WO1994003260A1 - Filtre pour le filtrage de gaz charges de particules - Google Patents

Filtre pour le filtrage de gaz charges de particules Download PDF

Info

Publication number
WO1994003260A1
WO1994003260A1 PCT/BE1993/000052 BE9300052W WO9403260A1 WO 1994003260 A1 WO1994003260 A1 WO 1994003260A1 BE 9300052 W BE9300052 W BE 9300052W WO 9403260 A1 WO9403260 A1 WO 9403260A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
section
filtered
particles
filtering
Prior art date
Application number
PCT/BE1993/000052
Other languages
English (en)
Inventor
Emiel Puttaert
Original Assignee
Seghers Engineering N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seghers Engineering N.V. filed Critical Seghers Engineering N.V.
Priority to US08/379,508 priority Critical patent/US5536284A/en
Priority to AU45531/93A priority patent/AU674861B2/en
Priority to CA002141800A priority patent/CA2141800C/fr
Priority to DE69316394T priority patent/DE69316394D1/de
Priority to EP93915578A priority patent/EP0682556B1/fr
Publication of WO1994003260A1 publication Critical patent/WO1994003260A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2407Filter candles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/58Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel
    • B01D46/60Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/20High temperature filtration

Definitions

  • This invention relates to a filter for the continuous filtering of gases loaded with solid particles on an industrial scale.
  • condensation products and even new undesirable products can be formed in certain cases during the cooling of hot gases laden with particles.
  • the object of the invention is to produce a filter for the continuous filtering of gases loaded with solid particles on an industrial scale.
  • the invention is aimed in particular the provision of a filter of this kind which is suitable for high working temperatures of more than 500 ° C., for example, and which may even reach 900 ° C. or more.
  • Another object of the invention is the production of a filter of this kind which is suitable for filtering, at such high temperatures, gases loaded with solid particles, such as flue gases which contain sulfurous compounds, chlorine, fluorine or other chemically aggressive substances.
  • the invention relates to a filter for the continuous filtering of gases charged with solid particles on an industrial scale, which consists of a filter body which contains at least one filtering section comprising a space divided into a chamber inlet and outlet chamber by means of a partition wall, in which are mounted candle tubular filters closed at one end, the outer surface and the closed end of the candle filters being located in the inlet chamber and the interior of the spark plug filters ending in the outlet chamber, the inlet chamber being provided with at least one inlet for the gases to be filtered and at least one outlet for the particles separated by filtering and the outlet being provided with at least one outlet for the filtered gases.
  • the filter body has an essentially cylindrical side wall with a vertical axis.
  • Each filtering section is delimited at the bottom by a funnel-shaped wall the narrow part of which faces downwards is connected to a means for removing the particles separated by filtering.
  • the filter body as well as the walls, the partition wall and the spark plug filters of each filter section are made of refractory materials and are arranged radially, concentrically and essentially symmetrical with respect to the vertical axis of the side wall. filter body.
  • each filter section is made up of a structure which tapers downwards and has annular steps, the inlet chamber and the outlet chamber of the filter section being respectively below and above this wall separator and the candle filters being mounted essentially vertically in holes provided in the horizontal parts of the annular steps.
  • the filter body is thermally insulated.
  • the filter body preferably rests on at least three supports which are interconnected and one of which is fixedly connected to the filter body while the others are provided with a horizontal roller bearing so that the axis of each roller is placed perpendicular to a straight line directed towards the fixed support.
  • each filter section comprises at least two reinforcing ribs placed radially, which are connected to the side wall of the filter body and support the partition wall of the filter section.
  • the filter body and the structures it contains can also be provided with other ribs or reinforcing elements, the important thing being that all these elements are placed radially, concentrically and above all symmetrically with respect to the vertical axis of the body of the filter and allow thermal expansion of the entire structure without unacceptable expansion tensions appearing in the filter, even during large temperature variations (for example between 0 ° C and 900 ° C).
  • each filter section at least one distribution wall is preferably placed between the spark plug filters and the inlet for the gases to be filtered.
  • the spark plug filters should be cleaned regularly to minimize pressure loss. This is the reason why the outlet chamber of each filtering section is provided with at least one compressed air distributor system equipped with means intended to periodically blow a stream of compressed air inside at least part of the spark plug filters and thus removing the filtered particles from the outer surface of the spark plug filters.
  • each filtering section is provided with at least two (for example, three, four or more) compressed air distributor systems each equipped with means intended to blow periodically and each in turn a flow of compressed air inside part of the spark plug filters and thus eliminating the filtered particles from the outside surface of the spark plug filters.
  • Compressed air distribution systems are made up of concentric pipes fixed to the side wall of the filter body by fixing means mounted radially.
  • the outlet for the filtered particles is a discharge pipe which opens into a tank preferably containing a cooler.
  • This tank is equipped with means intended to eliminate the filtered particles from the tank and to maintain the level of these particles in the tank so that the evacuation pipe which opens into the tank remains blocked by the filtered particles.
  • the elements of the filter in contact with the gases to be filtered or filtered or with the filtered particles must of course be refractory, at least up to the operating temperature of the filter.
  • the filter resists temperatures of 900 ° C.
  • all the elements of the filter in contact with the gases to be filtered or filtered or with the filtered particles chemically resistant up to 900 ° C to smoke gases which contain chemically aggressive substances such as chlorine, sulfurous compounds and other such constituents.
  • the filter body contains at least two filter sections placed one above the other.
  • the outlet of the filtered gases from each filter section is an annular chamber which, in the bottom, is in open connection with the outlet chamber of the filter section and which is delimited laterally by the cylindrical side wall of the filter body and by a concentric cylindrical side wall of the inlet chamber of the filter section immediately above and which is delimited, at the top, by the horizontal part of the upper annular step of the separation wall of the immediately upper filtering section, openings being made in this horizontal part to allow the annular chamber to be in connection with the outlet chamber of the upper filter section.
  • the means for discharging the filtered particles from each filter section is a vertical discharge pipe connected to the narrow part of the funnel-shaped bottom wall of the filter section and placed concentrically in the discharge pipe of the immediately lower filter section.
  • Fig. 1 is a schematic view in vertical section of a filter according to the invention; this view shows details which, in reality, are not oriented in the plane of the section.
  • Fig. 2 is a horizontal section along the line II-II of FIG. 1 which shows, in the different segments, different superimposed details.
  • Fig. 3 is a detail of the attachment of a spark plug filter and a compressed air line.
  • Fig. 4 is a representation of the connection between the supports and of the orientation of the roller bearings with respect to the fixed support.
  • Fig. 5 is a detail of a balance opening.
  • the filter shown in Figs. 1 and 2 is composed of a filter body 1 placed on supports 2 which are interconnected by means of connecting bars 3.
  • the filter body 1 has a cylindrical side wall 4 and is mounted vertically and concentrically with respect to a central axis.
  • the concentric construction of the filter allows the materials to expand after high temperatures in the direction of their normal fiber without the appearance of tension.
  • the side wall 4 is provided with thermal insulation 5. This allows the gases to keep their temperature in the filter, which is important because it prevents the formation of cooler zones and makes it possible to avoid the formation of condensation products and thermal stresses while retaining the heat of the hot gases and recovering it fully downstream.
  • Radial reinforcements 6 are placed against the cylindrical side wall 4 in the body of the filter 1.
  • the body of the filter 1 comprises two filter sections 7, 8 which are superimposed. Each filtering section is delimited at the bottom by a funnel-shaped wall 9A, 9B.
  • the lower filtering section 7 is delimited at the top by the funnel-shaped wall 9B which delimits the upper filter section at the bottom 8.
  • the upper filter section 8 is delimited at the top by a flat wall 10.
  • Each filtering section 7, 8 is divided into an inlet chamber 12A, 12B and an outlet chamber 13A, 13B by a partition wall 11A, 11B.
  • the partition wall 11A, 11B mainly has the shape of an inverted truncated cone which is executed in the form of a step and is therefore composed of plane rings 14A, 14B and successive cylindrical rings 15A, 15B connected to each other.
  • the lower part of this stepped structure which tapers down is a round and flat disc 16A, 16B.
  • the annular steps of the partition wall 11A, 11B are supported by reinforcing ribs 17A, 17B which are fixed in the radial direction on the side wall 4 of the body of the filter 1.
  • the flat rings 14A, 14B and the round and flat disc 16A, 16B of the partition wall 11A, 11B are provided with openings 20 in which are placed candle filters 21 suspended vertically downwards, the upper surface 22 and l the closed end 23 of the candle filters located in the inlet chamber 12A, 12B and the interior 24 of the candle filters 21 opening into the outlet chamber 13A, 13B.
  • the spark plug filters 21 are distributed in concentric diagrams above the horizontal parts of the partition wall 11A, 11B. The manner in which the spark plug filters 21 are fixed will be described in detail below with reference to FIG. 3.
  • the inlet chamber 12A, 12B of each filtering section 7 and 8 is provided with a side inlet 25A, 25B for the gases to be filtered.
  • a distribution wall 26A, 26B fixed on the underside of the partition wall 11A, 11B is provided between the lateral inlet 25A, 25B and the spark plug filters 21.
  • FIGS. 1 and 2 show that the side wall of the outlet chamber 13A, 13B coincides with the cylindrical side wall 4 of the filter body 1.
  • the cylindrical side wall 27A, 27B of the inlet chamber 12A, 12B has a smaller diameter than the cylindrical side wall 4 of the body of the filter filter 1.
  • An annular chamber 28A, 28B is located between the side wall 27A, 27B of the inlet chamber 12A, 12B and the side wall of the filter body 1.
  • the annular chamber 28A which is delimited on the side situated towards the axis of the cylinder, through the cylindrical side wall 27A of the inlet chamber 12A of the lower filtering section 7, is completely closed except for a balance opening 65 and is therefore not in connection with the inlet chamber 12A or the outlet chamber 13A of the lower filter section 7.
  • At least one equilibrium opening 65 towards the outlet chamber 13A of the lower filter section 7 is provided per segment 33 in this annular chamber 28A by installing a duct e 66 placed vertically and closed upwards on the upper flat horizontal ring 14A of the partition wall 11A of the lower filtering section 7.
  • the balance opening 65 which is visible in more detail in FIG. 5 ensures a balance of pressures inside and outside of the chamber 28A whatever the temperature variations.
  • the annular chamber 28B delimited on the side situated towards the axis of the cylinder, by the cylindrical side wall 27B of the inlet chamber 12B of the upper filtering section 8 is itself connected at the bottom with the chamber outlet 13A of the lower filter section 7 and is delimited at the top by the upper flat ring 14B of the partition wall 11B of the upper filter section 8. Openings 29 are provided in this flat ring 14B, which allows for the annular chamber 28B to be in connection with the outlet chamber 13B of the upper filtering section 8.
  • the outlet of the outlet chamber 13B of the upper filter section 8 is a central flow opening 30.
  • the side inlets 25A, 25B and the central flow opening 30 are provided with compensators 31A, 31B to allow free thermal expansion of the filter.
  • the spark plug filters 21 are cleaned by blowing compressed air in the opposite direction through the interior 24 of the spark plug filters 21.
  • a compressed air distributor system 32A, 32B is used for this purpose.
  • Each filter section 7,8 is divided into four segments 33 each supplied by a compressed air supply line 34A, 34B.
  • the compressed air supply lines 34A, 34B of the different segments 33 of a filtering section 7, 8 are mounted radially and connected to a cold circular pipe 35A, 35B.
  • the cooling fins and the compensators 37 necessary for this purpose are provided on the compressed air supply lines 34A, 34B.
  • Each segment 33 is purged separately by an automatic cold valve 38A, 38B.
  • the spark plug filters 21 are purged by filtering section and by segment.
  • FIG. 2 shows a top view of a compressed air distributor system 32B in a segment 33 of the upper filter section 8.
  • FIGS. 1 to 3 show that the compressed air is supplied above the spark plug filters 21 using concentric tubes 39 fixed to the side wall 4 of the filter body 1 by fixing means mounted radially. Below these tubes 39, a calibrated hole 40 through which the compressed air is blown vertically downwards is provided centrally above the spark plug filter discharge opening 21. Thanks to the radial and concentric construction, the calibrated holes 40 remain in a correct position above the axis of the spark plug filters 21 in the event of a rise in temperature to the operating temperature.
  • the filtered solid particles (for example, fly ash) which are removed from the outer surface of the candle filters 21 fall into the conical funnels 9A, 9B.
  • the outlets for these solid particles are the evacuation pipes 41, 42 whose axis coincides.
  • the discharge pipe 41 from the lower filter section 7 has a larger diameter than the discharge pipe 42 from the upper filter section 8 and is located around this discharge pipe 42 from the upper filter section 8 .
  • the cooler 44 consists, on the one hand, of a double wall 45 and, on the other hand, a pipe 46 arranged in a spiral with an outlet pipe 47 for the heated air.
  • the cold air enters through the inlet 48 at the top of the double wall 45 and then flows downward into the spiral pipe 46 and into the outlet pipe and then let out the air heated by the outlet 49 at the top of the tank 43.
  • a conveyor screw 50 (which is not shown in detail) is provided at the bottom of the cooler 44 to evacuate the filtered particles.
  • the drive of this conveyor screw 50 is ensured by a height detection of the particles in the reservoir 43 above the cooler 44 so as to guarantee a minimum level.
  • FIGs. 2 and 3 show how the spark plug filters 21 are fixed to the horizontal parts 14A, 14B annular steps using pressure plates 51 in the form of a segment.
  • the spark plug filters 21 are provided, at the top, with a collar 52 compressed between the horizontal part 14 and the pressure plate 51 in the form of a segment, refractory lining rings 53 being inserted.
  • Holes 54 whose diameter corresponds to that of the outlet opening of the spark plug filters 21 are provided in the pressure plates 51 in the form of a segment.
  • FIG. 2 represents a view from above of the pressure plates 51 and of the bolts 55 in a segment of the filtering section 8.
  • Fig. 3 also shows a support element 57 which is welded at the bottom to the pressure plate 51 and makes it possible to keep the concentric tube 39 in the right place.
  • All filter elements that come into contact with hot gases or hot solid particles are made of high temperature resistant stainless steel (with the exception of candle filters 21 which are made of porous ceramic fibers).
  • the stainless steel used also resists chlorine, fluorine or sulfur compounds which can be found in the gases to be filtered (for example, in hot flue gases).
  • Fig. 4 represents the supports 2 and their connecting bars 3.
  • the body of the filter 1 rests on four supports 2 connected by four connecting bars 3.
  • a support 2 is fixedly connected to the body of the filter 1 while the others are provided with 'a roller bearing 58 to allow free expansion of the filter body 1.
  • the supports 2 are interconnected to absorb the friction forces of the roller bearings 58. To do this, the supports 2 are interrupted, above the connecting bars 3, by horizontal plates 59,60 between which are the roller bearings 58
  • Each horizontal roller bearing 58 is configured in such a way that the axis of each roller is placed perpendicular to a straight line directed towards the fixed support 2.
  • the filter according to the invention is particularly suitable for removing fly ash from hot smoke gases.
  • the gases loaded with solid particles are distributed, before entering the filter, and sent to the inlet 27A, 27B of the two filter sections 7, 8 where they are distributed over the spark plug filters 21 by a wall of distribution 26A, 26B.
  • the gases loaded with solid particles pass through the external surface 22 of the spark plug filters 21 on which the particles are retained.
  • the filtered gas passes through the interior 24 of the spark plug filters 21 to go towards the outlet chamber 13A, 13B of the relevant filtering section 7,8.
  • the filtered gas from the lower filtering section 7 leaves this filtering section 7 passing through the annular chamber 28B and goes towards the outlet chamber 13B of the upper filtering section 8.
  • the filtered gases from the two filtering sections 7, 8 leave the filter together passing through the central flow opening 30 in the upper filtering section 8.
  • a measuring device 64A, 64B is provided for measuring this pressure difference. Since the spark plug filters 21 are crossed in section, in parallel, the fouling will be uniform on these spark plug filters 21. Thanks to a timer which controls the compressed air valve 38A, 38B by segment, the spark plug filters 21 are cleaned at regular intervals by blowing compressed air into them. Do not stop the supply of gases loaded with solid particles to the filter.
  • the compressed air is sent to the spark plug filters 21 by segment and by filter section 7, 8 for a fraction of a second via the compressed air distributor systems 32A, 32B. In this way, all the spark plug filters 21 are purged one after the other, that is to say filter section by filter section and segment by segment.
  • the hot particles from the outer surface 22 of the candle filters 21 fall down where they are collected in the bottom wall 9A, 9B in the form of a funnel which constitutes the underside of each section of filtering 7.8.
  • a flat steel grid 61A, 61B provided with large square openings is provided to collect the candle filters 21 possibly broken.
  • This grid 61A, 61B also serves as a floor for carrying out an inspection or maintenance work.
  • the particles slide downward along the bottom wall 9A, 9B in the form of a funnel. Particles from the upper filter section 8 fall down through the central drain pipe 42. Particles from the lower filter section 7 fall down into the tank 43 through the pipe concentric discharge pipe 41 situated around the discharge pipe 42 of the upper filtering section 8.
  • the maintenance of the filter is limited to the replacement of the spark plug filters 21 which are dirty and / or broken.
  • An access hatch 62A, 62B is provided, for each filter section 7, 8, in the side wall 4 of the filter body 1 to access the outlet chamber 13A of the lower filter section 7 and in the planar upper wall 10 to access the outlet chamber 13B of the upper filter section 8, for the maintenance of these filter sections 7,8.
  • a hatch 63A, 63B serving to reach each inlet chamber 12A, 12B from the corresponding outlet chamber 13A, 13B, is located at the bottom of the step-shaped cones 11, in the flat round disc 16A, 16B.
  • this filter can be used for a wide range of gas flow rates and particle concentrations.
  • the number of filter sections per filter body 1 and the number of filter bodies 1 makes it possible to adapt the filter with the characteristics of the gases charged with particles, namely the incoming flow and the dust concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Filtre pour le filtrage continu de gaz chargés de particules solides, à l'échelle industrielle, lequel se compose d'un corps de filtre cylindrique (1) qui contient au moins une section de filtrage (7, 8) divisée en une chambre d'entrée (12A, 12B) et une chambre de sortie (13A, 13B) par une paroi de séparation (11A, 11B) en forme d'entonnoir avec des gradins annulaires, des filtres en bougie (21) étant montés dans des trous prévus à cet effet dans les parties horizontales (14A, 14B, 16A, 16B) de la paroi de séparation (11A, 11B) et toutes les pièces étant disposées de façon concentrique et radiale, et essentiellement symétrique, par rapport à l'axe vertical de la paroi latérale cylindrique (4) du corps du filtre. Cette symétrie et cette concentricité ainsi que la structure radiale permettent au filtre de fonctionner sans problème à des températures de 900 °C.

Description

Filtre pour le filtrage de gaz chargés de particules,
Cette invention concerne un filtre pour le filtrage en continu de gaz chargés de particules solides à l'échelle industrielle.
Les filtres industriels existants destinés au filtrage de gaz chargés de particules solides avec un débit de gaz et un rendement de retenue suffisants sont limités quant à la température maximale d'utilisation. La température maximale d'utilisation est d'environ 330°C pour un électrofiltre et d'environ 180°C pour un filtre en tissu. Les filtres à poussières industriels existants ne permettent pas de filtrer à des températures très élevées des gaz qui contiennent des substances chimiquement agressives comme les oxydes de soufre, le chlore et d'autres constituants. Par ailleurs, des éléments filtrants poreux tubulaires qui peuvent notamment servir à dépoussiérer les gaz chauds sont connus. De tels "filtres en bougie", tels qu'ils sont décrits par exemple dans le document EP-A-0 317 190, résistent en soi aux températures élevées (même jusqu'à 1600°C ou plus).
Jusqu'à présent, l'utilisation de ces filtres en bougie se limitait, d'une part, aux filtres relativement petits qui sont destinés au filtrage en laboratoire et n'intègrent qu'un nombre limité de filtres en bougie (et qui ne conviennent donc que pour des débits de gaz assez faibles) et, d'autre part, aux filtres plus grands pour le filtrage de gaz à l'échelle industrielle (avec des débits de gaz plus élevés), mais ces filtres plus grands ne résistent qu'à des températures qui ne dépassent pas 450°C. A ce jour, il n'existe aucun dispositif qui soit suffisamment stable thermiquement et permette le filtrage des gaz à l'échelle industrielle à des températures élevées, par exemple, de 500 à 900"c. La réalisation d'un filtre à gaz industriel pour débits de gaz élevés qui puisse résister à des températures aussi hautes crée de sérieux problèmes qui trouvent notamment leur origine dans les tensions de dilatation difficiles à éviter en présence de variations importantes de la température.
Ces problèmes se compliquent encore si le filtre doit servir au filtrage à haute température de gaz contenant des substances chimiquement agressives (comme les gaz de fumée chauds qui contiennent du chlore, du soufre et du fluor) .
Jusqu'à présent, aucune solution satisfaisante n'a été proposée.pour ces problèmes.
Dans différents procédés industriels, le filtrage de gaz chargés de particules solides à haute température pourrait cependant être très utile et avantageux.
C'est notamment le cas pour éliminer des gaz de fumée chauds les matières qui pourraient nuire à l'environnement en polluant l'atmosphère. Le filtrage des gaz chauds peut également permettre de récupérer des matières précieuses, comme les métaux précieux, dans des procédés qui sont exécutés à haute température.
Il faut signaler que le refroidissement de gaz chauds chargés de particules, avant leur filtrage, ne constitue pas toujours une solution satisfaisante ou avantageuse.
Une des raisons en est que des produits de condensation et même de nouveaux produits indésirables peuvent se former dans certains cas lors du refroidissement de gaz chauds chargés de particules.
Des quantités d'énergie inacceptables peuvent également être perdues lors des processus de refroidissement.
L'invention a pour but de réaliser un filtre pour le filtrage en continu de gaz chargés de particules solides à l'échelle industrielle. L'invention vise en particulier la fourniture d'un filtre de ce genre qui convienne pour des températures de travail élevées de plus de 500°C, par exemple, et pouvant même atteindre 900°C ou plus.
Un autre but de l'invention est la réalisation d'un filtre de ce genre qui convienne pour le filtrage, à de telles températures élevées, de gaz chargés de particules solides, comme les gaz de fumée qui contiennent des composés sulfureux, du chlore, du fluor ou d'autres substances chimiquement agressives. L'invention a pour objet un filtre pour le filtrage en continu de gaz chargés de particules solides à l'échelle industrielle, lequel se compose d'un corps de filtre qui contient au moins une section de filtrage comprenant un espace divisé en une chambre d'entrée et une chambre de sortie au moyen d'une paroi de séparation, dans laquelle sont montés des filtres tubulaires en bougie fermés à une extrémité, la surface extérieure et l'extrémité fermée des filtres en bougie se trouvant dans la chambre d'entrée et l'intérieur des filtres en bougie aboutissant dans la chambre de sortie, la chambre d'entrée étant munie d'au moins une entrée pour les gaz à filtrer et d'au moins une sortie pour les particules séparées par filtrage et la chambre de sortie étant munie d'au moins une sortie pour les gaz filtrés. Dans le filtre conforme à l'invention, le corps du filtre possède une paroi latérale essentiellement cylindrique avec un axe vertical. Chaque section de filtrage est délimitée dans le bas par une paroi en forme d'entonnoir dont la partie étroite orientée vers le bas est raccordée à un moyen d'évacuation des particules séparées par filtrage. Le corps du filtre ainsi que les parois, la paroi de séparation et les filtres en bougie de chaque section de filtrage sont composés de matières réfractaires et sont disposés de façon radiale, concentrique et essentiellement symétrique par rapport à l'axe vertical de la paroi latérale cylindrique du corps du filtre. La paroi de séparation de chaque section de filtrage est composée d'une structure qui va en diminuant vers le bas et possède des gradins annulaires, la chambre d'entrée et la chambre de sortie de la section de filtrage se trouvant respectivement en dessous et au-dessus de cette paroi de séparation et les filtres en bougie étant montés essentiellement de façon verticale dans des trous prévus dans les parties horizontales des gradins annulaires.
Selon une forme d'exécution avantageuse, le corps du filtre est isolé thermiquement.
Le corps du filtre repose de préférence sur au moins trois appuis qui sont reliés entre eux et dont un est relié de manière fixe au corps du filtre tandis que les autres sont munis d'un palier à rouleaux horizontal de telle sorte que l'axe de chaque rouleau soit placé perpendiculairement à une droite dirigée vers l'appui fixe.
Selon une forme d'exécution avantageuse, chaque section de filtrage comprend au moins deux nervures de renforcement placées radialement, qui sont reliées à la paroi latérale du corps du filtre et supportent la paroi de séparation de la section de filtrage.
Le corps du filtre et les structures qu'il contient peuvent également être munis d'autres nervures ou éléments de renforcement, l'important étant que tous ces éléments soient placés radialement, concentriquement et surtout symétriquement par rapport à l'axe vertical du corps du filtre et permettent une expansion thermique de l'ensemble de la structure sans que des tensions de dilatation inacceptables n'apparaissent dans le filtre, même lors d'importantes variations de température (par exemple entre 0°C et 900°C) .
Dans chaque section de filtrage, au moins une paroi de répartition est placée de préférence entre les filtres en bougie et l'entrée pour les gaz à filtrer. Durant l'utilisation du filtre, les filtres en bougie doivent être nettoyés régulièrement pour minimiser la perte de pression. C'est la raison pour laquelle la chambre de sortie de chaque section de filtrage est munie d'au moins un système distributeur d'air comprimé équipé de moyens destinés à souffler périodiquement un courant d'air comprimé à l'intérieur d'au moins une partie des filtres en bougie et à éliminer ainsi les particules filtrées de la surface extérieure des filtres en bougie.
Selon une forme d'exécution avantageuse, chaque section de filtrage est munie d'au moins deux (par exemple, trois, quatre ou plus) systèmes distributeurs d'air comprimé équipés chacun de moyens destinés à souffler périodiquement et chacun à leur tour un flux d'air comprimé à l'intérieur d'une partie des filtres en bougie et à éliminer ainsi les particules filtrées de la surface extérieure des filtres en bougie.
Les systèmes distributeurs d'air comprimé sont composés de tuyaux concentriques fixés à la paroi latérale du corps du filtre par des moyens de fixation montés radialement. Selon une forme particulière d'exécution, la sortie pour les particules filtrées est un tuyau d'évacuation qui débouche dans un réservoir contenant de préférence un refroidisseur.
Ce réservoir est équipé de moyens destinés à éliminer les particules filtrées du réservoir et à maintenir le niveau de ces particules dans le réservoir de telle sorte que le tuyau d'évacuation qui débouche dans le réservoir reste bouché par les particules filtrées.
Les éléments du filtre en contact avec les gaz à filtrer ou filtrés ou avec les particules filtrées doivent bien entendu être réfractaires, au moins jusqu'à la température de fonctionnement du filtre. Selon une forme d'exécution particulière, le filtre résiste à des températures de 900°C. Selon une forme d'exécution préférée, tous les éléments du filtre en contact avec les gaz à filtrer ou filtrés ou avec les particules filtrées résistent chimiquement jusqu'à 900°C aux gaz de fumée qui contiennent des substances chimiquement agressives comme le chlore, les composés sulfureux et d'autres constituants de ce genre. Selon une forme d'exécution avantageuse, le corps du filtre contient au moins deux sections de filtrage placées l'une au-dessus de l'autre.
Selon une forme d'exécution particulière d'un filtre de ce genre avec deux sections de filtrage ou plus, la sortie des gaz filtrés de chaque section de filtrage, à l'exception de la section supérieure, est une chambre annulaire qui, dans le bas, est en liaison ouverte avec la chambre de sortie de la section de filtrage et qui est délimitée latéralement par la paroi latérale cylindrique du corps du filtre et par une paroi latérale cylindrique concentrique de la chambre d'entrée de la section de filtrage immédiatement supérieure et qui est délimitée, dans le haut, par la partie horizontale du gradin annulaire supérieur de la paroi de séparation de la section de filtrage immédiatement supérieure, des ouvertures étant pratiquées dans cette partie horizontale pour permettre à la chambre annulaire d'être en liaison avec la chambre de sortie de la section de filtrage supérieure.
Selon une forme d'exécution particulière d'un tel filtre avec deux sections de filtrage ou plus, le moyen d'évacuation des particules filtrées de chaque section de filtrage, à l'exception de la section inférieure, est un tuyau d'évacuation vertical relié à la partie étroite de la paroi inférieure en forme d'entonnoir de la section de filtrage et placé concentriquement dans le tuyau d'évacuation de la section de filtrage immédiatement inférieure.
D'autres particularités et avantages de l'invention ressortiront de la description suivante d'un exemple d'exécution particulier, par référence aux figures ci-jointes. La Fig. 1 est une vue schématique en coupe verticale d'un filtre conforme à l'invention; cette vue montre des détails qui, en réalité, ne sont pas orientés dans le plan de la coupe. La Fig. 2 est une coupe horizontale suivant la ligne II-II de la Fig. 1 qui montre, dans les différents segments, différents détails superposés.
La Fig. 3 est un détail de la fixation d'un filtre en bougie et d'une conduite d'air comprimé. La Fig. 4 est une représentation de la liaison entre les appuis et de l'orientation des paliers à rouleaux par rapport à l'appui fixe.
La Fig. 5 est un détail d'une ouverture d'équilibre. Le filtre représenté dans les Fig. 1 et 2 est composé d'un corps de filtre 1 placé sur des appuis 2 qui sont reliés entre eux au moyen de barres de liaison 3.
Le corps du filtre 1 possède une paroi latérale cylindrique 4 et est monté verticalement et concentriquement par rapport à un axe central. La construction concentrique du filtre permet la dilatation des matériaux à la suite de températures élevées dans le sens de leur fibre normale sans apparition de tensions. La paroi latérale 4 est munie d'une isolation thermique 5. Cela permet aux gaz de conserver leur température dans le filtre, ce qui est important car cela empêche la formation de zones plus froides et permet d'éviter la formation de produits de condensation et de tensions thermiques tout en conservant la chaleur des gaz chauds et en la récupérant intégralement en aval. Des renforts radiaux 6 sont placés contre la paroi latérale cylindrique 4 dans le corps du filtre 1.
Le corps du filtre 1 comprend deux sections de filtrage 7, 8 qui sont superposées. Chaque section de filtrage est délimitée dans le bas par une paroi en forme d'entonnoir 9A,9B. La section de filtrage inférieure 7 est délimitée dans le haut par la paroi en forme d'entonnoir 9B qui délimite dans le bas la section de filtrage supérieure 8. La section de filtrage supérieure 8 est délimitée dans le haut par une paroi plane 10.
Chaque section de filtrage 7, 8 est divisée en une chambre d'entrée 12A,12B et une chambre de sortie 13A,13B par une paroi de séparation 11A,11B. La paroi de séparation 11A,11B possède principalement la forme d'un cône tronqué inversé qui est exécuté en forme de gradin et est donc composé de bagues planes 14A,14B et de bagues cylindriques 15A,15B successives reliées entre elles. La partie inférieure de cette structure en gradins qui va en diminuant vers le bas est un disque rond et plat 16A,16B.
Les gradins annulaires de la paroi de séparation 11A,11B sont supportés par des nervures de renforcement 17A,17B qui sont fixées en direction radiale sur la paroi latérale 4 du corps du filtre 1.
Les bagues planes 14A,14B et le disque rond et plat 16A,16B de la paroi de séparation 11A,11B sont munis d'ouvertures 20 dans lesquelles sont placés des filtres en bougie 21 suspendus verticalement vers le bas, la surface supérieure 22 et l'extrémité fermée 23 des filtres en bougie se trouvant dans la chambre d'entrée 12A,12B et l'intérieur 24 des filtres en bougie 21 débouchant dans la chambre de sortie 13A,13B. Les filtres en bougie 21 sont répartis en schémas concentriques au-dessus des parties horizontales de la paroi de séparation 11A,11B. La façon dont les filtres en bougie 21 sont fixés sera décrite en détail plus loin par référence à la Fig. 3. La chambre d'entrée 12A,12B de chaque section de filtrage 7 et 8 est munie d'une entrée latérale 25A,25B pour les gaz à filtrer.
Une paroi de répartition 26A,26B fixée sur la face inférieure de la paroi de séparation 11A,11B est prévue entre l'entrée latérale 25A,25B et les filtres en bougie 21. Les Fig. 1 et 2 montrent que la paroi latérale de la chambre de sortie 13A,13B coïncide avec la paroi latérale cylindrique 4 du corps du filtre 1. La paroi latérale cylindrique 27A,27B de la chambre d'entrée 12A,12B possède un diamètre plus petit que la paroi latérale cylindrique 4 du corps du filtre 1. Une chambre annulaire 28A,28B se trouve entre la paroi latérale 27A,27B de la chambre d'entrée 12A,12B et la paroi latérale du corps du filtre 1. La chambre annulaire 28A qui est délimitée du côté situé vers l'axe du cylindre, par la paroi latérale cylindrique 27A de la chambre d'entrée 12A de la section de filtrage inférieure 7, est complètement fermée à l'exception d'une ouverture d'équilibre 65 et n'est donc pas en liaison avec la chambre d'entrée 12A ou la chambre de sortie 13A de la section de filtrage inférieure 7. Au moins une ouverture d'équilibre 65 vers la chambre de sortie 13A de la section de filtrage inférieure 7 est prévue par segment 33 dans cette chambre annulaire 28A en installant une conduite 66 placée verticalement et fermée vers le haut sur la bague horizontale plane supérieure 14A de la paroi de séparation 11A de la section de filtrage inférieure 7. L'ouverture d'équilibre 65 qui est visible plus en détail dans la Fig. 5 assure un équilibre des pressions à l'intérieur et à l'extérieur de la chambre 28A quelque soient les variations de température. Par contre, la chambre annulaire 28B délimitée du côté situé vers l'axe du cylindre, par la paroi latérale cylindrique 27B de la chambre d'entrée 12B de la section de filtrage supérieure 8 est, elle, en liaison dans le bas avec la chambre de sortie 13A de la section de filtrage inférieure 7 et est délimitée dans le haut par la bague plane supérieure 14B de la paroi de séparation 11B de la section de filtrage supérieure 8. Des ouvertures 29 sont prévues dans cette bague plane 14B, ce qui permet à la chambre annulaire 28B d'être en liaison avec la chambre de sortie 13B de la section de filtrage supérieure 8.
La sortie de la chambre de sortie 13B de la section de filtrage supérieure 8 est une ouverture d'écoulement centrale 30.
Les entrées latérales 25A,25B et l'ouverture d'écoulement centrale 30 sont prévues de compensateurs 31A,31B pour permettre la libre dilatation thermique du filtre.
Les filtres en bougie 21 sont nettoyés en soufflant de l'air comprimé en sens inverse par l'intérieur 24 des filtres en bougie 21. Un système distributeur d'air comprimé 32A,32B est utilisé à cet effet. Chaque section de filtrage 7,8 est divisée en quatre segments 33 alimentés chacun par une conduite d'alimentation en air comprimé 34A,34B. Les conduites d'alimentation en air comprimé 34A,34B des différents segments 33 d'une section de filtrage 7,8 sont montées radialement et reliées à une conduite circulaire froide 35A,35B. Les ailettes de refroidissement et les compensateurs 37 nécessaires à cet effet sont prévus sur les conduites d'alimentation en air comprimé 34A,34B. Chaque segment 33 est purgé séparément par un clapet froid automatique 38A,38B. Les filtres en bougie 21 sont purgés par section de filtrage et par segment.
La Fig. 2 représente une vue d'en haut d'un système distributeur à air comprimé 32B dans un segment 33 de la section de filtrage supérieure 8. Les Fig. 1 à 3 montrent que l'air comprimé est amené au-dessus des filtres en bougie 21 à l'aide de tubes concentriques 39 fixés à la paroi latérale 4 du corps du filtre 1 par des moyens de fixation montés radialement. En dessous de ces tubes 39, un trou calibré 40 par lequel l'air comprimé est soufflé verticalement vers le bas est prévu centralement au-dessus de l'ouverture d'évacuation des filtres en bougie 21. Grâce à la construction radiale et concentrique, les trous calibrés 40 restent dans une position correcte au-dessus de l'axe des filtres en bougie 21 en cas d'élévation de la température jusqu'à la température d'utilisation. Les particules solides filtrées (par exemple, des cendres volantes) qui sont éliminées de la surface extérieure des filtres en bougie 21 tombent dans les entonnoirs coniques 9A,9B. Les sorties pour ces particules solides sont les tuyaux d'évacuation 41,42 dont l'axe coïncide. Le tuyau d'évacuation 41 de la section de filtrage inférieure 7 possède un diamètre plus grand que le tuyau d'évacuation 42 de la section de filtrage supérieure 8 et se trouve autour de ce tuyau d'évacuation 42 de la section de filtrage supérieure 8.
Dans le bas, tous les tuyaux d'évacuation 41,42 débouchent dans un réservoir fermé 43 à refroidisseur intégré 44. Le niveau minimum des particules filtrées dans ce réservoir 43 assure l'étanchement entre les différentes sections de filtrage internes du filtre et l'extérieur.
Le refroidisseur 44 se compose, d'une part, d'une double paroi 45 et, d'autre part, d'un tuyau 46 disposé en spirale avec un tuyau de sortie 47 pour l'air réchauffé. L'air froid pénètre par l'entrée 48 dans le haut de la double paroi 45 et se dirige ensuite vers le bas dans le tuyau disposé en spirale 46 et dans le tuyau de sortie pour ensuite laisser s'échapper l'air réchauffé par la sortie 49 dans le haut du réservoir 43.
Une vis transporteuse 50 (qui n'est pas représentée en détail) est prévue dans le bas du refroidisseur 44 pour évacuer les particules filtrées. L'entraînement de cette vis transporteuse 50 est assuré par une détection de hauteur des particules dans le réservoir 43 au-dessus du refroidisseur 44 de manière à garantir un niveau minimum.
Au démarrage du filtre, le réservoir 43 est rempli de sable jusqu'au niveau minimum pour obtenir un étanche ent entre les différentes sections de filtrage du filtre et par rapport à l'extérieur de celui-ci. Les Fig. 2 et 3 montrent comment les filtres en bougie 21 sont fixés sur les parties horizontales 14A,14B des gradins annulaires à l'aide de plaques de pression 51 en forme de segment. Les filtres en bougie 21 sont munis, dans le haut, d'un collet 52 comprimé entre la partie horizontale 14 et la plaque de pression 51 en forme de segment, des bagues de garniture 53 réfractaires étant intercalées. Des trous 54 dont le diamètre correspond à celui de l'ouverture d'évacuation des filtres en bougie 21 sont prévus dans les plaques de pression 51 en forme de segment. Les plaques de pression 51 en forme de segment sont fixées sur les parties horizontales 14A,14B des gradins à l'aide de boulons 55. Une butée 56 de longueur calibrée est prévue à chaque boulon de liaison 55 pour éviter que le collet 52 du filtre en bougie 21 ne soit endommagé en serrant trop fort les boulons 55. La Fig. 2 représente une vue d'en haut des plaques de pression 51 et des boulons 55 dans un segment de la section de filtrage 8.
La Fig. 3 montre également un élément d'appui 57 qui est soudé dans le bas sur la plaque de pression 51 et permet de maintenir le tube concentrique 39 à la bonne place.
Tous les éléments du filtre qui entrent en contact avec les gaz chauds ou les particules solides chaudes sont fabriqués en acier inoxydable résistant aux températures élevées (à l'exception des filtres en bougie 21 qui se composent de fibres céramiques poreuses).
L'acier inoxydable utilisé résiste également au chlore, au fluor ou aux composés sulfureux qui peuvent se trouver dans les gaz à filtrer (par exemple, dans les gaz de fumée chauds).
La Fig. 4 représente les appuis 2 et leurs barres de liaison 3. Le corps du filtre 1 repose sur quatre appuis 2 reliés par quatre barres de liaison 3. Un appui 2 est relié de manière fixe au corps du filtre 1 tandis que les autres sont munis d'un palier à rouleaux 58 pour permettre une libre dilatation du corps du filtre 1. Les appuis 2 sont reliés entre eux pour absorber les forces de friction des paliers à rouleaux 58. Pour ce faire, les appuis 2 sont interrompus, au-dessus des barres de liaison 3, par des plaques horizontales 59,60 entre lesquelles se trouvent les paliers à rouleaux 58. Chaque palier à rouleaux horizontal 58 est configuré de telle façon que l'axe de chaque rouleau soit placé perpendiculairement à une droite dirigée vers l'appui fixe 2.
Le filtre conforme à l'invention convient particulièrement pour éliminer les cendres volantes des gaz de fumée chauds.
Comme le montre la Fig. 1, les gaz chargés de particules solides sont répartis, avant d'entrer dans le filtre, et envoyés vers l'entrée 27A,27B des deux sections de filtrage 7,8 où ils sont répartis sur les filtres en bougie 21 par une paroi de répartition 26A,26B.
Les gaz chargés de particules solides traversent la surface extérieure 22 des filtres en bougie 21 sur lesquels sont retenues les particules. Le gaz filtré passe par l'intérieur 24 des filtres en bougie 21 pour se diriger vers la chambre de sortie 13A,13B de la section de filtrage concernée 7,8. Le gaz filtré de la section de filtrage inférieure 7 quitte cette section de filtrage 7 en passant par la chambre annulaire 28B et se dirige vers la chambre de sortie 13B de la section de filtrage supérieure 8. Les gaz filtrés des deux sections de filtrage 7,8 quittent ensemble le filtre en passant par l'ouverture d'écoulement centrale 30 dans la section de filtrage supérieure 8.
A la suite de la retenue des particules chaudes par les filtres en bougie 21, la différence de pression en chaque chambre d'entrée 12A,12B et la chambre de sortie 13A,13B correspondante augmentera progressivement. Un appareil de mesure 64A,64B est prévu pour mesurer cette différence de pression. Etant donné que les filtres en bougie 21 sont traversés par section, en parallèle, l'encrassement sera uniforme sur ces filtres en bougie 21. Grâce à une minuterie qui commande le clapet d'air comprimé 38A,38B par segment, les filtres en bougie 21 sont nettoyés à intervalles réguliers en y soufflant de l'air comprimé en sens inverse. Il ne faut pas arrêter l'amenée des gaz chargés de particules solides vers le filtre.
L'air comprimé est envoyé vers les filtres en bougie 21 par segment et par section de filtrage 7,8 durant une fraction de seconde par l'intermédiaire des systèmes distributeurs d'air comprimé 32A,32B. De cette manière, tous les filtres en bougie 21 sont purgés l'un après l'autre, c'est-à-dire section de filtrage par section de filtrage et segment par segment.
Régulièrement, mais surtout durant le nettoyage, les particules chaudes de la surface extérieure 22 des filtres en bougie 21 tombent vers le bas où elles sont récoltées dans la paroi inférieure 9A,9B en forme d'entonnoir qui constitue la face inférieure de chaque section de filtrage 7,8. Dans chaque entonnoir 9A,9B, une grille plate en acier 61A,61B munie de larges ouvertures carrées est prévue pour recueillir les filtres en bougie 21 éventuellement cassé. Cette grille 61A,61B sert également de sol pour effectuer un contrôle ou des travaux d'entretien. Les particules glissent vers le bas le long de la paroi inférieure 9A,9B en forme d'entonnoir. Les particules qui proviennent de la section de filtrage supérieure 8 tombent vers le bas en passant par le tuyau d'évacuation central 42. Les particules qui proviennent de la section de filtrage inférieure 7 tombent vers le bas dans le réservoir 43 en passant par le tuyau d'évacuation concentrique 41 situé autour du tuyau d'évacuation 42 de la section de filtrage supérieure 8.
L'entretien du filtre se limite au remplacement des filtres en bougie 21 qui sont encrassés et/ou cassés. Une trappe d'accès 62A,62B est prévue, pour chaque section de filtrage 7,8, dans la paroi latérale 4 du corps du filtre 1 pour accéder à la chambre de sortie 13A de la section de filtrage inférieure 7 et dans la paroi supérieure plane 10 pour accéder à la chambre de sortie 13B de la section de filtrage supérieure 8, pour l'entretien de ces sections de filtrage 7,8. Une trappe 63A,63B servant à atteindre chaque chambre d'entrée 12A,12B depuis la chambre de sortie 13A,13B correspondante, se trouve à la partie inférieure des cônes en forme de gradin 11, dans le disque rond plat 16A,16B.
Grâce à la construction spécifique, ce filtre peut être utilisé pour une large gamme de débits de gaz et de concentrations de particules.
L'adaptation du diamètre du corps du filtre 1 et du nombre de filtres en bougie 21 par section de filtrage 7,8, du nombre de sections de filtrage par corps de filtre 1 et du nombre de corps de filtres 1, permet d'adapter le filtre aux caractéristiques des gaz chargés de particules, à savoir le débit entrant et la concentration en poussières.

Claims

R E V E N D I C A T I O N S
1.- Filtre pour le filtrage en continu de gaz chargés de particules solides à l'échelle industrielle, lequel se compose d'un corps de filtre (1) qui contient au moins une section de filtrage (7,8) comprenant un espace divisé en une chambre d'entrée (12A,12B) et une chambre de sortie (13A,13B) au moyen d'une paroi de séparation (11A,11B) dans laquelle sont montés des filtres tubulaires en bougie (21) qui sont fermés à une extrémité, la surface extérieure (22) et l'extrémité fermée (23) des filtres en bougie (21) se trouvant dans la chambre d'entrée (12A,12B) et l'intérieur (24) des filtres en bougie aboutissant dans la chambre de sortie (13A,13B), la chambre d'entrée (12A,12B) étant munie d'au moins une entrée (25A,25B) pour les gaz à filtrer et d'au moins une sortie (41,42) pour les particules séparées par filtrage et la chambre de sortie (13A,13B) étant munie d'au moins une sortie (28B,30) pour les gaz filtrés; dans lequel le corps du filtre (1) possède une paroi latérale essentiellement cylindrique, avec un axe vertical, et dans lequel chaque section de filtrage (7,8) est délimitée dans le bas par une paroi en forme d'entonnoir dont la partie étroite orientée vers le bas est raccordée à un moyen d'évacuation (41,42) des particules séparées par filtrage, et dans lequel le corps du filtre (1) ainsi que les parois (4,9A,9B,10,27A,27B) , la paroi de séparation (11A,11B) et les filtres en bougie (21) de chaque section de filtrage (7,8) sont composés de matières réfractaires et sont disposés de façon radiale, concentrique et essentiellement symétrique par rapport à l'axe vertical de la paroi latérale cylindrique (4) du corps du filtre (1); caractérisé en ce que la paroi de séparation (11A,11B) de chaque section de filtrage (7,8) est composée d'une structure qui va en diminuant vers le bas et possède des gradins annulaires, la chambre d'entrée (12A,12B) et la chambre de sortie (13A,13B) de la section de filtrage se trouvant respectivement en dessous et au-dessus de cette paroi de séparation (11A,11B) et les filtres en bougie (21) étant montés essentiellement de façon verticale dans des trous (20) prévus dans les parties horizontales (14A,14B,16A,16B) des gradins annulaires.
2.- Filtre suivant la revendication 1, caractérisé en ce que le corps du filtre (1) est isolé thermiquement (5) .
3.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que le corps du filtre (1) s'appuie sur au moins trois appuis (2) qui sont reliés entre eux et dont l'un est relié de manière fixe au corps du filtre (1) tandis que les autres sont munis d'un palier à rouleaux horizontal (58) de telle sorte que l'axe de chaque rouleau (58) soit placé perpendilairement à une droite dirigée vers l'appui fixe (2).
4.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que chaque section de filtrage (7,8) comprend au moins deux nervures de renforcement (17A,17B) placées radialement qui sont reliées à la paroi latérale (4) du corps du filtre (1) et supportent la paroi de séparation (11A,11B) de la section de filtrage (7,8) .
5.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une paroi de répartition (26A,26B) est placée dans chaque section de filtrage (7,8) entre les filtres en bougie (21) et l'entrée (25A,25B) pour les gaz à filtrer.
6.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que la chambre de sortie (13A,13B) de chaque section de filtrage (7,8) est munie d'au moins un système distributeur d'air comprimé (32A,32B) équipé de moyens destinés à souffler périodiquement un courant d'air comprimé à l'intérieur (24) d'au moins une partie des filtres en forme de bougie (21) et à éliminer ainsi les particules filtrées de la surface extérieure (22) des filtres en bougie (21).
7.- Filtre suivant la revendication 6, caractérisé en ce que la chambre de sortie (13A,13B) de chaque section de filtrage (7,8) est munie d'au moins deux systèmes distributeurs d'air comprimé (32A,32B) équipés de moyens destinés à souffler périodiquement et chacun à leur tour un courant d'air comprimé à l'intérieur (24) d'une partie des filtres en bougie (21) et à éliminer ainsi les particules filtrées de la surface extérieure (22) de ces filtres en forme de bougie (21).
8.- Filtre suivant la revendication 7, caractérisé en ce que les systèmes distributeurs d'air comprimé (32A,32B) sont composés de tuyaux concentriques (39) fixés à la paroi latérale (4) du corps du filtre (1) par des moyens de fixation montés radialement.
9.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que la sortie pour les particules filtrées est un tuyau d'évacuation (41,42) qui débouche dans un réservoir (43).
10.- Filtre suivant la revendication 9, caractérisé en ce que le réservoir (43) contient un refroidisseur (44).
11.- Filtre suivant l'une quelconque des revendications 9 et 10, caractérisé en ce que le réservoir (43) est équipé de moyens (50) destinés à éliminer les particules filtrées du réservoir (43) et à maintenir le niveau de ces particules dans le réservoir (43) de telle sorte que le tuyau d'évacuation (41,42) qui débouche dans le réservoir (43) reste bouché par les particules filtrées.
12.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que tous ses éléments en contact avec les gaz à filtrer ou filtrés ou avec les particules filtrées résistent à des températures de 900°C.
13.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que tous ses éléments en contact avec les gaz à filtrer ou filtrés ou avec les particules filtrées résistent chimiquement jusqu'à 900"C aux gaz de fumée contenant des composés sulfureux et/ou des composés chlorés.
14.- Filtre suivant l'une quelconque des revendications précédentes, caractérisé en ce que le corps du filtre (1) contient au moins deux sections de filtrage (7,8) superposées.
15.- Filtre suivant la revendication 14, caractérisé en ce que la sortie pour les gaz filtrés de chaque section de filtrage (7,8), à l'exception de la section supérieure (8), est une chambre annulaire (28B) qui, dans le bas, est en liaison ouverte avec la chambre de sortie (13A) de la section de filtrage immédiatement inférieure (7) et qui est délimitée latéralement par la paroi latérale cylindrique (4) du corps du filtre (1) et par une paroi latérale cylindrique concentrique (27B) de la chambre d'entrée (12B) de la section de filtrage immédiatement supérieure (8) et est délimitée, dans le haut, par la partie horizontale (14B) du gradin annulaire supérieur de la paroi de séparation (11B) de la section de filtrage immédiatement supérieure (8), des ouvertures (20) étant pratiquées dans cette partie horizontale (14B) pour permettre à la chambre annulaire (28B) d'être en liaison avec la chambre de sortie (13B) de la section de filtrage immédiatement supérieure (8).
16.- Filtre suivant l'une quelconque des revendications 14 et 15, caractérisé en ce que le moyen d'évacuation des particules filtrées de chaque section de filtrage (8), à l'exception de la section inférieure, est un tuyau d'évacuation vertical (42) relié à la partie étroite de la paroi inférieure en forme d'entonnoir (9B) de la section de filtrage (8) et placé concentriquement dans le tuyau d'évacuation (41) de la section de filtrage (7) immédiatement inférieure.
PCT/BE1993/000052 1992-08-05 1993-08-03 Filtre pour le filtrage de gaz charges de particules WO1994003260A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/379,508 US5536284A (en) 1992-08-05 1993-08-03 Filter for filtering gases laden with particles
AU45531/93A AU674861B2 (en) 1992-08-05 1993-08-03 Filter gases charged with particles
CA002141800A CA2141800C (fr) 1992-08-05 1993-08-03 Filtre pour le filtrage de gaz charges de particules
DE69316394T DE69316394D1 (de) 1992-08-05 1993-08-03 Vorrichtung zum filtern von mit teilchen beladenem gas
EP93915578A EP0682556B1 (fr) 1992-08-05 1993-08-03 Filtre pour le filtrage de gaz charges de particules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9200701 1992-08-05
BE9200701A BE1006111A5 (nl) 1992-08-05 1992-08-05 Filter voor het filtreren van met partikels beladen gassen.

Publications (1)

Publication Number Publication Date
WO1994003260A1 true WO1994003260A1 (fr) 1994-02-17

Family

ID=3886387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1993/000052 WO1994003260A1 (fr) 1992-08-05 1993-08-03 Filtre pour le filtrage de gaz charges de particules

Country Status (8)

Country Link
US (1) US5536284A (fr)
EP (1) EP0682556B1 (fr)
AT (1) ATE162098T1 (fr)
AU (1) AU674861B2 (fr)
BE (1) BE1006111A5 (fr)
CA (1) CA2141800C (fr)
DE (1) DE69316394D1 (fr)
WO (1) WO1994003260A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527311A1 (de) * 1995-07-26 1997-01-30 Lurgi Lentjes Babcock Energie Verfahren und Vorrichtung zum Reinigen von staubbeladenem Gas
US7572308B2 (en) * 2004-09-10 2009-08-11 Noram Engineering And Constructors Ltd. Mechanical system for installing and removing contacting devices from a chemical process tower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155354A (en) * 1984-03-09 1985-09-25 Babcock Werke Ag Gas cleaning apparatus
EP0253273A1 (fr) * 1986-07-10 1988-01-20 Metallgesellschaft Ag Appareil pour dépoussiérer des gaz
GB2200857A (en) * 1987-02-10 1988-08-17 Westinghouse Electric Corp High temperature, high pressure gas filter
EP0402032A1 (fr) * 1989-05-30 1990-12-12 Electric Power Research Institute, Inc Filtre de particules à étages
EP0482396A1 (fr) * 1990-10-22 1992-04-29 Westinghouse Electric Corporation Appareil filtrant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8312103D0 (en) * 1983-05-04 1983-06-08 Shell Int Research Cooling and purifying hot gas
US4525184A (en) * 1983-05-20 1985-06-25 Electric Power Research Institute, Inc. Vertically tiered particle filtering apparatus
US5248482A (en) * 1991-04-05 1993-09-28 Minnesota Mining And Manufacturing Company Diesel particulate trap of perforated tubes wrapped with cross-wound inorganic yarn to form four-sided filter traps

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155354A (en) * 1984-03-09 1985-09-25 Babcock Werke Ag Gas cleaning apparatus
EP0253273A1 (fr) * 1986-07-10 1988-01-20 Metallgesellschaft Ag Appareil pour dépoussiérer des gaz
GB2200857A (en) * 1987-02-10 1988-08-17 Westinghouse Electric Corp High temperature, high pressure gas filter
EP0402032A1 (fr) * 1989-05-30 1990-12-12 Electric Power Research Institute, Inc Filtre de particules à étages
EP0482396A1 (fr) * 1990-10-22 1992-04-29 Westinghouse Electric Corporation Appareil filtrant

Also Published As

Publication number Publication date
AU4553193A (en) 1994-03-03
CA2141800A1 (fr) 1994-02-17
ATE162098T1 (de) 1998-01-15
BE1006111A5 (nl) 1994-05-17
AU674861B2 (en) 1997-01-16
US5536284A (en) 1996-07-16
DE69316394D1 (de) 1998-02-19
EP0682556A1 (fr) 1995-11-22
EP0682556B1 (fr) 1998-01-14
CA2141800C (fr) 2000-10-17

Similar Documents

Publication Publication Date Title
JP2002522194A (ja) 粒子状物質を含んだ空気濾過用の空気フィルタ組立体
CN103285688A (zh) 热气体过滤系统和再生所述系统的方法
SE448949B (sv) Luftfilteraggregat
JPS6350044B2 (fr)
FR2769517A1 (fr) Separateur de type spongieux en mousse reticulee
EP2364195B1 (fr) Dispositif de raclage pour installation de filtration sous pression
EP0898998B1 (fr) Appareil de séparation de gaz par adsorption et utilisation pour le traitement de flux d'air
KR19990087079A (ko) 고온 가스 여과 장치
CA2141800C (fr) Filtre pour le filtrage de gaz charges de particules
FR2557686A1 (fr) Echangeur de chaleur entre fluides, equipe d'un dispositif mecanique d'elimination des poussieres
CA1298213C (fr) Ensemble de filtration pour fluides gazeux
CH633727A5 (fr) Installation de filtration d'un fluide contamine utilisant un materiau renouvelable pneumatiquement.
AU2010227592B2 (en) Vessel for removing solid particles from gases
JP4870302B2 (ja) 機械的全流フェールセーフ装置
FR3102682A1 (fr) Dispositif de filtration de gaz pollués par absorption
KR101869747B1 (ko) 연소시설 배출가스용 필터 모듈 및 이를 구비한 필터 설비
JP6640262B2 (ja) セラミックフィルタ集塵装置
FR2493722A1 (fr) Dispositif d'elimination des particules solides d'un fluide
WO2020247080A1 (fr) Collecteur de poussière de nettoyage à impulsion sous vide d'entrée supérieure
RU2699637C2 (ru) Регенерируемый фильтр для очистки парогазовой смеси
JP3597713B2 (ja) ガスフィルター装置
FR2507914A1 (fr) Installation de filtrage de gaz chauds
WO1992000134A1 (fr) Appareil de filtrage destine a enlever les particules d'un flux gazeux
BE484491A (fr)
JPH039788Y2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU CA CH CZ DE DK ES FI GB HU JP KR LU NL NO NZ PL PT RO RU SE SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08379508

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2141800

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993915578

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1993915578

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993915578

Country of ref document: EP