WO1994011133A1 - Continuous steel casting apparatus - Google Patents

Continuous steel casting apparatus Download PDF

Info

Publication number
WO1994011133A1
WO1994011133A1 PCT/JP1993/001659 JP9301659W WO9411133A1 WO 1994011133 A1 WO1994011133 A1 WO 1994011133A1 JP 9301659 W JP9301659 W JP 9301659W WO 9411133 A1 WO9411133 A1 WO 9411133A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
molten
molten lead
steel
temperature
Prior art date
Application number
PCT/JP1993/001659
Other languages
English (en)
French (fr)
Inventor
Toshihiko Miura
Original Assignee
Toshihiko Miura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshihiko Miura filed Critical Toshihiko Miura
Priority to EP93924819A priority Critical patent/EP0679459A4/en
Publication of WO1994011133A1 publication Critical patent/WO1994011133A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces

Definitions

  • the present invention is applied to the manufacture of thin plate-shaped steel pieces.
  • a thin steel piece is preferable because the rolling operation in the production of a hot plate is facilitated. For this reason, development of a new continuous manufacturing system is being attempted.
  • a solidified shell is formed on a solid metal wall using a solid metal wall which vibrates, travels, or rotates. Many.
  • the cost of equipment is high due to the use of the vibration of the ⁇ -shaped wall, the traveling device, and the rotating device.
  • the surface temperature of the solidified shell is lowered during the production, and heat shrinks, so that a void is generated between the mold wall surface and the solidified shell.
  • JP Japanese Unexamined Patent Publication No. 61-1474974 describes a continuous metalworking device that does not use a solid metal-made wall. That is, Japanese Patent Application Laid-Open No. 58-74429 discloses that molten copper is poured into one end of a molten lead bath, spread over the liquid surface of the molten lead, cooled by the molten lead, and solidified. Japanese Patent Application Laid-Open No.
  • 59-4.2163 describes a continuous casting method in which molten steel is poured into a molten lead bath flowing at a speed higher than the outflow speed of molten steel.
  • Japanese Unexamined Patent Publication (Kokai) No. 61-147,947 discloses that a non-disturbed laminar flow molten steel is supplied to one end of a molten lead tank containing molten lead sufficiently lower than the freezing point of steel.
  • molten steel is cooled and solidified without being spread, and is taken out from the other end of the same molten lead tank.
  • none of these methods has been implemented.
  • the pieces float in the molten lead bath during the continuous forming process, and-the molten steel and the molten lead hardly dissolve in each other, and the usual alloying components contained in the molten steel hardly dissolve in the molten lead. Therefore, during the continuous production of the present invention, the components of the molten copper and the components of the pieces hardly change.
  • Fig. 1 is an explanatory view of the continuous manufacturing apparatus of the present invention.
  • (A) is a longitudinal sectional view
  • (B) is a plan view with the airtight lid (9) removed
  • (C) is an a—a longitudinal sectional view.
  • Figure, (D) is a view of bb vertical section.
  • ⁇ Ke was partition wall (S 01) to by re segmented lead chamber between successive ⁇ device in the outlet side and inlet side of the present invention (C 01) and molten lead bath with a (C U2) (3) Used.
  • the lead chamber on the entry side (C 01 ) contains molten lead (7) at a temperature higher than the freezing point of steel, for example, 1600 ° C, and the lead chamber on the exit side (C.
  • the lower end is soaked in molten lead (7) and (8), and the input end is connected to two interconnected side dams (4-4).
  • a ⁇ -shaped weir with 4-1-2) will be provided.
  • ⁇ Weirs (4-1-1) and (4-1-2) have a sufficient length in the entrance and exit directions of the partition wall (S ⁇ ) and are arranged in parallel with a space (W.) between them. I have.
  • the continuous manufacturing apparatus of the present invention also has a strip extractor (5) provided further on the discharge side of the molten lead tank.
  • a general-purpose pinch roll or the like may be used as the strip extractor (5). it can.
  • a general-purpose pinch roll or the like may be used as the strip extractor (5). it can.
  • the inner wall surfaces of the side weirs (4-1) and (4-1-2) are arranged in parallel with a distance (W lake) between them, but the side weirs (4-1) and (4-2) ) May be arranged so that the average interval between the opposite inner walls is (W n ) and the divergence of 20 ° or less from the entrance side to the exit side is smaller.
  • the molten steel injected into the rectangular weir of the lead chamber (C D1 ) containing the high-temperature molten lead is moved to (C 02 ) and cooled and solidified with the low-temperature molten lead.
  • It is a piece i, and it is a structure i5 that is taken out continuously by a piece extractor.
  • (C. J forms molten steel chips with a thickness of (t mm), for example.
  • about 70% of the thickness of the molten steel layer is higher than the liquid level of the molten lead. It sinks below and about 30% protrudes above the liquid level of the molten lead, so the lower ends of the side weirs (4-1) and (4-2) of the present invention are immersed in the molten lead.
  • the immersion depth should be sufficient to exceed 0.7 X t mm, and the upper ends of the side dams (4-1) and (4-2) should be 0.3 X t mm above the liquid level of the molten lead.
  • molten copper layer with a thickness of, for example, (t mm) is formed at (C 01 )
  • molten steel leaks from the inside of the Type-I weir through the lower end of the side weir.
  • a molten lead layer is formed above the partition wall (S 01 ), but for the same reason, the molten lead layer exceeds 0.7 X t mm. It is formed to a sufficient thickness for the lower surface of the molten steel scrap. Flows smoothly from (C 01 ) to ( CU 2 ) without contacting the partition weir (S. J).
  • a steel dummy sheet (not shown) having a sheet width of (W 0 ) is inserted into the (C 02 ) (in the vicinity of (S SurfJ) and the single drawer (5
  • the molten steel (1) is injected into the ⁇ -shaped weir of (C 01 )
  • the injected molten steel (1) is free of solidified wheels and is on the liquid of hot molten lead (7). It is pushed by the static pressure of the molten steel (1) that is continuously injected, passes through the partition weir (S U1 ), reaches the dummy sheet, and the tip of the molten copper is at the end of the dummy sheet. Congeal.
  • Molten steel is continuously injected at a speed of M tons. This molten steel passes between side dams (4-1-1) and (4-1-2) at a speed of M tons.
  • the distance between the side weirs (4-1) and (4-1-2) is W (m)
  • the thickness of the piece is T (m)
  • the removal speed of the piece is V (mZ)
  • the specific gravity of the piece is P. Then, the following equation (1) is obtained.
  • molten copper (1) When ending the continuous production, stop the injection of molten copper (1) and stop the piece extractor (5).
  • a solid lead pellet is added to the lead chamber (C 01 ), and the high-temperature molten lead (7) is cooled to a temperature of, for example, 140 (TC) below the freezing point of copper and near the freezing point of steel.
  • TC 140
  • the steel extractor (5) is rotated after the molten steel in the ⁇ -shaped weir at C ul ) solidifies, all the molten steel is removed as flakes.
  • (C. 2) in the cold ⁇ lead (8) is exclusively cooled to temperature increases on standing. this cooling heat exchanger is disposed in the (C 02), or provided separately This can be done by circulating the molten lead (8) in the cooling device shown in Fig. 1 (B), ( ⁇ 2) is the molten lead outlet when circulating the molten lead, and (1 3) is This is an example of charging the low-temperature molten lead after passing through the cooling device 1.
  • the cooling of the low-temperature molten lead (8) in (C 02 ) can also be efficiently performed by the following method.
  • molten lead (8) is taken out from the molten lead outlet (1 2 '), and a considerable amount of solid rest pellets are charged from the coolant inlet (13') to cool the molten lead.
  • the molten lead taken out from (12 ') can be used again after making it into a separate lead pellet with 7 fl.
  • At least (C) 01 ) is provided with an airtight lid (9) Using a synchro (14), a runway of the steel piece that allows the solidified steel piece to infiltrate into the low-temperature molten lead is formed. By immersing the lower end of the outlet side in the exposed low-temperature molten lead as shown in Fig. 1 (A), the interior of the airtight lid (9) can be kept highly airtight.
  • Fig. 1 is a conventional scum weir for removing scum.
  • the molten steel injected into (C oi ) passes through the lower end of the scum weir (15) and flows in the direction of the partition wall (S. J. At this time, the scum floating on the surface of the molten steel of (C. J) Therefore, by passing through the scum weir, it is possible to reduce the scum on the surface of the molten steel and produce a piece with less scum flaws.
  • the surface of the molten steel in (C. J) can be heated or kept in heat by providing a heating device (not shown) in the air space or by spraying a flux on the molten steel (1).
  • molten steel is injected into one end of a molten lead tank, spread over the molten lead, cooled and solidified by the molten lead, and removed from the other end of the same molten lead tank.
  • the injected molten steel is turned into Nagabe! : It is therefore difficult to maintain the temperature above the solidification temperature, so that the melt solidifies before it has spread sufficiently. For this reason, it is difficult to stably produce thin pieces having a small thickness.
  • the molten steel stays in the lead chamber (C. J) for a sufficient time. During this stay, the molten steel is maintained at a temperature above the freezing point of the steel, and for a sufficient time! As shown in Fig. 1, high-temperature molten lead (7) and low-temperature molten lead (8) can be separated from the partition wall (Fig. 1).
  • a molten steel in a laminar flow without turbulence is supplied to one end of a molten lead tank containing molten lead at a temperature sufficiently lower than the freezing point of the steel, and the molten steel is cooled and solidified without spreading much.
  • a method of taking out from the other end of the molten lead tank is considered.
  • the surface tension of molten copper is greater than the surface tension of molten lead, the laminar flow of molten steel is easily deformed in molten lead, and about 70% of the thickness of the molten steel layer is higher than the liquid level of molten lead. The steel flow is disturbed during this subsidence, and it is difficult to maintain laminar flow.
  • the supply port of molten steel is It is not easy to maintain a stable flow of swarf in the molten lead tank because of deformation due to adhesion.
  • the molten steel in the waste stream is supplied to the lead chamber (C uz ) that contains the low-temperature molten lead, but it is already formed on the molten lead of CuJ and already settled in the molten lead.
  • the lead chamber (C uz ) that contains the low-temperature molten lead, but it is already formed on the molten lead of CuJ and already settled in the molten lead.
  • C. 2 without a new ⁇ is Kiwamusei in debris flow is maintained.
  • the start of solidification of molten steel changes depending on the operating conditions from immediately before to immediately after the partition wall (S Ui ), but the side dams (4-1) and (4-1-2) are partitioned. Since the weir (S U1 ) has a sufficient length in the entrance and exit directions and has planes arranged approximately parallel at an average interval (W u ), even if the position of solidification start changes, It is possible to manufacture a piece having a desired plate width. The exit ends of the side weirs (4-1) and (4-1-2) should be extended to the exit side from the position where the coagulation of the piece is completed.
  • the solidification seal of steel is brittle.
  • the coagulation shell of the apparatus of the present invention is moved by the pressure of molten steel continuously injected into (C 01 ) and the tensile force of the piece extractor (5) balanced with this static pressure.
  • the molten lead in contact with the bottom surface of the solidified shell moves following the movement of the solidified shell. Therefore, the solidified shell of the present invention is kept sound and the solidification proceeds while moving without excessive force acting on the solidified shell.
  • a further separate molten lead chamber can be connected to the outlet side further than (C uz ), or the piece heating can be performed.
  • a piece of a fine solidified structure can be manufactured by adjusting the temperature of the molten lead of (c. 2 ).
  • C. 2 The temperature of the molten lead chamber and / or the piece heating furnace provided for each of the pieces was adjusted to a temperature at which the pieces could be hot rolled, or the temperature at which the pieces were subjected to a heat treatment that is materially favorable. Adjust to a temperature at which post-hot rolling can be performed and then hot-roll.
  • Fig. 1 is an explanatory view of an example of the device of the present invention.
  • Fig.2 is an illustration of an example of a side defect in the device of the present invention.
  • Fig. 3 is an explanatory view of another example of the concealment of the present invention.
  • FIG. 4 is an explanatory view of still another example of the device of the present invention.
  • the die manufacturing equipment is an equipment capable of manufacturing several kinds of pieces having different widths.
  • Fig.2 is an explanatory view of equipment for manufacturing pieces with different widths.
  • (Al), (A2) and (A3) are examples of the vertical cross-sectional shape of the weir used in this case.
  • Fig.2 ( ⁇ 1) when the liquid level of molten lead is set to, the distance between the side dams (4-1) and (4-1-2) becomes (WJ, and the plate width corresponding to (WJ) If the liquid level of the melt button is set to (L 2 ), a piece with a plate width corresponding to (W 2 ) can be manufactured.
  • I ', ig.2 (A 3) is a side dam
  • Fig.2 (A l), ( ⁇ 2), and (A 3) show one or both of the two side dams facing each other.
  • the wall surface is formed in the shape of a wide step or a wide step. By using these side weirs, it is possible to produce several kinds of pieces having different widths.
  • Fig. 2 (A l) when the liquid level of the molten lead is set to ( ⁇ ,), the thickness of the molten lead passing through the partition ⁇ (S ul ) is (DJ.
  • FIG. 1 is an example of setting the height of the liquid surface of the molten lead with the same side weir (L 3). This time has a thickness on the partition wall (S D t) of (1 J, ) Is formed, and the layer of molten lead that is passed quickly is too thick to reduce the partitioning effect of ⁇ (S)
  • Fig.2 (B 2) The partition block (10) shown in Fig. 4 is placed in the direction indicated by arrows (C-C) parallel to the side dams (4-1) and (4-2). Submerged and submerged in the molten lead, and finished in this state.
  • Fig.3 is an explanatory view of other equipment for manufacturing several kinds of pieces with different widths
  • ( ⁇ ) is a longitudinal section
  • (B) is a plan view with the airtight lid (9) removed.
  • That plurality of partition walls provided between the inlet side and the outlet side ..., Sp (Si, S z , S 3, S 4) a plurality of lead quality Ci which is partitioned by, ⁇ -, CP + d, C 2, C 3 , C 4 , C s ), and one lead chamber Cm (for example, C 3 ) contains molten lead that is hotter than the freezing point of steel, and all lead chambers (C 4 , C s ) contains molten lead at a temperature lower than the freezing point of steel, and the lead chamber (C 1, C z ) on the incoming side of Cm contains molten lead at a lower or higher temperature than the freezing point of steel.
  • (C 3) also re by both points coagulation of steel houses the high temperature molten lead and injecting the molten steel ⁇ the dam (C 3), the molten steel is from (C 3) ( ;) And further to (C s ) to obtain a piece with a plate width of (W 3 ).
  • the molten steel first injected into (C 3 ) also flows to (CJ, (CJ, but after filling (CJ, (C 2 ), it flows in the direction of (CJ. (CJ and (C 2 )).
  • the molten steel flowing to fliKc ⁇ , (C 2 ) in the above-mentioned vulcanization work stays in a molten state and has a lower temperature than the freezing point of the steel.
  • the molten lead is stored, the molten copper flowing to (d) and (C 2 ) is solidified and retained, but in both cases, the molten steel (C i) and (C 2 )
  • the work is completed because it is floating on the liquid level of lead, it is taken out by the piece drawer 5, as described in Fig. 1.
  • An example of pouring molten steel into (C 3 ) was described.
  • (C 2 ), and (C 3 ) contain low-temperature molten lead and inject molten steel (when injected into CJ, the width of (WJ pieces) and (CJ, (C 3 ) ⁇ When it is stored and molten steel is injected into (), a piece with a width of (W 3 ) is obtained.
  • FIG. 1 and Fig. 3 an example was described in which a ⁇ -shaped root having two side roots (4-1) and (4-1) was placed in a molten lead tank (3). Some or all of the side wall surfaces of the slab can be formed by side dams.
  • Fig. 4 is an explanatory diagram of this continuous manufacturing device. ( ⁇ 1) to ( ⁇ 4) are examples of one partition wall, and ( ⁇ 1) is an example of four partition walls. All the effects shown in F xg. ⁇ ⁇ Fig.
  • molten lead having a temperature higher than the freezing point of steel is used before starting the production.
  • This high-temperature molten lead can be produced by using a separately provided lead heating power 1 or by providing a lead heating facility (not shown) in a lead chamber for storing the high-temperature molten lead. It can also be obtained by pouring molten lead at a low temperature of, for example, 600 ° C. from above the steel ladle. At this time, the low-temperature molten lead falls through the molten steel in the ladle. In the meantime, it is heated by the molten steel to a temperature above the freezing point of the steel and stored at the bottom of the ladle.
  • the device of the present invention does not use a moving or rotating solid-walled metal mold wall.
  • the device according to the present invention produces a piece with a rough surface because no excessive force acts on the solidification seal of the piece to be produced, and the surface of the piece does not rub against the solid metal. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

細 ir
鋼の連続銬造装置 .
[技術分野]
本 明は、 薄い板状の鋼铸片を製造する迚絨鍀造装匿に raする。
[背景技術]
薄い鋼錡片は、 辣銷板の製造における圧延作業が简易化するために好ましい。 このため、 新しい連続銬造装置の開発が試みられている。 これ等の連続鋅造装^ としては、 振動し走行しあるいは回動する固体金属製の踌型壁而を用いて、 この 固体金属製の銬型壁面上に凝固シエルを形成する方式のものが多い。 しかしこの 方式の連続铸造装置では铸型壁面の振動 ¾ や走行装置や回動装置を用いるため に設備コストが高い。 またこの方法では、 銬造の間に凝固シェルの表面温度が低 下し熱収縮して铸型壁面と凝固シェルとの間に空隙が発生するが、 この空隙は厚 さが不均一でかつ熱伝逹性が恶いために铸片に冷却むらが発生しやすく铸片の表 面ヮレ疵等の原因となる。 また踌片は¾面が踌型燈等で擦られて疵が発生し易い t 特開昭 5 8— 7 4 2 4 9号公報、 特開昭 5 9 - 4 2 1 6 3号公報、 特開昭 6 1 - 1 4 7 9 4 7号公報には、 固体金属製の铸型壁を用いない連続铸造装匮が記載 されている。 即ち特開昭 5 8— 7 4 2 4 9号公報には、 溶餾を溶融鉛槽の一端に 注入し、 溶融鉛の液面に拡げ、 溶融鉛によって冷却して固化させ、 同じ溶融鉛 ffi の他端から取り出す方法が記載され、 特開昭 5 9 - 4.2 1 6 3号公報には溶鋼の 流出速度以上の速度で流動する溶融鉛浴上に溶鋼を注入する連続铸造法が記載さ れ、 また特開昭 6 1 - 1 4 7 9 4 7号公報には鋼の凝固点よりも十分に低温の溶 融鉛を収納した溶融鉛槽の一端に、 乱れのない層流の溶鋼を供給し、 溶鋼をあま リ拡げないで冷却固化させ、 同じ溶融鉛槽の他端から取り出す連続铸造法が記載 されている。 しかしこれ等の何れの方法も実施化されるには至っていない。
[発明の開示] 本発明では固体金属製の鋅型^は川いないで、 溶鋼は専ら溶融鉛と接触し、 溶 融鉛によって冷却され、 锊片は溶融鉛に浮かせて搬送する。 溶鋼の注入温度は約 1600"Cであり鋼锊片は例えば G 00nCに冷却すると取扱いが容易である。 一 方金属鉛の沸点は 1740°Cであり凝固点は約 330°Cである。 このため溶鋼の 注入から鋼铸片の取出迄の連続錚造の間金属鉛は溶融状態にある。 また溶融鉛の 比重は 10〜11で鋼の比重は約 7である。 このため溶鋼や鋼^片は連続銬造の 間、 溶融鉛浴に浮いている。 更に-溶鋼と溶融鉛は相互に殆ど溶解しないし、 溶鋼 に含有されている通常の合金成分も溶融鉛に殆ど溶解しない。 このため本発明の 連続铸造の間、 溶銅の成分や銬片の成分は殆ど変化する事がない。
Fig.1は本発明の連続鋅造装置の説明図で、 (A)は縦断面図、 (B)は気密盖 (9)を取り外した平面の図、 (C)は a— a縦断面の図、 (D)は b— b縦断面の図 である。 本発明の連続铸造装置では入側と出側の間に骰けた仕切壁(S01)によリ 区分された鉛室(C01)と(CU2)を備えた溶融鉛槽(3)を用いる。 入側の鉛室 (C01)には鋼の凝固点よりも高温の例えば 1 600°Cの溶融鉛(7)を、 また出側 の鉛室(C。2)には鋼の凝固点よリも低温の例えば 800°Cの溶融鉛(8)を収納す る。 また溶融鉛は仕切壁(S01)の上端を超える髙さ迄収納する。 この結果、 下部 では(C01)の高温の溶融鉛(7)と(C。2)の低温の溶融釦(8)は互いに混じり合う 事はないが仕切壁(S01)の上部では相互に連通し、 (じ01)の溶融鉛(7)と(匸02) の溶融鉛(8)は同じ高さの液面を形成している。
本発明の連続铸造装置にはまた、 下端は溶融鉛(7)および(8)中に浸清され、 入側の端部は相互に連結された 2本の側堰(4—丄)と(4一 2)を有する铸型堰が 設けられる。 侧堰(4一 1)と(4一 2)は仕切壁(S^)の入側方向と出側方向に十 分な長さを有し間隔(W。)を設けて平行に配されている。 本発明の連続铸造装置 はまた、 溶融鉛槽の更に出側に設けた銬片引出機(5)を有するが、 この铸片引出 機(5)には例えば汎用のピンチロール等を用いることができる。 Fig.1では側堰(4一 1)と(4一 2)の内壁面は間隔(W„)を隔てて平行に配^ されているが、 側堰(4一 1)と(4 — 2)は対而する内壁而の平均問隔が(Wn)で 入側から出側に向けて 20 ° 以下の先広がリになるように配 Kしてもよい。
本発明の連続銬造装置では、 高温の溶融鉛を収納した鉛室(CD1)の鸫型堰内に 注入した溶鋼を( C02 )に移動させて低温の溶融鉛で冷却凝固せしめて锊片 2とし、 铸片引出機により速続的に取リ出す構 i5である。
Fig.1の連続铸造の操業では、 (C。Jに厚さが例えば( t mm)の溶鋼屑を形 成する。 この際溶鋼層の厚さの約 70 %は溶融鉛の液面よりも下に沈入し、 約 3 0 %は溶融鉛の液面よりも上に突出する。 従って本発明の側堰(4— 1), (4 - 2)の下端は溶融鉛中に浸漬せしめるが、 浸漬深さが 0.7 X t mm超の十分な深 さ迄浸漬せしめる。 また側堰(4一 1), (4— 2)の上端は溶融鉛の液面よりも上 方に 0.3 X t mm超の十分な高さまで突出せしめる。 従って(C01)に厚さが例 えば(t mm)の溶銅層を形成した際、 溶鋼は側堰の下端をくぐって铸型堰内から 漏出する事がなく、 また側堰の上端から溢れ出る事がない。 本発明では仕切壁 (S01)の上部に溶融鉛層を形成するが、 同様の理由で、 この溶融鉛層は 0.7 X t mm超の十分な厚さに形成する。 このため溶鋼屑の下面は仕切堰(S。 Jに接触 する事がなく、 (C01)から(CU2)に円滑に流れる。
本発明の連続銬造装置の使用方法を説明する。 铸造の開始に先立ち、 板幅が (W0)の带状の例えば鋼製のダミーシート(図示しない)を、 (C02)内の(S„J近 傍の位置と銬片引出機(5)との間に配置する。 次に(C01)の銬型堰内に溶鋼(1 ) を注入する。 注入した溶鋼( 1 )は凝固する車なく高温の溶融鉛( 7 )の液而上に拡 がるが、 連続的に注入される溶鋼(1)の静圧に押されて仕切堰(SU1)を通過して ダミーシートに達し、 溶銅の先端はダミーシ一卜の端部に凝結する。
溶鋼の先端がダミーシー小に凝結した後で、 銬片引出機( 5 )を回動させてダミ —シ一卜を矢印(1 1)方向に移動させると、 (< 01)内の溶鋼(1)は顺次仕切り堰 (SD1)を通過し、 (C02)内に流入し、 (C。2)内の低温の溶融鉛(8 )によって冷却 され凝固して板幅が(W,, )の J ( 2 )となって、 ダミーシートに案内されて^ JV 引出機( 5 )によって取り出される。
溶鋼を Mトン Z分の速度で連続的に注入する。 この溶鋼は Mトン Z分の速度で 側堰(4一 1 )と(4一 2)の問を通過する。 側堰(4一 1 )と(4一 2)の間隔を W( m)、 鍀片の板厚を T (m)、 铸片の取り出し速度 V(mZ分)、 锊片の比重を P と すると、 下記(1 )式が得られる。
W · T · V ♦ p =M ( 1 )
( 1)式で¾1と^/と pは定数である。 锊片の取出し速度 分)を大きくすると 銬片の板厚 T (m)は(1 )式に ¾づき薄くなリ、 また铸片の取出速度 Vを小さくす ると铸片の板厚 Tは(1 )式に基づき大きくなる。
連続铸造を終了する際は、 溶銅(1 )の注入を停止し、 また銬片引出機(5)を停 止する。 鉛室(C01)に例えば固体の鉛ペレツ 卜を添加し、 髙温の溶融鉛(7)を銅 の凝固点以下で鋼の凝固点近傍の温度例えば 1 4 0 (TCに冷却する。 鉛室(Cul) の铸型堰内の溶鋼が凝固した後で铸片引出機(5)を回動させると、 全ての溶鋼は 铸片となって取り出される。
連続銬造の作業の間、 (C。 J内の高温の溶融鉛(7)は注入される溶鋼(1 )と接 触して、 自然に、 溶鋼(1 )と同じ高温に保たれる。 (C。2)内の低温の瑢融鉛(8 ) は放置すると温度が上昇するために専ら冷却する。 この冷却は( C02 )内に配設し た熱交換器によって、 あるいは別途に設けた冷却装置に溶融鉛(8 )を循環させる 事によって行うことができる。 Fig, 1 (B )の(丄 2)は溶融鉛を循環させる際の 溶融鉛の取出口で、 (1 3)は冷却装置を通過した後の低温の溶融鉛の装入に 1の例 である。 (C02)内の低温の溶融鉛(8)の冷却は下記の方法によっても効率よく行 う事ができる。 即ち溶融鉛取出口(1 2')から溶融鉛(8)の一部を取り出し、 冷 材装入口(1 3')から相当量の固休ペレツトを装入して溶融鉛を冷却する。 尚 (12')から取り出した溶融鉛は別途 [7fl休の鉛ペレツトにした後で^度使用でき ることはいうまでもない。
1000ての溶融鉛の蒸気圧は約 0.1 K Pa以下であるため、 低温の溶融鉛か らは鉛蒸気は発生しないが、 1600 の溶融鉛の蒸気圧は約 25KPaである ため( :。. Jの溶融鉛からは鉛蒸気が発生する。 大気中への鉛蒸気の逸散を防止す . るために、 また酸化鉛の生成を防止するために、 本発明の連続铸造装置の少なく とも(C01)には気密蓋(9)を設ける。 シンクロ一ル(14)を用いて、 凝固した鋼 铸片を低温の溶融鉛中に潜入させる鋼锊片の走路を形成し、 気密蓋(9)の出側の 下端を Fig.1 (A)の如くに露出した低温の溶融鉛中に浸渍すると、 気密蓋(9) の内部を高度な気密状態に保ことができる。 この気密状態の内部に非酸化性の雰 囲気ガス例えば窒素ガスを供給すると、 鉛蒸気の逸散が防止でき、 また酸化鉛の 発生を防止することができる。 薄い鋼銬片では、 表面に厚い酸化膜を形成しない 事が、 歩留り面でまた品質面で重要であるが、 Fig. ].の気密蓋(9)は内部を商 度な非酸化性に保つことができるため、 铸片の上面に厚い酸化膜を形成すること がない。 尚铸片の下面は溶融鉛に覆われているために、 酸化膜の形成はない。
Fig.1で(15)は、 スカムを除去するための慣用のスカム堰である。 (Coi) に注入された溶鋼はスカム堰(15)の下端をく ぐって仕切壁(S。 J方向に流れる。 この際(C。 Jの溶鋼の表面に浮遊しているスカムは、 スカム堰の下端に潜入する ことができない。 従ってスカム堰を通過させる事によって、 溶鋼の表面のスカム は低減しスカム疵の少ない銬片を製造することができる。 本発明ではまた、 (C。 Jの上部の空問に図示しない加熱装置を設けて、 あるいは溶鋼(1)上にフラ ックスを散布して、 (C。 J内の溶鋼の表面を加熱しあるいは保熱することができ る。
金属浴の種類や、 金属浴上に注入する溶湯の種類が本発明とは異なるために直 接比較する事はできないが、 フロート法では溶融した錫浴上に溶融ガラスを拡げ、 同時に錫浴によって冷却して板ガラスを製造する。 板ガラスは非晶赞であり、 例 えば 1 0 5 0 の溶融ガラスは 6 0 CTCに至る広い温度範 gflで流動性を布するた めに、 長時問に直って錫浴上で拡がり続けることができる。 一方鋼は結晶質であ り、 例えば 1 6 0 0 nCで注入した溶鋼はその凝固点例えば 1 4 5 0 nCに達すると 流動性を失う。 従つて注入された溶鋼が溶融 ί浴上に拡がることができる温度範 囲は狹く、 短時間で凝固して拡がる事ができなくなる。
本発明とは異なるが、 溶鋼を溶融鉛槽の一端に注入し、 溶融鉛の液而に拡げ、 溶融鉛によって冷却して固化させ、 同じ溶融鉛槽の他端から取リ出す方法が考え られる。 しかしこの方法では注入した溶鋼を長畤問に!:つて凝固温度以上に保持 することが難しく、 従って溶麵は十分に拡がる前に凝固する。 このために、 板厚 が薄い铸片を安定して製造する事は難しい。
Fig. 1の連続铸造装置では、 溶鋼は鉛室(C。 Jに十分な時間滞留する。 この 滞留の間、 溶鋼は鋼の凝固点以上の温度に保たれ、 十分な時間に!:つて鉛浴上に 拡がる。 このため広幅で板厚が薄い錚片を安定して製造することができる。 F ig. 1で、 高温の溶融鉛(7 )と低温の溶融鉛(8 )は、 仕切壁(S 0 1 )の上部で相互に連 通しているために、 溶融鉛の混合が懸念されるが、 仕切壁(S 01 )の壁幅を十分に 大きくすることにより、 あるいは仕切壁(S 0 1 )の上方の溶融鉛の屑の厚さを薄く 設定することにより、 溶融鉛( 7 )と( 8 )との混合を支障がない程度に低減するこ とができる。
本発明とは異なるが、 鋼の凝固点よりも十分に低温の溶融鉛を収納した溶融鉛 槽の一端に、 乱れのない層流の溶鋼を供給し、 溶鋼をあまり拡げないで冷却固化 させ、 同じ溶融鉛槽の他端から取り出す方法が考えられる。 しかし溶銅の表面張 力は溶融鉛の表面張力よりも大きいために、 溶鋼の層流は溶融鉛内で変形し易く、 また溶鋼層の厚さの約 7 0 %が溶融鉛の液面よりも下に沈入するために、 この沈 入に際して瑢鋼流は乱れて層流を維持し難い。 また溶鋼の供給口は、 溶損や鋼の 凝着によって変形するために、 溶融鉛槽内で乱れのない屑流の溶銅を安定して確 保する事は容易ではない。
Fie.1の迹続铸造においては屑流の溶鋼を低温の' 融鉛を収納した鉛室(Cuz) に供給するが、 既に(CuJの溶融鉛上に形成され既に溶融鉛中に沈入している屑 流であるために、 (C。2)内で新たな沈入が究生する事がなく、 屑流が維持される。 またタンディ ッシュ(Γ))に溶拫ゃ鋼の凝 ¾が発生しても、 (C。Jに供給される屑 流には乱れがなく、 また( c 0丄 )から( c。 2 )への溶 mの供給に]は下面が溶翻 ίであ るために、 溶損や地金の付着がなく、 (CU1)内で形成した層流は(Cuz)に供給さ れた後も保持される。 尚入側から出側に向けて 20" 以下の先拡がりに配された 2本の側堰を fflいると、 凝固した銬片は热収縮し幅が(Wn)より小さくなリ、 一 方側堰の間隔はその後も広がり続けるために、 锊片の側面の側堰(4一 1), (4 一 2)からの離脱は更に円滑になる。 この際先広がりの角度が 20n 超では、 凝 固開始前の溶鋼が幅広がりして溶鋼の層流が乱れるために好ましくない。
本発明で溶鋼の凝固開始の位匿は. 操業条件によって、 仕切壁(SUi)の直前か ら直後に至る間に変化するが、 側堰(4— 1)と(4一 2)は仕切堰(SU1)の入側方 向と出側方向に十分な長さを有し平均間隔(Wu)で大凡平行に配設された平面を 有するために、 凝固開始の位置が変っても所望の板幅の锊片を製造する事ができ る。 尚側堰(4一 1)と(4一 2)の出側の端部は锊片の凝固が完了する位置よりも 出側まで延在せしめる。
鋼の凝固シヱルは脆弱である。 しかし本発明の装置による凝同シェルは、 (C01)内に連続的に注入される溶鋼の骱圧カと、 この静圧力とバランスした锊片 引出機(5)による引張力によって移動する。 また凝固シヱルの底面と接触してい る溶融鉛は凝固シェルの移動に追従して移動する。 従って本発明の凝固シェルに は無理な外力が作用する事なく、 凝固シェルは健全に保たれて、 移動しながら凝 固が進行する。 図示しないが、 本発明の連続錡造装慰では、 (Cuz)よりも更に出側に、 更に別 個の溶融鉛室を連接し、 あるいは锊片加熱 を けることができる。 本発明では、 ( c。 2 )の溶融鉛の温度を調整して例えば微細な凝固組織の銬片を製造することが できる。 また( c。 2 )ゃ刖個に設ける溶融鉛室やあるいは銬片加熱炉の温度を銬片 が熱問圧延できる温度に調整して、 あるいは锊片に材赏上好ましい熱処理を施す 温度にした後熱間圧延できる温度に調整して Eちに熱間圧延する .ができろ ,
[図而の简単な説明]
Fig.1は本発明の装置の例の説明図。
Fig.2は本発明の装置に川いる側瑕の例の説叨図。
Fig.3は本発明の装匿の他の例の説明図。
F i g .4は本発明の装置の更に他の例の説明図。
[発明を実施するための最良の形態]
迪続铸造装置は、 数種類の板幅の異なる銬片を製造できる設備である事が好ま しい。 Fig.2は板幅の異なる銬片を製造する設備の説明図で、 (Al)、 (A2), (A 3)はこの際に用いる侧堰の縦断面の形状の例である。 Fig.2 (Λ 1)で溶融 鉛の液面の髙さを に設定すると、 側堰(4— 1)と(4一 2)の間隔は(WJと なって、 (WJに相応する板幅の銬片が製造できる。 また溶融釦の液面を(L2)に 設定すると、 (W2)に相応する板幅の銬片が製造できる。 Fig.2(Λ 2)において も同様に溶融鉛の液面の髙さを(L ), (Ι,ζ'), (レ )に変更する事により、 板 が(W ), (\V2'), に相当する鋅片が得られる。 I',ig.2 (A 3)は側堰
(4一 1)と(4一 2)の対面している壁面が上広の階段状に形成されている例であ るが同様に、 板幅が(W '), (W , (W3")に相当する銬片を作り分けることが できる。 即ち Fig.2(A l), (Λ 2), (A 3)は、 2本の側堰の一方あるいは双 方の相互に対面している壁面が下広のあるいは上広の階段状に形成されているが、 これ等の側堰を用いると、 数種類の板幅の異なる銬片を製造することができる。 Fig.2(A l)で、 溶融鉛の液面を(し,)に ¾定した際、 仕切 ^(Sul)上の迚通 した溶融鉛の厚さは(DJである。 Fig.2(B l)は、 同じ側堰を用いて溶融鉛の 液面高さを( L 3 )に設定した例である。 この際は仕切壁( S D t )上には厚さが ( 1J , ) の連通した溶融鉛の層が形成されて、 速通した溶融鉛層が厚過ぎるために仕切! < (S )の仕切効果が低下する。 例えば耐火物製の、 Fig.2 (B 2)に図示した仕 切ブロック(10)を、 矢印(C— C)を側堰(4一 1), (4— 2)に平行にして(4 一 .1)と(4一 2)の問の溶融鉛中に抑し込んで沈め、 この状態で仕 ¾;ブ Uック(1
0)を 90° 旋回した後押込力を解放すると、 仕切ブロック(10)は溶融鉛から の浮力によって、 F丄 g.2(B 1)の如く側堰(4一 1), (4一 2)に把えられて、 仕切壁(S。 Jの実赏的な高さが延長され、 連通する溶融鉛の層の厚さは(D )に 調整される。 尚図中(1 G— 1), (16— 2)は仕 ¾ブ口ック(1 0)を側堰(4一
1) , (4— 2)に組合せて固定する際の突起である。
Fig.3は、 数種類の板幅の異なる錡片を製造する他の装置の説明図で、 (Λ) は縦断面の図、 (B)は気密蓋(9)を取り外した平面の図である。 即ち入側と出側 の間に設けた複数の仕切壁 …, Sp(Si, Sz, S3, S4)により区分された 複数の鉛質 Ci, ■-, CP+ d, C2, C3, C4, Cs)を備え、 一の鉛室 Cm (例 えば C3)に鋼の凝固点よリも髙温の溶融鉛を、 また Cmよリも出側の全ての鉛室 (C4, Cs)には鋼の凝固点よりも低温の溶融鉛を、 また Cmよりも入側の鉛室(C 1 , Cz)には鋼の凝固点よりも髙温のあるいは低温の溶融鉛を、 それぞれ全ての 仕切壁(Si, Sz, S3, S4)の上端を超える高さまで収納した溶融鉛槽(3)と、 下端は溶融鉛中に浸漬され、 入側の端部は連結堰(1. 7)により連結され、 また仕 切壁 Sn (例えば S2)の入側方向と出側方向に十分な長さを存し間隔(W2)を骰け て平行に配されあるいは平均間隔が(W2)で入側から出側に向けて 20° 以下の 先広がりに配されかつ各仕切壁(S , S2, S3, S4)毎に段階的に間隔が
…, WP (但し ぐ… <WP)に広がる対面する 2本の側堰(4一 1), (4一 2)を 冇する隱堰と、 融釦糟 ( 3 )の更に出側に けた锊片引出機( 5 )とを冇する 続铸造装置である。
Fig.3で、 例えば(C3)に鋼の凝両点よリも高温の溶融鉛を収納し、 溶鋼を (C3)の铸型堰内に注入すると、 溶鋼は(C3)から( ;)へ更に(Cs)へ流れて板幅 が(W3)の铸片が得られる。 (C3)に最初に注入した溶鋼は(CJ, (CJへも流れ るが、 (CJ, (C2)に充満した後は^ら(CJの方向に流れる。 (CJと(C2)に 鋼の凝固点よりも髙温の溶融鉛を収納しておくと、 述絨銬造作業の fliKc^, (C2)に流れた溶鋼は溶融状態のまま滞留し、 また鋼の凝固点よりも低温の溶融 鉛を収納しておくと(d), (C2)に流れた溶銅は凝固物となって保持されるが、 何れの場合も鋼は( C i ), ( C 2 )の溶融鉛の液面に浮いているために、 作業が終了 した際は、 Fig.1で述べたと同様に、 锊片引出機 5によって取り出される。 (C 3)に溶鋼を注入する例を述べたが、 (C2), (C3)に低温の溶融鉛を収納して溶鋼 を (CJに注入すると幅が (WJの銬片が、 また(CJ, (C3)に ^温の溶融鉛を 収納して溶鋼を( )に注入すると幅が(W3 )の鋅片が得られる。
Fig.1および Fig.3では、 2本の側根(4 — 1), (4一 2)を有する铸型根を 溶融鉛槽( 3 )内に配設した例を述べたが、 溶融鉛糟の側壁面の一部あるいは全部 を側堰で形成する事もできる。 Fig.4はこの連続铸造装置の説明図で、 (Λ 1 ) 〜(Λ 4)は仕切壁が一個の場合の例、 (Β 1 )は仕切壁が 4個の例である。 Fig. 4の速続銬造装置においても、 F xg.】〜 Fig. で示した全ての作用効果を奏す る。
本発明の装置では、 銬造開始に先立って鋼の凝固点よりも高温の溶融鉛を用い る。 この高温の溶融鉛は、 別途に設けた鉛加熱力1を用いて、 あるいは高温の溶融 鉛を収納する鉛室に図示しない鉛加熱設備を-設ける事によって作成することがで きる。 また例えば、 受鋼した取鍋の上方から例えば 6 00°Cの低温の溶融鉛を注 入する事によっても得られる。 この際低温の溶融鉛は、 取鍋内の溶鋼中を落下す る間に溶鋼によって鋼の凝固点以上の温度に加熱されて取鍋の底に貯る。 従つて 取鍋の底に設けた開孔部を問くと、 まず鋼の凝固点よリも i¾温の溶融鉛が流出し その後に溶鋼が流出する。 この方法で G 0 0。Cの溶融鉛:! トンを 1 G 0 0 °Cに加 熱すると、 1 0 0 トンの溶鋼の温度は約 2 . 5 °C低下するが、 この方法によると、 銅の凝固点よリも髙温の溶融鉛を简易に得ることができる。
[産業上の利用の可能性]
本発明の装置は走行しあるいは回動する固休金属製の 型壁を用いないために- 構造が簡単であり、 設備費が安く、 且つ故障が少ない。 本 明の装置では製造す る铸片の凝固シヱルに無理な力が作用しないために、 また鸫片の表面が固体金属 と擦れあうことがないために、 表面の懾れた锊片を製造することができる。
本発明の装置を用いると、 均一な温度で且つ髙温の铸片が得られるために直接 に熱間圧延を行うことが可能である -

Claims

請求の範四
1 . 入側と出側の間に設けた仕切 ^ ( S u i )により区分された鉛室( C。 i )と( C u 2 ) を備え入側の鉛室( C 0 i )に鋼の凝^点よリも高温の溶融鉛がまた出側の鉛 ^ ( c02 )に鋼の凝固点よリも低温の溶融鉛が仕切壁(S u Jの上端を超える高さまで 収納され高温の溶融鉛と低温の'溶融鉛が仕切壁(s u l )の上部で相互に速通してい る溶融鉛槽と、 下端は溶融鉛槽の溶融鉛中に浸渍され入側の端部は述結されまた 仕切遊( S。 i )の入側方向 出側方向に十分な さを冇し f!O隔( Wu )を P てて Ψ行 に配設されたあるいは平均間隔(W。)で入側から出側に向けて 2 0 ° 以下の先広 がりに配設された 2本の側堰を有する铸型堰と、 溶融鉛槽の更に出側に設けた ^ 片引出機とを有し、 少なくとも髙温の溶融鉛を収納した鉛室( C。 i )の溶融鉛の上 方が非酸化性の雰西気に保たれていることを特徴とする鋼の連統銬造装置。
2 . 2本の側堰の一方あるいは双方の、 相互に対面している壁面が下広のあるい は上広の階段状に形成されていることを特徴とする請求の範囲 1 . に記載の鋼の 連続铸造装置。
3 . 入側から出側に骰けた複数の仕切壁 …, S Pにより区分された複数の鉛 室 Ci— , Cp+ lを備え、 一の鉛室 C mには鋼の凝固点よりも高温の溶融鉛が、 ま た Craよリも出側の全ての鉛室には鋼の凝固点よりも低温の溶融鉛が、 また C mよ リも入側の鉛室には髙温あるいは低温の溶融鉛が、 それぞれ全ての仕切壁の上端 を超える高さまで収納された溶融鉛槽と、 下端は溶融鉛中に浸漬され、 また入側 の端部は連結され、 また仕切壁 S nの入侧方向と出側方向に十分な長さを有し問 隔 Wnを設けて平行に配されあるいは平均間隔が Wnで入側から出側に向けて 2 0 ° 以下の先広がりに配されかつ各仕切壁 S l f …, S P毎に段階的に間隔
WP (但し Wi <…ぐ WP)に広がる対面する 2本の側堰を有する铸型堰と、 溶融鉛 槽の更に出側に設けた铸片引出機とを有し、 少なくとも鋼の凝固点よリ高温の溶 融鉛を収納した溶融鉛室の溶融鉛の上方が非酸化性雰囲気に保たれていることを 特徴とする鋼の連続錡造装置。
4. 溶融鉛槽の側壁面の一部あるいは全部が側堪で形成されていることを特徴と する、 請求の範囲 1. または 2. または 3. に記戟の鋼の連続銬造装置。
補正された請求の範囲
[1994年 3月 15日(15.03.94)国際事務局受理;出願当初の請求の範囲 1及び 3は補正された;出願当初の請 求の範囲 2及び 4は変更なし。 (2頁) 1
1. (補正後) 入側と出側の間に設けた仕切壁(s。 Jにより区分された鉛室
(c^)と(CD2)を備え入側の鉛室(c01)に銷の凝固点よりも高温の溶融鉛がまた 出側の鉛室(c。2)に銷の凝固点よりも低温の溶融鉛が仕切壁(s01)の上端を超え る高さまで収納され高温の溶融鉛と低温の溶融鉛が仕切壁(s^)の上部で相互に 連通している溶融鉛槽と、 下端は溶融鉛槽の溶融鉛中に浸漬され入側の端部は連 結されまた仕切壁(S。 Jの入側方向と出側方向に十分な長さを有し製造する銷铸 片の板幅に相当する間隔(W。:)を隔てて平行に配設されたあるいは平均間隔(w。) で入側から出側に向けて 20° 以下の先広がりに配設された 2本の側堰を有する 铸型堰と、 溶融鉛槽の更に出側に設けた銬片引出機とを有し、 少なくとも高温の 溶融鉛を収納した鉛室(C。 Jの溶融鉛の上方が非酸化性の雰囲気に保たれている 構造で、 入側の鉛室(C。 Jに溶銷を注入し幅が(W0)で所望の厚さの溶鋼層を出 側の鉛室(C。2)に連続的に移動し凝固させて、 銷铸片を製造することを特徴とす る銪の連続铸造装置。
2. 2本の側堰の一方あるいは双方の、 相互に対面している壁面が下広のあるい は上広の階段状に形成されていることを特徴とする請求の範囲 1. に記載の銷の 連続铸造装置。
3. (補正後) 入側から出側に設けた複数の仕切壁 ···, Spにより区分され た複数の鉛室 C ", Cp+Iを備え、 一の鉛室 Cmには鐫の凝固点よりも高温の溶 融鉛が、 また Cmよリも出側の全ての鉛室には鋼の凝固点よリも低温の溶融鉛が、 また Cmよりも入側の鉛室には銅の凝固点よリも髙温のあるいは低温の溶融鉛が 仕切壁の上端を超える高さまで収納された溶融鉛槽と、 下端は溶融鉛中に浸漬さ れ、 また入側の端部は連結され、 また仕切壁 SF!の入側方向と出側方向に十分な 長さを有し、 Cn+Iで凝固させる銷銬片の板幅に相当する間隔 Wriを設けて平行に 配されれあるいは平均間隔が Wnで入側から出側に向けて 20 ° 以下の先広がリ 權 itされた兩紙 (19条) に配され、 かつ各仕切壁 ··· , S P毎に段階的に間隔 , ■■· , WP (但し ^ェ< …ぐ WP)に広がる対面する 2本の側堰を有する銬型堰と、 溶融鉛槽の更に出側に 設けた铸片引出機とを有し、 少なくとも銷の凝固点よリ高温の溶融鉛を収納した 溶融鉛室の溶融鉛の上方が非酸化性雰囲気に保たれている構造で、 一の鉛室 Cm に溶銪を注入し幅が Wmで所望の厚さの溶鋼層を C m+ Iに連続的に移動し凝固させ て、 鋼铸片を製造することを特徴とする鋼の連続铸造装置。
4 . 溶融鉛槽の側壁面の一部あるいは全部が側堰で形成されていることを特徴と する、 請求の範囲 1 . または 2 . または 3 . に記載の銅の連続銬造装置。
補正された用紙 ( 1 9条、 条約第 19条に基づく説明書
請求の範囲第 1項は、 本願の発明が、 溶銷が髙温の溶融鉛上に十分に拡がり平 衡に達する厚さの鍀片を製造する銷の連続铸造装置ではなく、 平衡に達する厚さ 以上で所望の厚さを有する銪铸片を製造する鋼の連続铸造装置である事を明確に した。 即ち入側の鉛室(c01) に注入した溶鋼を側堰の間に充満させ、 幅が Woで 所望の厚さの溶鋼層を形成し、 この溶銷層を連続的に出側の鉛室(C。2)に移動し て、 溶鋼層の幅と厚さに相当した幅と厚さを有する鋼銬片とする事を明確にした
U.S.A.3845811には銷に関する具体的な技術の記載はないが、 高温 媒体液上に溶融金属を平衡に達する厚さに拡げる連続铸造装置が記載され、 また 髙温媒体液を収納したチャンバ一 Aの長さを、 該チャンバ一 Aに注入する溶融金 属の性質と該チャンバ一 Aの幅とによって決める連続鍀造装置が記載されている c 銷铸片は主として薄鑲板の製造に供するが、 圧延工程での圧下量を変えて薄鋼 板を所望の材質に調整する。 従って材質の異なる薄鋼板を製造する際には板厚の 異なる銷铸片を自由に製造できる連続铸造装置が望ましい。 U.S.A.3845 811では平衡に達した厚さの铸片を製造するが、 本発明では所望の厚さの銷銬 片を製造する事ができる。 また本発明では、 溶鋼の性質が変わっても、 また鉛室 C01の幅が変わっても、 鉛室 の長さを変更する必要がない。
請求の範囲第 3項は、 請求の範囲第 1項と同様に本願の発明が、 平衡に達する 厚さ以上で所望の厚さを有する銬片を製造する鋼の連続铸造装置である事を明確 にした。
請求の範囲第 3項の鋼の連続铸造装置も、 U.S.A.3845811と比べて、 請求の範囲第 1項で述べたと同じ効果を有する。
PCT/JP1993/001659 1992-11-13 1993-11-12 Continuous steel casting apparatus WO1994011133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93924819A EP0679459A4 (en) 1992-11-13 1993-11-12 CONTINUOUS CASTING INSTALLATION FOR STEEL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30418492 1992-11-13
JP4/304184 1992-11-13

Publications (1)

Publication Number Publication Date
WO1994011133A1 true WO1994011133A1 (en) 1994-05-26

Family

ID=17930047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001659 WO1994011133A1 (en) 1992-11-13 1993-11-12 Continuous steel casting apparatus

Country Status (2)

Country Link
EP (1) EP0679459A4 (ja)
WO (1) WO1994011133A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183310A1 (en) * 2002-03-29 2003-10-02 Mcrae Michael M. Method of making amorphous metallic sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845811A (en) * 1972-08-02 1974-11-05 Terrell Corp Apparatus for float continuous casting of metal
JPS5874249A (ja) * 1981-10-28 1983-05-04 Mitsubishi Heavy Ind Ltd 平板の浮遊式連続製造方法
JPS5942163A (ja) * 1982-09-01 1984-03-08 Nippon Steel Corp 金属の連続鋳造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845811A (en) * 1972-08-02 1974-11-05 Terrell Corp Apparatus for float continuous casting of metal
JPS5874249A (ja) * 1981-10-28 1983-05-04 Mitsubishi Heavy Ind Ltd 平板の浮遊式連続製造方法
JPS5942163A (ja) * 1982-09-01 1984-03-08 Nippon Steel Corp 金属の連続鋳造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0679459A4 *

Also Published As

Publication number Publication date
EP0679459A4 (en) 1996-03-13
EP0679459A1 (en) 1995-11-02

Similar Documents

Publication Publication Date Title
US7264038B2 (en) Method of unidirectional solidification of castings and associated apparatus
US7951468B2 (en) Method of unidirectional solidification of castings and associated apparatus
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
US7451804B2 (en) Method and apparatus for horizontal continuous metal casting in a sealed table caster
KR20120018365A (ko) 평면 응고를 이용하여 가변 조성을 갖는 잉곳을 제조하는 방법
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
WO1994011133A1 (en) Continuous steel casting apparatus
CA1241178A (en) Method and apparatus for continuous casting of crystalline strip
KR910001176B1 (ko) 복사냉각에 의한 결정질 스트립의 직접주조방법과 그에 따른 장치
JP3817188B2 (ja) スカム堰およびスカム堰を有した双ドラム式連続鋳造機による薄肉鋳片の製造方法
KR910001175B1 (ko) 비-산화성 분위기속에서 결정질의 스트립 직접주조방법 및 장치
SUH et al. Effect of the melting rate on the carbide cell size in an electroslag remelted high speed steel ingot
JP2779194B2 (ja) 薄肉鋳片の連続鋳造方法
JPH0255643A (ja) 金属薄帯の連続鋳造用ノズル
AU2013203656B2 (en) Method of unidirectionbal solidification of castings and associated apparatus
JPS6087963A (ja) 平滑表面を有する金属鋳塊の連続鋳造法及び装置
FI69972B (fi) Kontinuerlig metallgjutning
JPH09141403A (ja) 溶鋼の高速連続鋳造方法
JPS61232047A (ja) 連続鋳造用金属溶湯の温度制御方法
JPH01127147A (ja) 溶融金属の鋳造方法
JPS6332539B2 (ja)
JPS62230456A (ja) 界面のきれいなクラツド鋳塊の製造方法
JPS61226146A (ja) 鋼の水平連続鋳造方法
JPH01162549A (ja) 金属の固化法および装置
JPS63207449A (ja) 複合板材用鋳塊の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993924819

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 433516

Date of ref document: 19950814

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1993924819

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993924819

Country of ref document: EP