WO1994017385A1 - Cellule d'ablation d'un echantillon au laser - Google Patents

Cellule d'ablation d'un echantillon au laser Download PDF

Info

Publication number
WO1994017385A1
WO1994017385A1 PCT/FR1994/000093 FR9400093W WO9417385A1 WO 1994017385 A1 WO1994017385 A1 WO 1994017385A1 FR 9400093 W FR9400093 W FR 9400093W WO 9417385 A1 WO9417385 A1 WO 9417385A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
housing
cell
gas
ablation cell
Prior art date
Application number
PCT/FR1994/000093
Other languages
English (en)
Inventor
Sylvie Masseau
Alain Briand
Jacques Minier
Claude Bergey
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO1994017385A1 publication Critical patent/WO1994017385A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • H01J49/0463Desorption by laser or particle beam, followed by ionisation as a separate step
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N2001/045Laser ablation; Microwave vaporisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • G01N2001/1445Overpressure, pressurisation at sampling point
    • G01N2001/1463Injector; Air-lift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Definitions

  • the invention relates to a laser sample ablation cell.
  • Such cells include a housing provided with a window for the passage of the laser beam and which contains a pedestal on which the sample is placed.
  • the laser attacks the surface of the sample and detaches particles which form an aerosol by spreading into the atmosphere of the cell, which is enclosed in a housing which an evacuation duct connects to a device where the aerosol is used and which generally consists of an apparatus for measuring the composition or properties of the aerosol such as a plasma torch or a spectrometer; a gas supply duct also opens into the housing to discharge the aerosol into the discharge duct and replace the discharged gas.
  • the general disadvantage for all cells is the difficulty of correctly guiding the particles of the aerosol, most of which will foul the wall of the housing, including the window, instead of being evacuated.
  • the yield of the usual cells is approximately 25%.
  • An improved cell device comprising a tube coaxial with the laser beam and which terminates near the sample, and the housing of which contains gas under overpressure, is the seat of a flow of gas towards the tube passing in front of it. 'sample, because the discharge conduit opens into the tube opposite the sample.
  • the aerosol particles are well entrained by the gas when it touches the sample and rise in the tube with a regular movement favored by an absence of turbulence in the flow. Quite little material is therefore deposited on the tube, and the cell offers a much better yield, of the order of 40%, but it is complicated to use in practice.
  • this is a laser sample ablation cell, comprising a housing containing a pedestal on which the sample is placed, the housing being pierced with a window for the passage of the laser beam, the cell being provided with a gas supply conduit and a gas evacuation conduit for establishing a circulation of gas in the housing, the evacuation conduit opening into the housing between the window and the sample, characterized in that the pedestal is hollowed out with a circular groove around the sample and at the bottom of which the supply duct opens, and in that a drive means is added to drive the gas present in the housing in the exhaust duct.
  • FIG. 1 The two embodiments have a certain number of common elements which will first be described and are only completely drawn in FIG. 1: a glass casing 1 provided with a silica window 2 at its top which leaves pass the laser beam F in the axis of the housing 1, and a pedestal 3 fitted into the lower part of the housing 1 and which is composed of a base 4, a socket 5 and a flange 6.
  • the socket 5 surrounds the base 4 from which it is separated over most of their height by a circular groove 7, and the rim 6, of frustoconical shape, is embedded at the top of the sleeve 5 and extends in front and above the opening of the circular groove 7, which it surrounds .
  • Seals 8 are engaged in grooves on the outside of the socket 5 and serve to establish the seal with the housing 1.
  • a hole 9 made in the socket 5 connects the bottom of the circular groove 7 to the outside of the cell by a gas supply conduit 10.
  • the base 4 carries a hollow 11 at its top, in which is placed a sample holder 12 which can be broken down into a tripod 13 whose feet are curved at the top to form concentric legs 14, and in a plate 15 movable vertically relative to the tripod 13 under the action of a screw 16 and on which the sample E is placed.
  • the sample E is in place when it is wedged between the plate 15 and the legs 14. It is roughly flush with the top of the hollow 11, the depth of which is comparable to the height of the sample holder 12.
  • the sample holder 12 is movable in the recess 11 so that the point of the sample E that the beam of the laser F reaches can be varied.
  • the rim 6 has an internal diameter slightly greater than that of the sample holder 12 at its top. When gas is blown into the supply duct 10, it opens at the bottom of the circular groove 7, in which it acquires a helical laminar movement which it keeps in the free part of the housing 1, after its flow has however been narrowed by the rim 6 so as to concentrate it in front of the sample E and to capture as many particles detached from it by the beam of the laser F as possible, and away from the wall of the housing 1 while accelerating it.
  • a discharge duct 20 opens into the housing 1 halfway between the window 2 and the sample E by the intermediate of an enlarged part constituting a funnel 21.
  • a gas drive conduit 22, collinear with the discharge conduit 20, also opens into the housing 1, at a diametrically opposite point, and it ends in a narrowed nozzle 23 .
  • the effect resulting from this pair of conduits is a horizontal flow of gas which interrupts and drives the helical flow charged with loose particles, and the nozzle 23 has the function of blowing the desired flow rate at a speed sufficient to ensure effective drive. even if the cell must be large to receive large samples E.
  • the funnel 21 facilitates the guiding of the gas towards the evacuation duct 20. The meeting of the two currents inevitably introduces turbulence in the flow, but which remains sufficiently reduced for satisfactory performance to be observed.
  • the funnel 21 can be omitted. This is what can be seen in FIG. 2, where the exhaust duct 20 opens directly into the housing 1.
  • the essential element of the embodiment is however a nozzle suction 24 which surrounds the opposite end of the discharge duct 20 and extends it by a tapered orifice 25 constituting a venturi. Gas is introduced through a supply orifice 26 opposite the venturi 25, and the flow is diverted into the nozzle 24 so as to become parallel to the flow of aerosol flowing in the evacuation duct 20 while surrounding it, before to mix with it and to be sucked in by the venturi 25. The aerosol then ends up in the measuring or use device, which is however not shown.
  • the suction nozzle 24 makes it possible, like the drive duct 22, to promote the driving of the aerosol towards the discharge duct 20. Without this means, the discharge flow would be much less clear and would be accompanied more turbulence and dispersions generating unwanted deposits.
  • the gas used for the flows is frequently argon.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Cellule d'ablation d'un échantillon (E) au laser (F). Des conduits d'écoulement et d'évacuation (10, 20 et 22) sont placés de façon que l'aérosol constitué par les particules de l'échantillon détaché soit soumis à un écoulement aussi laminaire que possible, d'abord en hélice puis en direction horizontale vers un appareil de mesure d'examen ou d'utilisation.

Description

CELLULE D'ABLATION D'UN ECHANTILLON AU LASER
DESCRIPTION L'invention concerne une cellule d'ablation d'un échantillon au laser.
De telles cellules comprennent un boîtier muni d'une fenêtre de passage du faisceau du laser et qui contient un piédestal sur lequel l'échantillon est placé. Le laser attaque la surface de l'échantillon et en détache des particules qui forment un aérosol en se répandant dans l'atmosphère de la cellule, qui est enclose dans un boîtier qu'un conduit d'évacuation relie à un appareil où l'aérosol est utilisé et qui consiste généralement en un appareil de mesure de la composition ou des propriétés de l'aérosol tel qu'une torche à plasma ou un spectromètre ; un conduit d'alimentation en gaz débouche également dans le boîtier pour refouler l'aérosol dans le conduit d'évacuation et remplacer le gaz évacué. L'inconvénient général à toutes les cellules consiste en la difficulté de guider correctement les particules de l'aérosol, dont la plus grande partie va encrasser la paroi du boîtier, y compris la fenêtre, au lieu d'être évacuée. Le rendement des cellules usuelles, c'est-à-dire la proportion en poids de la matière retirée à l'échantillon qui aboutit effectivement à l'appareil annexe, est d'environ 25%. Un dispositif de cellule perfectionné, comprenant un tube coaxial au faisceau du laser et qui aboutit près de l'échantillon, et dont le boîtier contient du gaz mis en surpression, est le siège d'un écoulement de gaz vers le tube en passant devant l'échantillon, car le conduit d'évacuation débouche dans le tube à l'opposé de l'échantillon. Les particules de l'aérosol sont bien entraînées par le gaz quand il effleure l'échantillon et s'élèvent dans le tube d'un mouvement régulier favorisé par une absence de turbulence de l'écoulement. Assez peu de matière se dépose donc sur le tube, et la cellule offre un rendement bien meilleur, de l'ordre de 40%, mais elle est compliquée à utiliser en pratique. L'invention est relative à une cellule beaucoup plus simple et dont le rendement n'est pas sensiblement inférieur car il est de 35% dans les essais menés jusqu'à présent. Il s'agit en résumé d'une cellule d'ablation d'un échantillon au laser, comprenant un boîtier contenant un piédestal sur lequel l'échantillon est placé, le boîtier étant percé d'une fenêtre de passage du faisceau du laser, la cellule étant pourvue d'un conduit d'alimentation en gaz et d'un conduit d'évacuation du gaz pour instaurer une circulation de gaz dans le boîtier, le conduit d'évacuation débouchant dans le boîtier entre la fenêtre et l'échantillon, caractérisée en ce que le piédestal est creusé d'une rainure circulaire autour de l'échantillon et au fond de laquelle le conduit d'alimentation débouche, et en ce qu'un moyen d'entraînement est ajouté pour entraîner le gaz présent dans le boîtier dans le conduit d'évacuation.
On va maintenant commenter l'invention plus en détail à l'aide des deux figures 1 et 2 annexées à titre illustratif et non limitatif et qui illustrent deux réalisations de l'invention.
Les deux réalisation présentent un certain nombre d'éléments communs qui vont d'abord être décrits et ne sont dessinés complètement que sur la figure 1 : en font partie un boîtier 1 en verre pourvu à son sommet d'une fenêtre 2 en silice qui laisse passer le faisceau du laser F dans l'axe du boîtier 1, et un piédestal 3 emboîté dans la partie inférieure du boîtier 1 et qui est composé d'une base 4, une douille 5 et un rebord 6. La douille 5 entoure la base 4 dont elle est séparée sur l'essentiel de leur hauteur par une rainure circulaire 7, et le rebord 6, de forme tronconique, est encastré au sommet de la douille 5 et s'étend devant et dessus l'ouverture de la rainure circulaire 7, qu'il entoure. Des joints d'étanchéité 8 sont engagés dans des gorges de la face extérieure de la douille 5 et servent à établir l'étanchéité avec le boîtier 1. Enfin, un perçage 9 opéré dans la douille 5 relie le fond de la rainure circulaire 7 à l'extérieur de la cellule par un conduit d'alimentation en gaz 10. La base 4 porte un creux 11 à son sommet, dans lequel est posé un porte-échantillon 12 qu'on peut décomposer en un trépied 13 dont les pieds sont recourbés au sommet pour former des pattes 14 concentriques, et en un plateau 15 mobile verticalement par rapport au trépied 13 sous l'action d'une vis 16 et sur lequel l'échantillon E est posé. L'échantillon E est en place quand il est coincé entre le plateau 15 et les pattes 14. Il affleure à peu près au sommet du creux 11, dont la profondeur est comparable à la hauteur du porte-échantillon 12. Le porte-échantillon 12 est mobile dans le creux 11 pour qu'on puisse faire varier le point de l'échantillon E que le faisceau du laser F atteint. Le rebord 6 a un diamètre interne légèrement supérieur à celui du porte-échantillon 12 à son sommet. Quand du gaz est insufflé dans le conduit d'alimentation 10, il débouche au fond de la rainure circulaire 7, dans laquelle il acquiert un mouvement laminaire en hélice qu'il conserve dans la partie dégagée du boîtier 1, après que son flux a toutefois été rétréci par le rebord 6 de façon à le concentrer devant l'échantillon E et à capter autant de particules détachées de celui-ci par le faisceau du laser F que possible, et à l'éloigner de la paroi du boîtier 1 tout en l'accélérant.
Comme le mouvement laminaire en hélice subsiste à peu près inaltéré quand le flux de gaz s'élève au- dessus de l'échantillon E vers la fenêtre 2, et qu'il n'y a pratiquement pas de dispersion ni de création de zones périphériques sensiblement stagnantes, l'évasion des particules du flux pour aller encrasser la paroi du boîtier 1 est moins probable. Si on s'intéresse maintenant exclusivement à la réalisation de la première figure, on constate qu'un conduit d'évacuation 20 débouche dans le boîtier 1 à mi-hauteur de l'intervalle entre la fenêtre 2 et l'échantillon E par l'intermédiaire d'une partie élargie constituant un entonnoir 21. Un conduit d'entraînement de gaz 22, colinéaire au conduit d'évacuation 20, débouche aussi dans le boîtier 1, en un point diamétralement opposé, et il se termine par une buse 23 rétrécie. L'effet résultant de cette paire de conduits est un écoulement horizontal de gaz qui interrompt et entraîne le flux en hélice chargé des particules détachées, et la buse 23 a pour fonction d'insuffler le débit souhaité à une vitesse suffisante pour assurer un entraînement effectif même si la cellule doit être volumineuse pour recevoir de larges échantillons E. L'entonnoir 21 facilite le guidage du gaz vers le conduit d'évacuation 20. La rencontre des deux courants introduit inévitablement des turbulences dans l'écoulement, mais qui restent suffisamment réduites pour qu'un rendement satisfaisant soit observé.
L'entonnoir 21 peut être omis. C'est ce qu'on constate sur la figure 2, où le conduit d'évacuation 20 débouche directement dans le boîtier 1. L'élément essentiel de la réalisation est toutefois une buse d'aspiration 24 qui entoure l'extrémité opposée du conduit d'évacuation 20 et le prolonge par un orifice effilé 25 constituant un venturi. Du gaz est introduit par un orifice d'alimentation 26 opposé au venturi 25, et le flux est détourné dans la buse 24 pour devenir parallèle au flux d'aérosol s'écoulant dans le conduit d'évacuation 20 tout en l'entourant, avant de se mêler à lui et d'être aspiré par le venturi 25. L'aérosol aboutit ensuite à l'appareil de mesure ou d'utilisation, qui n'est cependant pas représenté.
La buse d'aspiration 24 permet, comme le conduit d'entraînement 22, de favoriser l'entraînement de l'aérosol vers le conduit d'évacuation 20. Sans ce moyen, l'écoulement d'évacuation serait beaucoup moins net et serait accompagné de plus de turbulence et de dispersions génératrices de dépôts indésirables.
Le gaz employé pour les écoulements est fréquemment de l'argon.

Claims

REVENDICATIONS-
1. Cellule d'ablation d'un échantillon (E) au laser (F), comprenant un boîtier (1) contenant un piédestal (3) sur lequel l'échantillon (E) est placé, le boîtier (1) étant percé d'une fenêtre (2) de passage du faisceau du laser (F), la cellule étant pourvue d'un conduit d'alimentation (10) en gaz et d'un conduit d'évacuation (20) du gaz pour instaurer une circulation de gaz dans le boîtier (1), le conduit d'évacuation (20) débouchant dans le boîtier (1) entre la fenêtre
(2) et l'échantillon (E) , caractérisée en ce que le piédestal (3) est creusé d'une rainure circulaire (7) autour de l'échantillon (E) et au fond de laquelle le conduit d'alimentation (10) débouche, et en ce qu'un moyen d'entraînement (22, 24) est ajouté pour entraîner le gaz présent dans le boîtier dans le conduit d'évacuation.
2. Cellule d'ablation d'un échantillon suivant la revendication 1, caractérisée en ce que le boîtier (1) contient un porte-échantillon (12) posé sur le piédestal (3) et sur lequel l'échantillon (E) est placé.
3. Cellule d'ablation d'un échantillon suivant la revendication 2, caractérisée en ce que le piédestal (3) comprend un renfoncement (11) dans lequel le porte- échantillon (12) est posé, le porte-échantillon ayant une hauteur analogue à la profondeur du renfoncement, et en ce que le piédestal porte un rebord tronconique (6) autour et au-dessus de la rainure circulaire (7) .
4. Cellule d'ablation d'un échantillon suivant la revendication 1, caractérisée en ce que le conduit d'évacuation (20) débouche dans le boîtier (1) par un entonnoir (21) .
5. Cellule d'ablation d'un échantillon suivant la revendication 1, caractérisée en ce que le moyen d'entraînement est un second conduit d'alimentation en gaz (22), colinéaire au conduit d'évacuation (20) et débouchant à un emplacement opposé du boîtier (1) .
6. Cellule d'ablation d'un échantillon suivant la revendication 5, caractérisée en ce que le second conduit d'alimentation en gaz débouche dans le boîtier par une extrémité effilée (23) .
7. Cellule d'ablation d'un échantillon suivant la revendication 1, caractérisée en ce que le moyen d'entraînement est un moyen d'aspiration (24) situé sur le conduit d'évacuation.
8. Cellule d'ablation d'un échantillon suivant la revendication 7, caractérisée en ce que le moyen d'aspiration est une buse (24) qui entoure l'extrémité du conduit d'évacuation opposée au boîtier et dans lequel du gaz d'entraînement est soufflé.
9. Cellule d'ablation d'un échantillon suivant la revendication 8, caractérisée en ce que la buse (24) est effilée en venturi (25) devant l'extrémité opposée au boîtier du conduit d'évacuation.
PCT/FR1994/000093 1993-01-27 1994-01-26 Cellule d'ablation d'un echantillon au laser WO1994017385A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9300784A FR2700852B1 (fr) 1993-01-27 1993-01-27 Cellule d'ablation d'un échantillon au laser.
FR93/00784 1993-01-27

Publications (1)

Publication Number Publication Date
WO1994017385A1 true WO1994017385A1 (fr) 1994-08-04

Family

ID=9443390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000093 WO1994017385A1 (fr) 1993-01-27 1994-01-26 Cellule d'ablation d'un echantillon au laser

Country Status (2)

Country Link
FR (1) FR2700852B1 (fr)
WO (1) WO1994017385A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2304189A (en) * 1995-08-11 1997-03-12 Finnigan Mat Gmbh Preparing samples for analysis
EP2956756A4 (fr) * 2013-02-14 2016-10-12 Electro Scient Ind Inc Système d'ablation laser à cellule et torche pour un système d'analyse de composition
EP2954300A4 (fr) * 2013-02-09 2016-10-12 Electro Scient Ind Inc Système de manipulation de fluide en chambre et procédés de manipulation de fluide l'utilisant
US10285255B2 (en) 2013-02-14 2019-05-07 Elemental Scientific Lasers, Llc Laser ablation cell and injector system for a compositional analysis system
CN117388351A (zh) * 2023-11-03 2024-01-12 中国地质大学(武汉) 一种激光剥蚀系统中气溶胶提取装置及方法
CN117388351B (zh) * 2023-11-03 2024-06-25 中国地质大学(武汉) 一种激光剥蚀系统中气溶胶提取装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714464B1 (fr) * 1993-12-23 1996-02-09 Cogema Procédé de contrôle de la contamination surfacique d'un solide et dispositif de mise en Óoeuvre.
EP3240014A1 (fr) * 2016-04-29 2017-11-01 ETH Zurich Cellule d'ablation laser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150951A (en) * 1977-09-19 1979-04-24 The Aerospace Corporation Measurement of concentrations of gaseous phase elements
DE3203912A1 (de) * 1980-10-29 1983-08-11 Jenoptik Jena Gmbh, Ddr 6900 Jena Verfahren und vorrichtung zum transport von probendampf
DE3422946A1 (de) * 1984-06-20 1986-01-02 Siemens AG, 1000 Berlin und 8000 München Verfahren zur feststoffanalyse in plasmen und plasmabrenner zur durchfuehrung des verfahrens
JPH02227652A (ja) * 1989-02-28 1990-09-10 Yokogawa Electric Corp 試料導入装置
JPH03167446A (ja) * 1989-11-27 1991-07-19 Seiko Instr Inc レーザー気化装置の試料交換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150951A (en) * 1977-09-19 1979-04-24 The Aerospace Corporation Measurement of concentrations of gaseous phase elements
DE3203912A1 (de) * 1980-10-29 1983-08-11 Jenoptik Jena Gmbh, Ddr 6900 Jena Verfahren und vorrichtung zum transport von probendampf
DE3422946A1 (de) * 1984-06-20 1986-01-02 Siemens AG, 1000 Berlin und 8000 München Verfahren zur feststoffanalyse in plasmen und plasmabrenner zur durchfuehrung des verfahrens
JPH02227652A (ja) * 1989-02-28 1990-09-10 Yokogawa Electric Corp 試料導入装置
JPH03167446A (ja) * 1989-11-27 1991-07-19 Seiko Instr Inc レーザー気化装置の試料交換装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"ELIMINATION OF ABRASION DEBRIS CONTAMINATION", IBM TECHNICAL DISCLOSURE BULLETIN., vol. 34, no. 4B, September 1991 (1991-09-01), NEW YORK US, pages 348 - 350 *
"GAS RECIRCULATOR FOR DEBRIS REMOVAL IN LASER ETCHING PROCESSES", IBM TECHNICAL DISCLOSURE BULLETIN., vol. 29, no. 4, September 1986 (1986-09-01), NEW YORK US, pages 1859 - 1860 *
"LASER ABLATION TOOL FOR CLEAN PRODUCTS", IBM TECHNICAL DISCLOSURE BULLETIN., vol. 29, no. 8, January 1987 (1987-01-01), NEW YORK US, pages 3535 - 3536 *
ARROWSMITH: "laser ablation of solids for elemental analysis", ANALYTICAL CHEMISTRY, vol. 59, 1987, US, pages 1437 - 1444 *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 534 (P - 1135) 26 November 1990 (1990-11-26) *
PATENT ABSTRACTS OF JAPAN vol. 15, no. 415 (P - 1265) 22 October 1991 (1991-10-22) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2304189A (en) * 1995-08-11 1997-03-12 Finnigan Mat Gmbh Preparing samples for analysis
EP2954300A4 (fr) * 2013-02-09 2016-10-12 Electro Scient Ind Inc Système de manipulation de fluide en chambre et procédés de manipulation de fluide l'utilisant
US9524856B2 (en) 2013-02-09 2016-12-20 Electro Scientific Industries, Inc. In-chamber fluid handling system and methods handling fluids using the same
EP2956756A4 (fr) * 2013-02-14 2016-10-12 Electro Scient Ind Inc Système d'ablation laser à cellule et torche pour un système d'analyse de composition
US10285255B2 (en) 2013-02-14 2019-05-07 Elemental Scientific Lasers, Llc Laser ablation cell and injector system for a compositional analysis system
CN117388351A (zh) * 2023-11-03 2024-01-12 中国地质大学(武汉) 一种激光剥蚀系统中气溶胶提取装置及方法
CN117388351B (zh) * 2023-11-03 2024-06-25 中国地质大学(武汉) 一种激光剥蚀系统中气溶胶提取装置及方法

Also Published As

Publication number Publication date
FR2700852B1 (fr) 1995-03-03
FR2700852A1 (fr) 1994-07-29

Similar Documents

Publication Publication Date Title
CA1218118A (fr) Torche a plasma monogaz
FR2550469A1 (fr) Injecteur de microbulles
WO1994017385A1 (fr) Cellule d'ablation d'un echantillon au laser
EP0055956A1 (fr) Lance de soufflage de gaz oxydant, notamment d'oxygène, pour le traitement des métaux en fusion
EP0006805B1 (fr) Appareil de distribution de particules solides
FR2732692A1 (fr) Dispositif de controle microbiologique d'un gaz sous pression
EP0772003B1 (fr) Dispositif pour aspirer un fluide gazeux à travers un conduit pour le rejeter à l'extérieur de celui-ci
EP0079283A1 (fr) Système de mise en circulation continue d'un liquide en vue d'un prélèvement ou d'un contrôle de ce liquide
EP0373045B1 (fr) Capteur individuel portatif pour recueillir une fraction déterminée des suspensions solides d'une atmosphère
FR2539772A1 (fr) Appareil centrifuge pour l'epuration de suspensions liquides contenant des impuretes solides
EP0213042B1 (fr) Dispositif de protection contre l'oxydation et/ou la nitruration d'un jet de métal liquide
EP0147320A2 (fr) Dispositif de dégazage
EP2248576B1 (fr) Dispositif de mélange de poudre avec un liquide comprenant un tube de dispersion
EP0561805A1 (fr) Dispositif d'introduction tardive d'alliage particulaire lors de la coulee d'un metal liquide.
EP1625381B1 (fr) Dispositif de prelevement de poudres
FR3101797A1 (fr) Torche de soudage électrique sous gaz avec aspiration de fumées, et équipement de soudage associé
FR2679655A1 (fr) Sonde de prelevement d'une suceuse pour l'echantillonnage de matieres granuleuses en vrac par carottage et aspiration selon des courants d'air separes.
BE555593A (fr)
FR2495587A3 (fr) Tuyere d'aspiration pour le transport pneumatique de marchandises en vrac
CH346529A (fr) Epurateur d'air
BE643591A (fr)
BE462079A (fr)
CA3185713A1 (fr) Systeme de pipe a eau
FR2463407A1 (fr) Diviseur de flux statique pour prise d'echantillons de liquide
FR2863467A1 (fr) Presentoir pour produits sur lit de glace

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase