WO1994015702A1 - Verfahren und vorrichtung zur trennung von öl/wasser-gemischen - Google Patents

Verfahren und vorrichtung zur trennung von öl/wasser-gemischen Download PDF

Info

Publication number
WO1994015702A1
WO1994015702A1 PCT/EP1993/003643 EP9303643W WO9415702A1 WO 1994015702 A1 WO1994015702 A1 WO 1994015702A1 EP 9303643 W EP9303643 W EP 9303643W WO 9415702 A1 WO9415702 A1 WO 9415702A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
membranes
hydrophilic
hydrophobic
Prior art date
Application number
PCT/EP1993/003643
Other languages
English (en)
French (fr)
Inventor
Matthias Grabosch
Original Assignee
Sartorius Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sartorius Ag filed Critical Sartorius Ag
Publication of WO1994015702A1 publication Critical patent/WO1994015702A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/085Thickening liquid suspensions by filtration with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis

Definitions

  • the invention relates to a method for separating oil / water mixtures with the aid of membranes and a device for carrying out the method.
  • both oil-in-water emulsions and water-in-oil emulsions can be split.
  • the invention is applicable in environmental protection, in mechanical engineering, in the chemical industry, the
  • hydrophilic membranes If the concentration of the frequently occurring oil-in-water emulsions with low oil contents on hydrophilic membranes, an oil concentration of 30 - 50% is reached, dewatering comes to a standstill, although hydrophilic membranes are initially well permeable to water. At this concentration, the emulsion turns into a water-in-oil emulsion with water droplets are in oil and there is no continuous water phase for transport through the hydrophilic membrane.
  • the concentrate Depending on the load on the emulsion, the concentrate must generally be disposed of as special waste. With water contents of 50 to 70%, the disposal costs are correspondingly high.
  • a hydrophilic pore membrane is used, for example made of an aromatic or aromatic aliphatic polyamide with a pore size of 10 ⁇ 6 - 10 ⁇ 3 mm (0.001 - 1 ⁇ m).
  • Disadvantages are the increased energy expenditure for carrying out the process and a limitation in the reduction of the water content to a maximum of 10%.
  • the membranes can consist of the main components polyethylene, polypropylene, halogenated polyethylene with at least one fluorine atom, halogenated polypropylene with at least one fluorine atom, polycarbonate or polyphenylene oxide, and a binary or ternary copolymer of ethylene, propylene or tetrafluoroethylene.
  • the particle radius of the particles dispersed in the emulsion must be 10 ⁇ 4 - 5 * 10 -2 mm (0.1 - 50 ⁇ m) and otherwise a pretreatment of the emulsion becomes necessary.
  • the aim of the present invention is generally to recycle a high proportion of the constituents of oil / water mixtures to be disposed of and thereby to reduce the disposal costs.
  • the invention has for its object to provide a membrane separation process for oil / water mixtures and an apparatus for performing the method, which allow oil / water mixtures to be broken down into their constituents with little outlay on equipment, regardless of whether they are in the form of oil-in-water or water-in-oil emulsions without the disadvantages known from the prior art.
  • the task is solved in that after the cross flow Process by using a hydrophilic and a hydrophobic membrane from the oil / water mixture, but at the same time both water and oil are removed separately.
  • the aqueous phase containing ten ⁇ ide can be separately discharged from the hydrophobic membrane or returned to the retentate cycle until the pure oil phase breaks through.
  • Two types of modules can be used to carry out the method.
  • modules that only have hydrophilic membranes are connected in parallel or in series in the circuit of a crossflow system with modules that only have hydrophobic membranes.
  • Modules that have both hydrophilic and hydrophobic membranes with separate permeate discharges in one unit.
  • the membranes can be arranged alternately in the module or in such a way that first the hydrophilic (or hydrophobic) membranes and then the hydrophobic (or hydrophilic) membranes are flowed over.
  • modules For the specific design of the modules, all designs known for cross flow modules are used, e.g. Cassette, piated and frame or winding modules as well as flat, tubular, hollow fiber and capillary membrane modules are considered.
  • the process can be carried out as a batch process or continuously.
  • an oil / water mixture which is produced and is to be disposed of in the production process is fed to a storage vessel.
  • a stationary operating state of the Cro ⁇ flow system can be set and maintained.
  • Associated measuring and control devices are familiar to the person skilled in the art.
  • the invention has the following advantages.
  • REPLACEMENT LEAF Have emulsions separated with such hydrophilic / hydrophobic membranes, such as liquid / liquid systems (eg gasoline / water mixtures) and gas / water systems (eg foams).
  • the permeate flows (water phase and oil phase) are of high purity, which can be disposed of in an environmentally friendly and cost-effective manner.
  • the pure 01 can be returned to the production cycle.
  • the water can be discharged as wastewater without any adverse effects on the environment or can be used as process water. Its oil content is below 1 ppm.
  • the process has a high throughput. Since the concentration of the oil phase blocking the hydrophilic membrane in the retentate is kept low, the aqueous permeate flow is high. The energy input through the circulation pump remains low because the viscosity of the retentate remains unchanged with a constant oil content and decreases with decreasing oil content in the course of the process.
  • FIG. 1 shows the flow diagram of a cross flow plant according to the invention.
  • Example 5 shows the water and oil flux of an emulsion cleavage according to Example 1.
  • FIG. 1 of a crossflow system according to the invention for the separation of oil / water mixtures shows that the oil / water mixture from the storage vessel 1 using a pump 2 tangentially via the crossflow module 3 with hydrophobic and hydrophilic membranes is pumped, the permeate streams being derived separately as oil phase 4 and water phase 5.
  • the retentate 6 is returned to the storage vessel.
  • an inlet 7 for the oil / water mixture to be split, which opens into the storage vessel 1, can additionally be provided.
  • the representation of FIG. 1 has been omitted from the representation of the measuring and control devices which are familiar to the person skilled in the art.
  • the device shown in FIG. 2 represents a variant of a module 3 according to the invention. It consists of an inlet 8 for the oil / water mixture with corresponding flow distributors (not shown), alternatingly arranged hydrophobic 9 and hydrophilic 10 membranes which pass through overflow channels 11 With suitable spacers 12 (not shown), they are separated from one another and separately arranged derivatives for the permeate streams 4, 5.
  • 4 are the derivatives for the oil phase
  • 5 are the derivatives for the water phase.
  • the hydrophobic and hydrophilic membranes 9, 10 are arranged in such a way that permeate discharge, e.g. Covering support and drainage plates, as membrane pockets with suitable permeate collectors 13 (not shown).
  • the retentate 6 is collected in a known manner after the overflow channels 11 and returned to the inlet 8 (not shown).
  • FIG. 4 shows the processing of membrane pockets as one of the possible variants for winding modules, in which the membrane pockets closed on three sides, each consisting of hydrophobic membranes 9 and hydrophilic membranes 10, enclose a permeate collector 13 and thus attached to the central tube 14 with its open side are that the permeate stream is discharged via a perforation 15 in the central tube via the permeate collector 13.
  • the central tube has a barrier layer 16 which extends over its entire length, as a result of which a separate one
  • the membrane pockets are spaced apart by a spacer 12, which can be designed in such a way that optimal overflow conditions are achieved on the membrane surfaces.
  • Example 1 Separation of an Oil-in-Water Emulsion An oil / water emulsion consisting of 12 liters of RO water and 360 g of Shell Comptella S 46 was in a Cro ⁇ flow system from Sartorius AG (Germany) with two modules connected in series ( Sartocon II, Sartorius AG) separated in a batch process, the 0.7 m 2 of a hydrophilic cellulose triacetate membrane with a cut-off of 20,000 daltons (SM 3021454907 E) and 0.7 m 2 of a hydrophobic polytetrafluoroethylene membrane a pore size of 2 * 10 ⁇ 5 mm (0.02 ⁇ m) (SM 3021182007 E). The working temperature was 21 ° C.
  • the pump flow was used to flow into the cross flow system with an inlet pressure of 0.32 MPa.
  • the Permeate outputs remain closed during the inflow phase.
  • the permeate outlets for the water phase and the oil phase were opened.
  • the water flux fell from about 12 l / h * m 2 to about 7 l / h * m 2 within the first 12 minutes, while an approximately constant oil flow of 1.4 l / h * m 2 was established .
  • the residual oil content in the retentate is 1%. From this point on, the oil flux drops and the water flux increases (Fig. 5).
  • the inlet pressure of the Cro ⁇ flow system dropped to 0.13 MPa.
  • the emulsion was split up to the working volume of the crossflow system.
  • the oil content dropped from 2.91% by weight to 0.01% by weight (FIG. 6).
  • the oil content of the water phase was below 1 ppm, so that the water can be discharged into the sewage system.
  • the oil phase contained less than 0.01% water.
  • the Cro ⁇ flow system was supplied with an inlet pressure of 0.4 MPa via the pump setting.
  • the retentate outlet and the permeate outlet remained open.
  • Table 2 there was an approximately constant water flux of 0.2 l / h * m 2 .
  • the oil flux rose from 2.1 to 2.6 l / h * m 2 during the 190 minute filtration.
  • the oil content of the retentate of the oil / water emulsion was 6.8% by weight.
  • the oil content of the water phase was less than 1 ppm.
  • the water content of the oil phase was less than 0.01% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur vollständigen Trennung von Öl/Wasser-Gemischen in reines Wasser und reines Öl durch Crossflow-Filtration (3) über hydrophile und hydrophobe poröse Membranen, wobei die Permeatströme (4 und 5) an den Membranen separat abgeleitet werden. Es können sowohl Öl-in-Wasser-Emulsionen als auch Wasser-in-Öl-Emulsionen gespalten werden. Die Erfindung ist anwendbar im Umweltschutz, in der Industrie und im verarbeitenden Gewerbe, z.B. bei der Aufarbeitung von mit Öl verschmutztem Wasser nach Havarien, von Kühlschmiermittel- oder anderen Emulsionen, Öl/Wasser-Gemischen aus Produktionsprozessen oder Waschwasser aus der Oberflächenreinigung.

Description

Verfahren und Vorrichtung zur Trennung von Öl/Wasser- Gemischen.
Die Erfindung betrifft ein Verfahren zur Trennung von Öl/Wasser-Gemischen mit Hilfe von Membranen und eine Vorrichtung zur Durchführung des Verfahrens.
Erfindungεgemäß können sowohl Öl-in- asser-Emulsionen als auch Wasεer-in-Öl-Emulsionen gespalten werden.
Die Erfindung ist anwendbar im Umweltschutz, im Maschinenbau, in der chemischen Industrie, der
Lebensmittelindustrie oder im verarbeitenden Gewerbe z. B. bei der Aufarbeitung von mit Öl verschmutztem Wasser nach Havarien, von Kühlschmiermittel- oder anderen Emulsionen, Öl/Wasser-Gemischen aus Produktionsprozessen, Waschwasser aus der Oberflächenreinigung u.a.
Es ist bekannt, Öl-in-Wasser-Emulsionen an hydrophilen Membranen und Öl-in-Wasser- oder Wasser-in-Öl-Emulsionen an hydrophoben Membranen durch Ultra- oder Mikrofiltration sowie Pervaporation zu trennen.
Wird bei der Aufkonzentrierung der häufig vorkommenden Öl- in-Wasser-Emulsionen mit geringen Ölgehalten an hydrophilen Membranen, eine Öl-Konzentration von 30 - 50 % erreicht, kommt jedoch die Entwässerung nahezu zum Erliegen, obwohl hydrophile Membranen für Wasser zunächst gut durchlässig sind. Bei dieser Konzentration schlägt nämlich die Emulsion in eine Wasser-in-Öl-Emulsion um, bei der Wassertröpfchen in Öl vorliegen und keine zusammenhängende Wasserphase für den Transport durch die hydrophile Membran mehr vorhanden ist.
In Abhängigkeit von der Belastung der Emulsion muß das Konzentrat in der Regel als Sondermüll entsorgt werden. Bei Wassergehalten von 50 bis 70 % sind die Entsorgungskosten entsprechend hoch.
Um den Wassergehalt weiter senken zu können, wird nach DE- C2 34 36 944 vorgeschlagen, die Emulsion bei Temperaturen von bis zu 100°C mit einer Seite der Membran in Kontakt zu bringen und auf der anderen Seite der Membran, der Permeatseite, einen Wasserdampfpartialdruck aufrechtzuerhalten, der geringer ist als der der Emulsionstemperatur zugehörende Wasserdampfdruck und den durch die Membran permeierenden Wasserdampf zum Beispiel durch Anlegen eines Vakuums abzuziehen. Zur Anwendung gelangt eine hydrophile Porenmembran zum Beispiel aus einem aromatischen oder aro atisch- aliphatischen Polyamid mit einer Porengröße von 10~6 - 10~ 3mm (0,001 - 1 μm) .
Nachteilig ist der erhöhte Energieaufwand zur Durchführung des Verfahrens und eine Begrenzung in der Absenkung des Wassergehaltes auf höchstens 10 %.
Nach DE GM 92 02 643.5 ist es bekannt, mit einem Skimmer das aufschwimmende Öl aus einem Beruhigungstank, in den das Konzentrat zurückgeführt wird, zu entfernen. Nachteilig sind der zusätzliche apparative Aufwand und der damit verbundene Raumbedarf der Anlage.
Nach der DE-C2 29 00 764 wird ein Verfahren zur Rückgewinnung von Öl sowohl aus einer Öl-in-Wasser- als auch aus einer Waεser-in-Öl-Emulsion an hydrophoben Membranen beschrieben. Danach wird die Emulsion bei einem Druck von 0,1 - 1 MPa und einer Temperatur, die um
- mindestens 10°C unterhalb des niedrigeren Siedepunktes des Öls oder der nicht-öligen Flüssigkeit, jedoch im Bereich von 35 - 90°C liegt, mit der Oberfläche einer speziellen porösen Membran in Berührung gebracht, deren Oberfläche eine kritische Oberflächenspannung von mindestens 20 dyn/cm und weniger als 35 dyn/cm aufweist, wobei der mittlere Porendurchmesser 3*10~5 - 5*10~3 mm (0,03 - 5 μm) beträgt. Dabei soll lediglich das Öl durch die Membran permeieren, sodaß eine hohe Selektivität und ein guter Öldurchsatz erhalten werden sollen.
Die Membranen können aus den Hauptkomponenten Polyethylen, Polypropylen, halogeniertes Polyethylen mit mindestens einem Fluoratom, halogeniertes Polypropylen mit mindestens einem Fluoratom, Polycarbonat oder Polyphenylenoxid, sowie aus einem binären oder ternären Copolymerisat von Ethylen, Propylen oder Tetrafluorethylen bestehen.
Nachteilig ist, daß der Teilchenradius der in der Emulsion dispergierten Teilchen 10~4 - 5*10-2 mm (0,1 - 50 μm) betragen muß und andernfalls eine Vorbehandlung der Emulsion erforderlich wird.
Das Ziel der vorliegenden Erfindung besteht allgemein darin, einen hohen Anteil der Bestandteile von zu entsorgenden Öl/Wasser-Gemischen zu recyceln und dadurch die Entsorgungskoεten zu senken.
Unter Beibehaltung dieser Zielstellung liegt der Erfindung die Aufgabe zugrunde, ein Membrantrennverfahren für Öl/Wasser-Gemische und eine Vorrichtung zur Durchführung des Verfahrens zu schaffen, die es gestatten, mit geringem apparativen Aufwand Öl/Wasser-Gemische in ihre Bestandteile zu zerlegen unabhängig davon ob sie als Öl-in-Wasεer- oder als Wasser-in-Öl-Emulεionen vorliegen ohne die auε dem Stand der Technik bekannten Nachteile.
Die Aufgabe wird dadurch gelöεt, daß nach dem Croεsflow- Verfahren durch Verwendung einer hydrophilen und einer hydrophoben Membran dem Öl/Wasser-Gemisch gleichzeitig aber separat sowohl Wasser als auch Öl entzogen werden.
Überraschenderweise wurde gefunden, daß es möglich ist, ein Öl/Wasser-Gemisch vollständig aufzuspalten, wenn man einen Retentatkreislauf nach dem Crossflow-Prinzip sowohl über hydrophile als auch hydrophobe Membranen führt und die Permeatströme an der hydrophilen und an der hydrophoben Membran getrennt ableitet.
Dabei zeigt sich, daß nach einer ersten Filtrationsphase eine anlagenbedingte konstante Ölkonzentration im Retentat erreicht wird. Geht man von einer Öl-in-Wasser-Emulsion mit geringem Ölgehalt aus, permeiert in der erεten Filtrationsphase überwiegend Wasser durch die hydrophile Membran bis die konstante Ölkonzentration im Retentat erreicht ist. Geht man von einer Wasser-in-Öl-Emulsion mit einem geringen Wasεergehalt aus, permeiert in der ersten Filtrationsphse überwiegend Öl durch die hydrophobe Membran bis die konstante Ölkonzentration im Retentat erreicht ist. Bei der Aufarbeitung tensidhaltiger Emulsionen erfolgt in Abhängigkeit vom Ölgehalt und der Oberflächenspannung in der Regel zu Beginn der Filtration auch eine Permeation der wässrigen Phase durch die hydrophobe Membran. Mit fortschreitender Filtration nimmt jedoch der Ölgehalt der an der hydrophoben Membran permeierenden Phase stark zu, und es bildet sich eine reine Ölphaεe aus. Durch eine entsprechende Regeleinrichtung kann bis zum Durchbruch der reinen Ölphase die tenεidhaltige wässrige Phase von der hydrophoben Membran gesondert abgeleitet oder in den Retentatkreislauf zurückgeführt werden.
Zur Durchführung des Verfahrens kann man zwei Modultypen verwenden.
a) Module, von denen die einen nur hydrophile und die
ERSATZBLATT anderen nur hydrophobe Membranen besitzen.
Im diesem Fall werden Module, die nur hydrophile Membranen besitzen, mit Modulen, die nur hydrophobe Membranen besitzen, parallel oder in Reihe in den Kreislauf einer Crossflow-Anlage geschaltet.
b) Module, die in einer Einheit sowohl hydrohile und als auch hydrophobe Membranen mit separaten Permeatableitungen besitzen. Die Membranen können im Modul alternierend oder auch so angeordnet werden, daß zunächst die hydrophilen (oder hydrophoben) Membranen und danach die hydrophoben (oder hydrophilen) Membranen überströmt werden.
Für die konkrete Ausgestaltung der Module kommen alle für Crosεflow-Module bekannten Bauformen wie z.B. Cassetten-, Piated and Frame- oder Wickelmodule sowie Flach-, Rohr-, Hohlfaser und Kapillarmembran-Module in Betracht.
Das Verfahren kann als Batch-Prozeß oder kontinuierlich durchgeführt werden. Zur kontinuierlichen Durchführung wird ein im Produktionsprozeß anfallendes und zu entsorgendes Öl/Wasser-Gemisch einem Vorratsgefäß zugeführt. Durch geeignete Steuerung der Permeatausgänge oder durch entsprechende Dimensionierung der Membranflächen kann ein stationärer Betriebszuεtand der Croεεflow-Anlage eingeεtellt und aufrechterhalten werden. Zugehörige Meß- und Regeleinrichtungen εind dem Fachmann geläufig.
Die Erfindung hat folgende Vorteile.
Die Aufarbeitung von Emulεionen mit dem erfindungsgemäßen Verfahren iεt nicht auf bestimmte Emulsionstypen beschränkt, sondern es sind sowohl Öl-in-Wasser- als auch Wasser-in-Öl-Emulsionen einεetzbar. Gleichfalls εind das Verfahren und die Vorrichtung anwendbar auf andere Zwei- Phasen-Gemiεche, die sich wie die vorstehend beschriebenen
ERSATZBLATT Emulsionen mit derartigen hydrophil/hydrophoben Membranen trennen lassen, wie flussig/flussig-Systeme (z.B. Benzin- Wasεer-Gemische) und Gas/Wasser-Systeme (z.B. Schaume). Die Permeatströme (Wasserphase und Olphase) fallen mit hoher Reinheit an, die umweltgerecht und kostengünstig entsorgt werden können. Das reine 01 kann wieder in den Produktionskreislauf zurückgeführt werden. Das Wasser kann ohne Umweltbeeinträchtigungen als Abwasser abgeleitet oder als Brauchwasεer weiterverwendet werden. Sein Olgehalt liegt unter 1 ppm.
Das Verfahren besitzt eine hohe Durchsatzleistung. Da die Konzentration an für die hydrophile Membran verblockend wirkender Olphase im Retentat gering gehalten wird, ist der wassrige Permeatfluß hoch. Der Energieeintrag durch die Umwälzpumpe bleibt gering, weil die Viskosität des Retentats bei konstantem Olgehalt unverändert bleibt und bei sinkendem Ölgehalt im Verlaufe der Verfahrensdurchfuhrung abnimmt.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen und mit Hilfe von Beispielen weiter beschrieben.
Fig. 1 zeigt das Fließschema einer erfindungsgemäßen Crosεflow-Anlage.
Fig. 2 und Fig. 3 zeigen εchematisch Axialschnitte durch erfindungεgemaße Module.
Fig. 4 zeigt eine Abwicklung von Membrantaεchen für Wickelmodule
Fig. 5 zeigt den Waεεer- und Öl-Flux einer Emulsionsεpaltung nach Beiεpiel 1.
Fig. 6 zeigt den zeitlichen Verlauf einer Emulεionεspaltung
ERSATZBLATT mit hydrophobem/hydrophilem Membran-Modul.
Das in Fig. 1 dargestelte Fließschema einer erfindungsgemäßen Crossflow-Anlage zur Trennung von Öl/Wasser-Gemischen zeigt, daß das Öl/Wasser-Gemisch aus dem Vorratsgefäß 1 mit Hilfe einer Pumpe 2 tangential über das Crossflow-Modul 3 mit hydrophoben und hydrophilen Membranen gepumpt wird, wobei die Permeatströme getrennt als Olphase 4 und Wasserphase 5 abgeleitet werden. Das Retentat 6 wird in das Vorratsgefäß zurückgeführt. Für eine kontinuierliche Prozeßführung kann zusätzlich ein Zulauf 7 für zu spaltendes Öl/Wasser-Gemisch, der in das Vorratsgefäß 1 mündet, vorgesehen werden. Auf die Darstellung der Meß- und Regeleinrichtungen, die dem Fachmann geläufig sind, wurde in der Darstellung der Fig. 1 verzichtet.
Die in Fig. 2 gezeigte Vorrichtung stellt eine Variante eines erfindungsgemäßen Moduls 3 dar. Er besteht aus einem Eingang 8 für das Öl/Wasser-Gemisch mit entsprechenden Strömungsverteilern (nicht dargestellt) , alternierend angeordneten hydrophoben 9 und hydrophilen 10 Membranen, die durch Überεtrömkanäle 11 mit geeigneten Spacern 12 (nicht dargestellt) von einander getrennt εind und separat angeordneten Ableitungen für die Permeatströme 4, 5. Dabei bedeuten 4 die Ableitungen für die Olphase und 5 die Ableitungen für die Wasserphase. Die hydrophoben und hydrophilen Membranen 9, 10 sind in einer solchen Weiεe angeordnet, die eine Permeatableitung geεtattet, z.B. Stütz- und Drainageplatten bedeckend, alε Membrantaεchen mit geeigneten Permeatsammlern 13 (nicht dargestellt) . Das Retentat 6 wird nach den Überεtrömkanälen 11 in bekannter Weise gesammelt und in den Eingang 8 zurückgeführt (nicht dargestellt) .
In Fig. 3 ist eine mögliche Variante für Rohr-, Hohlfaser- oder Kapillarmodule 3 mit Retentatu kehr nach Überströmen der hydrophoben Membranen 9 dargestellt. Der Strömungsverlauf des Öl/Wasser-Gemisches wird durch Pfeile zum Ausdruck gebracht.
In Fig. 4 iεt die Abwicklung von Membrantaεchen als eine der möglichen Varianten für Wickelmodule dargestellt, worin die an drei Seiten geschloεsenen Membrantaschen aus jeweils hydrophoben Membranen 9 und jeweils hydrophilen Membranen 10 einen Permeatsammler 13 einεchließen und mit ihrer offenen Seite so an das Zentralrohr 14 angebracht sind, daß über den Permeatsammler 13 der Permeatstrom über eine Perforierung 15 in daε Zentralrohr abgeleitet wird. Das Zentralrohr beεitzt eine εich über seine gesamte Länge erstreckende Sperrschicht 16, wodurch eine getrennte
Ableitung der Olphase 4 und der Wasεerphase 5 ermöglicht wird. Die Membrantaschen sind im aufgewickelten Zustand durch einen Spacer 12 beabstandet, der so ausgebildet sein kann, daß optimale Überströmungsverhältnisse an den Membranoberflächen erreicht werden.
Beispiel 1 Trennung einer Öl-in-Wasser-Emulsion Eine Öl/Wasεer-Emulsion aus 12 Liter RO-Wasser und 360 g Shell Comptella S 46 wurde in einer Croεεflow-Anlage der Firma Sartorius AG (Deutschland) mit zwei in Reihe geschalteten Modulen (Sartocon II, Sartorius AG) in einer Batch-Verfahrensführung getrennt, die 0,7 m2 einer hydrophilen Cellulosetriacetat-Membran mit einem cut-off von 20 000 Dalton (SM 3021454907 E) und 0,7 m2 einer hydrophoben Polytetrafluorethylen-Membran mit einer Porengröße von 2*10~5 mm (0,02 μm) (SM 3021182007 E) enthielten. Die Arbeitstemperatur betrug 21°C. Über die Pumpeneinstellung wurde die Croεsflow-Anlage mit einem Eingangsdruck von 0,32 MPa angeströmt. Die Permeatausgänge bleiben während der Anströmphaεe geschlossen. Nachdem sich die Membranuberströmung konstant eingestellt hatte, wurden die Permeatausgänge für die Wasserphase und die Olphase geöffnet. Wie aus der Tabelle 1 hervorgeht, fiel der Wasserflux innerhalb der ersten 12 Minuten von etwa 12 l/h*m2 auf etwa 7 l/h*m2 während sich ein annähernd konstanter Ölflux von 1,4 l/h*m2 einstellte. Nach etwa 16 Minuten beträgt der Restölgehalt im Retentat 1 %. Von dieεem Zeitpunkt an fällt der Ölflux ab und der Wasserflux steigt an (Fig. 5).
Durch die Abnahme der Viskoεität der Emulεion während der Filtration sank der Eingangsdruck der Croεεflow-Anlage auf 0,13 MPa ab. Die Emulεion wurde bis auf das Arbeitsvolumen der Crossflow-Anlage gespalten. Der Ölgehalt sank von 2,91 Gew.% auf 0,01 Gew.% (Fig.6).
Der ölgehalt der Wasserphase lag unter l ppm, sodaß das Wasser in die Kanalisation eingeleitet werden kann. Die Olphase enthielt weniger als 0,01 % Wasεer.
Tabelle 1 Trennung einer Ol-in-Wasser-Emulsion nach Beispiel 1
Figure imgf000012_0001
ERSATZBLATT Beispiel 2 Trennung einer Wasser-in-Öl-Emulsion
8,5 Liter einer Öl/Wasser-Emulsion mit 70 Gew.-% Öl (Shell Comptella S 46) wurden in einer Crossflow-Anlage der Firma Sartorius AG (Deutschland) in einer Batch-Verfahrensführung getrennt. Die Crossflow Anlage war mit zwei, der in Beispiel 1 beschriebenen Modulen (Sartocon II, Sartorius AG) in paralleler Schaltung bestückt. Die Arbeitstemperatur betrug 20°C.
Über die Pumpeneinεtellung wurde die Croεεflow-Anlage mit einem Eingangεdruck von 0,4 MPa angeströmt. Der Retentatausgang und die Permeatausgänge blieben geöffnet. Wie aus der Tabelle 2 hervorgeht, stellte sich ein annähernd konstanter Waεεerflux von 0,2 l/h*m2 ein. Ab einem Ölgehalt des Retentats der Öl/Waεser-Emulεion von etwa 20 Gew.-% stieg der Wasserflux biε zum Ende der Filtration auf 1,8 l/h*m2 an. Der Ölflux εtieg während der 190 minütigen Filtration von 2,1 auf 2,6 l/h*m2. Bei Erreichung deε Arbeitsvolumens der Anlage von 2,7 1 betrug der Ölgehalt des Retentats der Öl/Wasser-Emulsion 6,8 Gew.- %.
Der Ölgehalt der Wasεerphase betrug weniger als 1 ppm. Der Wassergehalt der Olphase lag unter 0,01 Gew.-%.
ERSATZBLATT Tabelle 2 Trennung einer Wasser-in-Öl-Emulsion
Figure imgf000014_0001
ERSATZBLATT

Claims

Patentansprüche
1. Verfahren zur Trennung von Öl/Waεεer-Gemiεchen durch Cross-flow-Filtration an porösen Membranen, dadurch gekennzeichnet, daß das Öl/Wasεer-Gemiεch über hydrophile und hydrophobe poröse Membranen geleitet wird und die Permeatströme an den Membranen separat abgeleitet werden, wobei an den hydrophilen Membranen ein Wasεerper eatεtrom und an den hydrophoben Membranen ein Olpermeatstrom abgeleitet wird.
2. Vorrichtung zur Durchführung des Verfahrens zur Trennung von Öl/Wasser-Gemischen an porösen Membranen in Form eines Crossflow-Moduls, dadurch gekennzeichnet, daß
Strömungskanäle, die von hydrophilen und hydrophoben porösen Membranen begrenzt werden, und separate Ableitungen für die Permeatströme an den hydrophilen und an den hydrophoben Membranen vorhanden sind.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Strömungskanäle gleichzeitig von hydrophilen und hydrophoben Membranen begrenzt werden.
4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß eine Anzahl von Strömungskanälen nur von hydrophilen und eine andere Anzahl von Strömungskanälen nur von hydrophoben Membranen begrenzt wird.
PCT/EP1993/003643 1993-01-09 1993-12-21 Verfahren und vorrichtung zur trennung von öl/wasser-gemischen WO1994015702A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4300438A DE4300438C1 (de) 1993-01-09 1993-01-09 Verfahren und Vorrichtung zur Trennung von Öl/Wasser-Gemischen
DEP4300438.5 1993-01-09

Publications (1)

Publication Number Publication Date
WO1994015702A1 true WO1994015702A1 (de) 1994-07-21

Family

ID=6477939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/003643 WO1994015702A1 (de) 1993-01-09 1993-12-21 Verfahren und vorrichtung zur trennung von öl/wasser-gemischen

Country Status (2)

Country Link
DE (1) DE4300438C1 (de)
WO (1) WO1994015702A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045019A1 (en) * 1996-05-30 1998-10-15 G-Tec Inc. Organic contaminant recovery arrangement and method of using same
EP0730830B1 (de) * 1995-03-06 2002-02-06 Emil Flachsmann AG Verfahren zur Entfernung von unerwünschten lipophilen Verunreinigungen und/oder Rückständen, welche in Getränken oder pflanzlichen Zubereitungen enthalten sind
US10081806B2 (en) 2011-12-06 2018-09-25 Qiagen Gmbh Recovery of a biomolecule comprising aqueous phase from a multiphasic mixture
CN108786180A (zh) * 2018-05-28 2018-11-13 广东工业大学 一种油水混合液体过滤分离装置
CN110711524A (zh) * 2019-11-29 2020-01-21 福州大学 一种测定液液相平衡的微流控装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724172A1 (de) * 1997-06-09 1998-12-10 C & H Werkzeugmaschinen Gmbh Verfahren zum Reinigen von Öl
DE102006023990B4 (de) * 2006-05-22 2008-07-03 Chmiel, Horst, Prof. Dr.-Ing. Entfernung von hydrophilen Substanzen aus Ölen mittels Membranen
DE102010012601A1 (de) * 2010-03-24 2011-09-29 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Trennen eines fluiden Stoffgemisches
US20140374352A1 (en) * 2013-06-21 2014-12-25 Pall Corporation System and method for treating fluid mixtures including aqueous and organic phases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981680A (en) * 1957-03-28 1961-04-25 Standard Oil Co Separation of mixtures
US4689152A (en) * 1986-05-02 1987-08-25 The Dow Chemical Company Apparatus and method for multistage membrane phase separation
NL9000082A (nl) * 1990-01-11 1991-08-01 Rijkslandbouwhogeschool Membraan, werkwijze voor het vervaardigen van een membraan, alsmede werkwijze voor het scheiden van mengsels.
US5158681A (en) * 1991-11-21 1992-10-27 Separation Dynamics International Ltd. Dual membrane process for removing organic compounds from the water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111812A (en) * 1977-02-28 1978-09-05 Energy Resources Co. Inc. Recovering surfactant
AU5433690A (en) * 1989-04-07 1990-11-05 Baxter International Inc. Gas separating and venting filter and method of making same
DE4027531C1 (en) * 1990-08-31 1991-07-25 Fresenius Ag, 6380 Bad Homburg, De Filter for sterilising aq. soln. e.g. dialysis liq. - where incoming liq. flows between 1st antechamber, and fibre interiors into 2nd antechamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981680A (en) * 1957-03-28 1961-04-25 Standard Oil Co Separation of mixtures
US4689152A (en) * 1986-05-02 1987-08-25 The Dow Chemical Company Apparatus and method for multistage membrane phase separation
NL9000082A (nl) * 1990-01-11 1991-08-01 Rijkslandbouwhogeschool Membraan, werkwijze voor het vervaardigen van een membraan, alsmede werkwijze voor het scheiden van mengsels.
US5158681A (en) * 1991-11-21 1992-10-27 Separation Dynamics International Ltd. Dual membrane process for removing organic compounds from the water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730830B1 (de) * 1995-03-06 2002-02-06 Emil Flachsmann AG Verfahren zur Entfernung von unerwünschten lipophilen Verunreinigungen und/oder Rückständen, welche in Getränken oder pflanzlichen Zubereitungen enthalten sind
WO1998045019A1 (en) * 1996-05-30 1998-10-15 G-Tec Inc. Organic contaminant recovery arrangement and method of using same
US10081806B2 (en) 2011-12-06 2018-09-25 Qiagen Gmbh Recovery of a biomolecule comprising aqueous phase from a multiphasic mixture
CN108786180A (zh) * 2018-05-28 2018-11-13 广东工业大学 一种油水混合液体过滤分离装置
CN110711524A (zh) * 2019-11-29 2020-01-21 福州大学 一种测定液液相平衡的微流控装置

Also Published As

Publication number Publication date
DE4300438C1 (de) 1994-06-30

Similar Documents

Publication Publication Date Title
DE3873070T2 (de) Verfahren zur behandlung verunreinigter oel-in-wasser-emulsionen oder-mikroemulsionen.
EP1120150B1 (de) Membrantrennvorrichtung
EP0385119B1 (de) Verfahren zur Trennung und Rückgewinnung von Komponenten von Gemischen mittels Pervaporation
EP0427376A2 (de) Membrantrennsystem und Betriebsverfahren
DE1442420B2 (de) Vorrichtung für die umgekehrte Osmose
US6066264A (en) Method of oil-water separation
US4886603A (en) Method and apparatus for water decontamination
DE69209309T2 (de) Verfahren zur Entfernung von Alkohol aus Flüssigkeiten.
DE4300438C1 (de) Verfahren und Vorrichtung zur Trennung von Öl/Wasser-Gemischen
DE4231837C2 (de) Verfahren und Anlage zum Reinigen von ölverschmutztem und emulgiertem Bilgewasser auf Schiffen
EP0399309A2 (de) Rohrförmiges Filterelement
EP1832333A1 (de) Verfahren zur Wiedergewinnung von verunreinigten Fluiden
EP2920119A1 (de) Reinigung von mit öl verschmutztem wasser und hierfür geeignete vorrichtung
EP2598224B1 (de) Vorrichtung und verfahren zur entgasung wässriger medien
EP0435892A1 (de) Verfahren zum entsorgen verbrauchter öl-/wasseremulsionen
US5076932A (en) Removal of trace contamination from water
WO2004030855A1 (de) Reinigungsvorrichtung zur reinigung von prozessgas einer reflowlötanlage
DE10102700B4 (de) Verfahren und Vorrichtung zur Reinigung ölhaltiger Abwässer
DE4229061A1 (de) Verfahren und Vorrichtungen zur Rückgewinnung von Prozeßflüssigkeiten
DE9320394U1 (de) Vorrichtung zur Trennung von Öl/Wasser-Gemischen
EP0730894B1 (de) Verfahren und Vorrichtung zur Phasenseparation
US5505855A (en) Process for purification of non-aqueous viscous organic compounds
EP0836879B1 (de) Verfahren und Vorrichtung zum Entfernen von Ölverschmutzungen aus Kühlwassersystemen
EP0402590A1 (de) Entfernung von Spurenverunreinigungen aus Wasser
DE102004029326B4 (de) Verfahren und Vorrichtung zur Reinigung ölhaltiger und feststoffbelasteter Abwässer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase