WO1994002790A1 - Dispositif de production de froid indirecte pour machine frigorifique - Google Patents

Dispositif de production de froid indirecte pour machine frigorifique Download PDF

Info

Publication number
WO1994002790A1
WO1994002790A1 PCT/FR1993/000725 FR9300725W WO9402790A1 WO 1994002790 A1 WO1994002790 A1 WO 1994002790A1 FR 9300725 W FR9300725 W FR 9300725W WO 9402790 A1 WO9402790 A1 WO 9402790A1
Authority
WO
WIPO (PCT)
Prior art keywords
installation according
evaporator
heat exchange
heat
condenser
Prior art date
Application number
PCT/FR1993/000725
Other languages
English (en)
Inventor
Jacques Bernier
Original Assignee
Societe Nationale Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale Elf Aquitaine filed Critical Societe Nationale Elf Aquitaine
Priority to EP93916005A priority Critical patent/EP0604629A1/fr
Priority to US08/196,224 priority patent/US5507158A/en
Publication of WO1994002790A1 publication Critical patent/WO1994002790A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention relates to an indirect refrigerating apparatus refrigerating machine.
  • NH3 and dispose of an economizer used device when the external condenser side fluid temperature is lower than the evaporator side.
  • FIG. 1 is a diagram of an installation according to the invention
  • FIG. 3 is a variant in cold production by solid machine / gas powered by solar energy.
  • - Figure 4 is a variant for compression systems.
  • FIG. 5 is a sectional view of a component of the invention.
  • FIG. 6 is a variant of the invention for a chemical reaction machine comprising two salts.
  • FIG. 7 is a variant of the invention for a refrigeration machine with chemical reaction comprising three salts as described for example in Lebrun / Mauran / Spinner patent application No. 8913913
  • Figure 8 is a variant of Figure 1 for an installation comprising two reactors allowing continuous operation.
  • Figure 9 is a variant of Figure 6 for an installation with two salts and continuous operation.
  • a condenser 17 is placed in the tank 14 containing the liquid 15. This reservoir is heat-insulated outwardly (or inwardly) by an insulating material 16, and is related to the chemical reactor R through a pipe 10, to a condenser 11, and a pipe 13.
  • the liquid 15 (NH3) vaporizes thanks to the heat brought at low temperature by the condenser 17.
  • the vapor 24 formed is then sucked by the reactor R During this phase the intermediate fluid which has condensed in 17 is directed into the reservoir 18 then gravitatively goes into the evaporator 21 via the regulation valve 20 whose role is to regulate the temperature of the enclosure CF refrigerated.
  • the intermediate fluid eg HFC
  • the flow of the intermediate fluid is effected under gravity due to the difference of density between liquid and vapor.
  • Self-sealing or sealable fittings 19 and 23 allow easy assembly and disassembly of the assembly.
  • FIG. 2 represents a variant of the invention in which the production of cold is ensured by a water evaporator 27 comprising as exchanger 28 playing the same role as the evaporator 21 of FIG. 1.
  • Figure 3 is an alternative embodiment for the application in cold production from a solar energy source, the reactor R exchanger may also be double as in Figure 2.
  • Figure 4 shows the application from the device according to the invention to a compression cold production installation.
  • a conventional refrigeration circuit comprises a compressor 40, a condenser 43, a pressure reducer 46, an evaporator 41.
  • the fluid to be cooled enters EF and leaves SF from l ' intermediate evaporator 48.
  • This comprises an exchanger 49 in which the intermediate fluid evaporates which will then condense in the exchanger 47, the liquid formed is stored in the reserve 59 then returns to 49.
  • a similar circuit is placed on the condenser circuit 43 with a condenser 42, a reserve 58 and an exchanger 44.
  • FIG. 5 shows a detail of the Figure 1 container according to the invention.
  • the heat exchanger 17 ( Figure 1) consists of tubes filled horizontal 52 of fins 51 (or needles as in the case of spin-fin exchangers). The heat exchanger is placed in the lower part of the tank 14 in order to be always bathed by the liquid 15. The intermediate transfer fluid phase change penetrates G in the upper part of the exchanger and in the liquid L.
  • the spring 6 shows an example of application of the invention in a chemical refrigerating machine in two salts.
  • the cold produced at the exchanger 65 serves as regeneration heat for the reactor R2.
  • a second AC circuit comprising two other reactors as those of the first circuit, enable a continuous production of cold at the evaporator 65.
  • Figure 7 shows an example of application of the invention for a chemical refrigerating machine circuit three salts.
  • the evaporator 65 ensures continuous cold production by ensuring the successive regeneration of the reactors RI and R2 which contain a salt at a low level of regeneration temperature such as BaC12 / NH3.
  • R4 in regeneration phase (which contains a salt such as NiC12 / NH3) the heating exchanger 64 transfers its heat to the heat exchanger 72 which desorbs thereby RI to R4.
  • the cold produced in CF by vaporization of the intermediate fluid will regenerate the reactor R2 which will then be desorbed towards R3.
  • the reaction heat of the reactors RI and R3 will be removed according to the same principle in the condenser 73 after opening the valve 80.
  • the reactor RI is regenerated from the production of cold in the R2 reactor 65.
  • the heat of reaction is discharged to the condenser 73, the heat exchanger 71 is then overheated relative to the equilibrium temperature of liquid / vapor through cold production fluid, thereby preventing any flow between 71 and 65.
  • FIG. 8 represents a variant of FIG. 1 in which the installation comprises two independent chemical reactor circuits Ra and Rb, each comprising its own condenser 11a and 11b and its own reservoir 14a and 14b. The two reactors are regenerated alternately by the heating means 64. both reactors have a common cooler 12.
  • a cooling in exchanger 91 serves to cool the exiting a condenser fluid with the cold vapor exiting the reservoir of the other two circuit.Les exchangers 17a and 17b allow the cold to be transmitted from the tank to the evaporator 21, the thermal diode effect preventing transfers if one of the reactor circuits is in the regeneration phase.
  • Figure 9 shows a variant of Figure 6 for ensuring a continuous production of cold for an installation with two salts.
  • the RI and R2 reactors are grouped in the same body in this figure, namely Rla / R2a and Rlb / R2b respectively.
  • the same cooler 61 removes the heat released during the chemical reactions by the same superimposed heat pipe process.
  • the alternating heating of the two reactors is provided by the exchanger 64 which can be either a boiler or some other source of heat at a sufficient temperature.
  • the control valve 20 shown in Figures 1 to 9 may be either a thermostatic valve controls the temperature of the cold environment, a pressure valve which closes the circuit if the pressure of the latter falls below a threshold, or another electromagnetic valve controlled by the temperature of the medium to be cooled, for example.
  • the invention is not limited of course to the production of cold by thermochemical machine, it can also be applied to adsorption machines using for example the zeolite / water or activated carbon / methanol pairs, as well as to refrigeration machines with compression or absorption such as NH3 H2O (in this case the co ⁇ pression circuit as shown in Figure 4 is replaced by an absorption circuit).
  • the invention is applicable in particular to the cooling of refrigerated trucks, to the air conditioning of all types of motor vehicles, to heating, to the production of hot water, to the production of solar cold, to chilled water plants.
  • the air exchangers may be natural convection or forced circulation using a fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Dispositif de production de froid indirecte pour machine frigorifique à compression, absorption, adsorption ou chimique composé d'un évaporateur (21) en condition d'échange thermique avec le milieu à refroidir (CF), d'un ou plusieurs condenseurs (17) en relation directe d'échange thermique avec l'évaporateur ou le réacteur du circuit frigorifique, la circulation entre l'évaporateur (21) et le condenseur (17) s'effectuant gravitairement à l'aide d'un fluide à changement de phase et par des tuyauteries distinctes de vapeur et de liquide.

Description

DISPOSIF DE PRODUCTION DE FROID INDIRECTE POUR MACHINE FRIGORIFIQUE
L'invention a pour objet un dispositif de production de froid indirect pour machine frigorifique.
On connaît déjà des installations de pompes à chaleur chimiques solide/gaz faisant appel aux phénomènes d' dsorption eu d'absorption. On connaît également des machines frigorifiques à compression utilisant elles aussi l'ammoniac comme fluide frigorigène.Ces machines présentent cependant un certain nombre d'inconvénients tels que les risques d'accidents graves en cas de corrosion des échangeurs, l'ammoniac se dissipant alors dans les locaux. On connaît également les difficultés que posent les organes de détente d'ammoniac dans les machines frigorifiques chimiques. Par ailleurs les systèmes indirects de production de froid nécessitent en général des pompes auxiliaires pour assurer le transfert des fluides et des dispositifs de régulation relativement complexes. De telles installations ne sont pas toutefois entièrement satisfaisantes , car elles conduisent à des coûts plus élevés, et entrainent des consommations supplémentaires d'énergie tout en compliquant la régulation.
C'est d'une manière générale, un but de l'invention de fournir une installation qui ne présente pas les inconvénients rappelés ci-dessus, des installations connues.
C'est en particulier un but de l'invention de fournir une installation dont les transferts de chaleur au niveau de la source froide et de la source chaude s'effectuent au moyen d'un dispositif de transfert intermédiaire par caloduc superposé, c'est à dire de thérmosiphon avec changement de phase liquide/vapeur.
C'est aussi un but de l'invention de fournir une installation à réaction chimique solide/gaz ou à adsorption dont l'organe de détente
FEUILLE DE REMPLACEMENT est supprimé.
C'est encore un but de l'invention de fournir une installation de production de froid à compression dont le fluide de transfert au niveau des échangeurs sur fluides externes est différent de celui utilisé par le compresseur frigorifique, permettant ainsi d'utiliser des compresseurs à NH3, et de disposer d'un dispositif économiseur utilisé lorsque la température du fluide externe côté condenseur est inférieure à celle côté évaporateur.
L'invention sera bien comprise par la description qui suit faite à titre d'exemple et en référence aux dessins annexés dans lequel :
- la figure 1 est un schéma d'une installation selon l'invention
- la figure 2 est une variante avec évaporateur à eau
- la figure 3 est une variante en production de froid par machine solide/gaz fonctionnant à l'énergie solaire. - la figure 4 est une variante pour des systèmes à compression.
- la figure 5 est une vue en coupe d'un composant de l'invention.
- la figure 6 est une variante de l'invention pour une machine à réaction chimique comportant deux sels.
- la figure 7 est une variante de l'invention pour une machine frigorifique à réaction chimique comportant trois sels comme décrit par exemple dans la demande de brevet Lebrun/Mauran/Spinner n°8913913
- la figure 8 est une variante de la figure 1 pour une installation comportant deux réacteurs permettant un fonctionnement continu.
- la figure 9 est une variante de la figure 6 pour une installation à deux sels et fonctionnement continu.
Un dispositif de production de froid indirect selon l'invention, figure 1, comporte un évaporateur 21 assurant le refroidissement d'une enceinte CF, le dit évaporateur faisant partie d'un circuit frigorifique fermé indépendant du circuit frigorifique de la machine solide/gaz. Un condenseur 17 est placé dans le réservoir 14 contenant le liquide 15. Ce réservoir est calorifuge extérieurement (ou intérieurement) par un matériau isolant 16, et est en relation avec le réacteur chimique R par l'intermédiaire d'une tuyauterie 10, d'un condenseur 11, et d'une tuyauterie 13. En phase de synthèse du réacteur, le liquide 15 (NH3) se vaporise grâce à la chaleur apportée à basse température par le condenseur 17. La vapeur 24 formée est alors aspirée par le réacteur R. Au cours de cette phase le fluide intermédiaire qui s'est condensé dans 17 se dirige dans le réservoir 18 puis gravitairement va dans l'évaporateur 21 en passant par la vanne de régulation 20 dont le rôle est de réguler la température de l'enceinte réfrigérée CF. Le fluide intermédiaire (un HFC par exemple) se vaporise dans 21 en refroidissant CF, la vapeur passe alors par la tuyauterie 22 pour se diriger en partie haute du condenseur 17. La circulation du fluide intermédiaire s'effectue par gravité grâce à la différence de densité entre le liquide et la vapeur. Des raccords auto-obturables ou operculables 19 et 23 permettent un montage et un démontage facile de l'ensemble. Dans ce système aucun dispositif de détente n'est nécessaire car le liquide 15 se vaporise partiellement au début de la phase synthèse du réacteur, la circulation du fluide intermédiaire ne peut se produire que si la température du liquide 15 est inférieure à celle de l'enceinte CF à refroidir (effet de diode thermique). En phase de régénération du réacteur R, celui ci est chauffé par un moyen de chauffage CH ce qui désorbe le gaz du réacteur, la vapeur vient alors se condenser dans le condenseur 11 et le liquide formé retombe dans le réservoir 14. Au cours de la phase de régénération, il n'y a pas de transfert thermiques au niveau de l'échangeur 17, donc pas de production de froid, on peut donc envisager l'utilisation de deux ensembles indépendants réacteur R condenseur Il/réservoir 14/condenseur 17 dans lesquels les condenseurs 17 seraient raccordés en parallèle afin d'assurer une production de froid continue au niveau de l'évaporateur 21 (raccordement similaire à celui de la figure 8). La figure 2 représente une variante de l'invention dans laquelle la production de froid est assurée par un évaporateur à eau 27 comportant en échangeur 28 jouant le même rôle que l'évaporateur 21 de la figure 1.
La figure 3 est une variante de réalisation pour l'application en production de froid à partir d'une source d'énergie solaire, l'échangeur du réacteur R pourra également être double comme sur la figure 2. La figure 4 représente l'application du dispositif selon l'invention à une installation de production de froid à compression.Un circuit frigorifique classique comporte un compresseur 40, un condenseur 43, un détendeur 46, un évaporateur 41. Le fluide à refroidir entre en EF et sort en SF de l'évaporateur intermédiaire 48. Celui ci comprend un échangeur 49 dans lequel s'évapore le fluide intermédiaire qui va ensuite se condenser dans l'échangeur 47, le liquide formé est stocké dans la réserve 59 puis retourne dans 49. De même un circuit similaire est placé sur le circuit du condenseur 43 avec un condenseur 42, une réserve 58 et un échangeur 44. Un dispositif économiseur constitué des tuyauteries 57 et 54 ainsi que des vannes 55 et 56 permet d'assurer le refroidissement au niveau de l'évaporateur 48 lorsque la température du fluide extérieur EF est supérieure à celle du fluide extérieur EC, ceci sans faire fonctionner le compresseur 40. La figure 5 représente un détail du réservoir de la figure 1 selon l'invention. L'échangeur 17 (figure 1) est constitué de tubes horizontaux 52 garnis d'ailettes 51 (ou d'aiguilles comme dans le cas des échangeurs spin-fin). L'échangeur est placé en partie basse du réservoir 14 afin d'être toujours baigné par le liquide 15. Le fluide de transfert intermédiaire à changement de phase pénètre en G en partie haute de l'échangeur et ressort liquide en L. La figure 6 représente un exemple d'application de l'invention dans une machine frigorifique chimique à deux sels. Le froid produit au niveau de l'échangeur 65 sert de chaleur de régénération du réacteur R2. Un deuxième circuit AC comportant deux autres réacteurs comme ceux du premier circuit, permettra une production continue de froid au niveau de l'évaporateur 65. La figure 7 représente un exemple d'application de l'invention pour un circuit de machine frigorifique chimique à trois sels. L'évaporateur 65 assure une production de froid continue en assurant la régénération successive des réacteurs RI et R2 qui contiennent un sel à bas niveau de température de régénération tel le BaC12/NH3. En phase de régénération de R4 (qui contient un sel tel NiC12/NH3) l'échangeur de chauffage 64 transfère sa chaleur à l'échangeur 72 qui désorbe de ce fait R4 vers RI. Le froid produit dans CF par vaporisation du fluide intermédiaire va régénérer le réacteur R2 qui va alors se désorber vers R3. La chaleur de réaction des réacteurs RI et R3 sera évacuée suivant le même principe dans le condenseur 73 après ouverture de la vanne 80. En phase de régénération de R3 (qui contient un sel tel ZnC12/ H3) à partir de la chaleur de réaction de R4 suite à l'ouverture de la vanne 81, le réacteur RI est régénéré à partir de la production de froid en 65. La chaleur de réaction du réacteur R2 est évacuée vers le condenseur 73, l'échangeur 71 est alors en surchauffe par rapport à l'équilibre de température liquide/vapeur du fluide intermédiaire de production de froid, empêchant de ce fait toute circulation entre 71 et 65. De même, dans la première phase décrite auparavant c'était l'échangeur 70 qui se trouvait en surchauffe interdisant alors toute circulation entre 70 et 65.Le positionnement des tuyauteries alimentant les échangeurs 70 et 71 sera tel que les transferts thermiques d'un échangeur vers l'autre seront rendus impossibles. La figure 8 représente une variante de la figure 1 dans laquelle l'installation comporte deux circuits de réacteurs chimiques Ra et Rb indépendants, comportant chacun son propre condenseur lia et 11b et son propre réservoir 14a et 14b.Les deux réacteurs sont régénérés alternativement par le moyen de chauffage 64. Les deux réacteurs disposent d'un refroidisseur commun 12. Un échangeur de sous refroidissement 91 permet de refroidir le liquide sortant d'un condenseur à l'aide des vapeurs froides sortant du réservoir de l'autre circuit.Les deux échangeurs 17a et 17b permettent de transmettre le froid du réservoir vers l'évaporateur 21, l'effet de diode thermique empêchant les transferts si l'un des circuits de réacteurs est en phase de régénération.
La figure 9 représente une variante de la figure 6 permettant d'assurer une production de froid en continu pour une installation à deux sels. Les réacteurs RI et R2 sont regroupés dans le même corps sur cette figure , soit respectivement Rla/R2a et Rlb/R2b. Un même refroidisseur 61 évacue par le même procédé de caloduc superposé, la chaleur dégagée au cours des réactions chimiques.Le chauffage alternatif des deux réacteurs est assuré par l'échangeur 64 qui peut être soit une chaudière, soit une autre source quelconque de chaleur à température suffisante.
La vanne de régulation 20 représentée sur les figures 1 à 9 peut être soit une vanne thermostatique contrôlant la température du milieu ambiant froid, soit une vanne pressostatique fermant le circuit si la pression de celui ci s'abaisse en dessous d'un seuil, soit encore une vanne électromagnétique commandée par la température du milieu à refroidir par exemple.
L'invention n'est pas limitée à bien sûr à la production de froid par machine thermochimique, elle peut être appliquée également aux machines à adsorption utilisant par exemple les couples zéolithe/eau ou charbon actif/méthanol, ainsi qu'aux machines frigorifiques à compression ou à absorption tel NH3 H2O (dans ce cas le circuit à coπpression tel qu'il est représenté figure 4 est remplacé par un circuit à absorption).
L'invention est applicable notamment au refroidissement des camions frigorifiques,à la climatisation de tous types de véhicules automobiles, au chauffage, à la production d'eau chaude, à la production de froid solaire, aux centrales d'eau glacée. Les échangeurs à air pourront être à convection naturelle ou à circulation forcée à l'aide d'un ventilateur.

Claims

KEVEtTOICATIQNS
1. Dispositif de refroidissement indirect d'une enceinte ou d'un liquide comprenant des moyens de transfert de chaleur caractérisés en ce que le système comporte un dispositif d'évaporation/condensation en circuit fermé à changement de phase liquide/vapeur, avec circuits distincts de vapeur et de liquide, sans organe mécanique de transfert, dont l'évaporateur (21) est en relation directe d'échange thermique avec le milieu à refroidir, et dont le ou les condenseurs sont en relation d'échange thermique direct avec soit un ou plusieurs réacteurs chimiques, soit un ou plusieurs 0 évaporateurs de machine frigorifique chimique ou à adsorption solide/gaz ou à compression ou à absorption.
2. Installation selon la revendication 1 caractérisée en ce que l'évaporateur (21) (27) est en relation d'échange thermique avec un ou plusieurs ensembles réservoir (14) dans lequel s'évapore le fluide 5 (24) de l'installation frigorifique (à réaction chimique, à adsorption, à absorption ou à compression) grâce à l' échangeur/condenseur(17) placé dans le réservoir.
3. Installation selon la revendication 2 caractérisée en ce que le ou les échangeurs sont constitués de tubes (52) munis d'ailettes ou 0 d'aiguilles (51).
4. Installation selon la revendication 1 caractérisée en ce que le circuit comporte une vanne de régulation (20) .
5. Installation selon la revendication 1 caractérisée en ce que le circuit d'alimentation de l'évaporateur (21) (65) comporte des b raccords auto-obturables ou operculableε (19) (23).
6. Installation selon la revendication 1 caractérisée en ce que le circuit d'alimentation en liquide comporte un réservoir (18) (59).
7. Installation selon la revendication 2 caractérisée en ce que le réservoir (14) est calorifuge.
8. Installation selon la revendication 1 caractérisée en ce que le réacteur R comporte deux échangeurs à circuits indépendants en relation avec un refroidisseur (12) et un moyen de chauffage (64).
9. Installation selon la revendication 1 caractérisée en ce que l'évaporateur (65) est en relation d'échange thermique avec un ou plusieurs condenseurs (63) (70) (71) placés directement dans le ou les réacteurs.
10. Installation selon la revendication 1 caractérisée en ce que le système frigorifique comporte deux dispositifs de transfert indirect à la source froide et à la source chaude, et comporte deux dispositifs de by-pass vanne/tuyauterie (54-55) (56-57) destinés à mettre en relation directe d'échange thermique les deux échangeurs côté sources externes.
PCT/FR1993/000725 1992-07-22 1993-07-16 Dispositif de production de froid indirecte pour machine frigorifique WO1994002790A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP93916005A EP0604629A1 (fr) 1992-07-22 1993-07-16 Dispositif de production de froid indirecte pour machine frigorifique
US08/196,224 US5507158A (en) 1992-07-22 1993-07-16 Device for indirect production of cold for refrigerating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9209026A FR2694077B3 (fr) 1992-07-22 1992-07-22 Dispositif de production de froid indirecte pour machine frigorifique.
FR92/09026 1992-07-22

Publications (1)

Publication Number Publication Date
WO1994002790A1 true WO1994002790A1 (fr) 1994-02-03

Family

ID=9432129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000725 WO1994002790A1 (fr) 1992-07-22 1993-07-16 Dispositif de production de froid indirecte pour machine frigorifique

Country Status (4)

Country Link
US (1) US5507158A (fr)
EP (1) EP0604629A1 (fr)
FR (1) FR2694077B3 (fr)
WO (1) WO1994002790A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881573A (en) * 1994-10-06 1999-03-16 Electrolux Leisure Appliances Ab Refrigerating device with cooling unit working intermittently
CN1144976C (zh) * 1995-10-24 2004-04-07 大金工业株式会社 空气调节装置
CN1181461A (zh) * 1997-10-27 1998-05-13 易元明 负温差饱和蒸气热力发动机
CN1180790A (zh) * 1997-10-27 1998-05-06 天然国际新科学技术研究院 负温差热力发动机
EP1164338B1 (fr) * 1999-02-24 2006-01-11 Hachiyo Engineering Co., Ltd. Systeme de pompe a chaleur combinant un cycle ammoniac avec un cycle dioxyde de carbone
GB0314803D0 (en) * 2003-06-25 2003-07-30 Star Refrigeration Improved cooling system
FR2879727B1 (fr) * 2004-12-20 2012-12-14 Centre Nat Rech Scient Dispositif pour la production de froid pour la climatisation d'un batiment
US10060296B2 (en) * 2012-11-15 2018-08-28 Kevin Lee Friesth Quintuple-effect generation multi-cycle hybrid renewable energy system with integrated energy provisioning, storage facilities and amalgamated control system cross-reference to related applications
US9285144B2 (en) 2013-11-27 2016-03-15 King Fahd University Of Petroleum And Minerals Economizer for an intermittent absorption refrigeration system
FR3034179B1 (fr) * 2015-03-23 2018-11-02 Centre National De La Recherche Scientifique Dispositif solaire de production autonome de froid par sorption solide-gaz.

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854778A (en) * 1929-08-13 1932-04-19 Boving Jens Orten Reversible absorption or adsorption refrigerating apparatus
US1855493A (en) * 1930-01-31 1932-04-26 Frigidaire Corp Refrigerating apparatus
US1996441A (en) * 1928-12-17 1935-04-02 Gen Motors Corp Refrigerating apparatus
US2036756A (en) * 1930-05-28 1936-04-07 Gen Motors Corp Refrigerating apparatus
US2050959A (en) * 1931-07-03 1936-08-11 Normelli Wulff Berzelius Periodic absorption refrigerating apparatus
US2068891A (en) * 1932-05-12 1937-01-26 Siemens Ag Air-cooled reabsorption refrigerating apparatus of the intermittent type
US2310657A (en) * 1938-11-02 1943-02-09 John J Shively Multiple temperature refrigerating apparatus
US2512545A (en) * 1948-06-11 1950-06-20 Frederick E Hazard Structure for and method of transfer, exchange, control regulation, and storage of heat and cold
US3507322A (en) * 1969-05-08 1970-04-21 Freez Porter Systems Inc Apparatus for handling perishable materials
EP0202662A1 (fr) * 1985-05-24 1986-11-26 Ruhrgas Aktiengesellschaft Procédé et dispositif pour la production de chaleur
FR2590356A1 (fr) * 1985-11-19 1987-05-22 Jeumont Schneider Dispositif pour la production en continu de chaud et de froid
US4713944A (en) * 1985-09-09 1987-12-22 Schiedel Gmbh & Co. Intermittently operating sorption apparatus with solid sorbent for heat and cold storage
FR2651565A1 (fr) * 1989-09-04 1991-03-08 Nishiyodo Air Conditioner Appareil d'accumulation thermique par adsorption et systeme d'accumulation thermique par adsorption incorporant cet appareil.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2093725A (en) * 1934-12-24 1937-09-21 Gen Motors Corp Refrigerating apparatus
US2293556A (en) * 1939-04-17 1942-08-18 Honeywell Regulator Co Adsorption refrigeration system
US2499736A (en) * 1946-09-06 1950-03-07 Kleen Nils Erland Af Aircraft refrigeration
US3603379A (en) * 1969-04-08 1971-09-07 Carrier Corp Heating and cooling system
US4295342A (en) * 1977-10-27 1981-10-20 James Parro Heat exchange method using natural flow of heat exchange medium
US4640347A (en) * 1984-04-16 1987-02-03 Q-Dot Corporation Heat pipe
US5159972A (en) * 1991-03-21 1992-11-03 Florida Power Corporation Controllable heat pipes for thermal energy transfer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996441A (en) * 1928-12-17 1935-04-02 Gen Motors Corp Refrigerating apparatus
US1854778A (en) * 1929-08-13 1932-04-19 Boving Jens Orten Reversible absorption or adsorption refrigerating apparatus
US1855493A (en) * 1930-01-31 1932-04-26 Frigidaire Corp Refrigerating apparatus
US2036756A (en) * 1930-05-28 1936-04-07 Gen Motors Corp Refrigerating apparatus
US2050959A (en) * 1931-07-03 1936-08-11 Normelli Wulff Berzelius Periodic absorption refrigerating apparatus
US2068891A (en) * 1932-05-12 1937-01-26 Siemens Ag Air-cooled reabsorption refrigerating apparatus of the intermittent type
US2310657A (en) * 1938-11-02 1943-02-09 John J Shively Multiple temperature refrigerating apparatus
US2512545A (en) * 1948-06-11 1950-06-20 Frederick E Hazard Structure for and method of transfer, exchange, control regulation, and storage of heat and cold
US3507322A (en) * 1969-05-08 1970-04-21 Freez Porter Systems Inc Apparatus for handling perishable materials
EP0202662A1 (fr) * 1985-05-24 1986-11-26 Ruhrgas Aktiengesellschaft Procédé et dispositif pour la production de chaleur
US4713944A (en) * 1985-09-09 1987-12-22 Schiedel Gmbh & Co. Intermittently operating sorption apparatus with solid sorbent for heat and cold storage
FR2590356A1 (fr) * 1985-11-19 1987-05-22 Jeumont Schneider Dispositif pour la production en continu de chaud et de froid
FR2651565A1 (fr) * 1989-09-04 1991-03-08 Nishiyodo Air Conditioner Appareil d'accumulation thermique par adsorption et systeme d'accumulation thermique par adsorption incorporant cet appareil.

Also Published As

Publication number Publication date
US5507158A (en) 1996-04-16
EP0604629A1 (fr) 1994-07-06
FR2694077B3 (fr) 1994-09-02
FR2694077A1 (fr) 1994-01-28

Similar Documents

Publication Publication Date Title
US6282917B1 (en) Heat exchange method and apparatus
AU604565B2 (en) Intermittent solar ammonia absorption cycle refrigerator
EP0550748B1 (fr) Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement
WO1994002790A1 (fr) Dispositif de production de froid indirecte pour machine frigorifique
HU219393B (en) Method for cooling and cooling device
WO1981000904A1 (fr) Procede et dispositif de refrigeration
FR2495497A1 (fr) Procede combine d'absorption et d'adsorption et appareil pour sa mise en oeuvre
JP3358460B2 (ja) 化学蓄熱式吸気冷却装置
JPH11500521A (ja) 間欠的に動作する冷却ユニットを備えた冷凍装置
JP2000121196A (ja) 排熱利用冷暖房システム
JPH0719647A (ja) 直火焚き吸収冷温水機における廃熱回収システム
JP2001349631A (ja) 吸収冷凍機
WO1993003313A1 (fr) Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de chauffage
RU2315923C1 (ru) Гелиоэнергетический холодильник
RU2054606C1 (ru) Способ работы абсорбционно-диффузионного холодильного агрегата и устройство для его осуществления
JP2005090880A (ja) 製氷装置
JPS59119003A (ja) 冷熱発電設備の運転方法
JP2876893B2 (ja) 吸収式製氷蓄冷装置
JPH0517563Y2 (fr)
JPH0694965B2 (ja) 吸着式冷凍機の冷媒量調整装置
SU1164524A1 (ru) Адсорбционная гелиохолодильная установка периодического действия
JPS5829818Y2 (ja) 吸収冷凍機
FR2730299A1 (fr) Echangeur de chaleur diphasique a temperature controlee
JPS5817390B2 (ja) 熱回収式吸収冷温水機
JPS6213488B2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993916005

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993916005

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08196224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1993916005

Country of ref document: EP