WO1994006733A1 - Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture - Google Patents

Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture Download PDF

Info

Publication number
WO1994006733A1
WO1994006733A1 PCT/FR1993/000901 FR9300901W WO9406733A1 WO 1994006733 A1 WO1994006733 A1 WO 1994006733A1 FR 9300901 W FR9300901 W FR 9300901W WO 9406733 A1 WO9406733 A1 WO 9406733A1
Authority
WO
WIPO (PCT)
Prior art keywords
microgranules
growth
inoculum
soil
inoculated
Prior art date
Application number
PCT/FR1993/000901
Other languages
English (en)
Inventor
Gérard CATROUX
Georges Fouilleux
Original Assignee
Institut National De La Recherche Agronomique
Lipha-Lyonnaise Industrielle Pharmaceutique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De La Recherche Agronomique, Lipha-Lyonnaise Industrielle Pharmaceutique filed Critical Institut National De La Recherche Agronomique
Priority to CA002144739A priority Critical patent/CA2144739A1/fr
Priority to EP93920897A priority patent/EP0662934A1/fr
Priority to AU48230/93A priority patent/AU4823093A/en
Publication of WO1994006733A1 publication Critical patent/WO1994006733A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/27Pseudomonas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like

Definitions

  • the invention relates to the field of agricultural crops in which seeds, plants and all other known growing media are used.
  • the invention is part of the general technique of soil treatment in agriculture. It is applicable with many advantages to legume crops.
  • microbial inocula in agriculture.
  • the purpose of this technique is to provide, when the seeds or plants are placed in the soil, bacteria that are useful or essential for the growth of the plant.
  • the inocula used for this purpose can be liquid microbial cultures, or on a solid support. They can also be dehydrated microbial cultures, in the form of a gel or of lyophilisate.
  • the inocula currently in use and which are to be approved are pure cultures, free of contaminant in order to facilitate quality control, improve survival and prevent any introduction other than the authorized microbe.
  • a first technique consists in bringing the inoculum at the time of sowing by bringing it into contact with the seed.
  • a variant consists in using pre-inoculated seeds.
  • Another technique provides for the inoculation of the seed bed: the inoculum is then brought into the seed line, either in liquid form or in the form of microgranules, these being practically spread using devices known for this purpose to distribute phytosanitary products.
  • the latter technique is often preferred by farmers, since the quantities of product to be handled are lower than in the case of seed inoculation. For example, it suffices to use approximately 10 kg per hectare of microgranules instead of 80 to 150 kg of seeds in the case of seed inoculation.
  • the results already recorded in practice also show that the efficiency of the seed bed inoculation technique is also good.
  • a technique which consists in mixing, at the time of use, dry, a certain quantity of bacterial inoculum on a solid support, such as peat, with mineral microgranules of industrial origin, such as as clays, carbonates or others, the size of which is suitable for spreading.
  • the particle size is approximately 0.2 to 0.8 mm.
  • Such a technique has the advantage of using inexpensive microgranules, in combination with small amounts of inocula, which can be easily stored separately.
  • it is not really concerned with the fixing of the inoculum on the microgranules, the latter only serving in fact to dilute the inoculum.
  • the nature of such microgranules can be very varied and apart from the clay and mineral materials already mentioned, mention may be made of peat, sand, polyethylene beads and other similar materials capable of being spread by agricultural machinery.
  • Granules containing the microorganism (s) to be inoculated are thus known, based on clay, peat, alginates, vermiculite, perlite, gels of various polysaccharides, silica, calcium sulfate.
  • microgranules comprising associations of constituents, for example calcite coated with peat, gels of polysaccharides and silica, mixtures peat-clay and calcium sulfate, clays and alginates, among others.
  • Granules of inert clay, or of another mineral or organic material acceptable for agricultural use, covered with a layer of Bacillus laterosporus bacteria are described there.
  • European patent application EP-A-0295968 (PIONEER FRANCE BUT) relates to the protection of microorganisms contained in fertilizer compositions.
  • the microorganisms are microencapsulated in a polysaccharide matrix, then the inoculum thus prepared is mixed with the fertilizer in solid form or in liquid form immediately before spreading. Note that it is only a question of mineral fertilizers for plant growth and not the addition of nutritive substrates to obtain growth in the soil of a microorganism.
  • the microorganisms are pre-microencapsulated before mixing with the fertilizer.
  • EP-A-0203708 relates to a process for adsorption of bacteria in the stationary phase by mixing the suspensions of bacteria with a granular support, chemically inert and porous, then drying. No nutrients are added to these granules.
  • EP-A-0479 402 (LIJIMA, RYUSUKE) relates to a method of producing a mycelial fertilizer in which thermoactinomycetes are incubated in the presence of a porous support, said support having been previously kneaded with pyrolignic acid.
  • thermoactinomycetes are left in fermentation for at least two days while maintaining the temperature between 55 and 80 "C.
  • microorganisms are therefore not added just before the field application of the granules.
  • the present invention belongs to the general technique of microbial inoculation using microgranules to be inoculated extemporaneously. She has mainly for the purpose of using microgranules which, after burial in the soil, make it possible to improve survival and obtain a multiplication of microorganisms in the inoculum.
  • the invention relates to microgranules comprising a solid support and at least one substance capable of promoting the growth of germs in a microbial inoculum with which the micro-granules are brought into contact at the time of use.
  • microgranules according to the invention are not inoculated in advance. They are used, at the time of use, in conjunction with the microbial inoculum.
  • the invention also relates to a method for improving the yield of agricultural crops, in which an inoculum containing at least one microbial culture and microgranules is used, said method being characterized in that the microgranules comprise at least a substance capable of promoting the growth of germs in the inoculum.
  • the method of the invention therefore consists in using microgranules containing a substance, in particular a nutritive substrate, capable of promoting the growth of the germs of the inoculum, said microgranules being prepared in advance and can be stored in the dry state. , and inoculate them at the time of use with a microbial inoculum, in order to obtain in the soil better survival and growth of this inoculum.
  • any type of microgranules obtained by grinding or granulation whether microgranules of mineral or organic nature, or mixtures of such granules, can be used.
  • the granules of mineral origin mention may be made of industrial clays and clay mixtures, which have given good practical results.
  • microgranules of organic origin mention may be made of various granulated or ground substrates, based on peat, compost, plant residues and the like.
  • the technical literature contains numerous examples of usable microgranules as well as indications on the desirable particle size. It is advisable to choose grain sizes which are suitable for spreading with conventional agricultural machinery, and it is known that an appropriate dimension for the size of the microgranules is of the order of 0.2 to 0.8 mm, for example. indicative and not limiting.
  • the microgranules in question are enriched in advance, by contacting the microgranules themselves and the enrichment substrate, which consists of at least one substance capable of promoting the growth of germs. the microbial inoculum.
  • the enrichment of the microgranules in advance can be carried out by imbibition, immersion or spraying of the microgranules and subsequent drying, by granulation of a suspension of solid material and the enrichment substrate or by mixing the microgranules with the finely ground enrichment substrates.
  • the microgranules prepared in advance can be stored dry, so as not to allow the development of microorganisms during storage.
  • any product capable of promoting the survival and the multiplication of germ to be inoculated either directly by allowing or stimulating its growth, or by limiting the growth of competitive soil germs.
  • carbon-based substrates such as glucose, glycerol and any other source of carbon suitable for the growth of most microorganisms or else, on the contrary, use carbon-based substrates specific for the germ to be favored.
  • other products in particular nitrogenous or phosphorous and more generally any nutrient capable of allowing the growth of the germ to be inoculated.
  • biocides compatible with the germ to be inoculated but capable of inhibiting or slowing the growth of competitors, such as products active in the soil against bacteria, fungi and protozoa.
  • products active in the soil against bacteria such as products active in the soil against bacteria, fungi and protozoa.
  • These types of products are known to those skilled in the art and can in particular be chosen from antibiotics, fungicides and more generally any phytosanitary product.
  • an inoculum containing at least one microbial culture could be used.
  • the inoculation can call upon one or more germs, which can be brought successively or in mixture.
  • the microgranules are inoculated by the user, at the time of use or shortly before it is used. All types of inoculum can be used, whatever their support and their packaging, for example inoculums on solid support, such as peat, liquid inoculums, gel inoculums or lyophilized inoculums.
  • the invention can be applied with one or more microorganisms capable of being used in the inoculation of seeds, plants, growing media and soils.
  • microorganisms capable of being used in the inoculation of seeds, plants, growing media and soils.
  • These include all microorganisms that can be used to directly promote plant growth, such as those belonging to the Rhizobium, Bradyrhizobium, Azospirillum species, as well as ecto- and endomycorrhizogenic fungi. Conclusive results have been obtained with the microorganism Bradyrhizobium japonicum.
  • microorganisms which can be used in biological control against plant diseases and pests, such as bacteria antagonizing bacteria and phytopathogenic fungi (PGPR: Plant Growth Promoting Rhizobacteria, Pseudomonas, Agrobacterium, Bacillus and other similar genera), antagonistic fungi of phytopathogenic fungi (Fusarium, Trichoderma, and other similar species) and entomopathogenic bacteria and fungi (Bacillus thuringiensis, Beauveria, and other similar species). Mention may also be made of the microorganisms which can be used in depollution and bioremediation of soils.
  • PGPR Plant Growth Promoting Rhizobacteria, Pseudomonas, Agrobacterium, Bacillus and other similar genera
  • antagonistic fungi of phytopathogenic fungi Feusarium, Trichoderma, and other similar species
  • entomopathogenic bacteria and fungi Bacillus and other similar species
  • Mention may also be made
  • the invention provides advantages over the traditional use of inoculum.
  • the invention makes it possible to obtain growth in the soil of the germs brought in by increasing their number, which is reflected either by an improved effect of the inoculation, or by a safety effect in the event that difficult conditions are present during the inoculation treatment, which may be the case of a partially deficient inoculum or of an abnormal inoculation mortality. Thanks to the invention, the dose of microorganisms made available to the seed or the plant can be increased or maintained under excellent safety conditions.
  • microgranules and more particularly of pre-inoculated microgranules, that is to say inoculated in advance during manufacture, is known in the prior art.
  • pre-inoculated microgranules that is to say inoculated in advance during manufacture.
  • the invention makes it possible to use commercial microgranules, generally inexpensive,
  • FIG. 1 represents the results obtained with granules enriched with Bradyrhizobium japonicum. The development of microorganisms (in ordered) is followed as a function of time (in days).
  • Figures 2 and 3 illustrate the growth of populations of the Pseudomonas C7R12 strain in liquid form (L), in normal clay form (A) and in enriched clay form (Ae), respectively in natural soil (Figure 2) and in soil disinfected (Figure 3).
  • Figures 4 and 5 show the evolution of the number of healthy flax plants (on the ordinate) as a function of the number of days (on the abscissa) respectively in natural soil ( Figure 4) and in disinfected soil (Figure 5) treated with different formulations microorganisms.
  • EXAMPLE 1 Microqranules inoculated with Bradyrhizobium japonicum.
  • particle size fairly fine and homogeneous, between 0.2 and 0.8 mm,
  • K based on cristoballite
  • M formed of calcined montmorillonite
  • Table 1 gives the essential characteristics of these microgranules.
  • They are essentially formed from a carbon source, a nitrogen source, and mineral elements.
  • the products selected for enrichment are dissolved in water.
  • the volume should not be excessive, so as to be absorbed entirely by the porosity of the microgranules. But it must be high enough to, on the one hand lead to complete dissolution of the products, on the other hand allow homogenization of the mixture with the microgranules before its complete absorption.
  • the concentrations used for the experiments vary from 16 to 96g of organic matter (expressed as organic carbon), per kg of dry microgranules.
  • the retained products are added to the enrichment solution, before their incorporation into the microgranules.
  • the inoculum, peat or liquid is a commercial product ("Biodoz", from the company LIPHA).
  • the inocolum of the resistant G49 strain (G49RfKm) is produced in the laboratory.
  • a flask containing a liquid culture medium, based on malt extract, is sterile inoculated from an agar tube containing the strain. It is then placed on a stirring table (200 rpm) at 28oC for 6 to 7 days. The culture obtained then constitutes the liquid inoculum used, which can be stored for several months at 4oC.
  • peat inoculum For the production of peat inoculum, one starts from a sterile peat of the same origin as that of the commercial inoculum. 12 ml of liquid inoculum are added to a bottle containing 30 g of this product, at 12% humidity. After homogenization and maturation for 2 to 3 weeks at room temperature, a product is obtained which has substantially the same properties as commercial peat: humidity of 55-60%, richness of the order of 10 9 seeds per gram of peat.
  • a proportion corresponding to that of inoculation in the field was chosen, ie 4% of pure inoculum relative to the microgranules.
  • the microgranules are first moistened to the desired level. Then, each batch is inoculated with 1 to 1.3 g of inoculum, the whole being homogenized, then used in the following minutes.
  • the microgranules When used with a liquid inoculum, the microgranules, dry at the start, receive an inoculum previously diluted so as to simultaneously provide 1 ml of a pure inoculum for 25 g of microgranules, but also the amount of water necessary to be at the desired humidity (7.5 ml for K and 3.25 ml for M in most experiments). After stirring for homogenization, the microgranules are used quickly.
  • the flasks are then shaken manually so as to distribute the microgranules throughout the volume of soil.
  • the inoculated vials are incubated by closing them with a plastic film, intended to prevent water loss while allowing respiratory exchanges. They are then placed in the dark, generally at 20 ° C, but also at 15 ° C or 28o C for some tests.
  • the counts are made on the whole of a bottle after several days of incubation.
  • the main measures consist in counting populations of B. japonicum capable of forming colonies on petri dishes containing an agar culture medium. These counts are made at several stages of inoculation:
  • the products to be counted for their richness in B. japonicum are introduced into 100 ml of an extraction solution and placed on a stirring table (200 rpm) for 30 minutes.
  • a device In the absence of soil, a device (Spiral System) deposits a known volume of the suspension on the agar medium of a Petri dish. This is then incubated at 28o C, then the colonies present are counted at 5 or 6 days, hence a count in cfu (units forming a colony). A calculation from the dilutions used makes it possible to determine the richness of the product to be analyzed.
  • the previous device In the presence of soil, the previous device is unusable, and the counts are made by the method called "double layer".
  • a small volume, 0.1 or 0.2 ml, of a suspension to be counted is introduced into a hemolysis tube containing 3 ml of 0.7% agarized solution by supercooling (43o C). After homogenization, this mixture is spread on a Petri dish containing the agar culture medium, as well as the antibiotics and fungicides to which the G49RfKm strain is resistant.
  • the colonies present on the dishes are counted, the dilutions being made so as to count between 30 and 300 colonies per dish.
  • the tests set up on the soils described above are devices with 4 complete blocks.
  • Sowing is carried out at the end of April-beginning of May, the objective being to provide 600,000 seeds per hectare (Maple Arrow variety) inoculated at the agronomic dose, or 10 kg of microgranules per hectare, in lines spaced 30 cm apart. These are enriched and inoculated under the same conditions as for laboratory work, in batches of 1 kg, inoculation taking place in the field a few minutes before sowing.
  • Irrigation is carried out during the season, depending on the needs of the crop.
  • FIG. 1 summarizes the results obtained during laboratory tests, comparing enriched (E) or unenriched (M) microgranules, inoculated with a liquid inocolum and incubated in non-sterilized soil, kept moist (H) or subjected to desiccation (S). Number of B. japonicum germs recovered after inoculation in liquid on microgranules and introduction into the soil, as a function of time and according to the drying of the soil during incubation.
  • the enriched microgranules maintain the number of B. japonicum at a level 10 times higher than that obtained with non-enriched microgranules when the soil is kept moist and at a level more than 100 times higher when the soil dries out.
  • Tables 3 to 7 summarize the results obtained during field trials. For each table, the data in the same column followed by the same letter are not statistically different at the 5% threshold according to the Newman and Keuls test.
  • Tables 3 and 4 show the first results obtained during field trials in 1988 and 1989 respectively. They show a significant effect of enrichment on nodulation.
  • Tables 5, 6 and 7 relate to tests carried out in 1990 and 1991 with various treatment conditions, as indicated at the bottom of each table.
  • the treatments corresponding to the invention are treatments 3, 6, 8, 10.
  • treatment 2 we can see an increase in the number of nodules per plant at stage V3, general for all treatments, compared to the non-enriched microgranular control (treatment 2). This increase is significant only for treatments 6 and 10. Similarly, an increase in the nitrogen level of the seeds is obtained for treatments 3, 6, 8, 10, significant only for treatments 8 and 10.
  • treatments 2, 6, 9 and 10 correspond to the invention (enriched microgranules inoculated with peat inoculum (2 and 6), or with liquid inoculum (9 and 10)).
  • EXAMPLE 2 Microqranules inoculated with Fusarium or Pseudomonas.
  • vascular fusarium wilt, tracheomycosis due to pathogenic forms of the fungus Fusarium oxysporum is one of the most problematic because there is no chemical control method to date. specific.
  • biological control calling on competition between a non-pathogenic form and the specific pathogenic form of the same species of Fusarium oxysporum gives satisfactory results under the conditions of culture under greenhouse, either in artificial substrate, or in disinfected soil.
  • the principle consists in introducing the non-pathogenic inoculum into the substrate at the time of sowing or transplanting.
  • the antagonistic effect of non-pathogenic strains of F. oxysporum can be increased if one co-inoculates certain fluorescent bacteria belonging to the genus Pseudomonas.
  • the purpose of the experiments in this example is to test an original formulation method which consists in giving a competitive advantage to the inoculum by incorporating a source of nutrients in the formulation support.
  • Population dynamics of bacteria of the genus Pseudomonas Sp. Were measured in both natural and disinfected soil.
  • the activity of the inoculated microorganisms has also been tested in greenhouse biotests using the host plant-pathogen flax F.oxysporum f.sp. United.
  • Fusarium oxysporum strain Fo47B10 spontaneous mutant resistant to benomyl of the strain Fo47 used in biological control (collection number CNCM I-1363).
  • Fluorescent pseudomonas strain C7R12 spontaneous mutant resistant to rifampycin from the C7 layer used in biological control (collection number CNCM I-1361). Flax Linum usitatissimum, Opaline variety, susceptible to fusarium wilt.
  • Silty clay soil sampled in the Dijon region air dried and sieved to 2mm. (composition: sand 15%, silt 47%, clay 35%, C 1.2%, CaCO 3 0%, pH 6.9).
  • the soil is distributed in aluminum containers at the rate of 140 g of dry soil / container.
  • the disinfected soil was autoclaved 3 times 1 hour at 120oC 24 hours apart.
  • the soil humidity is adjusted to pF3 (20% dry soil) during inoculation.
  • the mushrooms are cultivated 5 days on liquid malt medium stirred at 25oC (Difco malt 10g, demineralized water 1000 ml).
  • the culture is then filtered to remove the mycelium.
  • the spores contained in the filtrate are washed 3 times with sterile water by centrifugation 20 min, 4000 g.
  • the inoculum of the non-pathogenic Fusarium strain Fo47B10 is prepared in the form of a liquid inoculum (suspension of spores in sterile water).
  • the inoculum of the pathogenic Fusarium Foln3 strain is prepared in the form of a talc formulation: the final pellet is taken up in a minimum volume of water (approximately 20% of the initial volume of the culture) and is incorporated into virgin talc (1 pellet volume -2 volumes of talc). The mixture is left to dry for 48 hours in a ventilated oven at 20oC. The talc is then sprayed and sieved to 200 ⁇ m. It is stored at 4oC. Its title is measured before any use. The inoculated talc is optionally diluted in virgin talc when low inoculum densities are required.
  • the clay is enriched with glycerol as a carbon source at the rate of 120 g of glycerol / kg of clay.
  • the bacteria produced on King B solid medium Peptone Difco 20g, glycerin 12.6g, K 2 HPO 4 1.3g, MgSO 4 7H 2 O 1.5g, Agar 15g, distilled water 1000 ml) are recovered in sterile water and washed 3 times by centrifugation (20 min, 4000g). They are incorporated into the clay at the time of their introduction into the soil.
  • the controls are produced by direct inoculation of the suspension of bacteria washed in a volume making it possible to adjust the humidity to the value of pF3.
  • Each container constitutes an experimental unit.
  • 3 experimental units constituting 3 independent repetitions are performed for a given treatment.
  • the containers incubate at 25oC. Population dynamics are monitored for 20 to 30 days.
  • the fungal counts are carried out by incorporating 1 ml of the suspension at the dilution level considered in malt agar + benomyl medium in supercooling (malt 10g, agar 15g, citric acid after autoclaving 250 mg, Benomyl after autoclaving 10 mg in benlate form 50% active ingredient, water demineralized 1000 ml). 5 boxes per dilution level are seeded.
  • the bacterial counts are carried out by spreading with 100 ⁇ l beads of the suspension at the dilution level considered on King B agar medium supplemented with 75 mg / 1 of rifampycin. Three dishes per dilution level are seeded.
  • the dishes are incubated at 25 ° C and are read after 24 hours for bacteria and 48 to 72 hours for fungi.
  • the principle of the biotests consists in introducing into the soil containing either the Fusarium Fo47B10 strain, or the Pseudomonas C7R12 strain or both, a Fusarium oxysporum pathogenic strain of flax, the Foln3 strain is to cultivate flax on this soil.
  • the antagonistic activity of Fo47B10 and C7R12 is measured relative to the number of healthy plants remaining.
  • 3g of talc providing 10 propagules of Foln3 / g of soil are mixed with the soil of each container (mixture produced with Turbula type T2C, 20 ').
  • the strain Fo47B10 is brought in the form of a suspension of spores after the incorporation of the clay inoculated by Pseudomonas, in a volume which makes it possible to adjust the humidity to the value of pF3.
  • the theoretical inoculum densities are 10 5 , 10 4 and 10 7 CFU / g of dry soil for respectively
  • the clay, enriched clay and liquid formulations are coded A, Ae, and L respectively in the text and in the figures.
  • the soil is then distributed in the 12 wells of a row of a polystyrene plate comprising 20 rows.
  • the volume of a well is approximately 10 ml.
  • the plates are placed in an air-conditioned room under the following conditions: photoperiod 3 pm to 9 am, light intensity 13,000 lux, humidity 80% at night and 60% during the day, temperature 15 ° C at night and 17 ° C during the day for 15 days then 20oC at night and 26 ° C during the day for the remaining 8 weeks. Watering is carried out twice a day with tap water and once a week with nutritive solution.
  • Notation are made every three days from the 3rd week after the date of installation of the biotest in an air-conditioned room. Plants showing symptoms of Fusarium wilt are cut (isolation is performed for verification) and the number of healthy plants remaining is recorded and expressed as a percentage relative to the initial number of plants.
  • the inoculum supplied is in theory 10 7 bacteria / g of dry soil.
  • the liquid inoculum allows immediate germ recovery of 70%, and the Pseudomonas populations remain at a density close to the initial value, namely 3.2 10 7 .
  • Inocolum A allows immediate germ recovery of 1.3% and stabilizes in the soil at this level.
  • the inoculum Ae authorizes an immediate recovery of the germs of 0.02%, the population inoculated according to this formulation goes from 1.3 10 5 to 8.5 10 in 4 days and stabilizes at a level higher than the population obtained with the liquid inoculum.
  • the recovery percentage varies with the type of formulation. It is 42% for the liquid formulation against 0.6% for the Ae formulation. In all cases, the density of the Pseudomonas population increases sharply. The plateaus reached by treatments L and A are close to and close to 10 ° by excess. This plateau is higher in the case of the Ae treatment where the density reached is greater than 10 9 (2.3 10 9 ) bacteria / g dry soil.
  • the Fo47B10 strain only delays the onset of symptoms, but in a proportion less than that observed in the case of natural soil. Co-inoculation with Pseudomonas formulated A increases this delay. The greatest efficiency is however obtained with the formulation Ae.
  • Number of M. S. of Number of M. S. of M. S. to R4 nodules nodos nodosities nodosities of the parts by plant by plant by plant by plant aerial to V3 to V3 to R4 to R4 in g by
  • M Microgranules marketed by AGC, Microbiodivision (Rothamsted Herts,

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Procédé pour améliorer le rendement des cultures agricoles, dans lequel on utilise un inoculum contenant au moins une culture microbienne et des microgranulés, ledit procédé étant caractérisé en ce que les microgranulés comprennent au moins une substance capable de favoriser la croissance des germes de l'inoculum.

Description

MICROGRANULES UTILISABLES EN COMBINAISON AVEC DES INOCULUMS BACTERIENS, LEUR OBTENTION ET LEUR APPLICATION EN AGRICULTURE
L'invention concerne le domaine des cultures agricoles dans lesquelles on utilise des semences, des plants et tous autres supports de culture connus. Sous un autre aspect l'invention fait partie de la technique générale du traitement des sols en agriculture. Elle est applicable avec beaucoup d'avantages aux cultures de légumineuses.
Dans la technique antérieure, on a déjà proposé de mettre en oeuvre des inoculums microbiens en agriculture. Le but de cette technique est d'apporter au moment de la mise en place dans le sol des graines ou des plants, les bactéries utiles ou indispensables pour la croissance de la plante. Les inoculums utilisés à cet effet peuvent être des cultures microbiennes liquides, ou sur support solide. Il peut s'agir également de cultures microbiennes déshydratées, sous forme de gel ou de lyophilisât.
Les inoculums actuellement mis en oeuvre et devant faire l'objet d'une homologation sont des cultures pures, exemptes de contaminant afin de faciliter le contrôle de qualité, améliorer la survie et empêcher toute introduction autre que le microbe autorisé.
On connaît plusieurs techniques différentes d'utilisation de tels inoculums. Par exemple, dans le cas des légumineuses, une première techniques consiste à apporter l'inoculum au moment du semis par mise en contact avec la graine. Une variante consiste à mettre en oeuvre des graines préinoculées. Une autre technique prévoit l'inoculation du lit de semences : l'inoculum est alors apporté dans la raie de semis, soit sous forme liquide, soit sous forme de microgranulés, ceux-ci étant pratiquement épandus à l'aide de dispositifs connus à cet effet pour distribuer les produits phytosanitaires. Cette dernière technique est souvent préférée par les agriculteurs, car les quantités de produit à manipuler sont plus faibles que dans le cas de l'inoculation des semences. Par exemple, il suffit d'utiliser environ 10 kg par hectare de microgranulés au lieu de 80 à 150 kg de graines dans le cas de l'inoculation des semences. Les résultats déjà enregistrés dans la pratique montrent aussi que l'efficacité de la technique d'inoculation du lit de semences aussi bonne.
A titre illustratif, on connaît actuellement une technique qui consiste à mélanger au moment de l'emploi, à sec, une certaine quantité d' inoculum bactérien sur support solide, tel que de la tourbe, avec des microgranulés minéraux d'origine industrielle, tels que des argiles, des carbonates ou autres, dont la taille est appropriée pour l'épandage. Dans la pratique la granulometrie est d'environ 0,2 à 0,8 mm. Une telle technique a l'avantage d'utiliser des microgranulés peu coûteux, en combinaison avec des faibles quantités d' inoculums, lesquels peuvent être facilement conservés à part. Dans une telle technique, on ne se préoccupe pas vraiment de la fixation de l'inoculum sur les microgranulés, ceux-ci ne servant en fait qu'à diluer l'inoculum. La nature de tels microgranulés peut être très variée et en dehors des matériaux argileux et minéraux, déjà cités, on peut mentionner la tourbe, le sable, les billes de polyéthylène et autres matières analogues susceptibles d'être épandues par les engins agricoles.
Une autre technique connue consiste à inoculer à l'avance et lors de la fabrication des granulés de nature diverse, de manière à réaliser des microgranulés prêts à l'emploi. On connaît ainsi des granulés contenant le ou les micro-organismes à inoculer, à base d'argile, de tourbe, d'alginates, de vermiculite, de perlite, de gels de divers polysaccharides, de silice, de sulfate de calcium. Ont été également décrits des microgranulés comportant des associations de constituants, par exemple de la calcite enrobée de tourbe, des gels de polysaccharides et de silice, des mélanges tourbe-argile et de sulfate de calcium, des argiles et alginates, entre autres. Cette technique de réalisation à l'avance des microgranulés inoculés est séduisante, mais il est très difficile de fabriquer ces produits en conditions stériles et d'assurer un stockage à basse température compte tenu des volumes impliqués, la quantité de produit à utiliser étant de l'ordre de 10 kg par hectare par exemple. Par ailleurs, si l'on introduit aussi des substances nutritives avec le support des microgranulés inoculés, il y a un risque accru de développement de germes contaminants dans le milieu ainsi enrichi.
Les brevets et demandes de brevet suivants illustrent cet état de la technique.
Le brevet US-5055293 (ARONSON) a pour objet la lutte biologique contre les larves d'un insecte infectant le maïs.
Des granules d'argile inerte, ou d'un autre matériau minéral ou organique acceptable pour l'usage agricole, recouvert d'une couche de bactéries Bacillus laterosporus y sont décrits.
Ils peuvent être vaporisés avec une solution de cellules ou de spores pouvant contenir des matières nutritives et des excipients, puis être séchés.
Ce document ne mentionne pas le dépôt de microorganismes, juste avant l'application en champ. sur des granules contenant déjà des matières nutritives.
La demande de brevet européen EP-A-0295968 (PIONEER FRANCE MAIS) a pour objet la protection de microorganismes contenus dans des compositions d'engrais. Les microorganismes sont microencapsulés dans une matrice de polysaccharide, puis l'inoculum ainsi préparé est mélangé à l'engrais sous forme solide ou sous forme liquide immédiatement avant l'épandage. On notera, qu'il n'est question que d'engrais minéraux pour la croissance des plantes et non d'addition de substrats nutritifs pour obtenir une croissance dans le sol d'un microorganisme. De plus, les microorganismes sont prémicroencapsulés avant leur mélange à l'engrais.
La demande européenne EP-A-0203708 (AGRACETUS ) concerne un procédé d'adsorption de bactéries en phase stationnaire par mélange des suspensions de bactéries avec un support granulaire, chimiquement inerte et poreux, puis séchage. Aucune substance nutritive n'est ajoutée à ces granules.
Enfin, la demande européenne EP-A-0479 402 (LIJIMA, RYUSUKE) a pour objet une méthode de production d'un fertilisant mycélien dans laquelle on incube des thermoactinomycetes en présence d'un support poreux, ledit support ayant été au préalable malaxé avec de l'acide pyrolignique.
Les thermoactinomycetes sont laissés en fermentation durant au moins deux jours en maintenant la température entre 55 et 80"C.
Les microorganismes ne sont donc pas ajoutés juste avant l'application en champ des granules.
La présente invention appartient à la technique générale d'inoculation microbienne à l'aide de microgranulés à inoculer extemporanément. Elle a principalement pour objet d'utiliser des microgranulés qui, après enfouissement dans les sols, permettent d'améliorer la survie et d'obtenir une multiplication des micro-organismes de l'inoculum.
Sous un premier aspect, l'invention concerne des microgranulés comprenant un support solide et au moins une substance capable de favoriser la croissance des germes d'un inoculum microbien avec lequel les micro-granulés sont mis en contact au moment de l'emploi.
Les microgranulés selon l'invention ne sont pas inoculés à l'avance. Ils sont mis en oeuvre, au moment de l'emploi, conjointement avec l'inoculum microbien.
Sous un autre aspect, l'invention a aussi pour objet un procédé pour améliorer le rendement des cultures agricoles, dans lequel on utilise un inoculum contenant au moins une culture microbienne et des microgranulés, ledit procédé étant caractérisé en ce que les microgranulés comprennent au moins une substance capable de favoriser la croissance des germes de l'inoculum.
Le procédé de l'invention consiste donc à utiliser des microgranulés contenant une substance, notamment un substrat nutritif, capable de favoriser la croissance des germes de l'inoculum, lesdits microgranulés étant préparés à l'avance et pouvant être stockés à l'état sec, et à les inoculer au moment de l'emploi par un inoculum microbien, afin d'obtenir dans le sol une meilleure survie et une croissance de cet inoculum.
Pour les besoins de la présente invention, on peut utiliser tout type de microgranulés obtenus par broyage ou granulation, qu'il s'agisse de microgranulés de nature minérale ou organique, ou des mélanges de tels granulés. Parmi les granulés d'origine minérale, on peut citer les argiles industrielles et les mélanges argileux, qui ont donné de bons résultats pratiques. Quant aux microgranulés d'origine organique, on peut citer divers substrats granulés ou broyés, à base de tourbe, compost, résidus végétaux et autres. La littérature technique contient de nombreux exemples de microgranulés utilisables ainsi que des indications sur la granulometrie souhaitable. Il convient de choisir des dimensions de grains qui conviennent à l'épandage avec les engins agricoles usuels, et on sait qu'une dimension appropriée pour la taille des microgranulés est de l'ordre de 0,2 à 0,8 mm, à titre indicatif et non limitatif.
Selon la caractéristique essentielle de l'invention, les microgranulés en cause sont enrichis à l'avance, par mise en contact des microgranulés proprement dits et du substrat d'enrichissement, lequel consiste en au moins une substance capable de favoriser la croissance des germes de l'inoculum microbien.
Dans la pratique, l'enrichissement des microgranulés à l'avance peut être réalisé par imbibition, immersion ou pulvérisation des microgranulés et séchage ultérieur, par granulation d'une suspension de matériau solide et du substrat d'enrichissement ou par mélange des microgranulés avec les substrats d'enrichissement finement broyés. Selon ce mode de réalisation, les microgranulés préparés à l'avance peuvent être stockés secs, de façon à ne pas permettre le développement des micro-organismes durant le stockage.
Pour ce qui est des substances ou substrats d'enrichissement, on peut utiliser tout produit capable de favoriser la survie et la multiplication du germe à inoculer, soit directement en permettant ou stimulant sa croissance, soit en limitant la croissance des germes compétiteurs du sol. On peut notamment utiliser des substrats carbonés comme le glucose, le glycérol et toute autre source de carbone convenant à la croissance de la plupart des microorganismes ou bien au contraire faire appel à des substrats carbonés spécifiques du germe à favoriser. Il est également possible d'utiliser d'autres produits, notamment azotés ou phosphores et plus généralement tout nutriment susceptible de permettre la croissance du germe à inoculer. Mais, selon le concept inventif présentement décrit, on peut aussi utiliser des biocides compatibles avec le germe à inoculer mais susceptibles d'inhiber la croissance des compétiteurs ou de la ralentir, tels que des produits actifs dans le sol contre les bactéries, les champignons et les protozoaires. Ces types de produits sont connus de l'homme du métier et peuvent être notamment choisis parmi les antibiotiques , les fongicides et plus généralement tout produit phytosanitaire.
Il a été indiqué précédemment que dans le procédé de l'invention on pouvait utiliser un inoculum contenant au moins une culture microbienne. De fait, l'inoculation peut faire appel à un ou plusieurs germes, qui peuvent être apportés successivement ou en mélange. Les microgranulés sont inoculés par l'utilisateur, au moment de l'emploi ou peu de temps avant celui-ci. Tous les types d' inoculum peuvent être utilisés, quels que soient leur support et leur conditionnement, par exemple des inoculums sur support solide, tel que la tourbe, des inoculums liquides, des inoculums en gel ou des inoculums lyophilisés.
C'est techniques d'inoculation sont connues de l'homme du métier et n'ont pas à être décrites plus en détail.
L'invention peut être appliquée avec un ou plusieurs micro-organismes susceptibles d'être utilisés dans l'inoculation des semences, des plants, des supports de culture et des sols. Il s'agit notamment de tous les micro-organismes utilisables pour favoriser directement la croissance des plantes, tels que ceux appartenant aux espèces Rhizobium, Bradyrhizobium, Azospirillum, ainsi que les champignons ecto- et endomycorhizogènes. Des résultats probants ont été obtenus avec le micro-organisme Bradyrhizobium japonicum. Entrent également dans le cadre de l'invention les micro-organismes utilisables en lutte biologique contre les maladies des plantes et les ravageurs, comme les bactéries antagonistes des bactéries et des champignons phytopathogènes (P.G.P.R. : Plant Growth Promoting Rhizobacteria, Pseudomonas, Agrobacterium, Bacillus et autres genres similaires), les champignons antagonistes des champignons phytopathogènes (Fusarium, Trichoderma, et autres espèces similaires) et les bactéries et champignons entomopathogènes (Bacillus thuringiensis , Beauveria , et autres espèces similaires ) . On peut encore citer les micro-organismes utilisables dans la dépollution et la bioremédiation des sols.
L'invention procure des avantages par rapport à l'utilisation traditionnelle d' inoculum. On sait en effet que l'efficacité des inoculations microbiennes dans l'agriculture dépend directement du nombre de germes vivants et efficaces apportés. Il est également connu que les pertes immédiates à l'inoculation sont généralement très importantes et sont dues principalement à la mortalité des germes apportés par dessication . On s ' ef force donc à l ' heure actuelle de trouver des procédés qui permettent d'augmenter la dose possible de micro-organismes à inoculer. Mais il faut aussi limiter les pertes de micro-organismes lors de l'utilisation aux champs, tout en tenant compte des limites physiques, les quantités possibles à inoculer étant limitées par le poids de graines ainsi que par les équipements disponibles, aussi bien qu'économiques (coûts de production, stockage). Pour cette raison, on a déjà proposé dans la technique antérieure de réaliser la croissance du micro-organisme inoculé dans les sols, mais seulement après inoculation. Certaines tentatives ont été faites pour ajouter des substrats nutritifs directement dans le sol, par exemple un substrat carboné. Mais il faut alors ajouter au sol, par exemple dans le cas du traitement d'un lit de semences, entre 20 et 200 kg de substrat carboné par hectare, ce qui correspond à des quantités totalement irréalistes en grandes cultures.
L'invention permet d'obtenir une croissance dans le sol des germes apportés en augmentant leur nombre, ce qui se traduit soit par un effet amélioré de l'inoculation, soit par un effet de sécurité au cas où des conditions difficiles sont présentes lors du traitement d'inoculation, ce qui peut être le cas d'un inoculum partiellement déficient ou d'une mortalité anormale à l'inoculation. Grâce à l'invention, la dose de micro-organismes mise à la disposition de la semence ou de la plante peut être augmentée ou maintenue dans d'excellentes conditions de sécurité.
On a déjà dit précédemment que l'on connaissait dans la technique antérieure l'utilisation de microgranulés, et plus particulièrement de microgranulés préinoculés c'est-à-dire inoculés à l'avance lors de la fabrication. Par rapport à une telle technique de microgranulés préinoculés, la présente invention procure de nombreux avantages, en particulier les suivants :
l'invention permet d'utiliser des microgranulés du commerce, généralement peu coûteux,
- l'enrichissement en substrat nutritif peut être réalisé sans exigence de stérilité et est donc moins coûteux,
- risques nuls ou très réduits de développement de germes contaminants dans les microgranulés au stockage (stockage sec), alors que de tels risques apparaissent sur des microgranulés préinoculés,
- stockage possible à température ordinaire sur une longue durée, les propriétés du microgranulé n'étant pas liées au nombre de germes qu'il contient et à leur survie, alors qu'on connaît l'effet défavorable de la température pour la survie d'un inoculum et des microgranulés préinoculés,
- stockage au froid possible de 1 ' inoculum microbien en petit emballage séparé des microgranulés, lesquels peuvent être conditionnés en emballage volumineux,
- possibilités variées de jouer sur la nature et la concentration des substrats, l'adaptation de la nature et de la spécificité du substrat au germe à inoculer,
possibilité d'addition de biocides défavorisant les compétiteurs, sans risques de toxicité par contact prolongé entre l'inoculum et le microgranulé.
L'invention sera maintenant illustrée sans être aucunement limitée par des exemples de mise en oeuvre au laboratoire et au champ .
La figure 1 représente les résultats obtenus avec des granules enrichis de Bradyrhizobium japonicum. Le développement des microorganismes ( en ordonnée ) est suivi en fonction du temps (en jour).
Les figures 2 et 3 illustrent la croissance de populations de la souche de Pseudomonas C7R12 sous forme liquide (L), sous forme argile normale (A) et sous forme argile enrichie (Ae), respectivement en sol naturel (figure 2 ) et en sol désinfecté (figure3).
Les figures 4 et 5 représentent l'évolution du nombre de plantes de lin saines (en ordonnée) en fonction du nombre de jour ( en abscisse) respectivement en sol naturel (figure 4) et en sol désinfecté (figure 5) traitées par différentes formulations de microorganismes.
EXEMPLE 1: Microqranulés inoculés par Bradyrhizobium japonicum.
On exposera d'abord tous les moyens et modes de réalisation de l'expérimentation et ensuite les résultats de celle-ci.
SOUCHES
Tous les essais en serre et au champ sont réalisés avec la souche G49 commerciale (IARI SB16,
New Delhi) de Bradyrhizodium japonicum. La culture choisie est celle du soja.
On sait que, pour cette plante, la nodulation
(nombre de nodosités, poids des nodosités) croît quand la dose de Bradyrhizobium japonicum apportée augmente.
Par ailleurs, le rendement est lié à la nodulation.
Pour suivre l'évolution de populations introduites dans les sols, on a utilisé une souche de
B. japonicum résistante à des antibiotiques. Au laboratoire, a été isolé sur boîte de Pétri contenant des antibiotiques un mutant spontané de G49 résistant à la rifampicine (100 mg/ml) et à la kanamycine (200 mg/ml), dont la stabilité a été vérifiée et qui a été dénommé G49RfKm.
Cette nouvelle souche a été déposée à la collection CNCM de l'Institut Pasteur sous le Nº I- 1264 le 11 Septembre 1992.
MICROGRANULES
Il s'agit de produits commerciaux répondant aux critères suivants :
- densité suffisamment élevée pour permettre une bonne descente dans le microgranulateur,
granulometrie : assez fine et homogène, comprise entre 0,2 et 0,8 mm,
- pH compatible avec la survie des bactéries,
- absence de toxicité vis-à-vis des bactéries inoculées,
- mélange avec un inoculum facile à réaliser, retenant suffisamment la tourbe, et donnant un produit homogène.
On a utilisé des granulés ayant une porosité suffisante et ne se déstructurant pas dans l'eau, afin de conserver toutes leurs propriétés lors des phases d'imprégnation (par la solution d'enrichissement) et de séchage. Cette procédure n'altère pas la facilité de distribution des microgranulés par microgranulateur.
Deux types de microgranulés répondant à ces exigences ont été mis en oeuvre, l'un appelé K, à base de cristoballite, et l'autre M, formé de montmorillonite calcinée.
Le tableau 1 donne les caractéristiques essentielles de ces microgranulés.
Figure imgf000015_0001
SUBSTRATS D'ENRICHISSEMENT
Ils sont formés essentiellement d'une source de carbone, d'une source d'azote, et d'éléments minéraux.
Les produits retenus pour l'enrichissement sont dissous dans l'eau. Le volume ne doit pas être excessif, de façon à être absorbé entièrement par la porosité des microgranulés. Mais il doit être suffisamment élevé pour, d'une part entraîner une dissolution complète des produits, d'autre part permettre une homogénéisation du mélange avec les microgranulés avant son absorption complète.
Cette solution est apportée sur les microgranulés secs, l'ensemble étant brassé immédiatement afin d'obtenir un mélange uniforme. Elle est absorbée par la porosité.
Un séchage ultérieur permet de laisser le substrat nutritif sec dans cette porosité, autorisant une conservation longue, même dans des conditions non stériles.
Les concentrations utilisées pour les expérimentations varient de 16 à 96g de matières organiques (exprimées en carbone organiques), par kg de microgranulés secs.
FONGICIDES ASSOCIES
Après un test sur leur efficacité contre les champignons du sol et leur innocuité vis-à-vis des souches inoculées, les produits retenus sont ajoutés dans la solution d'enrichissement, avant leur incorporation dans les microgranulés.
SOLS ET SUPPORTS DE CULTURE UTILISES
Essais au champ
L'essentiel du travail a été conduit sur un sol argileux du domaine de l'INRA - Dijon, et une partie secondaire a concerné un sol sableux de la région. Ces sols étaient au départ dépourvus de B. japonicum.
Les caractéristiques essentielles sont données dans le tableau 2.
Figure imgf000017_0001
Essais au laboratoire.
Ils ont été réalisés pour leur presque totalité avec le même sol argileux que celui utilisé pour les essais au champ. Ce sol est dépourvu de B. japonicum. PLANTE
Tous les essais ont été réalisés avec la variété de soja Maple Arrow, de type indéterminé et appartenant au groupe de précocité 00.
INOCULUMS
En cas d'utilisation de la souche G49 normale, l'inoculum, tourbe ou liquide, est un produit commercial ("Biodoz", de la Société LIPHA ).
L'inocolum de la souche G49 résistante (G49RfKm) est produit au laboratoire.
Une fiole contenant un milieu de culture liquide,à base d'extrait de malt, est inoculée stérilement à partir d'un tube gélose contenant la souche. Elle est ensuite placée sur une table d'agitation (200 rpm) à 28ºC pendant 6 à 7 jours. La culture obtenue alors constitue l'inoculum liquide utilisé, qui peut être conservé plusieurs mois à 4ºC.
Pour la production d' inoculum tourbe, on part d'une tourbe stérile de même origine que celle de l'inoculum commercial. Dans un flacon contenant 30g de ce produit, à 12% d'humidité, on ajoute 12 ml d' inoculum liquide. Après homogénéisation et maturation 2 à 3 semaines à température ambiante, on obtient un produit qui a sensiblement les mêmes propriétés que la tourbe commerciale: humidité de 55-60%, richesse de l'ordre de 109 germes par gramme de tourbe.
TECHNIQUES D'INOCULATION DES MICROGRANULES
On a retenu une proportion correspondant à celle de l'inoculation au champ, soit 4 % d'inoculum pur par rapport aux microgranulés.
Compte tenu des quantités nécessaires pour l'introduction dans le sol, des facilités de manipulation et de la précision espérée, on a travaillé sur des lots de 25 g de microgranulés (mesurés secs et sans enrichissement), en flacons de 250 ml.
Pour l'utilisation avec l'inoculum tourbe, les microgranulés sont d'abord humidifiés au niveau voulu. Ensuite, chaque lot est inoculé avec 1 à 1,3 g d' inoculum, le tout étant homogénéisé, puis utilisé dans les minutes suivantes.
Lorsqu'ils sont employés avec un inoculum liquide, les microgranulés, secs au départ, reçoivent un inoculum préalablement dilué de façon à apporter simultanément 1 ml d'un inoculum pur pour 25 g de microgranulés, mais aussi la quantité d'eau nécessaire pour être à l'humidité voulue (7,5 ml pour K et 3,25 ml pour M dans la plupart des expérimentations). Après agitation pour homogénéisation, les microgranulés sont utilisés rapidement.
Techniques d'introduction dans les sols et d'incubation
Après tamisage à 4 mm ou à 2 mm, les sols sont introduits dans des flacons en verre, soit à raison de
50 g de sol sec dans un flacon de 500 ml, soit de 20 g dans 250 ml. L'humidité est ajustée 24 h à l'avance, en général au niveau de 80 % de la capacité de rétention en eau.
Dans ces flacons, sont introduits respectivement 300 mg et 120 mg de microgranulés, ce qui représente respectivement environ 4500 et 1800 microgranulés pour K, 2100 et 800 pour M.
Les flacons sont ensuite agités manuellement de façon à répartir les microgranulés dans tout le volume de sol.
Les flacons inoculés sont mis à incuber en les fermant avec un film plastique, destiné à empêcher la perte d'eau tout en permettant les échanges respiratoires. Ils sont ensuite placés à l'obscurité, en général à 20° C, mais aussi à 15° C ou à 28º C pour certains essais.
Les dénombrements sont réalisés sur la totalité d'un flacon après plusieurs jours d'incubation.
Dénombrements en boîtes de Pétri
L'essentiel des mesures consiste en des dénombrements de populations de B. japonicum capables de former des colonies sur boîtes de Pétri contenant un milieu de culture gélose. Ces dénombrements sont réalisés à plusieurs stades de l'inoculation :
- inoculums eux-mêmes, avant utilisation, sur des quantités généralement de 1 ml ou 1 g,
- microgranulés après inoculation, en travaillant soit sur la totalité d'un lot, soit sur des aliquotes,
- sols ayant reçu des microgranulés inoculés, en travaillant sur la totalité du contenu d'un flacon.
Les produits à dénombrer pour leur richesse en B. japonicum sont introduits dans 100 ml d'une solution d'extraction et placés sur une table d'agitation (200 rpm) pendant 30 minutes.
Des dilutions successives sont ensuite réalisées au 1/10, et les suspensions bactériennes obtenues sont étalées sur les milieux de dénombrement par l'une des deux méthodes suivantes.
En absence de sol, un appareil (Spiral System) dépose un volume connu de la suspension sur le milieu gélose d'une boîte de Pétri. Celle-ci est ensuite mise à incuber à 28º C, puis les colonies présentes sont dénombrées à 5 ou 6 jours, d'où un comptage en ufc (unités formant une colonie). Un calcul à partir des dilutions utilisées permet de déterminer la richesse du produit à analyser.
En présence de sol, l'appareil précédent est inutilisable, et les dénombrements sont réalisés par la méthode appelée "double couche". Un faible volume, 0,1 ou 0,2 ml, d'une suspension à dénombrer est introduite dans un tube à hémolyse contenant 3 ml de solution gélosée à 0,7 % en surfusion (43º C). Après homogénéisation, ce mélange est étalé sur une boîte de Pétri contenant le milieu de culture gélose, ainsi que les antibiotiques et fongicides auxquels la souche G49RfKm est résistante.
Après incubation 7 jours à 28º C, les colonies présentes sur les boîtes sont dénombrées, les dilutions étant réalisées de façon à compter entre 30 et 300 colonies par boîte.
Tous les dénombrements sont réalisés avec 3 répétitions pour chaque traitement, et les résultats sont donnés avec les écarts-type calculés.
Essais au champ
Les essais mis en place sur les sols précédemment décrits sont des dispositifs à 4 blocs complets .
Le semis est effectué fin Avril-début Mai, l'objectif étant d'apporter 600 000 graines par hectare (variété Maple Arrow) inoculées à la dose agronomique, soit 10 kg de microgranulés par hectare, en lignes espacées de 30 cm. Ceux-ci sont enrichis et inoculés dans les mêmes conditions que pour les travaux au laboratoire, en lots de 1 kg, l'inoculation ayant lieu au champ quelques minutes avant le semis.
L'irrigation est réalisée en cours de saison, en fonction des besoins de la culture.
RESULTATS
Les résultats des expérimentations sont rapportés ci-après.
La figure 1 résume les résultats obtenus lors d'essais de laboratoire, comparant des microgranulés enrichis (E) ou non enrichis (M), inoculés par un inocolum liquide et incubés dans un sol non stérilisé, maintenu humide (H) ou soumis à la dessication (S). Nombre de germes B. japonicum récupérés après inoculation en liquide sur .microgranulés et introduction dans le sol, en fonction du temps et selon le dessèchement du sol en cours d'incubation. Les légendes de la figure sont : N = microgranulés non enrichis, E = microgranulés enrichis GLY3C, H= sol maintenu humide (82% de la capacité de rétention en eau) pendant les 21 jours, S = sol soumis à un dessèchement naturel après 7 jours d'incubation.
D'après les résultats illustrés sur la figure 1, on voit que : après 7 jours, les microgranulés enrichis permettent d'obtenir une multiplication de B. japonicum d'un facteur supérieur à 10 par rapport aux microgranulés non enrichis,
- après 21 jours, les microgranulés enrichis maintiennent le nombre de B. japonicum à un niveau 10 fois supérieur à celui obtenu avec les microgranulés non enrichis quand le sol est maintenu humide et a un niveau plus de 100 fois supérieur quand le sol se dessèche.
Les tableaux 3 à 7 résument les résultats obtenus lors d'essais au champ. Pour chaque tableau, les données d'une même colonne suivies de la même lettre ne sont pas statistiquement différentes au seuil de 5 % suivant le test de Newman et Keuls.
Dans les tableaux 3 et 4, sont rassemblés les premiers résultats obtenus au cours d'essais au champ en 1988 et 1989 respectivement. Ils montrent un effet significatif de l'enrichissement sur la nodulation.
Les tableaux 5, 6 et 7 concernent des essais effectués en 1990 et 1991 avec diverses conditions de traitement, telles qu'indiquées en bas de chaque tableau.
Dans le tableau 5, les traitements correspondant à l'invention (microgranulés enrichis inoculés par un inoculum tourbe) sont les traitements 3, 6, 8, 10.
On peut constater une augmentation du nombre de nodosités par plantes au stade V3, générale pour tous les traitements, comparé au témoin microgranulés non enrichis (traitement 2). Cette augmentation est significative seulement pour les traitements 6 et 10. De même, on obtient une augmentation du taux d'azote des graines pour les traitements 3, 6, 8, 10, significative seulement pour les traitements 8 et 10. Dans le tableau 6, les traitements 2, 6, 9 et 10 correspondent à l'invention (microgranulés enrichis inoculés par inoculum tourbe (2 et 6), ou par inoculum liquide (9 et 10)).
Avec un inoculum tourbe (2 et 6 comparés à 1), on constate une augmentation du nombre de nodules, non significative au stade V3, mais significative au stade R4 pour le traitement 6 (ajout d'un fongicide dans l'enrichissement).
Avec un inoculum liquide (10 comparé à 9), on obtient une augmentation significative de la nodulation à V3 et R4, ainsi qu'une augmentation significative du taux d'azote des graines.
Dans le tableau 7, les traitements 2, 3, 4, 5, (inoculés avec un inoculum tourbe) et 10 (inoculé avec un inoculum liquide) correspondent à l'invention.
Avec l'inoculum tourbe (2, 3, 4, 5 comparés à 1), on obtient des augmentations non significatives de la nodulation aux stades V3 et R4, mais des augmentations significatives du taux d'azote des graines. A noter que ce dernier effet est obtenu avec différents substrats carbonés.
Avec l'inoculum liquide (10 comparé à 9), on obtient une augmentation significative importante de la nodulation (V3 et R4) et du taux d'azote des graines.
EXEMPLE 2; Microqranulés inoculés par Fusarium ou Pseudomonas.
Parmi les maladies cryptogamiques dont sont affectées les plantes maraîchères et les plantes horticoles, la fusariose vasculaire, trachéomycose due aux formes pathogènes du champignon Fusarium oxysporum, est l'une des plus problématiques car il n'existe pas à ce jour de moyen de lutte chimique spécifique. Par contre, la lutte biologique faisant appel à la compétition entre une forme non pathogène et la forme pathogène spécifique de la même espèce de Fusarium oxysporum donne des résultats satisfaisants dans les conditions de culture sous serre, soit en substrat artificiel, soit en sol désinfecté. Le principe consiste à introduire l'inoculum non pathogène dans le substrat au moment du semis ou du repiquage. De plus, l'effet antagoniste de souches non pathogènes de F. oxysporum peut être augmenté si l'on co-inocule certaines bactéries fluorescentes appartenant au genre Pseudomonas.
Le but des expérimentations de cet exemple est de tester un mode de formulation original qui consiste à donner un avantage compétitif à l'inoculum par incorporation d'une source de nutriments dans le support de formulation. Les dynamiques de populations de bactéries du genre Pseudomonas Sp. ont été mesurées à la fois en sol natural et en sol désinfecté. L'activité des microorganismes inoculés a également été testée dans des biotests réalisés en serre utilisant le couple plante hôte-pathogène lin F.oxysporum f.sp. uni.
MATERIEL ET METHODES
1- Les souches et les végétaux.
Fusarium oxysporum souche Fo47B10, mutant spontané résistant au bénomyl de la souche Fo47 utilisée en lutte biologique (nº de collection CNCM I-1363).
Fusarium oxysporum f.sp. uni, souche Foin 3, (nº de collection CNCM I-1362) pathogène du lin.
Pseudomonas fluorescent souche C7R12 mutant spontané résistant à la rifampycine de la couche C7 utilisée en lutte biologique (nº de collection CNCM I-1361). Le lin Linum usitatissimum, variété Opaline, sensible à la fusariose vasculaire.
2- Le sol.
Sol limono-argileux prélevé dans la région de Dijon, séché à l'air et tamisé à 2mm. (composition: sable 15 %, limon 47%, argile 35%, C 1.2 %, CaCO3 0%, pH 6,9).
Le sol est distribué dans des containers en aluminium à raison de 140 g de sol sec/container. Le sol désinfecté a été passé 3 fois 1 heure à l'autoclave à 120ºC à 24h d'intervalle. L'humidité du sol est ajustée à pF3 ( 20% sol sec) lors de l'inoculation.
3. Les inoculums
3.1- Préparation des inoculums fongiques pour les biotests.
Les champignons sont cultivés 5 jours sur milieu malt liquide agité à 25ºC (malt Difco 10g, eau déminéralisée 1000 ml). La culture est ensuite filtrée pour éliminer le mycélium. Les spores contenues dans le filtrat sont lavées 3 fois à l'eau stérile par centrifugation 20 min, 4000 g.
L'inoculum de la souche de Fusarium non-pathogène Fo47B10 est préparé sous forme d' inoculum liquide (suspension de spores dans l'eau stérile).
L'inoculum de la souche de Fusarium pathogène Foln3 est préparé sous forme de formulation talc: le culot final est repris dans un volume d'eau minimum (environ 20% du volume initial de la culture) et est incorporé à du talc vierge (1 volume de culot -2 volumes de talc). Le mélange est mis à sécher 48h dans une étuve ventilée à 20ºC. Le talc est ensuite pulvérisé et tamisé à 200 μm. Il est conservé à 4ºC. Son titre est mesuré avant toute utilisation. Le talc inoculé est éventuellement dilué dans du talc vierge lorsque des faibles densités d'inoculum sont nécessaires.
3.2. Préparation des inoculums bactériens Dans ce cas, l'argile est enrichie avec du glycérol comme source de carbone à raison de 120 g de glycérol/kg d'argile. Les bactéries produites sur milieu solide King B (Peptone Difco 20g, glycérine 12.6g, K2HPO4 1.3g, MgSO47H2O 1.5g, Agar 15g, eau distillée 1000 ml) sont récupérées dans de l'eau stérile et lavées 3 fois par centrifugation (20 min, 4000g). Elles sont incorporées à l'argile au moment de leur introduction dans le sol.
Les témoins sont réalisés par inoculation directe de la suspension de bactéries lavées dans un volume permettant d'ajuster l'humidité à la valeur de pF3.
4- Les analyses
Chaque container constitue une unité expérimentale. 3 unités expérimentales constituant 3 répétitions indépendantes sont réalisées pour un traitement donné. Les containers incubent à 25ºC. Les dynamiques de population sont suivies pendant 20 à 30 jours.
A intervalles de temps réguliers, 5g de sol par unité expérimentale sont prélevés, mis en suspension dans 100 ml d'eau et agités fortement pendant 15 min sur un agitateur constituant les suspensions mères. Une série de suspensions dilutions au 1/10 est réalisée à partir de chacune de ces suspensions mères.
Les dénombrements fongiques sont réalisés par incorporation de 1 ml de la suspension au niveau de dilution considéré dans du milieu malt agar+bénomyl en surfusion (malt 10g, agar 15g, acide citrique après autoclavage 250 mg, Benomyl après autoclavage 10 mg sous forme de benlate à 50% de matière active, eau déminéralisée 1000 ml). 5 boîtes par niveau de dilution sont ensemencées.
Les dénombrements bactériens sont réalisés par étalement aux billes de 100 μl de la suspension au niveau de dilution considéré sur du milieu King B agar additionné de 75 mg/1 de rifampycine. Trois boîtes par niveau de dilution sont ensemencées.
Les boîtes sont mises à incuber à 25°C et sont lues après 24h pour les bactéries et 48 à 72h pour les champignons.
5- Les biotests
Les traitements identiques à ceux prévus pour les dynamiques de population sont réalisés de manière concommitante à ces derniers et incubent dans les mêmes conditions. Les containers sont ouverts aussi fréquemment que ceux destinés à l'étude des dynamiques. Les biotests sont réalisés après que les populations aient atteint un plateau en l'occurrence, après 30 jours d'incubation.
Le principe des biotests consiste à introduire dans le sol contenant soit la souche de Fusarium Fo47B10, soit la souche de Pseudomonas C7R12 soit les deux, une souche de Fusarium oxysporum pathogène du lin, la souche Foln3 est de cultiver du lin sur ce sol. L'activité antagoniste de Fo47B10 et de C7R12 est mesurée relativement au nombre de plantes saines restantes.
3g de talc apportant 10 propagules de Foln3/g de sol sont mélangés au sol de chaque container (mélange réalisé au Turbula type T2C, 20'). Pour les expérimentations de co-inoculation, la souche Fo47B10 est apportée sous forme d'une suspension de spores après l'incorporation de l'argile inoculée par Pseudomonas, dans un volume qui permet d'ajuster l'humidité à la valeur de pF3. Les densités théoriques d' inoculum sont de 105, 10 4 et 107 CFU/g de sol sec pour respectivement
Fo47B10, Foln3 et C7R12, quelque soit le mode de formulation. Les formulations argile, argile enrichie et liquide sont codées A, Ae, et L respectivement dans le texte et dans les figures. Le sol est ensuite réparti dans les 12 puits d'une rangée d'une plaque de polystyrène comportant 20 rangées. Le volume d'un puits est d'environ 10 ml. Les plaques sont placées en chambre climatisée dans les conditions suivantes: photopériode 15h-9h, intensité lumineuse 13000 lux, humidité 80% la nuit et 60% le jour, température 15°C la nuit et 17°C le jour pendant 15 jours puis 20ºC la nuit et 26°C le jour les 8 semaines restantes. Les arrosages sont effectués 2 fois/jour à l'eau du robinet et 1 fois/semaine avec de la solution nutritive.
Notation: Les notations sont faites tous les trois jours à partir de la 3ème semaine après la date de mise en place du biotest en chambre climatisée. Les plantes présentant des symptômes de fusariose sont coupées (un isolement est réalisé pour vérification) et le nombre de plantes saines restantes est enregistré et exprimé sous forme d'un pourcentage relatif au nombre initial de plantes.
RESULTATS
1. DYNAMIQUES DE POPULATIONS:
1.1 Dynamique de population de C7R12 en sol naturel.
Les résultats sont représentés sur la figure 2 dans laquelle L, A et Ae signifient respectivement culture liquide, argile et argile enrichi.
L'inoculum apporté est en théorie de 107 bactéries/g de sol sec. L'inoculum liquide autorise une récupération immédiate des germes de 70%, et les populations de Pseudomonas se maintiennent à une densité proche de la valeur initiale, soit 3,2 107. L'inocolum A autorise une récupération immédiate des germes de 1,3% et se stabilise dans le sol à ce niveau. Par contre, si l'inoculum Ae n'autorise qu'une récupération immédiate des germes de 0,02%, la population inoculée selon cette formulation passe de 1,3 105 a 8,5 10 en 4 jours et se stabilise a un niveau supérieur à la population obtenue avec l'inoculum liquide.
1.2 Dynamique de population de C7R12 en sol désinfecté.
Là encore, le pourcentage de récupération varie avec le type de formulation. Il est de 42% pour la formulation liquide contre 0,6% pour la formulation Ae. Dans tous les cas, la densité de la population de Pseudomonas augmente fortement. Les plateaux atteints par les traitements L et A sont proches et voisins de 10° par excès. Ce plateau est supérieur dans le cas du traitement Ae où la densité atteinte est supérieure à 109 (2,3 109) bactéries/g sol sec.
Les résultats sont représentés sur la figure 3.
II. ACTIVITE ANTAGONISTE
2.1- C7R12 en sol naturel.
Les résultats sont repris sur la figure 4. La souche Fo47bl0 seule occasionne un retard important dans l'apparition des symptômes. La co-inoculation avec Pseudomonas augmente légèrement ce retard et aboutit à l'issue du test à un pourcentage de survie supérieur à celui obtenu avec Fo47B10 seul, mais il n'est pas possible de différencier les deux formulations A et Ae.
2.2- C7R12 en sol désinfecté.
Comme le montre la figure 5, la souche Fo47B10 ne fait que retarder l'apparition des symptômes, mais dans une proportion moindre que celle observée dans le cas du sol naturel. La co-inoculation avec Pseudomonas formulé A permet d'augmenter ce retard. La plus grande efficacité est cependant obtenue avec la formulation Ae.
DISCUSSION - CONCLUSION
On constate que l'apport de nutriments azotés et carbonés dans le support de formulation (Ae) permet une croissance très importante des populations bactériennes introduites, aussi bien en sol naturel qu'en sol désinfecté. Si la croissance de bactéries introduites en sol désinfecté n'est pas un phénomène nouveau, on peut constater néanmoins que la capacité biotique du milieu a été augmentée par l'apport d'argile enrichie, alors que les plateaux obtenues avec les deux autres modes de formulation sont confondus. Par contre, la croissance d'une population bactérienne et son établissement à une densité élevée (> 10' bactéries/g sol sec) n'ont que rarement été décrits en sol naturel.
On observe une meilleure efficacité protectrice de la co-inoculation Fusarium-Pseudomonas en sol désinfecté via la formulation Ae qui s'explique, par une densité plus élevée de la population bactérienne. En sol naturel, cet effet est moins marqué car l'efficacité propre de Fusarium importante dans ce cas peut difficilement être améliorée mais la tendance va cependant dans le sens d'un effet bénéfique de la formulation Ae.
Figure imgf000031_0001
Figure imgf000032_0001
Tableau 5: ESSAI MICROGRANULES EPOISSES 1990
Nombre de M. S. de Nombre de M. S. de M. S. à R4 nodosités nodosités nodosités nodosités des parties par plante par plante par plante par plante aériennes à V3 à V3 à R4 à R4 en g par
Traitements en mg en mg plante
1 0.68 c 6.42 b 5.07 c 40.00 b 6.78 b
2 10.60 b 114.38 a 46.23 a 373.59 a 11.12 a
3 14.63 ab 127.28 a 48.32 a 383.11 a 10.31 a
4 14.38 ab 181.48 a 47.15 a 372.44 a 10.69 a
0 16.05 ab 160.98 a 45.40 a 334.83 a 9.60 a
O 18.73 a 126.38 a 50.45 a 410.08 a 10.95 a
7 12.23 ab 107.35 a 41.83 a 369.57 a 1 1.03 a
8 16.45 ab 135.55 a 51.88 a 367.20 a 10.40 a c 16.98 ab 149.27 a 52.28 a 331.00 a 9.37 a
10 18.15 a 141.75 a 52.35 a 355.33 a 10.23 a
1 1 17.02 ab 123.55 a 42.85 a 327.44 a 9.59 a
12 2.47 c 44.50 bc 18.70 b 252.64 bc 9.84 a test N.K. S S S S S
C.V. : 21 .2 % 48.5 % 17.8 % 1 1.6 % 10.9 %
TABLEAU 5 ( SUITE )
traitement taux quantité rendement taux quantité d'azote d'azote net d'azote d'azote des parties des parties en q/ha des des aériennes aériennes à 14% graines graines à R4 à R4 en qx/ha en g/plante
1 29.6 5.62 1.66 2 34.2 a 6.53 c 2.23 a
3 32.7 a 6.62 abc 2.17 ab 4 32.3 a 6.70 abc 2.16 ab 5 33.7 a 6.56 bc 2.20 a
O 31.3 a 6.66 abc 2.08 ab
7 32.6 a 6.76 ab 2.20 a
8 31.2 a 6.77 ab 2.1 1 ab
9 33.3 a 6.77 ab 2.26 a
10 30.3 a 6.84 a 2.07 ab
11 34.2 a 6.78 ab 2.32 a
12 31.1 a 6.28 d 1.95 b test N.K. NS S S
C.V.: 5.1 % 1 .6 % 4.8 %
TABLEAU 5 ( SUITE )
Traitements :
1 - témoin non inoculé
2 - témoin M non enrichi
3 - M*enrichi glucose 2C
4 - M enrichi glucose 2C + bénomyl
5 - M bénomyl
6 - M enrichi glycérol 2C
7 - M enrichi glycérol 2C + bénomyl
8 - M enrichi glucose 6C
9 - M enrichi glucose 6C + bénomyl
10- M enrichi glycérol 6C
1 1 - M enrichi glycérol 6C + bénomyl
12- Microgranulé du commerce
* M = Microgranulés commercialisés par la Société AGC, Microbiodivision ( Rothamsted Herts ,
Grande-Bretagne)
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001

Claims

REVENDICATIONS
1. Procédé pour améliorer le rendement des cultures agricoles, dans lequel on utilise un inoculum contenant au moins une culture microbienne et des microgranulés, ledit procédé étant caractérisé en ce qu'on utilise des microgranulés préparés à l'avance, lesdits microgranulés contenant une substance , notamment un substrat nutritif, capable de favoriser la croissance des germes de l'inoculum et lesdits microgranulés étant inoculés au moment de l'emploi par un inoculum microbien.
2. Procédé selon la revendication 1, caractérisé en ce qu'on utilise des microgranulés de nature minérale ou organique ou des mélanges de tels granulés, obtenus par broyage ou granulation.
3. Procédé selon la revendication 2, caractérisé en ce qu'on utilise des granulés d'origine minérale, tels que des argiles industrielles et les mélanges argileux.
4. Procédé selon la revendication 2, caractérisé en ce qu'on utilise des microgranulés d'origine organique, par exemple à base de tourbe, compost, résidus végétaux et autres.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les microgranulés ont une dimension de grain convenant à l'épandage avec les engins agricoles usuels, notamment une granulometrie de l'ordre de 0,2 à 0,8 mm.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que l'enrichissement des microgranulés à l'avance est réalisée par inhibition, immersion ou pulvérisation des microgranulés et séchage ultérieur, par granulation d'une suspension de matériau solide et du substrat d'enrichissement ou par mélange des microgranulés avec les substrats d'enrichissement finement broyés.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce à titre de substance ou substrat d'enrichissement, on utilise tout produit capable de favoriser la survie et la multiplication du germe à inoculer soit directement, en permettant ou stimulant sa croissance, soit en limitant la croissance des germes compétiteurs du sol.
8. Procédé selon la revendication 7, caractérisé en ce qu'on utilise des substrats carbonés comme le glucose, le glycérol et toute autre source de carbone convenant à la croissance des micro-organiques ou bien des substrats carbonés spécifiques du germe à favoriser.
9. Procédé selon la revendication 7, caractérisé en ce qu'on utilise d'autres produits, notamment azotés ou phosphores et, d'une manière générale, tout nutriment susceptible de permettre la croissance du germe à inoculer.
10. Procédé selon la revendication 7, caractérisé en ce qu'à titre de substance ou substrat d'enrichissement, on utilise des biocides compatibles avec le germe à inoculer, mais susceptibles d'inhiber la croissance des compétiteurs ou de la ralentir, tels que des produits actifs dans le sol contre les bactéries, les champignons et les protozoaires, ces produits pouvant notamment être choisis parmi les antibiotiques et les fongicides.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'inoculation met en oeuvre un ou plusieurs germes qui peuvent être apportés successivement ou en mélange.
12. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que' on utilise des inoculums sur support solide, tel que la tourbe, des inoculums liquides ou des inoculums en gel ainsi que des inoculums lyophilisés.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que, à titre de micro-organismes pour l'inoculation, on utilise un ou plusieurs des micro-organismes destinés à favoriser directement la croissance des plantes, tels que Rhizobium, Bradyrhizobium, Azospirillum, ainsi que les champignons ecto et endomycorhizogènes, ainsi que les micro-organismes utilisables en lutte biologique contre les maladies des plantes et les ravageurs, comme les bactéries antagonistes des bactéries et des champignons phytopathogènes (P.G.P.R. : Plant Growth Promoting Rhizobacteria, Pseudomonas, Agrobacterium, Bacillus et autres genres similaires), les champignons antagonistes des champignons phytopathogènes (Fusarium, Trichoderma, et autres espèces similaires) et les bactéries et champignons entomopathogènes (Bacillus thuringiensis, Beauveria, et autres espèces similaires) et les micro-organismes utilisables dans la dépollution et la bioremédiation des sols.
14. Microgranulés comportant un support solide et au moins une substance capable de favoriser la croissance des germes d'un inoculum microbien avec lequel les microgranulés sont mis en contact au moment de l'emploi.
15. Microgranulés selon la revendication 14, préparés à l'avance et stockés séparément, notamment à l'état sec.
PCT/FR1993/000901 1992-09-18 1993-09-17 Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture WO1994006733A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002144739A CA2144739A1 (fr) 1992-09-18 1993-09-17 Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture
EP93920897A EP0662934A1 (fr) 1992-09-18 1993-09-17 Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture
AU48230/93A AU4823093A (en) 1992-09-18 1993-09-17 Microgranulated products usable in combination with bacterial inoculums, method for obtaining them and application to agriculture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/11182 1992-09-18
FR9211182A FR2695929B1 (fr) 1992-09-18 1992-09-18 Microgranulés enrichis, utilisables en combinaison avec des inoculums microbiens, leur obtention et leur application en agriculture.

Publications (1)

Publication Number Publication Date
WO1994006733A1 true WO1994006733A1 (fr) 1994-03-31

Family

ID=9433676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000901 WO1994006733A1 (fr) 1992-09-18 1993-09-17 Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture

Country Status (6)

Country Link
EP (1) EP0662934A1 (fr)
AU (1) AU4823093A (fr)
CA (1) CA2144739A1 (fr)
FR (1) FR2695929B1 (fr)
WO (1) WO1994006733A1 (fr)
ZA (1) ZA936878B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3003049A4 (fr) * 2013-05-31 2016-12-07 Novozymes Bio Ag As Compositions et procédés pour l'activation de la germination

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT258U1 (de) * 1994-07-04 1995-06-26 Karner Robert Duengemittelgranulat mit stickstoffbindenden bakterien
CZ292347B6 (cs) * 1999-04-27 2003-09-17 Lovochemie, A. S. Průmyslové hnojivo zajišťující současně výživu i ochranu rostlin
FR2901787B1 (fr) * 2006-06-01 2008-08-15 Sarl France Champagne Approvisionnement Engrais ou amendement engrais incorporant des microorganismes vivants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203708A1 (fr) * 1985-04-25 1986-12-03 Agracetus Inoculums bactériens pour l'agriculture
EP0295968A1 (fr) * 1987-02-27 1988-12-21 Lipha, Lyonnaise Industrielle Pharmaceutique Engrais contenant des microorganismes et leurs procédés de fabrication
US5055293A (en) * 1988-03-09 1991-10-08 Purdue Research Foundation Biological pesticide
EP0479402A2 (fr) * 1990-10-04 1992-04-08 Ryusuke Iijima Engrais

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203708A1 (fr) * 1985-04-25 1986-12-03 Agracetus Inoculums bactériens pour l'agriculture
EP0295968A1 (fr) * 1987-02-27 1988-12-21 Lipha, Lyonnaise Industrielle Pharmaceutique Engrais contenant des microorganismes et leurs procédés de fabrication
US5055293A (en) * 1988-03-09 1991-10-08 Purdue Research Foundation Biological pesticide
EP0479402A2 (fr) * 1990-10-04 1992-04-08 Ryusuke Iijima Engrais

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3003049A4 (fr) * 2013-05-31 2016-12-07 Novozymes Bio Ag As Compositions et procédés pour l'activation de la germination

Also Published As

Publication number Publication date
ZA936878B (en) 1994-03-21
FR2695929B1 (fr) 1994-12-09
CA2144739A1 (fr) 1994-03-31
EP0662934A1 (fr) 1995-07-19
FR2695929A1 (fr) 1994-03-25
AU4823093A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
He et al. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth
CN101717301B (zh) 一种胶囊型微生物肥料及制备方法
EP1876232B1 (fr) Nouvelle souche de trichoderma atroviride, un milieu de culture la contenant, ainsi que l'utilisation de ladite souche notamment comme stimulant de la germination et/ou de la croissance des plantes
FR2904309A1 (fr) Nouvelles compositions d'inocula fongiques, leur procede de preparation et leur application a l'amelioration de la croissance des cultures
JPH08175921A (ja) 農園芸用殺菌剤組成物
JP2829325B2 (ja) 抗菌・抗線虫剤、植物細胞活性剤及びそのための微生物
RU2154381C2 (ru) Штамм гриба nectria pityrodes montagne, используемый в качестве биофунгицида (варианты), биофунгицид, способ его получения (варианты), способ подавления грибковой инфекции у растений, метод скрининга фунгицидных микроорганизмов
JPH0819407B2 (ja) 植物栽培用の土壌改良材、その製造方法及び使用方法
FR2615203A1 (fr) Inoculum dans lequel les micro-organismes sont conditionnes sous la forme de granules biodegradables, son procede de preparation et ses applications
FR2880344A1 (fr) Compositions pour la bacterisation d'engrais organiques (eo) et organo-mineraux (eom) granules.
WO1994006733A1 (fr) Microgranules utilisables en combinaison avec des inoculums bacteriens, leur obtention et leur application en agriculture
CA1200390A (fr) Methode de traitement des sols
JP3192577B2 (ja) 青枯病防除材
US5759562A (en) Compositions for control of soil pests
Ballinger et al. Glasshouse and field evaluation of benomyl and triadimefon applied at seeding to control take‐all in wheat
FR3021843A1 (fr) Methode et composition pour ameliorer la productivite de plantes non legumineuses
EP3462879B1 (fr) Méthode pour améliorer le développement des plantes
JPH02211861A (ja) シュードモナス属細菌p―4菌株、土壌病害防除剤及び土壌病害防除方法
JP4032137B2 (ja) 植物性土壌殺菌剤及び菌糸体系植物調整剤並びに土壌調整方法
JP3262847B2 (ja) 土壌病害防除剤およびその製造方法
JP2000093167A (ja) トリコデルマハルジアナムの厚膜胞子及びその製造方法並びに微生物資材
RU2318784C2 (ru) Способ получения комплексного микробиологического удобрения
JPH0639370B2 (ja) 有機組成物
WO2005068609A1 (fr) Clones de trichoderma harzianum, procede d’isolement et de culture et application comme produit phytosanitaire
JP2005206496A (ja) 白紋羽病防除剤および白紋羽病の防除方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA HU JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993920897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2144739

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1995 403792

Country of ref document: US

Date of ref document: 19950508

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993920897

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993920897

Country of ref document: EP