WO1994013043A1 - Oberflächenemittierende laserdiode - Google Patents

Oberflächenemittierende laserdiode Download PDF

Info

Publication number
WO1994013043A1
WO1994013043A1 PCT/DE1993/001113 DE9301113W WO9413043A1 WO 1994013043 A1 WO1994013043 A1 WO 1994013043A1 DE 9301113 W DE9301113 W DE 9301113W WO 9413043 A1 WO9413043 A1 WO 9413043A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
active layer
metal film
layer
diode according
Prior art date
Application number
PCT/DE1993/001113
Other languages
English (en)
French (fr)
Inventor
Anton KÖCK
Erich Gornik
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US08/448,425 priority Critical patent/US5555255A/en
Priority to EP94900715A priority patent/EP0672310B1/de
Priority to JP6512643A priority patent/JPH08503816A/ja
Priority to DE59303370T priority patent/DE59303370D1/de
Publication of WO1994013043A1 publication Critical patent/WO1994013043A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Definitions

  • the present invention relates to a surface-emitting laser diode with a particularly good directional characteristic using the excitation of surface plasmon polaritons.
  • EP-A-0 442 002 describes a surface-emitting radiation-generating semiconductor component which is operated by means of excitation of surface plasmon polaritons.
  • This component can in particular be designed as a laser diode.
  • the structure is based on an emission mechanism via excitation and emission of surface plasmon polaritons, that is, transversely electrical (TE) or transversely magnetic (TM) surfaces that can spread at the interface of two different media. With a suitable periodic structuring of the interface, these modes can be excited with electromagnetic waves.
  • TE transversely electrical
  • TM transversely magnetic
  • Directional radiation with defined polarization can be achieved with a beam divergence of less than 6 °.
  • Essential for the construction of this structure are a rough periodic structuring of the surface of the semiconductor material, ie the semiconductor surface facing away from an overgrown substrate, and a thin metal film applied thereon. The surface modes are excited on the surface of this metal film facing away from the semiconductor material, so that light directed from the surface is emitted.
  • the direction of polarization results from the Direction of the periodic arrangement of the surface unevenness.
  • the object of the present invention is to provide an improved surface-emitting laser diode with strong beam bundling and adjustable radiation direction.
  • the laser diode according to the invention uses a layer structure as is known in principle from conventional surface-emitting laser diodes with a vertical resonator. This structure is modified so that the light can be emitted by excitation of surface modes.
  • FIGS. 1 and 2 each of which shows an embodiment in oblique section.
  • the laser diode according to the invention has a layer structure with an active layer 3 between contact layers 2, 4, which are provided for supplying current to the active layer 3.
  • the entire layer arrangement is expediently grown on a substrate 1.
  • the spatial periodic structuring which is required for the excitation of the surface modes, e.g. B. formed by etching.
  • this surface is formed by the surface of a cover layer 10 that has grown onto the upper contact layer 4.
  • the thickness d5 of this metal film 5 can, for. B. be so small that the metal film 5 is semi-transparent.
  • Typical thicknesses d5 of the metal film 5 are 0.01 ⁇ m to 0.1 ⁇ m.
  • Essential are the length of a period Lg, the minimum distance a of the metal film 5 from the active layer 3 and the height h, ie the difference between the minimum distance and the maximum distance of the semiconductor surface coated with the metal film 5 from the active layer 3.
  • a vertical resonator is formed in this laser diode in that mirrors are arranged above and below the active layer 3 in order to generate a resonance condition in the direction running vertically to the layer planes.
  • a mirror arrangement 9 is provided between the substrate 1 and the lower contact layer 2.
  • the reflecting metal film 5 forms the upper mirror.
  • the mirror arrangement 9 can consist of a single layer or of a layer sequence of successive semiconductor layers with different refractive index and advantageously each with the thickness of a quarter wavelength. It is particularly advantageous in the laser diode according to the invention that a separate upper mirror arrangement can be omitted because its function can already be taken over by the metal film 5.
  • the cover layer 10 can then also be omitted and the structuring can be formed in the surface of the upper contact layer 4.
  • the contacts required for applying the operating current can, for example, with a conductive substrate 1. B. applied in the manner indicated. A contact 7 is then provided on the upper side of the laser diode, which has a recess in the area of the structuring of the semiconductor surface, in which only the thin metal film 5 is applied. However, the metal film 5 can also be present over the entire surface, which is then sufficient as a contact for the electrical connection.
  • the counter contact 8 is located on the underside of the conductive substrate 1.
  • the lower contact layer 2 can then be omitted and the current injection into the active layer 3 can take place through the mirror arrangement 9. If a contact layer 2 is present, the mating contact can be applied directly to a surface of this contact layer 2 that is not overgrown or etched free.
  • the substrate 1 can then also be semi-insulating.
  • the surface of the metal film 5 can be covered with a dielectric 6, as indicated by the dash-dotted line in FIG. 1.
  • a dielectric 6 serves to excite higher-order surface modes.
  • This dielectric 6 can also be designed as a layer sequence of several different dielectrics.
  • FIG. 2 An alternative embodiment is shown in FIG. 2, in which a separate mirror arrangement 19 is also present above the active layer.
  • This mirror arrangement 19 is located between the upper contact layer 4 and the cover layer 10.
  • the substrate is, for. B. GaAs.
  • the active zone 3 is also GaAs.
  • the contact layers 2, 4 are AlGaAs.
  • the cover layer 10 can also be AlGaAs.
  • the mirror arrangements 9, 19 are advantageously a sequence of layers of alternating AlGaAs and AlAs.
  • the active layer 3 can also be designed as a quantum well structure.
  • an active layer 3 consisting of a layer sequence of layers of alternating GaAs and InGaAs is particularly advantageous.
  • InGaAs has a smaller energy band gap than GaAs, so that the mirror arrangements 9, 19 can then be layer sequences of layers of alternating AlAs and GaAs, which simplifies the epitaxial growth.
  • the upper mirror arrangement and the cover layer 10 are omitted and the spatial periodic structuring of the surface of the semiconductor material is formed in the upper side of the upper contact layer 4 facing away from the active layer 3.
  • the upper mirror arrangement 19 is advantageously a sequence of layers with different refractive indexes the thickness of a quarter wavelength or radiation generated in the active layer.
  • a conventional surface emitting laser diode emits essentially perpendicular to the surface.
  • Directional focusing of the light radiation is only possible in a conventional laser diode by additional optical measures, such as, for example, B. a lens can be reached.
  • a lens can be reached.
  • the laser diode according to the invention light emission in various adjustable directions can additionally be achieved via surface mode emission. Due to the arrangement of the surface structuring and the appropriate choice of the dimensions specified above, directional radiation can take place at certain angles.
  • the polarization level of the emitted light can be set. By limiting the periodic structuring by the thicker upper contact 7, the area of the radiation emission can be limited laterally.
  • the structure according to the invention is not limited to the material system of GaAs.
  • the grating period determines the radiation direction at a given wavelength of the radiation generated in the active layer 3.
  • the radiation direction can therefore be determined by dimensioning the periodic structuring on the surface and selecting the composition of the semiconductor material of the active layer 3.
  • the periodic structuring can, as shown in the figures, be formed by trenches aligned parallel to one another. There is no periodicity in the direction of these trenches. Instead of this embodiment, any structuring described in EP-A-0 442 002 can be provided.
  • it can be a cross lattice, in which two sets of plates aligned perpendicular to one another and arranged parallel to one another ordered trenches with equal distances to the nearest trenches are available.
  • the structure is then periodic in every direction in the plane of the layer structure.
  • the trenches can be replaced by crosswise aligned sheets of webs aligned parallel to one another with the same distances from the nearest webs or the like.
  • the profile of the trenches or webs can be rectangular or rounded, pointed, sinusoidal or polygonal.
  • the laser diode according to the invention enables extremely focused surface emission in a predeterminable direction with a construction of the component that is simple to manufacture.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Oberflächenemittierende Laserdiode mit einer aktiven Schicht (3) zwischen Kontaktschichten (2, 4) und für eine vertikale Resonanzbedingung vorgesehenen Spiegelanordnungen (9, 19), bei der die Oberfläche des Halbleitermateriales mit einer für die Anregung von Oberflächenplasmonpolaritonen vorgesehenen räumlichen periodischen Strukturierung versehen und mit einem dünnen Metallfilm (5) bedeckt ist.

Description

Oberflächenemittierende Laserdiode
Die vorliegende Erfindung betrifft eine oberflächenemittie- rende Laserdiode mit besonders guter Richtcharakteristik un¬ ter Ausnutzung der Anregung von Oberflächenplasmonpolarito¬ nen.
In der EP-A-0 442 002 ist ein oberflächenemittierendes strah- lungserzeugendes Halbleiterbauelement, das mittels Anregung von Oberflächenplasmonpolaritonen betrieben wird, beschrie¬ ben. Dieses Bauelement kann insbesondere als Laserdiode aus¬ gestaltet sein. Die Struktur basiert auf einem Emissionsme¬ chanismus über Anregung und Emission von Oberflächenplasmon- polaritonen, das sind transversal elektrische (TE) oder transversal magnetische (TM) Oberflächen oden, die sich an der Grenzfläche zweier verschiedener Medien ausbreiten kön¬ nen. Bei geeigneter periodischer Strukturierung der Grenzflä¬ che können diese Moden mit elektromagnetischen Wellen ange- regt werden. Unter Anwendung dieses Emissionsmechanismus lassen sich die Eigenschaften von lichtemittierenden Dioden, insbesondere Laserdioden, verbessern. Bei herkömmlichen lichtemittierenden Bauelementen auftretende Verlustmechanis¬ men, die den Wirkungsgrad begrenzen, können damit umgangen werden, wobei gleichzeitig die Linienbreice deutlich verrin¬ gert und die externe Quantenausbeute drastisch erhöht wird. Eine gerichtete Abstrahlung mit definierter Polarisation mit einer Strahldivergenz von weniger als 6° st erreichbar. We¬ sentlich für den Aufbau dieser Struktur sind dabei eine räu - liehe periodische Strukturierung der Oberfläche des Halblei¬ tennateriales, d. h. die einem überwachsenen Substrat abge¬ wandte Halbleiteroberfläche, und ein darauf aufgebrachter dünner Metallfilm. An der dem Halbleiterma-erial abgewandten Oberfläche dieses Metallfilmes werden die Oberflächenmoden angeregt, so daß von der Oberfläche gerichtet Licht abge¬ strahlt wird. Die Polarisationsrichtung ergibt sich aus der Richtung der periodischen Anordnung der Oberflächenunebenhei¬ ten.
Aufgabe der vorliegenden Erfindung ist es, eine verbesserte oberflächenemittierende Laserdiode mit starker Strahlbünde¬ lung und einstellbarer Abstrahlrichtung anzugeben.
Diese Aufgabe wird mit der Laserdiode mit den Merkmalen des Anspruches 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Die erfindungsgemäße Laserdiode verwendet einen Schichtauf¬ bau, wie er von herkömmlichen oberflächenemittierenden Laser¬ dioden mit vertikalem Resonator grundsätzlich bekannt ist. Diese Struktur wird so modifiziert, daß die Abstrahlung des Lichtes über eine Anregung von Oberflächenmoden erfolgen kann.
Es folgt eine Beschreibung der erfindungsgemäßen Laserdiode anhand der Figuren 1 und 2, die jeweils eine Ausführungsform in schräger Schnittaufsieht zeigen.
Die erfindungsgemäße Laserdiode besitzt eine Schichtstruktur mit einer aktiven Schicht 3 zwischen Kontaktschichten 2, 4, die für eine Stromzuführung in die aktive Schicht 3 vorgese¬ hen sind. Zweckmäßig ist die gesamte Schichtanordnung auf ein Substrat 1 aufgewachsen. In der Oberfläche des Halbleitenna¬ teriales ist die räumliche periodische Strukturierung, die für die Anregung der Oberflächenmoden erforderlich ist, z. B. durch Ätzen, ausgebildet. In dem Ausführungsbeispiel der Fi¬ gur 1 wird diese Oberfläche durch die Oberfläche einer Deck¬ schicht 10, die auf die obere Kontaktschicht 4 aufgewachsen ist, gebildet. Auf diese strukturierte Oberfläche ist ein dünner Metallfilm 5, z. B. aus Aluminium, Gold oder Silber, aufgebracht. Die Dicke d5 dieses Metallfilmes 5 kann z. B. so gering sein, daß der Metallfilm 5 semitransparent ist. Typi¬ sche Dicken d5 des Metallfilms 5 sind 0,01 um bis 0,1 um. In Fig. 1 sind weitere für die Anregung der Oberflächenmoden maßgebliche Bemessungen dieser Strukturierung der Oberfläche eingezeichnet. Wesentlich sind die Länge einer Periode Lg, der minimale Abstand a des Metallfilmes 5 von der aktiven Schicht 3 und die Höhe h, d. h. die Differenz des minimalen Abstandes und des maximalen Abstandes der mit dem Metallfilm 5 überzogenen Halbleiteroberfläche von der aktiven Schicht 3.
Ein Vertikalresonator ist in dieser Laserdiode ausgebildet, indem für die Erzeugung einer Resonanzbedingung in vertikal zu den Schichtebenen verlaufender Richtung Spiegel ober- und unterhalb der aktiven Schicht 3 angeordnet sind. In dem Aus¬ führungsbeispiel der Figur 1 ist eine Spiegelanordnung 9 zwi¬ schen dem Substrat 1 und der unteren Kontaktschicht 2 vorge- sehen. Den oberen Spiegel bildet der reflektierende Metall¬ film 5. Die Spiegelanordnung 9 kann aus einer einzelnen Schicht oder aus einer Schichtfolge von aufeinanderfolgenden Halbleiterschichten mit unterschiedlichem Brechungsindex und vorteilhaft jeweils mit der Dicke einer viertel Wellenlänge bestehen. Besonders vorteilhaft bei der erfindungsgemäßen La¬ serdiode ist, daß eine gesonderte obere Spiegelanordnung ent¬ fallen kann, weil deren Funktion bereits durch den Metallfilm 5 übernommen werden kann. Die Deckschicht 10 kann dann auch entfallen und die Strukturierung in der Oberfläche der oberen Kontaktschicht 4 ausgebildet sein. Die für das Anlegen des Betriebsεtromes erforderlichen Kontakte können bei leitfähigem Substrat 1 z. B. in der angegebenen Weise aufgebracht sein. Auf der Oberseite der Laserdiode ist dann ein Kontakt 7 vorhanden, der im Bereich der Strukturierung der Halbleiteroberfläche eine Aussparung aufweist, in der nur der dünne Metallfilm 5 aufgebracht ist. Es kann aber auch ganzflächig der Metallfilm 5 vorhanden sein, der dann als Kontakt für den elektrischen Anschluß ausreicht. Auf der Unterseite des leitfähigen Substrates 1 befindet sich der Ge- genkontakt 8. Die untere Kontaktschicht 2 kann dann weggelas¬ sen sein und die Strominjektion in die aktive Schicht 3 durch die Spiegelanordnung 9 erfolgen. Wenn eine Kontaktschicht 2 vorhanden ist, kann der Gegenkontakt direkt auf einer nicht überwachsenen oder freigeätzten Oberfläche dieser Kontakt- Schicht 2 aufgebracht sein. Das Substrat 1 kann dann auch se¬ miisolierend sein. Zusätzlich zu der gezeigten Struktur kann die Oberfläche des Metallfilmes 5 mit einem Dielektrikum 6, wie es in Fig. 1 durch die strichpunktierte Linie angedeutet ist, bedeckt sein. Wie in der EP-A-0 442 002 beschrieben ist, dient eine derartige Schicht aus Dielektrikum 6 zur Anregung von Oberflächenmoden höherer Ordnung. Dieses Dielektrikum 6 kann auch als Schichtfolge mehrerer verschiedener Dielektrika ausgebildet sein.
In Fig. 2 ist eine alternative Ausführungsform dargestellt, bei der auch oberhalb der aktiven Schicht eine eigene Spie- gelanordnung 19 vorhanden ist. Diese Spiegelanordnung 19 be¬ findet sich zwischen der oberen Kontaktschicht 4 und der Deckschicht 10. Bei einer Laserdiode, die im Materialsystem von GaAs aufgebaut ist, ist das Substrat z. B. GaAε. Die ak¬ tive Zone 3 ist ebenfalls GaAs. Die Kontaktschichten 2, 4 sind AlGaAs. Die Deckschicht 10 kann ebenfalls AlGaAs sein. Die Spiegelanordnungen 9, 19 sind vorteilhaft eine Folge von Schichten aus abwechselnd AlGaAs und AlAs. Die aktive Schicht 3 kann auch als Quantum-well-Struktur ausgebildet sein. Im Materialsystem von GaAs ist dann insbesondere eine aktive Schicht 3 aus einer Schichtfolge von Schichten aus abwech¬ selnd GaAs und InGaAs vorteilhaft. InGaAs hat eine kleinere Energiebandlücke als GaAs, so daß dann die Spiegelanordnungen 9, 19 Schichtfolgen von Schichten aus abwechselnd AlAs und GaAs sein können, was das epitaktische Aufwachsen verein- facht. Bei einem vereinfachten Aufbau dieser Laserdiode sind die obere Spiegelanordnung und die Deckschicht 10 weggelassen und die räumliche periodische Strukturierung der Oberfläche des Halbleitermateriales in der der aktiven Schicht 3 abgewandten Oberseite der oberen Kontaktschicht 4 ausgebil- det. Die obere Spiegelanordnung 19 ist vorteilhaft eine Folge von Schichten unterschiedlichen Brechungsindexes mit jeweils der Dicke einer viertel Wellenlänge oder in der aktiven Schicht erzeugten Strahlung.
Eine herkömmliche oberflächenemittierende Laserdiode strahlt im wesentlichen senkrecht zur Oberfläche ab. Eine scharfe
Richtungsbündelung der Lichtabstrahlung, wie sie bei der er¬ findungsgemäßen Laserdiode erfolgt, ist bei einer herkömmli¬ chen Laserdiode nur durch zusätzliche optische Maßnahmen, wie z. B. eine Linse, erreichbar. Mit der erfindungsgemäßen Laserdiode ist über Oberflächenmodenemission zusätzlich eine Lichtemission in verschiedene einstellbare Richtungen er¬ reichbar. Durch die Anordnung der Oberflächenstrukturierung und die geeignete Wahl der oben angegebenen Bemessungen kann eine gerichtete Abstrahlung in bestimmte Winkel erfolgen. Au- ßerdem kann die Polarisierungsebene des emittierten Lichtes eingestellt werden. Durch die Begrenzung der periodischen Strukturierung durch den dickeren oberen Kontakt 7 kann der Bereich der Strahlungsemission seitlich begrenzt sein. Der erfindungsgemäße Aufbau ist nicht auf das Materialsystem von GaAs beschränkt. Da die Dämpfung der Oberflächenmoden mit zu¬ nehmender Wellenlänge abnimmt, ist der Anregungs- und Emissi- onsmechanismus der Oberflächenmoden speziell im Infraroten besonders effektiv. Es muß lediglich die Gitterperiode der Wellenlänge angepaßt sein. Durch die Gitterperiode (Periodenlänge Lg) wird bei gegebener Wellenlänge der in der aktiven Schicht 3 erzeugten Strahlung die Abstrahlrichtung festgelegt. Durch die Bemessung der periodischen Strukturie¬ rung an der Oberfläche und die Wahl der Zusammensetzung des Halbleitennateriales der aktiven Schicht 3 kann daher die Abstrahlrichtung festgelegt werden. Die periodische Struktu¬ rierung kann wie in den Figuren gezeigt durch parallel zuein¬ ander ausgerichtete Gräben gebildet sein. In der Richtung dieser Gräben existiert keine Periodizität. Es kann statt dieser Ausführungsform jede in der EP-A-0 442 002 beschrie- bene Strukturierung vorgesehen sein. Insbesondere kann es sich um ein Kreuzgitter handeln, bei dem zwei senkrecht zu¬ einander ausgerichtete Scharen von parallel zueinander ange- ordneten Gräben mit jeweils zu den nächstgelegenen Gräben gleichen Abständen vorhanden sind. Die Struktur ist dann in jeder Richtung in der Ebene des Schichtaufbaues periodisch. Die Gräben können durch kreuzweise ausgerichtete Scharen von parallel zueinander ausgerichteten Stegen mit jeweils zu den nächstgelegenen Stegen gleichen Abständen ersetzt sein oder dergleichen. Das Profil der Gräben oder Stege kann rechteckig sein oder gerundet, spitz, sinusförmig oder mehreckig.
Die erfindungsgemäße Laserdiode ermöglicht extrem gebündelte Oberflächenemission in eine vorgebbare Richtung bei einfach herstellbarem Aufbau des Bauelementes. 9 Patentansprüche 2 Figuren

Claims

Patentansprüche:
1. Oberflächenemittierende Laserdiode aus Halbleitermaterial mit einer aktiven Schicht (3) und mit Kontakten (7, 8) zum Anlegen eines Betriebsstromes, bei der die von der aktiven Schicht (3) abgewandte Ober¬ fläche des Halbleitennateriales mit einer räumlichen pe¬ riodischen Strukturierung versehen ist, bei der zumindest auf einem mit dieser Strukturierung versehenen Bereich dieser Oberfläche ein Metallfilm (5) aufgebracht ist und bei der die Höhe (h) dieser Strukturierung und die Länge (Lg) jeweils einer Periode dieser Strukturierung, der mi¬ nimale Abstand (a) dieses Metallfilmes (5) von der akti- ven Schicht (3) und die Dicke (d5) des Metallfilmes (5) so bemessen sind, daß im Betrieb der Laserdiode an der der aktiven Schicht (3) abgewandten Oberfläche des Me¬ tallfilmes (5) Oberflächenmoden durch in der aktiven Schicht (3) erzeugte Photonen angeregt werden, d a d u r c h g e k e n n z e i c h n e t , daß auf der dieser Strukturierung abgewandten Seite der akti¬ ven Schicht (3) eine Spiegelanordnung (9) zur Ausbildung ei¬ nes Vertikalresonators als Schicht oder als Schichtfolge vor¬ handen ist.
2. Laserdiode nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t daß zwischen der aktiven Schicht (3) und dem Metallfilm (5) eine weitere Spiegelanordnung (19) vorhanden ist.
3. Laserdiode nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß eine Spiegelanordnung (9, 19) eine Folge aus Halbleiter¬ schichten unterschiedlicher Brechungsindizes ist.
4. Laserdiode nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t daß die aktive Schicht (3) GaAs ist und daß jede Spiegelanordnung (9, 19) eine Folge von Schichten aus abwechselnd AlGaAs und AlAs ist.
5. Laserdiode nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die aktive Schicht (3) eine Quantum-well-Struktur von Schichten aus abwechselnd GaAs und InGaAs ist und daß jede Spiegelanordnung (9, 19) eine Folge von Schichten aus abwechselnd GaAs und AlAs ist.
6. Laserdiode nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die räumliche periodische Strukturierung in der Oberflä- ehe einer Deckschicht (10) ausgebildet ist.
7. Laserdiode nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t daß der Metallfilm (5) in einer Aussparung eines Kontaktes (7) aufgebracht ist.
8. Laserdiode nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß der Metallfilm (5 ) gleichzeitig einen Kontakt (7) bil- det.
9. Laserdiode nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t daß die aktive Schicht (3) zwischen vertikal zur Schichtebene daran angrenzenden Kontaktschichten (2, 4) angeordnet ist.
PCT/DE1993/001113 1992-12-03 1993-11-24 Oberflächenemittierende laserdiode WO1994013043A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/448,425 US5555255A (en) 1992-12-03 1993-11-24 Surface-emitting laser diode
EP94900715A EP0672310B1 (de) 1992-12-03 1993-11-24 Oberflächenemittierende laserdiode
JP6512643A JPH08503816A (ja) 1992-12-03 1993-11-24 表面発光型レーザーダイオード
DE59303370T DE59303370D1 (de) 1992-12-03 1993-11-24 Oberflächenemittierende laserdiode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4240706.0 1992-12-03
DE4240706A DE4240706A1 (de) 1992-12-03 1992-12-03 Oberflächenemittierende Laserdiode

Publications (1)

Publication Number Publication Date
WO1994013043A1 true WO1994013043A1 (de) 1994-06-09

Family

ID=6474323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/001113 WO1994013043A1 (de) 1992-12-03 1993-11-24 Oberflächenemittierende laserdiode

Country Status (5)

Country Link
US (1) US5555255A (de)
EP (1) EP0672310B1 (de)
JP (1) JPH08503816A (de)
DE (2) DE4240706A1 (de)
WO (1) WO1994013043A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8000374B2 (en) 2005-04-20 2011-08-16 Finisar Corporation Surface gratings on VCSELs for polarization pinning

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2231396C (en) * 1995-09-29 2001-02-27 British Telecommunications Public Limited Company Optically resonant structure
US6055262A (en) * 1997-06-11 2000-04-25 Honeywell Inc. Resonant reflector for improved optoelectronic device performance and enhanced applicability
GB9916145D0 (en) 1999-07-10 1999-09-08 Secr Defence Control of polarisation of vertical cavity surface emitting lasers
WO2001009650A2 (en) * 1999-08-02 2001-02-08 Universite Jean Monnet Optical polarizing device and laser polarisation device
EP1868015B1 (de) * 1999-08-02 2012-04-18 Université Jean-Monnet Optische Polarisationsvorrichtung und Polarisationsvorrichtung zum Gebrauch mit einem Laser
US6680799B1 (en) * 1999-08-02 2004-01-20 Universite Jean Monnet Optical polarizing device and laser polarization device
JP3586594B2 (ja) * 1999-08-25 2004-11-10 シャープ株式会社 半導体発光素子およびその製造方法
JP2001298212A (ja) * 2000-02-07 2001-10-26 Sharp Corp 半導体発光素子およびその製造方法
US6501783B1 (en) 2000-02-24 2002-12-31 Lucent Technologies Inc. Distributed feedback surface plasmon laser
US7065124B2 (en) * 2000-11-28 2006-06-20 Finlsar Corporation Electron affinity engineered VCSELs
US6990135B2 (en) * 2002-10-28 2006-01-24 Finisar Corporation Distributed bragg reflector for optoelectronic device
US6905900B1 (en) 2000-11-28 2005-06-14 Finisar Corporation Versatile method and system for single mode VCSELs
US6836501B2 (en) 2000-12-29 2004-12-28 Finisar Corporation Resonant reflector for increased wavelength and polarization control
US6727520B2 (en) * 2000-12-29 2004-04-27 Honeywell International Inc. Spatially modulated reflector for an optoelectronic device
TWI227799B (en) 2000-12-29 2005-02-11 Honeywell Int Inc Resonant reflector for increased wavelength and polarization control
US6782027B2 (en) 2000-12-29 2004-08-24 Finisar Corporation Resonant reflector for use with optoelectronic devices
US6606199B2 (en) 2001-10-10 2003-08-12 Honeywell International Inc. Graded thickness optical element and method of manufacture therefor
US6975580B2 (en) 2001-12-18 2005-12-13 Interntional Business Machines Corporation Optical aperture for data recording having transmission enhanced by waveguide mode resonance
US6965626B2 (en) 2002-09-03 2005-11-15 Finisar Corporation Single mode VCSEL
US6813293B2 (en) 2002-11-21 2004-11-02 Finisar Corporation Long wavelength VCSEL with tunnel junction, and implant
US20040222363A1 (en) * 2003-05-07 2004-11-11 Honeywell International Inc. Connectorized optical component misalignment detection system
US7298942B2 (en) 2003-06-06 2007-11-20 Finisar Corporation Pluggable optical optic system having a lens fiber stop
US7433381B2 (en) 2003-06-25 2008-10-07 Finisar Corporation InP based long wavelength VCSEL
US7054345B2 (en) 2003-06-27 2006-05-30 Finisar Corporation Enhanced lateral oxidation
US7075962B2 (en) 2003-06-27 2006-07-11 Finisar Corporation VCSEL having thermal management
US7277461B2 (en) 2003-06-27 2007-10-02 Finisar Corporation Dielectric VCSEL gain guide
US7149383B2 (en) 2003-06-30 2006-12-12 Finisar Corporation Optical system with reduced back reflection
US6961489B2 (en) 2003-06-30 2005-11-01 Finisar Corporation High speed optical system
US7210857B2 (en) 2003-07-16 2007-05-01 Finisar Corporation Optical coupling system
US20050013539A1 (en) * 2003-07-17 2005-01-20 Honeywell International Inc. Optical coupling system
US6887801B2 (en) * 2003-07-18 2005-05-03 Finisar Corporation Edge bead control method and apparatus
JP4130163B2 (ja) * 2003-09-29 2008-08-06 三洋電機株式会社 半導体発光素子
US7031363B2 (en) * 2003-10-29 2006-04-18 Finisar Corporation Long wavelength VCSEL device processing
US7920612B2 (en) * 2004-08-31 2011-04-05 Finisar Corporation Light emitting semiconductor device having an electrical confinement barrier near the active region
US7596165B2 (en) * 2004-08-31 2009-09-29 Finisar Corporation Distributed Bragg Reflector for optoelectronic device
US7829912B2 (en) 2006-07-31 2010-11-09 Finisar Corporation Efficient carrier injection in a semiconductor device
US7778305B2 (en) * 2005-12-22 2010-08-17 Université Jean-Monnet Mirror structure and laser device comprising such a mirror structure
US8031752B1 (en) 2007-04-16 2011-10-04 Finisar Corporation VCSEL optimized for high speed data
JP2009239217A (ja) * 2008-03-28 2009-10-15 Nikon Corp 発光ダイオード素子
EP2141519A1 (de) * 2008-07-04 2010-01-06 Université Jean-Monnet Polarisierender Spiegel mit diffraktiver Oberfläche
WO2012015990A2 (en) * 2010-07-27 2012-02-02 The Regents Of The University Of California Plasmon lasers at deep subwavelength scale
JP6015220B2 (ja) * 2012-08-07 2016-10-26 富士ゼロックス株式会社 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
RU2552386C1 (ru) * 2014-02-19 2015-06-10 Валерий Николаевич Конопский Полупроводниковый источник излучения на длиннопробежных поверхностных плазмонах
KR102360025B1 (ko) 2014-10-16 2022-02-08 삼성전자주식회사 비정질 탄소원자층의 형성방법 및 비정질 탄소원자층을 포함하는 전자소자
KR102384228B1 (ko) 2015-09-30 2022-04-07 삼성전자주식회사 반도체 레이저 공진기 및 이를 포함하는 반도체 레이저 소자
CN109115359A (zh) * 2018-09-20 2019-01-01 广西师范大学 一种基于混合等离子体波导的温度传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123084A (ja) * 1983-12-08 1985-07-01 Matsushita Electric Ind Co Ltd 半導体光発生装置
EP0395315A2 (de) * 1989-04-26 1990-10-31 AT&T Corp. Elektrisch gepumpter Laser mit senkrechtem Resonator
EP0442002A1 (de) * 1990-02-13 1991-08-21 Siemens Aktiengesellschaft Strahlungserzeugendes Halbleiterbauelement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038356A (en) * 1989-12-04 1991-08-06 Trw Inc. Vertical-cavity surface-emitting diode laser
US5068868A (en) * 1990-05-21 1991-11-26 At&T Bell Laboratories Vertical cavity surface emitting lasers with electrically conducting mirrors
JP2961964B2 (ja) * 1991-07-10 1999-10-12 日本電気株式会社 半導体レーザ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123084A (ja) * 1983-12-08 1985-07-01 Matsushita Electric Ind Co Ltd 半導体光発生装置
EP0395315A2 (de) * 1989-04-26 1990-10-31 AT&T Corp. Elektrisch gepumpter Laser mit senkrechtem Resonator
EP0442002A1 (de) * 1990-02-13 1991-08-21 Siemens Aktiengesellschaft Strahlungserzeugendes Halbleiterbauelement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 280 (E - 356)<2003> 8 November 1985 (1985-11-08) *
See also references of EP0672310A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8000374B2 (en) 2005-04-20 2011-08-16 Finisar Corporation Surface gratings on VCSELs for polarization pinning
DE112006003384B4 (de) * 2005-12-12 2014-01-02 Finisar Corp. Oberflächengitter auf VCSELs für Polarisations-Pinning

Also Published As

Publication number Publication date
DE4240706A1 (de) 1994-06-09
JPH08503816A (ja) 1996-04-23
EP0672310A1 (de) 1995-09-20
DE59303370D1 (de) 1996-09-05
US5555255A (en) 1996-09-10
EP0672310B1 (de) 1996-07-31

Similar Documents

Publication Publication Date Title
EP0672310B1 (de) Oberflächenemittierende laserdiode
EP0442002B1 (de) Strahlungserzeugendes Halbleiterbauelement
EP0672311B1 (de) Abstimmbare oberflächenemittierende laserdiode
EP2220733B1 (de) Laserlichtquelle
EP1615306B1 (de) Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
DE102013204964B4 (de) Optisch gepumpte oberflächenemittierende Laser mit Reflektor mit hohem Reflexionsvermögen und begrenzter Bandbreite
DE68909779T2 (de) Methode zur Verbesserung der Ebenheit geätzter Spiegelfacetten.
EP0849847B1 (de) Optoelektronisches Bauelement mit MQW-Stukturen
DE3689188T2 (de) Halbleiterlaser.
EP2191547B1 (de) Optoelektronisches bauelement
DE69027368T2 (de) Halbleiterlaser und Verfahren zur Herstellung desselben
DE112005000507T5 (de) Halbleiterlaserelement und Halbleiterlaserelementfeld
DE69029207T2 (de) Optische Halbleitervorrichtung
EP1533876B1 (de) Polarisationskontrolle von Vertikaldiodenlasern durch ein monolithisch integriertes Oberflächengitter
DE10214120A1 (de) Optisch pumpbare oberflächenemittierende Halbleiterlaservorrichtung
EP2218153B1 (de) Verfahren zur herstellung eines strahlungsemittierenden bauelements und strahlungsemittierendes bauelement
DE102006011284A1 (de) Halbleiterlaservorrichtung
EP1605562A2 (de) Optisch gepumpte oberflächenemittierende Halbleiterlaser-Vorrichtung
DE3632585A1 (de) Halbleiterlaser
DE69109388T2 (de) Halbleiterlaser.
DE3877983T2 (de) Halbleiterlaservorrichtung mit externem resonator.
DE10223540A1 (de) Optisch gepumpte Halbleiterlaservorrichtung
DE60003372T2 (de) Halbleiterlaservorrichtung
EP0830717B1 (de) Oberflächenemittierende laserdiode
WO1994013075A1 (de) Frequenzdemultiplexer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994900715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08448425

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994900715

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994900715

Country of ref document: EP