung von Füllständen in Behältern, reflektiert _ diese radial abgestrahlte Schallenergie an der Behälter¬ wand, oder an Einbauten, oder an den Innenwänden von Q Schallführungsrohren und wird in den Meßraum gerichtet, was zur Folge hat, daß die Messung durch störende Nebenechos beeinflußt wird.
Üblicherweise wird versucht, diesen Nachteil dadurch zu begegnen, daß die, die Mantelfläche des piezoelektri¬ schen Kristalles umschließende Kunststoffschicht in ihrer Wandstärke vergrößert wird, was zu einer Verlängerung des Schallaufweges und zu einer Erhöhung der Schallabsorption führt. Dem gleichen Ziel dient auch die Zwischenfügung einer, den piezoelektrischen Kristall umlaufenden Schaum¬ stoffschicht .
Andererseits ist es aber die Forderung an solche Me߬ geräte, den Gesamtdurchmesser der Gehäuse möglichst klein im Durchmesser zu gestalten, damit die Öffnung des Behäl¬ terdeckels, durch welches das Meßgerät in dem Behälter eingebracht werden muß oder der Durchmesser eines Schall¬ führungsrohres ebenfalls klein gehalten werden kann.
Ein elektroakustischer Wandler der gleichen Art ist aus der DE-PS 40 27 949 bekannt. In dieser Patentschrift wird vorgeschlagen, die parallel zur Achsrichtung des Schallkopfes verlaufende unerwünschte Schallabstrahlung durch einen, den Schallkopf unter Bildung eines Zwischen¬ raumes umlaufenden, aus einem glasfaserverstärkten Kunst¬ stoff gebildeten Füllriπg, zu bedampfen. Maßnahmen zur Ver- ringerung oder Verhinderung von radial abgestrahlten Schallwellen zeigt diese Druckschrift nicht.
Demgegenüber stellt sich die vorliegende Erfindung die Aufgabe, ein Füllstandsmeßgerät vorzuschlagen, bei welchem, die, die Messung störenden durch die Mantelfläche des pie¬ zoelektrischen Kristalles ausgelöste Abstrahlung von Schal¬ lenergie verhindert, oder zumindest noch weiter einge¬ schränkt wird und dabei auf eine Vergrößerung des Außen¬ durchmessers des Meßgerätes verzichtet ist.
Um dies zu erreichen, verzichtet die Erfindung auf eine Verminderung der Schallabsorption durch Verlängerung der Dämpfungsstrecke sondern nutzt die Mehrfachreflektionen des Schallimpulses aus, welche an Werkstoffgrenzflächen verursacht durch Schallimpedanzsprünge auftreten. Gelöst wird diese Aufgabe durch die, in den Paten¬ tanspruch 1 gekennzeichneten Merkmale.
Eine vorteilhafte Ausgestaltung der Erfindung ist in den Unteransprüchen gekennzeichnet.
Weitere Merkmale und Vorteile sind in einem Ausfüh¬ rungsbeispiel dargestellt.
Es zeigen:
Figur 1 Einen Schnitt durch den Ultraschallwandler
Figur 2 Einen Schnitt durch das Gehäuse des Ultra¬ schallwandlers als Einzelteil.
Figur 3 Eine Draufsicht auf das, den piezoelektri sehen Kristall und die Anpaß- sowie Dämp¬ fungsschicht umschließende Wandlergehäuse.
In Fig. 1 ist mit 1 ein Ultraschallwandler darge¬ stellt, welcher der Messung des Füllstandes in einem Behäl¬ ter bzw. der Füllhöhe auf einem Lagerplatz dient. Der Ul¬ traschallwandler besteht aus dem Gehäuse 2, dem Wandlerge¬ häuse 3 und dem Anschlußteil 4 sowie dem Sendeimpulsgenera- tor 5.
Der Ultraschallwandler 1 ist durch die Öffnung 6 in den Innenraum eines nichtdargestellten Behälters einge- führt. Der Behälter ist von einem Deckel 7 verschlossen, von welchem nur ein kurzer Abschnitt dargestellt ist. Zur Befestigung des Ultraschallwandlers 1 durchdringt der Ge¬ windezapfen 41 des Anschlußteiles 4 eine zeπtrische Bohrung 71 des Anschlußflansches 72. Der Gewindezapfen 41 bildet mit dem Flansch 72 eine lösbare Verbindung, durch welche der Ultraschallwandler 1 an dem Anschlußflansch 72 gehalten ist . Im Inneren des topfför igen Wandlergehäuses 3 ist der piezoelektrische Kristall 31 angeordnet. Der Boden des Wandlergehäuses 3 bildet die Membran 32 des Ultraschall¬ wandlers. Auf der, der Membran 32 zugewandten Seite ist die Stirnfläche und ein kurzes Stück der Mantelfläche des pie¬ zoelektrischen Kristalles 31 von der Anpaßschicht 33 um¬ hüllt. Um dies zu erreichen, ist der piezoelektrische Kri¬ stall 31 mittels kurzen Stützen 34 in einen genau definier¬ ten Abstand von der Membran 32 gehalten.
Der, der Membran 32 abgewandte Innenraum des Wandler¬ gehäuses 3 ist vollkommen von der Dämpfungsschicht 35 aus¬ gefüllt. Damit ist der piezoelektrische Kristall 31, sowohl an seiner Mantelfläche wie auch auf der, der Membran 32 abgewandten Stirnfläche, von der Dämpfungsschicht 35 um¬ hüllt. Elektrische Anschlußleitungen 51 verbinden den pie¬ zoelektrischen Kristall 31 mit dem, durch eine elektrische Schaltung 52 gebildeten Sendeimpulsgenerator 5. Dieser wiederum steht über eine weitere elektrische Leitung 53 mit einem, entfernt vom Meßraum angeordneten Auswertegerät in elektrischer Verbindung.
Wie aus Fig. 3 ersichtlich ist, weist das topfförmige Wandlergehäuse 3 an seinem, der Membran 32 abgewandten Ende, Arretierungsfedern 36 auf. Diese sind gleichmäßig am Umfang des Wandlergehäuses 3 verteilt. Auf die Funktion dieser Arretierungsfedern 36 soll später noch näher einge¬ gangen werden. Das topfförmige Wandlergehäuse 3 ist vor¬ teilhafterweise als Spritzteil aus einem Polypropylen her- gestellt.
Der Sendeimpulsgenerator 5 erzeugt einen elektrischen Sendeimpuls und regt über die elektrischen Verbindungslei¬ tungen 51 den piezoelektrischen Kristall 31 zu Schwingungen in der Frequenz der Ultraschallwelle an. Die Abstrahlung der Schallenergie erfolgt im wesentlichen axial von den Stirnflächen des Kristalles 31. Ein Teil der Energie wird jedoch auch radial von der Mantelfläche des Kristalles 31 abgestrahlt. Die der Membran 32 zugewandte und den Zwi¬ schenraum zwischen der Membran 32 und dem Kristall 31 aus¬ füllende Kunststoffschicht 33 bewirkt eine Anpassung der akustischen Impedanz des keramischen Werkstoffes des piezo¬ elektrischen Kristalles 31 an die Impedanz der Medien, in welches der Schallimpuls abgestrahlt werden soll.
Die den restlichen Innenraum des topfförmigen Wandler- gehäuses 3 ausfüllende Dämpfungsschicht 35 bedämpft die
Abstrahlung von Energie sowohl in der, der Membran 32 abge¬ wandten axialen, wie auch der radialen Richtung. Da diese Kunststoffschicht jedoch nicht nur eine Bedämpfung der abgestrahlten Energie sondern auch ein Impedanzanpassung bewirkt, gelingt die vollkommene Verhinderung der ungewoll¬ ten Energieabstrahlung nicht. Stellt eine Verminderung der Abstrahlung in, der Membran 32 abgewaπdten axialen Rich¬ tung, derzeit kein Problem mehr da, ist eine zufriedenstel¬ lende Lösung der radialen Abstrahlung bisher noch nicht gefunden. Zwar wird versucht, die Verminderung der Abstrah¬ lung von radialer Schwingungsenergie durch eine Erhöhung der Schallabsorption mittels Vergrößerung des Schallaufwe¬ ges durch die Bedämpfuπgsschicht zu erreichen, was aber immer zu einer Vergrößerung des Gehäusedurchmessers führt und sich in idealer Weise nicht verwirklichen läßt.
Der Übergang von Schallenergie von einem Werkstoff zum anderen bewirkt einen Schallimpedanzsprung an den Werk¬ stoffgrenzflachen , der zu einer Teilreflektion der Schall- druckwelle führt. Dies gilt auch für den Übergang von
Kunststoff zu Luft. Dieser Übergang von Schallenergie an den Werkstoffgrenzflachen hängt sehr stark von dem Verhält¬ nis der Schallimpedanzen Z^ und Z2 der beiden Werkstoffe ab. Der Reflektionsfaktor r für den Schalldruck berechnet sich nach der Formel r = (Z1 - Z2) / (Z1 + Z2) . Bei Werkstoffen, deren Schallkennimpedanz sich beispiels- weise um den Faktor 5 unterscheiden, ergibt sich ein Ref- lektionsfaktor von 0,67. Dies bedeutet, daß der Schalldruck nach Durchgang der Werkstoffgrenzflachen auf 33 % seiner ursprünglichen Größe abgesunken ist. Nach Durchgang zweier Werkstoffgrenzflachen sogar auf 11 % seiner ursprünglichen Größe. Beim Übergang des Schalldruckes von Kunststoff zu Luft ergeben sich sehr hohe Reflektionskoeffizienten , d.h. ein großer Teil der Druckwelle wird zurückreflektiert. Da dieser Effekt unabhängig von den Werkstoffdicken ist, kön¬ nen z. B. Gehäusewände sehr dünn oder auch die Abstände zu Gehäusewänden sehr klein gewählt werden.
Die Erfindung nutzt nun diesen Effekt aus, indem das Wandlergehäuse 3 koaxial die Öffnung 21 des Gehäuses 2 durchdringt und dabei von dem Gehäuse 2 durch einen genau definierten dünnen ringzylindrischen sowie radial verlau¬ fenden Luftspalt 38 getrennt und im Bereich der Mantelflä¬ che des piezoelektrischen Kristalles 31 zusätzlich Kör¬ perschall entkoppelt ist. Erreicht wird dies, wie in den Fig. 2 und 3 im einzelnen dargestellt, daß drei kurze zy¬ lindrische Abschnitte größeren Durchmessers die Öffnung 21 des Gehäuses 2 umlaufen. Der, dem Anschlußteil 4 abgewandte erste Abschnitt ist in Durchmesser und Breite so gewählt, daß er eine Nut 22 zur Aufnahme einer flexiblen ringförmi- gen Dichtung 23, runden Querschnittes bildet.
Der zweite, mittlere Abschnitt, bildet ebenfalls ein Nut 24, welcher ebenfalls zur Aufnahme einer ringförmigen Dichtung 25 bestimmt ist. Die ringförmigen Dichtringe 23, 25 können aus handelsüblichen O-Ringen gebildet sein.
Der dritte Abschnitt 26 ist etwas breiter und im Quer¬ schnitt so gewählt, daß seine, der Nut 24 zugewandten Ringfläche eine Schulter 27 bildet, welche im eingefügten Zustand des Wandlergehäuses 3 in der Öffnung 21 dem Abstüt¬ zen der Arretierungsfedern 36 dient. Zwischen den Nuten 22 und 24 erstreckt sich ein länge¬ rer Abschnitt 28, dessen Durchmesser ca. 2 mm größer als der Durchmesser, des, zwischen der Nut 24 und dem Abschnitt 26 erstreckenden Abschnitt 29 ist. Der Abschnitt 29 bildet im Zusammenwirken mit den Dichtungen 23 und 25 die exakte Führung der Mantelfläche 37 des Wandlergehäuses 3 in der Öffnung 21 des Gehäuses 2. Dabei ist durch die Innenwand des Abschnittes 28 des Gehäuses 2 und der Mantelfläche 37 des Wandlergehäuses 3 ein genau definierter ringzylindri- scher Luftspalt 38 von ca. 1 mm Dicke oder kleiner und einer Länge von ca. 25 mm gebildet. Der Luftspalt 38 um¬ läuft die Ma ntelfläche des piezoelektrischen Kristalles 31. Der Luftspalt 38 bewirkt in den Werkstoffgrenzflachen einen Übergang von Kunststoff zu Luft, und wiederum von Luft zu Kunststoff und an der Außenfläche des Gehäuses 2 nocheinmal von Kunststoff zu Luft. Durch jeden dieser Übergänge wird, verursacht durch den Schallimpedanzsprung, eine Teilreflek¬ tion der Schallwelle ausgelöst.
Die Membran 32 des Wandlergehäuses 3 erstreckt sich in radialer Richtung über die Mantelfläche 37 hinaus, sodaß ihr Umfang mit dem Umfang des Gehäuses 2 zusammenfällt. Im eingeführten und arretierten Zustand liegt die, der Stirn¬ fläche des Gehäuses 2 zugewandte Ringfläche 55 der Membran 32 nicht direkt an der Stirnfläche des Gehäuse 2 an, son¬ dern zwischen diesen Teilen ist ein zweiter, sich radial erstreckender Luftspalt 39 von ca. 0,2 mm gebildet.
Das Gehäuse 2 kann ebenfalls als Spritzteil aus einem Polypropylen hergestellt sein.
Wie aus Fig. 1 ersichtlich, erfolgt nun die Zusammen¬ fügung der Teile 2 und 3 derart, daß zunächst die Anschlu߬ leitung 53 mit der elektrischen Schaltung 52 in elektrische Verbindung gebracht und in die Öffnung 21 des Gehäuses 2 eingeführt ist. Der Sendeimpulsgenerator 5 nimmt dabei die in Fig. 1 gezeigte Lage ein. Nach Einsetzen der ringförmi- gen Dichtungen 23 und 25 wird das vorkomplettierte Wandler¬ gehäuse 3 soweit in die Öffnung 21 eingeführt, bis das Wandlergehäuse 3 die in Fig. 1 gezeigte Lage einnimmt und die Arretierungsfedern 36 an der Schulter 27 des Gehäuses 2 eingerastet sind. In dieser Lage der Teile 3 und 5 inner¬ halb des Gehäuses 2 kann der verbleibende Freiraum mit einem geeigneten Verguß 54 ausgefüllt sein.
Das Wandlergehäuse 3 ist nun über einen präzise defi- nierten und exakt zylindrischen sowie einen sich radial erstreckenden ringförmigen Luftspalt von dem Gehäuse 2 getrennt. Die beiden Dichtringe 23 und 25 dichten den zy¬ lindrischen Luftspalt auch unter schwierigen Einsatzbedin¬ gungen dauerhaft ab und bewirken eine zusätzliche Körper- schallentkoppelung des der Mantelfläche gegenüberliegenden Bereiches des Wandlergehäuses 3 von dem Gehäuse 2.
Durch die insgesamt drei WerkstoffÜbergänge Wandlerge¬ häuse 3 - Luftspalt, Luftspalt - Gehäuse 2, Gehäuse 2 - Meßraum, ergibt sich beispielsweise mit den Schallkennimpe¬ danzen für den Werkstoff Kunststoff Zκ 2'10° Ns / m3 und Luft ZL ^ 400 Ns / m3 eine Reduktion des, an der Mantel¬ fläche des piezoelektrischen Kristalles 31 radial abge¬ strahlten Schalldruckes von 45 dB bis 50 dB gegenüber einer direkten Abstrahlung zur Luft.
Selbstverständlich können die Schallimpedanzsprünge durch Grenzflächen auch anderer Werkstoffe gebildet sein,

Claims

Ansprüche
1. Füllstandsmeßgerät zur Messung des Füllstandes in einem Behälter oder der Lagerhöhe eines Füllgutes auf einem Lagerplatz, mit einem, von einem Gehäuse um¬ schlossenen, abwechselnd als Sendewandler zur Aussen- düng von Sendeimpulsen und als Empfangswandler , der , auf der Oberfläche des Füllgutes reflektierten Echoimpulse, betriebenen Ultraschallwandler dadurch gekennzeichnet, daß der von einem Gehäuse (3) umschlossene Sende- und Empfangswandler (31, 33, 35) unter Bildung eines exakt ringzylindrischen, koaxialen Luftspaltes (38) von dem Gehäuse (2) des Füllstandsmeßgerätes (1) koaxial um¬ griffen ist und Werkstoffgrenzflächen ausgebildet sind, an denen durch Schallimpedanzsprünge die von der Man¬ telfläche des piezoelektrischen Kristalles (31) radial ausgestrahlte Schallenergie reflektiert.
2. Füllstandsmeßgerät nach Anspruch 1 dadurch gekenn¬ zeichnet, daß das, den Sende- und Empfangswandler (31, 33, 35) umschließende Gehäuse (3) eine Öffnung (21) des Gehäuses (2) durchdringt und durch flexible Dichtringe (23, 25) in einem definierten Abstand von der Wandung (28) der Öffnung (21) des Gehäuses (2) gehalten ist.
3. Füllstandsmeßgerät nach Anspruch 1 dadurch gekenn- zeichnet, daß der Luftspalt (38) eine Spaltbreite von 1 mm oder kleiner einnimmt.
4. Füllstandsmeßgerät nach Anspruch 1 und 3 dadurch gekennzeichnet, daß sich der Luftspalt (38) , in axialer Richtung, mindestens entlang der Mantelfläche des pie¬ zoelektrischen Kristalles (31) und ein Stück der Anpa߬ schicht (33) sowie der Dämpfungsschicht (35) erstreckt. 5. Füllstandsmeßgerät nach Anspruch 1, 3 und 4 da¬ durch gekennzeichnet, daß das Gehäuse (2) , einen sich axial erstreckenden Abschnitt (28) , definierten Durch¬ messers aufweist, durch welchen, im Zusammenwirken mit
5 der Mantelfläche (37) des Wandlergehäuses (3) der Luft¬ spalt (38) ausgebildet ist.
6. Füllstandsmeßgerät nach Anspruch 2 dadurch gekenn¬ zeichnet, daß an dem Gehäuse (2) die Öffnung (21) um-
10 laufenden Nuten (22, 24) zur Aufnahme der flexiblen Dichtringe (23, 25) angeformt sind.
7. Füllstandsmeßgerät nach Anspruch 2 dadurch gekenn¬ zeichnet, daß an dem Wandlergehäuse (3) an der, der
15 Membran (32) abgewandten Seite der Mantelfläche (37) , umlaufende Arretierungsfedern (36) angeformt sind.
8. Füllstandsmeßgerät nach Anspruch 2 und 7 dadurch gekennzeichnet, daß das Gehäuse (2) eine Arretierungs-
20 nut (26) aufweist, in welche Arretierungsfedern (36) des Wandlergehäuses (3) eingreifen, und sich an der Schulter (27) der Arretierungsnut (26) abstützen.
9. Füllstandsmeßgerät nach Anspruch 2 dadurch gekenn- 25 zeichnet, daß der axiale Abstand zwischen der Schulter
(27) des Gehäuses (2) und der Membran (32) des Wandler¬ gehäuses (3) einen, sich radial erstreckenden, ringför¬ migen Luftspalt (39) ausbilden.
3010. Füllstandsmeßgerät nach Anspruch 9 dadurch gekenn¬ zeichnet, daß sich die Membran (32) des Wandlers (3) , radial ein Stück über die Mantelfläche (37) erstreckt und auf der, der Schallabstrahlung abgewandten Seite, die ringförmige Wand (55) des sich radial erstreckenden
35 Luftspaltes (39) ausbildet.
11. Füllstandsmeßgerät nach Anspruch 9 dadurch gekenn¬ zeichnet, daß der, sich radial erstreckende Luftspalt (39) von der Stirnfläche des Gehäuses (2) und der ring¬ förmigen Rückfläche (55) der Membran (32) gebildet ist.
12. Füllstandsmeßgerät nach Anspruch 10 dadurch ge¬ kennzeichnet, daß der Luftspalt (39) eine Dicke von 0,2 mm oder kleiner aufweist.
13. Füllstandsmeßgerät nach einem der vorstehenden
Ansprüche dadurch gekennzeichnet, daß das Wandlergehäu¬ se (3) durch die Luftspalten (38, 39) zumindest im Bereich der Mantelfläche des piezoelektrischen Kristal¬ les (31) von dem Gehäuse (2) körperschallentkoppelt ist.
14. Füllstandsmeßgerät nach Anspruch 1 dadurch gekenn¬ zeichnet, daß das Gehäuse (2) sowie das Wandlergehäuse (3) als Spritzteil aus einem Polypropylen hergestellt sind.
PCT/DE1994/000339 1993-04-10 1994-03-24 Füllstandsmessgerät WO1994024524A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US08/351,389 US5866815A (en) 1993-04-10 1994-03-24 Fill-level indicator
AU63737/94A AU675306B2 (en) 1993-04-10 1994-03-24 Fill-level indicator
DE59408232T DE59408232D1 (de) 1993-04-10 1994-03-24 Füllstandsmessgerät
DK94911076T DK0644999T3 (da) 1993-04-10 1994-03-24 Fyldningsniveaumåler
JP6522602A JP2783684B2 (ja) 1993-04-10 1994-03-24 充填状態測定装置
CA002137835A CA2137835C (en) 1993-04-10 1994-03-24 Fill-level indicator
EP94911076A EP0644999B1 (de) 1993-04-10 1994-03-24 Füllstandsmessgerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4311963.8 1993-04-10
DE4311963A DE4311963C2 (de) 1993-04-10 1993-04-10 Füllstandsmeßgerät

Publications (1)

Publication Number Publication Date
WO1994024524A1 true WO1994024524A1 (de) 1994-10-27

Family

ID=6485321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000339 WO1994024524A1 (de) 1993-04-10 1994-03-24 Füllstandsmessgerät

Country Status (9)

Country Link
US (1) US5866815A (de)
EP (1) EP0644999B1 (de)
JP (1) JP2783684B2 (de)
AU (1) AU675306B2 (de)
CA (1) CA2137835C (de)
DE (2) DE4311963C2 (de)
DK (1) DK0644999T3 (de)
ES (1) ES2132396T3 (de)
WO (1) WO1994024524A1 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29522002U1 (de) * 1995-09-28 1999-03-25 Endress Hauser Gmbh Co Elektronikgehäuse
DE59509388D1 (de) * 1995-09-28 2001-08-09 Endress Hauser Gmbh Co Ultraschallwandler
DE19538678C2 (de) * 1995-10-17 1998-12-10 Endress Hauser Gmbh Co Anordnung zur Überwachung eines vorbestimmten Füllstands einer Flüssigkeit in einem Behälter
DE19538680C2 (de) * 1995-10-17 1998-10-08 Endress Hauser Gmbh Co Anordnung zur Überwachung eines vorbestimmten Füllstands einer Flüssigkeit in einem Behälter
DE19756462B4 (de) * 1997-12-18 2007-03-08 Robert Bosch Gmbh Ultraschallwandler
EP0943902B1 (de) * 1998-03-18 2004-07-14 VEGA Grieshaber KG Mikrowellen-Füllstandsmessgerät geeignet zum Betrieb bei hohen Temperaturen und/oder hohen Drücken und/oder chemisch aggressiver Umgebung
US6332892B1 (en) 1999-03-02 2001-12-25 Scimed Life Systems, Inc. Medical device with one or more helical coils
DE29912847U1 (de) * 1999-07-22 2000-08-31 Siemens Ag Schallaufnehmer
DE10054207B4 (de) * 2000-11-02 2007-03-22 Vega Grieshaber Kg Füllstandsmessgerät mit einem Gehäuse aus Kunststoff
DE10216037A1 (de) 2002-04-11 2003-10-23 Endress & Hauser Gmbh & Co Kg Schall-oder Ultraschallsensor
DE10221303A1 (de) * 2002-05-14 2003-11-27 Valeo Schalter & Sensoren Gmbh Sensor, insbesondere Ultraschallsensor, und Verfahren zur Herstellung
US6973793B2 (en) * 2002-07-08 2005-12-13 Field Diagnostic Services, Inc. Estimating evaporator airflow in vapor compression cycle cooling equipment
DE10233296A1 (de) * 2002-07-22 2004-02-12 Endress + Hauser Gmbh + Co. Kg Verfahren zur Herstellung eines Gehäuses für einen gekapselten Sensor und entsprechendes Gehäuse
US7523662B2 (en) * 2002-10-25 2009-04-28 Endress + Hauser Flowtec Ag Process meter
EP1489392A1 (de) * 2003-06-16 2004-12-22 Siemens Aktiengesellschaft Verfahren zur Herstellung einer elektronischen Anordnung und eine elektronische Schaltungsanordnung
US20050183346A1 (en) * 2003-07-28 2005-08-25 Dudley William E. Air conditioning condensation drainage system
DE10344741A1 (de) 2003-09-25 2005-04-14 Endress + Hauser Gmbh + Co. Kg Schall- oder Ultraschallwandler
US7287425B2 (en) * 2004-05-17 2007-10-30 Xtero Datacom Inc. Ultrasonic fuel level monitoring device
US7245059B2 (en) * 2004-05-17 2007-07-17 Xtero Datacom Inc. Method of exciting a piezoelectric crystal
US7464588B2 (en) * 2005-10-14 2008-12-16 Baker Hughes Incorporated Apparatus and method for detecting fluid entering a wellbore
US7905143B2 (en) * 2007-07-23 2011-03-15 Schmitt Measurement Systems, Inc. Ultrasonic fuel level monitoring system incorporating an acoustic lens
US8104341B2 (en) * 2009-03-25 2012-01-31 Schmitt Measurement Systems, Inc. Ultrasonic liquid level monitoring system
US8412473B2 (en) 2011-04-11 2013-04-02 Schmitt Industries, Inc. Event monitoring and detection in liquid level monitoring system
US9229021B2 (en) * 2011-04-20 2016-01-05 Endress + Hauser Flowtec Ag Measuring device with a multi-walled housing
DE102011085128A1 (de) * 2011-10-24 2013-04-25 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
US10953436B2 (en) * 2012-03-15 2021-03-23 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US11012764B2 (en) 2014-06-04 2021-05-18 Nectar, Inc. Interrogation signal parameter configuration
US10591345B2 (en) 2014-06-04 2020-03-17 Nectar, Inc. Sensor device configuration
US10670444B2 (en) 2014-04-04 2020-06-02 Nectar, Inc. Content quantity detection signal processing
US10078003B2 (en) 2014-06-04 2018-09-18 Nectar, Inc. Sensor device configuration
US11099166B2 (en) 2014-04-04 2021-08-24 Nectar, Inc. Container content quantity measurement and analysis
US10324075B2 (en) 2014-04-04 2019-06-18 Nectar, Inc. Transmitter and receiver configuration for detecting content level
US10072964B2 (en) * 2014-12-18 2018-09-11 Nectar, Inc. Container fill level measurement and management
US9163974B1 (en) * 2014-12-11 2015-10-20 Enevo Oy Wireless gauge apparatus and manufacturing method thereof
US11237036B2 (en) 2017-05-11 2022-02-01 Nectar, Inc. Base station and advertising packets of sensors detecting content level
US11274955B2 (en) 2018-06-12 2022-03-15 Nectar, Inc. Fouling mitigation and measuring vessel with container fill sensor
AT17018U1 (de) * 2019-10-29 2021-02-15 Tdk Electronics Ag
EP4083583A1 (de) * 2021-04-30 2022-11-02 Tekelek Group Holdings Limited Ultraschallabstandssensor und verfahren zum schutz eines ultraschallwandlers in einem ultraschallabstandssensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE853355C (de) * 1941-08-16 1952-10-23 Siemens Ag Piezoelektrischer Schwingungserzeuger zur Beschallung, insbesondere fluessigen Gutes
EP0340624A2 (de) * 1988-05-05 1989-11-08 Höntzsch Gmbh Elektroakustischer Wandler
DE9209977U1 (de) * 1991-08-09 1992-11-19 Vega Grieshaber Gmbh & Co, 7620 Wolfach, De

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1052623A (de) * 1962-06-20
US3376438A (en) * 1965-06-21 1968-04-02 Magnaflux Corp Piezoelectric ultrasonic transducer
US3771117A (en) * 1972-03-01 1973-11-06 Westinghouse Electric Corp Transducer installation
JPS5845006B2 (ja) * 1975-12-25 1983-10-06 日本電気株式会社 光変調器
JPS60100950A (ja) * 1983-11-09 1985-06-04 松下電器産業株式会社 超音波探触子
US4536673A (en) * 1984-01-09 1985-08-20 Siemens Aktiengesellschaft Piezoelectric ultrasonic converter with polyurethane foam damper
US4728844A (en) * 1985-03-23 1988-03-01 Cogent Limited Piezoelectric transducer and components therefor
US5274296A (en) * 1988-01-13 1993-12-28 Kabushiki Kaisha Toshiba Ultrasonic probe device
DE3931453C1 (de) * 1989-09-21 1991-02-28 Endress U. Hauser Gmbh U. Co, 7864 Maulburg, De
DE3933474C2 (de) * 1989-10-06 1994-01-27 Endress Hauser Gmbh Co Füllstandsmeßgerät
DE4027949A1 (de) * 1990-09-04 1992-03-05 Honeywell Elac Nautik Gmbh Elektroakustischer wandler
DE4126399A1 (de) * 1991-08-09 1993-02-11 Vega Grieshaber Gmbh & Co Ultraschall-wandler
DE4230773C2 (de) * 1992-09-15 2000-05-04 Endress Hauser Gmbh Co Ultraschallwandler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE853355C (de) * 1941-08-16 1952-10-23 Siemens Ag Piezoelektrischer Schwingungserzeuger zur Beschallung, insbesondere fluessigen Gutes
EP0340624A2 (de) * 1988-05-05 1989-11-08 Höntzsch Gmbh Elektroakustischer Wandler
DE9209977U1 (de) * 1991-08-09 1992-11-19 Vega Grieshaber Gmbh & Co, 7620 Wolfach, De

Also Published As

Publication number Publication date
EP0644999A1 (de) 1995-03-29
DE4311963C2 (de) 1996-10-24
JPH07507146A (ja) 1995-08-03
JP2783684B2 (ja) 1998-08-06
EP0644999B1 (de) 1999-05-12
DE59408232D1 (de) 1999-06-17
US5866815A (en) 1999-02-02
CA2137835C (en) 2000-02-15
DK0644999T3 (da) 1999-11-01
DE4311963A1 (de) 1994-10-13
ES2132396T3 (es) 1999-08-16
AU6373794A (en) 1994-11-08
CA2137835A1 (en) 1994-10-27
AU675306B2 (en) 1997-01-30

Similar Documents

Publication Publication Date Title
EP0644999A1 (de) Füllstandsmessgerät
DE3633047C2 (de)
EP0766071B1 (de) Ultraschallwandler
EP0769685B1 (de) Verfahren zur Überwachung eines vorbestimmten Füllstands einer Flüssigkeit in einem Behälter
EP0871019B1 (de) Verfahren und Anordnung zur Feststellung einer Überfüllung bei der Messung des Füllstands einer Flüssigkeit in einem Behälter nach dem Impulslaufzeitverfahren
DE4118793C2 (de) Vorrichtung zur Feststellung und/oder Überwachung eines vorbestimmten Füllstandes in einem Behälter
DE102008029772A1 (de) Verfahren und Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
DE3738515A1 (de) Fuellstandsanzeiger
WO2013097994A1 (de) Ultraschallwandler für ein durchflussmessgerät
DE3602351C1 (de) Schallwandlersystem
EP3308123B1 (de) Vorrichtung zur messung des drucks eines durch eine rohrleitung strömenden fluids
EP2743653A1 (de) Ultraschallwandler und Verfahren zum Erzeugen und/oder Aufnehmen von Ultraschallsignalen
DE3721209C2 (de) Schall-/Ultraschallmeßgerät
DE19620133C2 (de) Schall- oder Ultraschallsensor
EP1413858A1 (de) Ultraschallmassendurchflussmesser
DE4306193B4 (de) Füllstandssensor
EP3244172B1 (de) Ultraschallwandler mit abstrahlelement
EP3055858B1 (de) Ultraschallsensor
DE10109453A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Füllstands eines Füllguts in einem Behälter
EP0927987B1 (de) Schallwandlersystem
DE102016111133A1 (de) Vorrichtung zur Bestimmung oder Überwachung des Volumen- und/oder Massendurchflusses eines fluiden Mediums in einer Rohrleitung
EP0882958A1 (de) Verfahren und Anordnung zur Überwachung eines vorbestimmten Füllstands in einem Behälter
EP3612802A1 (de) Ultraschall-durchflussmesseinrichtung
EP1493302A1 (de) Schall- oder ultraschallsensor
DE3842759C2 (de) Richtscharfer Ultraschall-Wandler mit gekrümmter Abstrahlfläche

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2137835

Country of ref document: CA

Ref document number: 08351389

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994911076

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994911076

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994911076

Country of ref document: EP