WO1994001131A1 - Apport transvasculaire et intracellulaire de proteines lipidisees - Google Patents
Apport transvasculaire et intracellulaire de proteines lipidisees Download PDFInfo
- Publication number
- WO1994001131A1 WO1994001131A1 PCT/US1993/006599 US9306599W WO9401131A1 WO 1994001131 A1 WO1994001131 A1 WO 1994001131A1 US 9306599 W US9306599 W US 9306599W WO 9401131 A1 WO9401131 A1 WO 9401131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lipidized
- protein
- antibody
- antibodies
- lipoamine
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 134
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 119
- 230000003834 intracellular effect Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 86
- 125000000837 carbohydrate group Chemical group 0.000 claims abstract description 25
- 210000000056 organ Anatomy 0.000 claims abstract description 11
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 6
- 230000008685 targeting Effects 0.000 claims abstract description 5
- 108060003951 Immunoglobulin Proteins 0.000 claims description 67
- 102000018358 immunoglobulin Human genes 0.000 claims description 67
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 45
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 35
- 229920001184 polypeptide Polymers 0.000 claims description 33
- 230000013595 glycosylation Effects 0.000 claims description 30
- 238000006206 glycosylation reaction Methods 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 29
- 230000027455 binding Effects 0.000 claims description 27
- 150000001720 carbohydrates Chemical class 0.000 claims description 22
- -1 1,4-disubstituted cyclohexyl Chemical group 0.000 claims description 21
- 108090000288 Glycoproteins Proteins 0.000 claims description 15
- 102000003886 Glycoproteins Human genes 0.000 claims description 15
- IJGPPNPGGXUNBK-UHFFFAOYSA-N 1-amino-20-(octadecylamino)icosan-2-one Chemical group CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCCC(=O)CN IJGPPNPGGXUNBK-UHFFFAOYSA-N 0.000 claims description 14
- 150000001413 amino acids Chemical group 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 101710149951 Protein Tat Proteins 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000003277 amino group Chemical group 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 125000003368 amide group Chemical group 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 2
- 238000001727 in vivo Methods 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 125000003473 lipid group Chemical group 0.000 claims 2
- 238000011321 prophylaxis Methods 0.000 claims 2
- 230000001575 pathological effect Effects 0.000 claims 1
- 150000002632 lipids Chemical class 0.000 abstract description 35
- 241000282414 Homo sapiens Species 0.000 abstract description 19
- 102000035118 modified proteins Human genes 0.000 abstract description 7
- 108091005573 modified proteins Proteins 0.000 abstract description 7
- 230000001225 therapeutic effect Effects 0.000 abstract description 7
- 230000002708 enhancing effect Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 6
- 210000003527 eukaryotic cell Anatomy 0.000 abstract description 5
- 125000002252 acyl group Chemical group 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 105
- 235000018102 proteins Nutrition 0.000 description 96
- 239000000427 antigen Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 34
- 108091007433 antigens Proteins 0.000 description 33
- 102000036639 antigens Human genes 0.000 description 33
- 239000000243 solution Substances 0.000 description 31
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 30
- 229940072221 immunoglobulins Drugs 0.000 description 27
- 230000001279 glycosylating effect Effects 0.000 description 18
- 235000014633 carbohydrates Nutrition 0.000 description 17
- 102000040430 polynucleotide Human genes 0.000 description 16
- 108091033319 polynucleotide Proteins 0.000 description 16
- 239000002157 polynucleotide Substances 0.000 description 16
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 14
- 230000014509 gene expression Effects 0.000 description 13
- 210000004408 hybridoma Anatomy 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 12
- 235000001014 amino acid Nutrition 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 241000700605 Viruses Species 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000011888 foil Substances 0.000 description 11
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 230000002452 interceptive effect Effects 0.000 description 10
- 239000002502 liposome Substances 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 239000000816 peptidomimetic Substances 0.000 description 9
- 238000007792 addition Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- 238000009010 Bradford assay Methods 0.000 description 7
- 241001529936 Murinae Species 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 229920001542 oligosaccharide Polymers 0.000 description 7
- 150000002482 oligosaccharides Chemical class 0.000 description 7
- 229910000033 sodium borohydride Inorganic materials 0.000 description 7
- 239000012279 sodium borohydride Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 102000007469 Actins Human genes 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 101000926208 Homo sapiens Inactive glutathione hydrolase 2 Proteins 0.000 description 5
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 5
- 102100034349 Integrase Human genes 0.000 description 5
- 102100027584 Protein c-Fos Human genes 0.000 description 5
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 5
- 101100068347 Rattus norvegicus Ggt1 gene Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 125000003172 aldehyde group Chemical group 0.000 description 5
- 230000004858 capillary barrier Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 239000012429 reaction media Substances 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 description 4
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 4
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 4
- 108090001030 Lipoproteins Proteins 0.000 description 4
- 102000004895 Lipoproteins Human genes 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 125000004423 acyloxy group Chemical group 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 238000007385 chemical modification Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108091006027 G proteins Proteins 0.000 description 3
- 102000030782 GTP binding Human genes 0.000 description 3
- 108091000058 GTP-Binding Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 3
- 230000004988 N-glycosylation Effects 0.000 description 3
- 108010038807 Oligopeptides Proteins 0.000 description 3
- 102000015636 Oligopeptides Human genes 0.000 description 3
- 102000043276 Oncogene Human genes 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium on carbon Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 108060006706 SRC Proteins 0.000 description 3
- 102000001332 SRC Human genes 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 108010018242 Transcription Factor AP-1 Proteins 0.000 description 3
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- IPVHCVDGLKVVMQ-UHFFFAOYSA-N benzyl n-[2-(2-hydroxy-5-nitrophenyl)-2-oxoethyl]carbamate Chemical compound OC1=CC=C([N+]([O-])=O)C=C1C(=O)CNC(=O)OCC1=CC=CC=C1 IPVHCVDGLKVVMQ-UHFFFAOYSA-N 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000008499 blood brain barrier function Effects 0.000 description 3
- 210000001218 blood-brain barrier Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 150000002772 monosaccharides Chemical group 0.000 description 3
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PNNNRSAQSRJVSB-UHFFFAOYSA-N 2,3,4,5-tetrahydroxyhexanal Chemical compound CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- ZLGYVWRJIZPQMM-HHHXNRCGSA-N 2-azaniumylethyl [(2r)-2,3-di(dodecanoyloxy)propyl] phosphate Chemical compound CCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCCCCCC ZLGYVWRJIZPQMM-HHHXNRCGSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 241000557626 Corvus corax Species 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 2
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 2
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 2
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- WFDIJRYMOXRFFG-UHFFFAOYSA-N acetic anhydride Substances CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 125000005530 alkylenedioxy group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000030570 cellular localization Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000000120 cytopathologic effect Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 description 2
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 102000035122 glycosylated proteins Human genes 0.000 description 2
- 108091005608 glycosylated proteins Proteins 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 102000012194 human gamma-glutamyltransferase Human genes 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000302 molecular modelling Methods 0.000 description 2
- 229950006780 n-acetylglucosamine Drugs 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000008823 permeabilization Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 150000003141 primary amines Chemical group 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 150000007970 thio esters Chemical class 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- SRFABIOHRRJLCU-UHFFFAOYSA-N 1-amino-18-(hexadecylamino)octadecan-2-one Chemical compound CCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCC(=O)CN SRFABIOHRRJLCU-UHFFFAOYSA-N 0.000 description 1
- ANBHJYHZZBJIKB-UHFFFAOYSA-N 20-amino-N-octadeca-2,4-dienoyl-19-oxoicosa-2,4-dienamide Chemical compound CCCCCCCCCCCCCC=CC=CC(=O)NC(=O)C=CC=CCCCCCCCCCCCCCC(=O)CN ANBHJYHZZBJIKB-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000015936 AP-1 transcription factor Human genes 0.000 description 1
- 108050004195 AP-1 transcription factor Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 102100021238 Dynamin-2 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 102000018711 Facilitative Glucose Transport Proteins Human genes 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 108020004206 Gamma-glutamyltransferase Proteins 0.000 description 1
- 101710107035 Gamma-glutamyltranspeptidase Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 108091052347 Glucose transporter family Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 101710173228 Glutathione hydrolase proenzyme Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102100020948 Growth hormone receptor Human genes 0.000 description 1
- 101710099093 Growth hormone receptor Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000817607 Homo sapiens Dynamin-2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000001845 Lipid-Linked Proteins Human genes 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- MNLRQHMNZILYPY-MDMHTWEWSA-N N-acetyl-alpha-D-muramic acid Chemical compound OC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@H](O)[C@@H]1NC(C)=O MNLRQHMNZILYPY-MDMHTWEWSA-N 0.000 description 1
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 1
- 108091008604 NGF receptors Proteins 0.000 description 1
- 102000007339 Nerve Growth Factor Receptors Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 102100035593 POU domain, class 2, transcription factor 1 Human genes 0.000 description 1
- 101710084414 POU domain, class 2, transcription factor 1 Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 102000009658 Peptidylprolyl Isomerase Human genes 0.000 description 1
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 1
- 241000157426 Pernis Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000012515 Protein kinase domains Human genes 0.000 description 1
- 108050002122 Protein kinase domains Proteins 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108010072960 Proto-Oncogene Proteins c-fyn Proteins 0.000 description 1
- 102000007131 Proto-Oncogene Proteins c-fyn Human genes 0.000 description 1
- 108010029869 Proto-Oncogene Proteins c-raf Proteins 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102000003431 Ubiquitin-Conjugating Enzyme Human genes 0.000 description 1
- 108060008747 Ubiquitin-Conjugating Enzyme Proteins 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002494 anti-cea effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 101150055766 cat gene Proteins 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 108091006116 chimeric peptides Proteins 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008290 endocytic mechanism Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 210000004954 endothelial membrane Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000006126 farnesylation Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 230000006130 geranylgeranylation Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000005161 hepatic lobe Anatomy 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical compound CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 1
- 102000053563 human MYC Human genes 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010039 intracellular degradation Effects 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 108091005630 lipid-anchored proteins Proteins 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical group NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000001589 microsome Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 108700024542 myc Genes Proteins 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000024717 negative regulation of secretion Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000008807 pathological lesion Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 239000002534 radiation-sensitizing agent Substances 0.000 description 1
- 239000002287 radioligand Substances 0.000 description 1
- 108700042226 ras Genes Proteins 0.000 description 1
- 108010043277 recombinant soluble CD4 Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000031998 transcytosis Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000006453 vascular barrier function Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/1072—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
- C07K1/1077—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the invention provides methods for targeting a protein, such as an antibody, to intracellular compartments in a eu aryotic cell, methods for enhancing organ uptake of proteins, pharmaceutical compositions of modified proteins for use in human therapy, and methods for manufacturing modified proteins.
- the modified proteins of the invention comprise an attached lipid portion, wherein one or more acyl groups are linked to the protein through a carbohydrate side-chain and various covalent linkage chemistries which are provided.
- proteins are generally only poorly transported across vascular endothelial membranes, if at all, and usually cannot traverse cellular membranes to gain access to intracellular compartments.
- antibodies can be raised against purified intracellular proteins, such as transcription factors, intracellular enzymes, and cytoarchitectural structural proteins, but such antibodies generally are not able to enter intact cells and bind to the intracellular antigen targets unless the cell membrane is disrupted.
- monoclonal antibody technology in the mid 1970's heralded a new age of medicine. For the first time, researchers and clinicians had access to essentially unlimited quantities of uniform antibodies capable of binding to a predetermined antigenic site and having various immunological effector functions.
- monoclonal antibodies were thought to hold great promise in, e.g.. the removal of harmful cells, microbial pathogens, and viruses j-n vivo. Methods allowing the development of specific monoclonal antibodies having binding specificities directed against almost any desired antigenic epitope, including antigens which are located in intracellular compartments in intact cells, promised a cornucopia of medicinal "magic bullets". Unfortunately, the development of appropriate therapeutic products based on monoclonal antibodies, as well as polyclonal antisera, has been severely hampered by a number of drawbacks inherent in the chemical nature of naturally- occurring antibodies.
- antibodies are generally not able to efficiently gain access to intracellular locations, as immunoglobulins are not able to traverse the plasma membrane of cells, and are typically only internalized, if at all, as a consequence of inefficient endocytotic mechanisms.
- antibodies do not generally cross vascular membranes (e.g., subendothelial basement membrane) , hampering the efficient uptake of antibodies into organs and interstitial spaces. Therefore, therapies for many important diseases could be developed if there were an efficient method to get specific, biologically active immunoglobulin molecules across capillary barriers and into intracellular locations.
- the life cycle of a retrovirus involves intracellular replication wherein several viral-encoded polypeptides essential for production of infectious virions from an infected cell could potentially be inhibited or blocked if specific monoclonal antibodies reactive with the viral-encoded proteins could readily gain access to the intracellular locations where retroviral replication occurs.
- Immunoliposomes have been produced as a potential targeted delivery system for delivering various molecules contained in the liposome to a targeted cell.
- Immunoliposomes employ immunoglobulins as targeting agents, wherein an acylated immunoglobulin is anchored in the lipid bilayer of the liposome to target the liposome to particular cell types that have external antigens that are bound by the acylated immunoglobulin(s) of the immunoliposomes (Connor and Huang (1985) J. Cell Biol. 101: 582; Huang, L. (1985) Biochemistry 24: 29; Babbitt et al. (1984) Biochemistry 23 : 3920; Connor et al. (1984) Proc. Natl. Acad. Sci.
- Immunoliposomes generally contain immunoglobulins which are attached to acyl substituents of a liposome bilayer through a crosslinking agent such as N-hydroxysuccimide and which thus become anchored in the liposome lipid bilayer.
- the crosslinked immunoglobulin is linked to the liposome and serves to target the liposomes to specific cell types bearing a predetermined external antigen by binding to the external cellular antigen. While such methods may serve to target liposomes to particular cell types, immunoliposomes suffer from several important drawbacks that have limited their application as drug-delivery vehicles, particularly for delivering proteins to intracellular locations.
- cationization involves carbodiimide linkage of a diamine, such as putrescine or hexanediamine, to the carboxylates of aspartate and glutamate residues in the immunoglobulin polypeptide sequence.
- a diamine such as putrescine or hexanediamine
- these chemical modifications of primary a ino acids likely disrupt the secondary and tertiary structure of the immunoglobulin sufficiently to account for the loss in binding affinity.
- present methods produce some degree of cationization in glutamate and aspartate residues located in the variable domain of an immunoglobulin chain, which results in significant loss of binding affinity and/or specificity.
- Chemical modification of small molecules has also been proposed as a method to augment transport of small bioactive compounds.
- Feigner discloses forming lipid complexes consisting of lipid vesicles and bioactive substances contained therein.
- Feigner et al. discloses cationic lipid compounds that are allegedly useful for enhancing transfer of small bioactive molecules in plants and animals.
- Liposomes and polycationic nucleic acids have been suggested as methods to deliver polynucleotides into cells. Liposomes often show a narrow spectrum of cell specificities, and when DNA is coated externally on to them, the DNA is often sensitive to cellular nucleases. Newer polycationic lipospermines compounds exhibit broad cell ranges (Behr et al., (1989) Proc. Natl. Acad. Sci. USA 86 .
- the present invention provides methods wherein lipid substituents are linked to a protein, such as an immunoglobulin, typically by covalent linkage to a carbohydrate side chain of the protein such that the lipid substituent does not substantially destroy the biological activity of the protein (e.g., antigen binding) .
- the invention provides methods for producing lipidized proteins, generally by lipidization of a carbohydrate moiety on a glycoprotein or glycopeptide.
- the methods of the invention are used for attaching a lipid, such as a lipoamine, to a polypeptide, typically by covalent linkage of the lipid to a carbohydrate moiety on a protein, wherein the carbohydrate moiety generally is chemically oxidized and reacted with a lipoamine to form a lipidized protein.
- the resultant lipidized protein generally has advantageous pharmacokinetic characteristics, such as an increased capacity to cross vascular barriers and access parenchymal cells of various organs and an increased ability to access intracellular compartments.
- lipidization of proteins such as antibodies directed against transcription factors (e.g., Fos, Jun, AP-1, OCT-1, NF-AT) , enhances intranuclear localization of the lipidized protein(s) .
- transcription factors e.g., Fos, Jun, AP-1, OCT-1, NF-AT
- the invention also provides methods for producing lipidized antibodies that are efficiently transported across capillary barriers and internalized into mammalian cells in vivo.
- the methods of the invention relate to methods for chemically attaching at least one lipid substituent (e.g.. lipoamine) to a carbohydrate substituent on an immunoglobulin to produce a carbohydrate-linked lipidized immunoglobulin, wherein the lipidized immunoglobulin is capable of intracellular localization.
- at least one lipid substituent e.g.. lipoamine
- At least one lipid substituent e.g., lipoamine
- a lipid substituent is covalently attached to a non-carbohydrate moiety on a protein or polypeptide (e.g., by formation of an amide linkage with a Asp or Glu residue side-chain carboxyl substituent or a thioester linkage with a Cys residue) .
- a fatty acid can be linked to an Arg or Lys residue by the side-chain amine substituents.
- lipid substitutents can be covalently attached to peptidomimetic compounds.
- Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed “peptide mimetics” or “peptido imetics” (Fauchere, J. (1986) Adv. Drug Res. 15: 29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem 30: 1229, which are incorporated herein by reference) and are usually developed with the aid of computerized molecular modeling.
- Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect.
- a particularly preferred non-peptide linkage is -CH 2 NH-.
- Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half- life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others.
- Lipidization of peptidomimetics usually involves covalent attachment of one or more acyl chains, directly or through a spacer (e.g., an amide group) , to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling.
- Such non-interfering positions generally are positions that do not form direct contacts with the macromolecules(s) (e.g., receptors) to which the peptidomimetic binds to produce the therapeutic effect.
- Lipidization of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.
- the invention also relates to therapeutic and diagnostic compositions of lipidized proteins, such as lipidized antibodies, that can cross vascular membranes and enter the intracellular compartment, particularly lipidized antibodies that bind to intracellular immunotherapeutic targets, such as viral-encoded gene products that are essential components of a viral life cycle (e.g., HIV-l Tat protein) , to intracellular antigens that are biologically active (e.g., an oncogene protein such as c-fos, c-src, c-myc, c-lck (p56) , c-fyn (p59) , and c-abl) , and/or to transmembrane or extracellular antigens (e.g., polypeptide hormone receptors such as an IL-2 receptor, PDGF receptor, EGF receptor, NGF receptor, GH receptor, or TNF receptor) .
- intracellular immunotherapeutic targets such as viral-encoded gene products that are essential components of a viral life cycle (e.g.
- lipidized antibodies include, but are not limited to, the following: c-ras p21, c-her-2 protein, c-raf, any of the various G proteins and/or G-protein activating proteins (GAPs) , transcription factors such as NF-AT, calcineurin, and cis-trans prolyl isomerases.
- GAPs G-protein activating proteins
- the lipidized antibodies can be used to localize a diagnostic reagent, such as a radiocontrast agent or magnetic resonance imaging component, to a specific location in the body, such as a specific organ, tissue, body compartment, cell type, neoplasm, or other anatomical structure (e.g., a pathological lesion).
- the lipidized antibodies can also be used to localize linked therapeutic agents, such as chemotherapy drugs, radiosensitizing agents, radionuclides, antibiotics, and other agents, to specific locations in the body.
- the lipidized antibodies of the invention can be used therapeutically for neutralizing (i.e, binding to and thereby inactivating) an intracellular target antigen, such as HIV-l Tat protein, a transmembrane or membrane-associated antigen target (e.g., 7-glutamyltranspeptidase, c-ras 11 p21, rasGAP) or an extracellular antigen target (i.e., j ⁇ -amyloid protein deposits in the brain of an Alzheimer's disease patient).
- an intracellular target antigen such as HIV-l Tat protein, a transmembrane or membrane-associated antigen target (e.g., 7-glutamyltranspeptidase, c-ras 11 p21, rasGAP) or an extracellular antigen target (i
- Lipidized antibodies can traverse the blood-brain barrier and react with extracellular antigen targets that are generally inaccessible to immunoglobulins which circulate in the blood or lymphatic system. Lipidized antibodies can also react with intracellular portions on transmembrane proteins, such as cytoplasmic tails of viral envelope glycoproteins or protein kinase domains of protooncogene proteins (c-src, c-abl) , and thus inhibit production of infectious enveloped virus or kinase activity, respectively.
- transmembrane proteins such as cytoplasmic tails of viral envelope glycoproteins or protein kinase domains of protooncogene proteins (c-src, c-abl)
- Figure 1 shows structural formulae representing various lipoamines that can be used in the invention.
- the righthand column exemplifies branched-chain lipoamines and the lefthand column exemplifies straight-chain lipoamines.
- Figure 2 is a schematic representation of (1) a glycosylated antibody comprising an immunoglobulin tetramer (two light chains associated with two heavy chains) , and (2) a schematic representation of carbohydrate-linked lipidized immunoglobulins of the invention.
- a glycosylated antibody comprising an immunoglobulin tetramer (two light chains associated with two heavy chains)
- carbohydrate-linked lipidized immunoglobulins of the invention For example but not limitation, branched-chain lipoamide substituents are shown attached to partially oxidized carbohydrate sidechains of an immunoglobulin tetramer. Such carbohydrate sidechains may be located in the C H , V H , C L , and/or V L regions.
- Figure 3 shows the beneficial effect of a lipidized anti-Tat immunoglobulin on the jLn vitro survival of cells infected with HIV-l as compared to the lack of effect of the native (i.e., non-lipidized) anti-Tat immunoglobulin.
- Fig. 4 shows that the lipidized anti-Tat antibody significantly inhibited CAT activity (by approximately 75%) , whereas native (unlipidized) anti-Tat antibody, lipidized anti-gpl20 antibody, or rsCD4 were far less effective in inhibiting CAT activity in HLCD4-CAT cells.
- the term “corresponds to” is used herein to mean that a polynucleotide sequence is homologous (i.e., is identical, not strictly evolutionarily related) to all or a portion of a reference polynucleotide sequence, or that a polypeptide sequence is identical to a reference polypeptide sequence.
- the term “complementary to” is used herein to mean that the complementary sequence is homologous to all or a portion of a reference polynucleotide sequence.
- the nucleotide sequence "TATAC” corresponds to a reference sequence "TATAC” and is complementary to a reference sequence "GTATA".
- substantially similarity denotes a characteristic of a polypeptide sequence or nucleic acid sequence, wherein the polypeptide sequence has at least 50 percent sequence identity compared to a reference sequence, and the nucleic acid sequence has at least 70 percent sequence identity compared to a reference sequence.
- the percentage of sequence identity is calculated excluding small deletions or additions which total less than 25 percent of the reference sequence.
- the reference sequence may be a subset of a larger sequence, such as a constant region domain of a constant region immunoglobulin gene; however, the reference sequence is at least 18 nucleotides long in the case of polynucleotides, and at least 6 amino residues long in the case of a polypeptide.
- Naturally-occurring refers to the fact that an object can be found in nature.
- a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.
- a lipoprotein e.g., a naturally- occuring isoprenylated or myristylated protein
- Glycosylation sites refer to amino acid residues which are recognized by a eukaryotic cell as locations for the attachment of sugar residues.
- the amino acids where carbohydrate, such as oligosaccharide, is attached are typically asparagine (N-linkage) , serine (O-linkage) , and threonine (O-linkage) residues.
- the specific site of attachment is typically signaled by a sequence of amino acids, referred to herein as a "glycosylation site sequence".
- the glycosylation site sequence for N-linked glycosylation is: -Asn-X-Ser- or -Asn-X-Thr-, where X may be any of the conventional amino acids, other than proline.
- the predominant glycosylation site sequence for O-linked glycosylation is: -(Thr or Ser)-X-X-Pro-, where X is any conventional amino acid.
- glycosaminoglycans a specific type of sulfated sugar
- X is any conventional amino acid.
- N-linked and O- linked refer to the chemical group that serves as the attachment site between the sugar molecule and the amino acid residue. N-linked sugars are attached through an amino group; O-linked sugars are attached through a hydroxyl group.
- glycosylation site sequences in a protein are necessarily glycosylated; some proteins are secreted in both glycosylated and nonglycosylated forms, while others are fully glycosylated at one glycosylation site sequence but contain another glycosylation site sequence that is not glycosylated.
- glycosylation site sequences that are present in a polypeptide are necessarily glycosylation sites where sugar residues are actually attached.
- the initial N- glycosylation during biosynthesis inserts the "core carbohydrate” or “core oligosaccharide” (Proteins, Structures and Molecular Principles r (1984) Creighton (ed.), W.H. Freeman and Company, New York, which is incorporated herein by reference) .
- glycosylating cell is a cell capable of glycosylating proteins, particularly eukaryotic cells capable of adding an N-linked "core oligosaccharide” containing at least one mannose residue and/or capable of adding an O-linked sugar, to at least one glycosylation site sequence in at least one polypeptide expressed in said cell. particularly a secreted protein.
- a glycosylating cell contains at least one enzymatic activity that catalyzes the attachment of a sugar residue to a glycosylating site sequence in a protein or polypeptide, and the cell actually glycosylates at least one expressed polypeptide.
- mammalian cells are typically glycosylating cells.
- Other eukaryotic cells such as insect cells and yeast, may be glycosylating cells.
- an antibody refers to a protein consisting of one or more polypeptides substantially encoded by genes of the immunoglobulin superfamily (e.g., see The Immunoglobulin Gene Superfamilv. A.F. Williams and A.N. Barclay, in Immunoglobulin Genes. T. Honjo, F.W. Alt, and T.H. Rabbitts, ed ⁇ ., (1989) Academic Press: San Diego, CA, pp.361- 387, which is incorporated herein by reference).
- an antibody may comprise part or all of a heavy chain and part or all of a light chain, or may comprise only part or all of a heavy chain.
- the recognized immunoglobulin genes include the kappa, lambda, alpha, gamma (IgG- L , IgG 2 , IgG 3 , IgG 4 ) , delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes.
- Full-length immunoglobulin "light chains" (about 25 Kd or 214 amino acids) are encoded by a variable region gene at the NH2-terminus (about 110 amino acids) and a kappa or lambda constant region gene at the COOH - terminus.
- Fully-length immunoglobulin "heavy chains” (about 50 Kd or 446 amino acids) are similarly encoded by a variable region gene (about 116 amino acids) and one of the other aforementioned constant region genes, e.g.. gamma (encoding about 330 amino acids) .
- Antibodies include, but are not limited to, the following: immunoglobulin fragments (e.g., Fab, F(ab) 2 ), Fv) , single chain immunoglobulins, chimeric immunoglobulins, humanized antibodies, primatized antibodies, and various light chain- heavy chain combinations) .
- Antibodies can be produced in glycosylating cells (e.g., human lymphocytes, hybridoma cells, yeast, etc.), in non-glycosylating cells (e.g., in E . coli ) , or synthesized by chemical methods or produced by in vitro translation systems using a polynucleotide template to direct translation.
- glycosylating cells e.g., human lymphocytes, hybridoma cells, yeast, etc.
- non-glycosylating cells e.g., in E . coli
- lipidized antibody is an antibody which has been modified by lipid derivatization (e.g., by covalent attachment of a lipoamine, such as glycyldioctadecyla ide, dilauroylphosphatidylethanolamine, or dioctadecylamidoglycylspermidine) of one or more carbohydrate moieties attached to an immunoglobulin at a glycosylation site.
- a lipoamine such as glycyldioctadecyla ide, dilauroylphosphatidylethanolamine, or dioctadecylamidoglycylspermidine
- the lipid substituent such as a lipoamine, is covalently attached through a naturally-occurring carbohydrate moiety at a naturally-occurring glycosylation site.
- immunoglobulins that have altered glycosylation site sequences (typically by site- directed mutagenesis of polynucleotides encoding immunoglobulin chains) and/or altered glycosylation patterns (e.g., by expression of immunoglobulin-encoding polynucleotides in glycosylating cells other than lymphocytes or in lymphocytes of other species) .
- Lipid substituents can be attached to one or more naturally-occurring or non- naturally ⁇ occurring carbohydrate moiety on an immunoglobulin chain.
- the carbohydrate may be lipidized prior to attachment to the immunoglobulin
- lipidized protein refers to a protein (including multimeric proteins, glycoproteins, and polypeptides of various sizes) that has been modified by attachment of lipid (e.g., lipoamine), generally through a carbohydrate moiety.
- a lipidized protein is generated by derivatizing a protein such that the resultant lipidized protein is distinct from naturally-occurring lipid-linked proteins and lipoproteins.
- proteins that are biologically active e.g., enzymes, receptors, transcription factors
- lipidization should not substantially destroy the biological activity (e.g., at least about 15 percent of a native biological activity should be preserved in the lipidized protein) .
- Lipidized peptidomimetics should retain at least about 25 to 95 percent of the pharmacologic activity of a corresponding non-lipidized peptidomimetic.
- Alkyl refers to a fully saturated aliphatic group which may be cyclic, branched or straightchain. Alkyl groups include those exemplified by methyl, ethyl, cyclopropyl, cyclopropylmethyl, sec-butyl, heptyl, and dodecyl.
- non-interfering substitutents e.g., halogen; C ⁇ - -C ⁇ alkoxy; C-L- ⁇ acyloxy; formyl; alkylenedioxy; benzyloxy; phenyl or benzyl, each optionally substituted with from 1 to 3 substituents selected from halogen, C ⁇ - -C ⁇ alkoxy or C 1 -C 4 acyloxy.
- non-interfering characterizes the substituents as not adversely affecting any reactions to be performed in accordance with the process of this invention. If more than one alkyl group is present in a given molecule, each may be independently selected from “alkyl” unless otherwise stated.
- Alkylene refers to a fully saturated divalent radical containing only carbon and hydrogen, and which may be a branched or straight chain radical. This term is further exemplified by radicals such as methylene, ethylene, n-propylene, t-butylene, i-pentylene, n-heptylene, and the like.
- non-interfering sustituents e.g., halogen; C ⁇ - -C ⁇ alkoxy; C 1 -C 4 acyloxy; formyl; alkylenedioxy; benzyloxy; phenyl or benzyl, each optionally substituted with from 1 to 3 substituents selected from halogen, C 1 -C 4 alkoxy or C- -C acyloxy.
- non- interfering characterizes the substituents as not adversely affecting any reactions to be performed in accordance with the process of this invention. If more than one alkylene group is present in a given molecule, each may be independently selected from “alkylene” unless otherwise stated.
- Aryl denoted by Ar, includes monocyclic or condensed carbocyclic aromatic groups having from 6 to 20 carbon atoms.
- Aryl groups include those exemplified by phenyl and naphthyl. These groups may be substituted with one or more non-interfering substituents, e.g., those selected from lower alkyl; lower alkenyl; lower alkynyl; lower alkoxy; lower alkylthio; lower alkylsulfinyl; lower alkylsulfonyl, dialkylamine; halogen; hydroxy; phenyl; phenyloxy; benzyl; benzoyl; and nitro. Each substituent may be optionally substituted with additional non-interfering substituents.
- Amin refers to the group -NH 2 .
- Alkylcarbonyl refers to the group -(CHR- ⁇ -CO- wherein R 2 is further designated the ⁇ -position.
- R 2 may be hydrogen, alkyl, or an amino group.
- Preferably R ⁇ is an amino group.
- novel methods for chemically modifying proteins, such as antibodies, to facilitate passage across capillary barriers and into cells include the covalent attachment of at least one non-interfering lipid substituent (e.g., glycyldioctadecylamide, glycyldiheptadecylamide, glycyldihexadecylamide, dilauroylphosphatidylethanolamine, and glycyldioctadecadienoylamide) to a reactive site in the protein molecule (e.g., a periodate-oxidized carbohydrate moiety) .
- a reactive site in the protein molecule e.g., a periodate-oxidized carbohydrate moiety
- lipidized proteins such as lipidized antibodies of the invention.
- lipids may be conjugated to a protein of interest to yield a lipidized protein: lipoamines, lipopolyamines, and fatty acids (e.g., stearic acid, oleic acid, and others) .
- the lipid will be attached by a covalent linkage to a carbohydrate linked to the protein (e.g., a carbohydrate side chain of a glycoprotein) .
- Naturally-occurring carbohydrate side-chains are preferably used for linkage to a lipoamine, although novel glycosylation sites may be engineered into a polypeptide by genetic manipulation of an encoding polynucleotide, and expression of the encoding polynucleotide in a glycosylating cell to produce a glycosylated polypeptide.
- Glycosylated proteins can be lipidized to enhance transvascular transport, organ uptake, and intracellular localization of the lipidized protein, including intranuclear localization.
- a glycosylated polypeptide such as an antibody
- an oxidizing agent e.g., periodate
- a lipoamine to form a covalent (amide or imide, respectively) bond linking the lipoamine to the protein.
- the oxidation of the carbohydrate side- chain is a partial oxidation producing at least one reactive carboxyl or aldehyde group, although generally chemical oxidation methods will produce some molecules that are partially oxidized and others that are either unoxidized or completely oxidized.
- the glycoprotein in order to be lipidized by reaction with a lipoamine, the glycoprotein must be oxidized to produce at least one pendant aldehyde group that can react with a lipoamine, although it may be possible to produce lipidized proteins through linkage to pendant carboxyl groups as well.
- a pendant carboxyl or aldehyde group of an oxidized glycoprotein is a carboxyl or aldehyde group having a carbonyl carbon derived from an oxidized oligosaccharide and which is covalently attached to the protein, either directly or through a spacer (e.g., an unoxidized portion of a N- or O-linked carbohydrate side-chain) .
- a spacer e.g., an unoxidized portion of a N- or O-linked carbohydrate side-chain
- N-linked and O-linked carbohydrate chains are incompletely oxidized to generate a multiplicity of reactive aldehyde and carboxyl groups at each glycosylation position for subsequent reaction with lipoamines.
- glycoproteins having one or more complex N-linked oligosaccharides such as those having a branched (manno ⁇ e) 3 (/3-N-acetylglucosamino) core, are partially oxidized by limited reaction with a suitable oxidant, generally periodate.
- Linked oligosaccharides containing N- acetylglucosamine (NAG) , mannose, galactose, fucose (6- deoxygalactose) , N-acetylneuraminic acid (sialic acid) , glucose, N-acetylmuramic acid, N-acetylgalactosamine, xylose, or combinations of these monosaccharide units can be oxidized and reacted with lipoamines to produce lipidized proteins, more specifically carbohydrate-linked lipidized proteins.
- Glycoproteins containing linked oligosaccharides with monosaccharide units other than those specifically listed above for exemplification, including non-naturally occurring monosaccharides can also be oxidized and covalently linked to a lipoamine to form a lipidized protein.
- Lipoamines are molecules having at least one acyl group and at least one free amine (i.e., a primary or second ⁇ ary amine) . It is believed that the invention can also be practiced with lipoamines that have tertiary amines which comprise at least one substituent that can be displaced by reaction with an oxidized carbohydrate. Examples of lipoamines having a primary amine are shown in Fig. 1.
- the invention can produce lipidized proteins by reacting a glycoprotein with a straight-chain lipoamine of the formula:
- R is: a disubstituted alkyl (alkylene) , preferably methylene (-CH 2 -) ; a 1,4-disubstituted cyclohexyl; a disubstituted aryl (arylene); preferably a 1,4-disubstituted phenyl (phenylene) ; an amido group of the formula -(CHR- j ⁇ -CO- NH- wherein R ⁇ is hydrogen or an amino group; alkylcarbonyl, preferably ⁇ -amino substituted alkylcarbonyl; or a phosphate diester, preferably of the formula -CH 2 -0-P0 2 -0-.
- n is an integer which is typically 1 to 50, preferably about 5 to 30, more preferably about 10 to 25, and most usually about 15 to 20. In general, n is selected at the discretion of the practitioner according to the following guideline: when the molecule to be lipidized is large (i.e., a protein of more than about 10 kD) it is preferred than n is at least about 8 to 12 or more to increase the hydrophobicity of the resulting lipidized protein; when the molecule to be lipidized is small (e.g., an oligopeptide) n can typically be in the range 2 to 18, but may be larger if additional hydrophobicity of the lipidized molecule is desired.
- n is an integer which is typically 1 to 50, preferably about 5 to 30, more preferably about 10 to 25, and most usually about 15 to 20. In general, n is selected at the discretion of the practitioner according to the following guideline: when the molecule to be lipidized is large (i.e., a protein of more than about 10 kD) it
- branched- chain lipoamines which, for example, can include lipoamines of the formula:
- R' is: a trisubstituted alkyl, preferably - CH 2 -CH ⁇ or 1,2,4-trisubstituted cyclohexyl; a trisubstituted aryl, preferably 1,2,4-trisubstituted phenyl; an amido group of the formula -(CHR ⁇ -CO-N ⁇ wherein R ⁇ i- s hydrogen or an amino group; an i ino group of the formula -CHR 2 -NH-CH ⁇ wherein R 2 is hydrogen or an amino group or an imino group of the formula - CH 2 -N ⁇ ; or a phosphate diester, preferably of the formula -CH 2 - CH 2 -0-P0 2 -0-CH 2 -CH(C0 2 -) 2 .
- n is selected independently and are integers which are typically 1 to 50, preferably about 5 to 30, more preferably about 10 to 25, and most usually about 15 to 20.
- n is selected at the discretion of the practitioner according to the following guideline: when the molecule to be lipidized is large (i.e., a protein of more than about 10 kD) it is preferred than m and/or n is at least about 8 to 12 or more to increase the hydrophobicity of the resulting lipidized protein; when the molecule to be lipidized is small (e.g., an oligopeptide) n can typically be in the range 2 to 18, but may be larger if additional hydrophobicity of the lipidized molecule is desired.
- any glycoprotein can be lipidized according to the methods of the invention by reacting a lipoamine with an oxidized carbohydrate side-chain.
- Fig. 2 shows schematically a glycosylated antibody and a carbohydrate-linked lipidized antibody of the invention, respectively.
- Non-glycosylated proteins may be conjugated to a lipid by linkage through a suitable crosslinking agent (e.g. , by carbodiimide linkage chemistry) .
- a suitable crosslinking agent e.g. , by carbodiimide linkage chemistry
- novel lipidized antibodies capable of specifically binding to predetermined intracellular epitopes with strong affinity are provided.
- the lipidized antibodies readily enter the intracellular compartment and have binding affinities of at least about 1 x 10 6 M “1 , preferably 1 x 10 7 M “1 to 1 x 10 8 M “1 , more preferably at least about 1 x 10 9 M “1 or stronger.
- the lipidized antibodies typically have a lipid substituent attached to a naturally-occurring carbohydrate side chain on a donor immunoglobulin chain, which composes an antibody specifically reactive with an intracellular, transmembrane, or extracellular epitope. Since carbohydrates are located on the Fc portion of immunoglobulins, chemical modification of the carbohydrate residues by lipidization would be unlikely to produce a substantial loss of affinity of the antibodies for their antigens (Rodwell et al. (1986) Proc.
- the lipidized antibodies generally retain substantial affinity for their antigen, and the avidity can be readily measured by any of several antibody-antigen binding assays known in the art.
- the antibodies can be produced economically in large quantities and find use, for example in the treatment of various human disorders by a variety of techniques.
- immunoglobulin constitutes the basic structural unit of an antibody. This form is a tetramer and consists of two identical pairs of immunoglobulin chains, each pair having one light and one heavy chain. In each pair, the light and heavy chain variable regions are together responsible for binding to an antigen, and the constant regions are responsible for the antibody effector functions.
- immunoglobulins may exist in a variety of other forms including, for example, Fv, Fab, and (Fab') 2 , as well as bifunctional hybrid antibodies, fusion proteins (e.g., bacteriophage display libraries), and other forms (e.g. f Lanzavecchia et al., Eur. J. Immunol. 17, 105
- Antibodies can be produced in glycosylating cells (e.g., human lymphocytes, hybridoma cells, yeast, etc.), in non-glycosylating cells (e.g., in E. coli ) , or synthesized by chemical methods or produced by in vitro translation systems using a polynucleotide template to direct translation.
- glycosylating cells e.g., human lymphocytes, hybridoma cells, yeast, etc.
- non-glycosylating cells e.g., in E. coli
- One source of hybridoma cell lines and immunoglobulin-encoding polynucleotides is American Type Culture Collection, Rockville, MD.
- Antibodies that are produced in non-glycosylating cells can be conjugated to a lipid by use of a bifunctional crosslinking agent or preferably post-translationally glycosylated in a glycosylation system such as purified canine pancreatic microsomes (Mueckler and Lodish (1986) Cell 44: 629 and Walter, P. (1983) Meth. Enzymol. 96: 84, which are incorporated herein by reference) .
- polynucleotides that encode antibodies may be isolated from screened prokaryotic expression libraries, such as combinatorial antibody fragment display libraries, and subsequently expressed in glycosylating cells to produce glycosylated antibodies. According to these methods, glycosylated antibodies may be obtained, having naturally- occurring and/or non-naturally-occurring glycosylation patterns. Such glycosylated antibodies can be lipidized according to the methods of the invention.
- V domain Glycosylation of the V domain is believed to arise from fortuitous occurrences of the N-linked glycosylation signal Asn-Xaa-Ser/Thr in the V region sequence and has not been recognized in the art as playing an important role in immunoglobulin function.
- lipidization is performed on antibodies having naturally- occurring glycosylation patterns. If glycosylation sites are engineered into an antibody, it is preferred that novel glycosylation site be introduced in a constant region or variable region framework region, which are less likely to adversely affect the antigen binding activity of the antibody. It is generally most preferred that novel glycosylation sites which are engineered into an antibody are placed in a constant region.
- polypeptide fragments comprising only a portion of a primary antibody structure and having a carbohydrate side chain that may be derivatized with a lipid substituent (e.g., lipoamine) can be produced, which fragments possess one or more immunoglobulin activities (e.g., antigen binding activity) .
- immunoglobulin activities e.g., antigen binding activity
- These polypeptide fragments may be produced by proteolytic cleavage of intact antibodies by methods well known in the art, or by site-directed mutagenesis at the desired locations in expression vectors containing sequences encoding immunoglobulin proteins, such as after OE ⁇ to produce Fab fragments or after the hinge region to produce (Fab') 2 fragments.
- Single chain antibodies may be produced by joining V L and V H with a DNA linker (see.
- the immunoglobulin-related genes contain separate functional regions, each having one or more distinct biological activities, the genes may be fused to functional regions from other genes having novel properties.
- Nucleic acid sequences for producing immunoglobulins for the present invention are capable of ultimately expressing the desired antibodies and can be formed from a variety of different polynucleotides (genomic or cDNA, RNA, synthetic oligonucleotides, etc.) and components (e.g., V, J, D, and C regions) , as well as by a variety of different techniques.
- Immunoglobulins and/or DNA sequences encoding immunoglobulin chains may be obtained, for example, by hybridoma clones which can be produced according to methods known in the art (Kohler and Milstein (1976) Eur. J. Immunol. 6_: 511, incorporated herein by reference) or can be obtained from several sources ("ATCC Catalog of Cell Lines and Hybridomas", American Type Culture Collection, Rockville, MD, which is incorporated herein by reference) .
- DNA sequences encoding immunoglobulin chains can be obtained by conventional cloning methods known in the art and described in various publications, for example, Maniatis et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., (1989), Cold Spring Harbor, N.Y.
- DNA sequences will be expressed in hosts, typically glycosylating cells, after the sequences have been operably linked to (i.e., positioned to ensure the functioning of) an expression control sequence.
- These expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosomal DNA.
- expression vectors will contain selection markers, e.g., tetracycline-resistance or G418-resistance, to permit detection of those cells transformed with the desired DNA sequences (see, e.g., U.S. Patent 4,704,362).
- selection markers e.g., tetracycline-resistance or G418-resistance
- E. coli is one prokaryotic host useful particularly for cloning the DNA sequences of the present invention.
- Other icrobial hosts suitable for use include bacilli, such as Bacillus ⁇ ubtili ⁇ , and other Enterobacteriaceae, such as Salmonella , Serratia , and various P ⁇ eudomonas species.
- bacilli such as Bacillus ⁇ ubtili ⁇
- Enterobacteriaceae such as Salmonella , Serratia
- various P ⁇ eudomonas species such as Salmonella , Serratia , and various P ⁇ eudomonas species.
- expression vectors which will typically contain expression control sequences compatible with the host cell (e.g., an origin of replication) .
- any number of a variety of well-known promoters will be present, such as the lactose promoter system, a tryptophan (trp) promoter system, a jS-galactosidase promoter system, or a promoter system from phage lambda.
- the promoters will typically control expression, optionally with an operator sequence, and have ribosome binding site sequences and the like, for initiating and completing transcription and translation.
- Proteins, such as antibodies, that are expressed in non-glycosylating cells can be post-translationally glycosylated in a glycosylation system (Mueckler and Lodish, op.cit.. which is incorporated herein by reference.
- Saccharomyces is a preferred host glycosylating cell, with suitable vectors having expression control sequences, such as promoters, including 3-phosphoglycerate kinase or other glycolytic enzymes, and an origin of replication, termination sequences and the like as desired.
- mammalian tissue cell culture may also be used to express and produce the polypeptides of the present invention (see, Winnacker, "From Genes to Clones," VCH Publishers, N.Y., N.Y. (1987)).
- Eukaryotic cells are actually preferred, because a number of suitable host cell lines capable of secreting intact immunoglobulins have been developed in the art, and include the CHO cell lines, various COS cell lines, HeLa cells, preferably myeloma cell lines, etc, and transformed B-cells or hybridomas.
- Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter, an enhancer (Queen et al. , Immunol. Rev..
- Preferred expression control sequences are promoters derived from immunoglobulin genes, SV40, Adenovirus, cytomegalovirus, Bovine Papillo a Virus, and the like.
- the vectors containing the DNA segments of interest can be transferred into the host cell by well-known methods, which vary depending on the type of cellular host. For example, calcium chloride transfection is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment or electroporation may be used for other cellular hosts. (See, generally, Maniatis et al. , Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, (1982) .)
- the whole antibodies, their dimers, individual light and heavy chains, or other immunoglobulin forms of the present invention can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes, "Protein Purification", Springer-Verlag, N.Y. (1982)).
- Substantially pure immunoglobulins of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity most preferred, for pharmaceutical uses.
- the polypeptides may then be used therapeutically (including extracorporeally) or in developing and performing assay procedures, immunofluorescent stainings, and the like.
- intact immunoglobulins or their binding fragments, such as Fab are preferably used.
- lipidized antibodies will be of the human IgM or IgG isotypes, but other mammalian constant regions may be utilized as desired.
- Lipidized antibodies of the IgA, IgG, IgM, IgE, IgD classes may be produced.
- the lipidized antibodies of the invention are human, murine, bovine, equine, porcine, or non-human primate antibodies, more preferably human or murine antibodies.
- the invention can be used to produce lipidized antibodies of various types, including but not limited to: chimeric antibodies, humanized antibodies, primatized antibodies, F v fragments, toxin-antibody conjugates, isotope-antibody conjugates, and imaging agent-antibody conjugates.
- lipidized antibodies are suitably labeled with a diagnostic label, administered to the patient, and their location determined at various times following administration.
- diagnostic reporters e.g., with Tc", other radioligands, radiocontrast agents or radio-opaque dye
- Proteins and oligopeptides i.e., polypeptides comprising from 2 to about 50 amino acid residues attached in peptidyl linkage
- Naturally-occurring glycoproteins e.g., 7-glutamyltranspeptidase, thrombomodulin, glucose transporter proteins
- a crosslinking agent e.g., N- hydroxysuccimide
- At least one lipid substituent e.g., lipoamine
- a lipid substituent is covalently attached to a non- carbohydrate moiety on a protein or polypeptide (e.g., by formation of an amide linkage with a Asp or Glu residue side- chain carboxyl substituent or a thioester linkage with a Cys residue) .
- a fatty acid can be linked to an Arg or Lys residue by the side-chain amine substituents.
- non-glycosylated proteins which may be lipidized for enhancing transvascular and intracellular transport include, but are not limited to, the following proteins: c-fos, c-myc, c-src, NF- AT, and HMG CoA reductase.
- Naturally-occurring lipoproteins such as native proteins which undergo physiological farnesylation, geranylgeranylation, and palmitylation are natural products and are not defined herein as "lipidized proteins”.
- the lipidized antibodies and pharmaceutical compositions thereof are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly or in ⁇ travenously.
- the compositions for parenteral administration will commonly comprise a solution of the immunoglobulin or a cocktail thereof dissolved in an acceptable carrier, preferably an aqueous carrier.
- an acceptable carrier preferably an aqueous carrier.
- aqueous carriers can be used, e.g., water, buffered water, 0.4% saline, 0.3% glycine and the like. These solutions are sterile and generally free of particulate matter.
- These compositions may be sterilized by conventional, well known sterilization techniques.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate, human albumin, etc.
- concentration of antibody in these formulations can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
- a typical pharmaceutical composition for injection could be made up to contain 1 ml sterile buffered water, and 1-10 mgs of lipidized immunoglobulin.
- a typical composition for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution, and 150 mg of antibody.
- Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Science, 15th ed. , Mack Publishing Company, Easton, Pennsylvania (1980) , which is incorporated herein by reference.
- the lipidized proteins and antibodies of this invention can be frozen or lyophilized for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective with conventional immune globulins and art-known lyophilization and reconsti- tution techniques can be employed. It will be appreciated by those skilled in the art that lyophilization and recon- stitution can lead to varying degrees of activity loss (e.g., with conventional immune globulins, IgM antibodies tend to have greater activity loss than IgG antibodies) and that use levels may have to be adjusted to compensate.
- compositions containing the present lipidized proteins (e.g., antibodies) or a cocktail thereof can be administered for prophylactic and/or therapeutic treatments.
- compositions are administered to a patient in an amount sufficient to cure or at least partially arrest the disease and its complications.
- An amount adequate to accomplish this is defined as a "therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the infection and the general state of the patient's own immune system, but generally range from about 1 to about 200 mg of antibody per dose, with dosages of from 5 to 25 mg being more commonly used. It must be kept in mind that the materials of this invention may generally be employed in serious disease states, that is life-threatening or potentially life-threatening situations.
- compositions containing the present immunoglobulins or a cocktail thereof are administered to a patient not already in a disease state to enhance the patient's resistance.
- Such an amount is defined to be a "prophylactically effective dose.”
- the precise amounts again depend upon the patient's state of health and general level of immunity, but generally range from 0.1 to 25 mg per dose.
- compositions can be carried out with dose levels and pattern being selected by the treating physician.
- pharmaceutical formulations should provide a quantity of the lipidized proteins and/or lipidized antibody(ies) of this in ⁇ vention sufficient to effectively treat the patient.
- the lipidized antibodies may either be labeled or unlabeled.
- Unlabeled antibodies can be used in combination with other labeled antibodies (second antibodies) that are reactive with the lipidized antibody, such as antibodies specific for human immunoglobulin constant regions.
- second antibodies labeled antibodies
- the lipidized antibodies can be directly labeled.
- labels may be employed, such as radionuclides, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, ligands (particularly haptens) , radiocontrast agents, metal chelates, etc. Numerous types of diagnostic imaging applications are available and are well known to those skilled in the art.
- an antibody that binds to a tumor antigen may be lipidized and conjugated to a radiocontrast agent or magnetic imaging material, injected into a human patient, and detected so as to localize the position of a tumor or metastatic lesion.
- the lipidized immunoglobulins of the present invention can be used for diagnosis and therapy.
- they can be used to treat cancer, autoimmune diseases, or viral infections.
- the antibodies will typically bind to an antigen expressed preferentially in certain cancer cells, such as c-myc gene product and others well known to those skilled in the art.
- the lipidized antibody will bind to a mutant protein, such as a c-ras oncogene product having a pathogenic (e.g., neoplastic) sequence, such as a substitution at position 12, 13, 59, or 61 of the protein (e.g., a Ser at position 12 of p21 ras ) .
- the antibodies will typically bind to an critical regulatory protein expressed primarily in activated T-cells, such as NF- AT, and many other intracellular proteins well known to those skilled in the art (e.g., see Fundamental Immunology. 2nd ed. , W.E. Paul, ed., Raven Press: New York, NY, which is incorporated herein by reference) .
- the antibodies will typically bind to a protein expressed in cells infected by a particular virus such as the various viral encoded polymerases and HIV-l Tat, and many other viral proteins well known to those skilled in the art (e.g., see Virology. 2nd ed., B.N. Fields et al., eds., (1990) , Raven Press: New York, NY,' which is incorporated herein by reference) .
- Kits can also be supplied for use with the subject lipidized antibodies in the protection against or detection of a cellular activity or for the presence of a selected cell intracellular protein or the diagnosis of disease.
- the subject composition of the present invention may be provided, usually in a lyophilized form in a container, either alone or in conjunction with additional antibodies specific for the desired cell type.
- the lipidized antibodies which may be conjugated to a label or toxin, or unconjugated, are included in the kits with buffers, such as Tris, phosphate, carbonate, etc., stabilizers, biocides, inert proteins, e.g., serum albumin, or the like, and a set of instructions for use. Generally, these materials will be present in less than about 5% wt.
- a second antibody capable of binding to the lipidized antibody is employed in an assay, this will usually be present in a separate vial.
- the second antibody is typically conjugated to a label and formulated in an analogous manner with the antibody formulations described above, as well as typically also being lipidized itself.
- the lipidized antibodies of the present invention are also suited for use in improved diagnostic methods and protein purification methods.
- many intracellular proteins are unstable (e.g., short half-life, susceptible to proteolysis) or prone to aggregation (e.g., /3-amyloid protein) making purification and/or diagnostic detection difficult.
- Lipidized antibodies are able to penetrate living cells and bind to specific intracellular target antigens; such antibody- antigen binding may stabilize the target antigen and block enzymes involved in degradation of the target antigen (e.g., proteases, ubiquitin-conjugating enzymes, glycosidases) facilitating detection and/or purification of the target antigen.
- a lipidized antibody which specifically binds to an intracellular target antigen is contacted with live cells comprising the intracellular target antigen under physiological conditions (e.g., cell culture conditions, somatic conditions) and incubated for a suitable binding period (e.g., from about 10 minutes to several hours) .
- the lipidized antibody specifically binds to the target antigen forming an antigen- antibody complex which is less susceptible to degradation and/or aggregation that is the target antigen itself.
- the cells are then fixed and permeabilized and the antigen-antibody complex, comprising the target antigen bound to the lipidized antibody, is detected, usually with a labeled secondary antibody that specifically binds the the lipidized antibody.
- the secondary antibody may be lipidized and the fixation and/or permeabilization steps may be omitted and replaced with substantial washing of the cell sample to remove non-specific staining. It may also be possible to use a lipidized, labeled primary antibody directly and omit the second antibody. Labelled protein A may also be substituted for a secondary antibody for the detection of the primary (lipidized) antibody.
- Lipidized antibodies may also be used for intracellular therapy, such as for binding to a predetermined intracellular target antigen and modifying a biochemical property of the target antigen.
- multi-subunit proteins such as heteromultimeric proteins (e.g., transcription factors, G-proteins) or homodimeric proteins (e.g., polymerized tubulin) may possess a biochemical activity (e.g., GTPase activity) or other activity that requires inter olecular interaction(s) that may be blocked by a lipidized antibody that specifically binds to one or more subunits and prevents functional interaction of the subunits.
- a lipidized anti-Fos antibody which binds to a portion of Fos (e.g., leucine zipper) required for binding to Jun to form a transcriptionally active AP-1 transcription factor (Fos/Jun heterodimer) may block formation of functional AP-1 and inhibit AP-1-mediated gene transcription.
- a lipidized anti-ras antibody may bind to an epitope of ras which is required for its proper signal transduction function (e.g., a GTP/GDP-binding site, a portion of ras that binds an accessory protein such as GAP, or the like) , therebymodifying the activity of intracellular ras in living cells.
- bovine IgG Two mg were dissolved in 400 ⁇ l of 300 mM NaHC0 3 in a 1.5 ml Eppendorf vial. Fifty ⁇ l of a freshly prepared NaI0 4 solution (42 mg/ml in H 2 0) were added and the vial was wrapped in aluminum foil and gently shaken for 90 min. at room temperature. The reaction medium was then loaded on a PD-10 column (Pharmacia) previously equilibrated with 10 mM Na 2 C0 3 (fraction 1) , and the column was eluted with 500 ⁇ l fractions. Fraction number 7 (between 3 ml and 3.5 ml) contained approximately 1.6 mg of bovine IgG as measured using the Bradford protein assay.
- a solution of glycyldioctadecylamide in DMSO was prepared (5 mg of the lipid into 1 ml of DMSO, vigorously vortexed for several minutes) . Under those conditions the lipid was not fully dissolved. Fifty ⁇ l of this solution were taken carefully (and did not contain any undissolved lipid) and were added to 350 ⁇ l of fraction 7 obtained as described above, in an Eppendorf vial. The vial was wrapped in aluminum foil, and the mixture was gently shaken for 20 h at room temperature.
- mice Male swiss albinos mice (20g) were used. One hundred ⁇ l of 14 C-labeled lipidized IgG or 1 C-labeled control IgG in PBS (approximately 400,000 dpm each) were administered intravenously by tail vein injection. Mice were killed after 30 min or 3 h, their blood collected in EDTA-containing tubes, and their brain (minus cerebellum and brainstem) , spleen, one kidney and one liver lobe were dissected. Organs were homogenized in 1 ml 10 mM Tris buffer, pH 7.4, and 500 ⁇ l aliquots were counted in a Beckman scintillation counter.
- Protein concentration in these homogenates was determined by the Bradford assay (Coomassie blue) .
- the blood was centrifuged and 20 ⁇ l fractions of the plasma were counted.
- Table I shows the uptake of 14 C in the brain, liver, spleen and kidney, expressed as the ration of radioactivity in 1 ⁇ g protein of the organs divided by the radioactivity in 1 ⁇ l plasma (data expressed as ⁇ l/ ⁇ g protein) .
- a monoclonal antibody which specifically binds the Tat protein of HIV-l was lipidized according to the method described in Example 1, supra. involving periodate oxidation of carbohydrate on the antibody, followed by covalent attachment of glycyldioctadecylamide to yield a carbohydrate- lipidized antibody, which was eluted from the final PD-10 column with PBS.
- Sup Tl cells were maintained in 24-well plates (100,000 cells per ml, in 2 ml of modified RPMI 1640 culture medium) . Cells were kept in culture with either: (1) no additional treatment (two controls) , (2) in the presence of added native anti-Tat antibody (15 ⁇ g/ml) , or (3) in the presence of the lipidized anti-Tat antibody (11.7 ⁇ g/ml) during the first five days of the experiment. At the end of the first day, HIV-l IIIB was added to one well of control cells and to the cultures containing native anti-Tat antibody- treated cells or lipidized anti-Tat antibody-treated cells. Viable cells were counted daily.
- the untreated, HIV-infected cells grew up to a density of approximately 500,000 cells per ml, and their number began to decrease after approximately eight days due to the cytotoxic effect of the virus. Uninfected cells grew up to a density of approximately 1,000,000 cells per ml.
- Treatment of infected cells with the native anti-Tat antibody did not protect the cells from the cytotoxic effect of the virus.
- the lipidized anti-Tat antibody led to an almost complete protection of the cells from the cytopathic effects of the HIV-l virus. This protection continued for at least about 5 days after the treatment with the lipidized antibody was interrupted. The results are presented in Fig. 3.
- Sup Tl cells were maintained in culture as described in the previous example and kept in culture without any treatment and without any infection, infected with HIV-l IIIB with no treatment, treated with the native anti-Tat antibody (1 ⁇ g/ml) and infected, or treated with the lipidized anti-Tat antibody (1 ⁇ g/ml) and infected.
- the virus was added at the end of the first day in culture.
- the native or lipidized antibody was present from day 1 until day 7.
- HIV-1-infected SupTl cells were treated daily with anti-Tat antibody in native or lipidized form or with rsCD4 (all proteins used at 1 ⁇ g/ml) starting from Day 1 before addition of HIV-l virus containing supernatants until 10 days post infection.
- Cell numbers and reverse transcriptase activity (RT) in the culture medium were determined every day starting from Day 2 post-infection.
- RT reverse transcriptase activity
- the native anti-Tat still had no significant effect on either cell counts or RT activity, whereas the lipidized anti-Tat antibody increased cell viability as compared to untreated, infected cells by approximately 70% and decreased RT activity by approximately the same extent. Cultures were continued for 3 days without further addition of antibodies.
- a HeLa cell line stably transfected with a polynucleotide expressing CD4, the membrane receptor mediating HIV-l infection, and also containing a reporter construct comprising an HIV-l long terminal repeat (LTR) in operable linkage to and driving transcription of a linked reporter gene (chloramphenicol acetyltransferase; CAT) .
- LTR HIV-l long terminal repeat
- CAT chloramphenicol acetyltransferase
- lipidized anti-Tat antibody significantly inhibited CAT activity (by approximately 75%)
- native (unlipidized) anti-Tat antibody, lipidized anti-gpl20 antibody, or rsCD4 were far less effective in inhibiting CAT activity.
- the data showing passage of the lipidized anti-Tat antibody into HeLa cells indicates that the transport mechanism does not likely require endosome formation, since
- HeLa cells are reported to undergo little if any phagocytosis.
- Glycyldioctadecylamide is obtained by linking a glycine residue to dioctadecylamine according to the method described by Behr et al. (1989) Proc. Natl. Acad. Sci. (U.S.A.) 86: 6982, which is incorporated herein by reference. Benzyloxycarbonyl-glycyl-p-nitrophenol at 1 equivalent and triethylamine at 1.1 equivalents in CH 2 Cl 2 are reacted for 5 hours, followed by addition of H 2 , 10% Pd/C in CH 2 Cl 2 /EtOH and reaction for 1 hour.
- Glycosylated murine immunoglobulins that bind specifically to human c-myc protein are prepared by separately culturing the hybridoma cell lines MYC CT9-B7.3 (ATCC CRL 1725), MYC CT 14-G4.3 (ATCC CRL 1727), and MYC 1-9E10.2 (ATCC CRL 1729) in RPMI 1640 with 10 percent fetal bovine serum under specified conditions (Evan et al. (1985) Mol. Cell. Biol. 5_: 3610, incorporated herein by reference) and the monoclonal antibodies secreted are collected and purified by conventional methods known in the art.
- each purified monoclonal antibody is dissolved in 400 ⁇ l of 300 mM NaHC0 3 in a 1.5 ml Eppendorf vial. Fifty ⁇ l of a freshly prepared NaI0 4 solution (42 mg/ml in H20) is added and the vial is wrapped in aluminum foil and gently shaken for 90 min. at rooir temperature. The reaction medium is then loaded on a PD-lc column (Pharmacia) previously equilibrated with 10 mM Na 2 C0 3 (fraction 1) , and the column is eluted with 500 ⁇ l fractions. The fraction(s) containing at least approximately 500 ⁇ g of IgG as measured using the Bradford protein assay are collected.
- a solution of glycyldioctadecylamide in DMSO is prepared (5 mg of the lipid into 1 ml of DMSO, vigorously vortexed for several minutes) . Under those conditions the lipid is not fully dissolved. Fifty ⁇ l of this solution is taken carefully and added to 350 ⁇ l of the purified IgG fractions obtained as described above, in an Eppendorf vial. The vial is wrapped in aluminum foil, and the mixture is gently shaken for 20 h at room temperature. One hundred ⁇ l of a solution of NaBH 4 (10 mg/ml in
- Anti-HMG CoA Reductase Ig Glycosylated murine immunoglobulins that bind specifically to the intracellular enzyme HMG CoA reductase are prepared by separately culturing the hybridoma cell line A9 (ATCC CRL 1811) in DMEM with 4.5 g/1 glucose, 5% horse serum and 2.5% fetal bovine serum as described (Goldstein et al. (1983) J. Biol. Chem. 258: 8450, incorporated herein by reference) and the monoclonal antibodies secreted are collected and purified by conventional methods known in the art.
- each purified monoclonal antibody is dissolved in 400 ⁇ l of 300 mM NaHC0 3 in a 1.5 ml Eppendorf vial. Fifty ⁇ l of a freshly prepared NaI0 4 solution (42 mg/ml in H20) is added and the vial is wrapped in aluminum foil and gently shaken for 90 min. at room temperature. The reaction medium is then loaded on a PD-10 column (Pharmacia) previously equilibrated with 10 mM Na 2 C0 3 (fraction 1) , and the column is eluted with 500 ⁇ l fractions. The fraction(s) containing at least approximately 500 ⁇ g of IgG as measured using the Bradford protein assay are collected.
- a solution of glycyldioctadecylamide in DMSO is prepared (5 mg of the lipid into 1 ml of DMSO, vigorously vortexed for several minutes) . Under those conditions the lipid is not fully dissolved. Fifty ⁇ l of this solution is taken carefully and added to 350 ⁇ l of the purified IgG fractions obtained as described above, in an Eppendorf vial. The vial is wrapped in aluminum foil, and the mixture is gently shaken for 20 h at room temperature.
- Glycyldioctadecylamide is obtained by linking a glycine residue to dioctadecylamine according to the method described by Behr et al. (1989) Proc. Natl. Acad. Sci. (U.S.A.)
- Anti-Ras Ig Glycosylated murine immunoglobulins that bind specifically to ras oncogene protein are prepared by separately culturing the hybridoma cell line 142-24E5 (ATCC HB 8679; U.S. Pats.
- each purified monoclonal antibody is dissolved in 400 ⁇ l of 300 mM NaHC0 3 in a 1.5 ml Eppendorf vial. Fifty ⁇ l of a freshly prepared NaI0 4 solution (42 mg/ml in H20) is added and the vial is wrapped in aluminum foil and gently shaken for 90 min. at room temperature. The reaction medium is then loaded on a PD-10 column (Pharmacia) previously equilibrated with 10 mM Na 2 C0 3 (fraction 1) , and the column is eluted with 500 ⁇ l fractions. The fraction(s) containing at least approximately 500 ⁇ g of IgG as measured using the Bradford protein assay are collected.
- a solution of glycyldioctadecylamide in DMSO is prepared (5 mg of the lipid into 1 ml of DMSO, vigorously vortexed for several minutes) . Under those conditions the lipid is not fully dissolved. Fifty ⁇ l of this solution is taken carefully and added to 350 ⁇ l of the purified IgG fractions obtained as described above, in an Eppendorf vial. The vial is wrapped in aluminum foil, and the mixture is gently shaken for 20 h at room temperature.
- Hybridoma cell lines referred to in the above examples may be obtained from American Type Culture Collection, Rockville, MD (ATCC Cell Lines and Hybridomas (1992) 7th Ed, which is incorporated herein by reference) .
- Example 6 Lipidization of a Transmembrane Enzyme
- the enzyme gamma-glutamyltranspeptidase (GGT: EC 2.3.2.2) is a widely distributed enzyme that catalyzes the degradation of glutathione and other 7-glutamyl compounds by hydrolysis of the 7-glutamyl moiety or by its transfer to a suitable acceptor.
- GGT is a heterodimeric glycoprotein, which is synthesized as a precursor protein that is glycosylated and cleaved into the two subunits of the mature enzyme. GGT is anchored to the cell membrane through the N-terminal portion of its heavy subunit. The active site of the enzyme lies on the extracellular portion of the molecule, which is heavily glycosylated.
- GGT is separately purified from rat kidney and a cultured human hepatoma cell line according to procedures described previously in the art (Barouki et al. (1984) J. Biol. Chem. 259: 7970; Curthoys and Hughey (1979) Enzyme 24: 383; Matsuda et al. (1983) J. Biochem. 93 : 1427; Taniguchi et al. (1985) J. Natl. Cancer Inst. 75: 841; Tate and Meister (1985) Methods Enzymol. 113: 400; and Toya et al. (1983) Ann. N.Y. Acad. Sci. 417: 86, which are incorporated herein by reference) .
- the fraction(s) containing at least approximately 100 ⁇ g of GGT as measured using the Bradford protein assay are collected.
- a solution of glycyldioctadecylamide in DMSO is prepared (5 mg of the lipid into 1 ml of DMSO, vigorously vortexed for several minutes) . Under those conditions the lipid is not fully dissolved. Fifty ⁇ l of this solution is taken carefully and added to 350 ⁇ l of the purified GGT fractions obtained as described above, in an Eppendorf vial. The vial is wrapped in aluminum foil, and the mixture is gently shaken for 20 h at room temperature.
- the lipidized human and rat GGT is radiolabeled by iodination with 125 I using chloramine T and approximately 50 ⁇ g of the radioiodinated lipidized GGT is administered to rats by intraperitoneal injection. After 24 hours, the rats are sacrificed and tissue samples removed for autoradiography to determine the pattern of localization of the lipidized GGT in the various organs.
- an anti-actin antibody was lipidized and evaluated for its ability to penetrate cultured Swiss 3T3 fibroblasts and bind to the cytoskeletal protein actin. Native anti-actin antibody (unlipidized) was used as a control.
- Protein A-purified rabbit anti-actin polyclonal antibodies were lipidized according to the following procedure.
- a lipoamine, glycyldioctadecylamide was covalently linked to the carbohydrate moieties of the anti-actin antibodies by periodate oxidation-sodium borohydride reduction.
- Antibodies were dissolved in 0.8 ml of 300 mM NaHC0 3 at a concentration of approximately 0.2 to 1.0 mg/ml.
- Fifty ⁇ l of a freshly prepared aqueous solution of NaI0 4 (42 mg/ml) were added and the incubation vials were wrapped in aluminum foil and gently shaken for 90 minutes at room temperature.
- reaction mixture was then purified on a PD-10 column (Pharmacia, Piscataway, NJ) equilibrated in and eluted with 10 mM Na 2 C0 3 .
- Fifty ⁇ l of a 10 mg/ml solution of glycyldioctadecylamide in benzene are added to the fraction containing the antibodies (e.g., as determined by A 280 monitoring, Bradford assay) and the resulting reaction was incubated for 20 hours at room temperature with gentle shaking.
- Lipidized anti-actin and lipidized anti-Tat were evaluated for their binding affinity for specific antigen relative to native (unlipidized) anti-actin or anti-Tat antibody by ELISA assay. Lipidization of either the anti-actin antibody or the anti-Tat antibody did not produce a measurable loss of affinity of the antibodies for their respective antigens as compared to their native (unlipidized) antibody.
- lipidized anti-actin antibodies are able to bind intracellular actin in live cells
- lipidized anti-actin antibody or native anti-actin antibody were contacted with cultured Swiss 3T3 cells for 1 hour, followed by extensive washing to remove residual anti-actin antibodies.
- the cells were subsequently fixed and permeabilized and the anti-actin antibodies were detected with a fluorescent-labeled secondary antibody. While no specific staining could be detected in cells preincubated with the native (unlipidized) anti-actin antibody, specific actin staining (e.g., stained actin cables) was clearly evident in cells preincubated with the lipidized anti-actin antibodies.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Virology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6503580A JPH07502753A (ja) | 1992-07-13 | 1993-07-13 | 脂質化タンパク質類の血管通過輸送および細胞内輸送 |
AU47727/93A AU4772793A (en) | 1992-07-13 | 1993-07-13 | Transvascular and intracellular delivery of lipidized proteins |
EP93918190A EP0607408A4 (en) | 1992-07-13 | 1993-07-13 | Transvascular and intracellular delivery of lipidized proteins. |
FI941169A FI941169A (fi) | 1992-07-13 | 1994-03-11 | Lipidisoitujen proteiinien transvaskulaarinen ja intracellulaarinen antaminen |
NO940877A NO940877L (no) | 1992-07-13 | 1994-03-11 | Transvasculær og intracellulær avgivelse av lipidiserte proteiner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91245392A | 1992-07-13 | 1992-07-13 | |
US07/912,453 | 1992-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994001131A1 true WO1994001131A1 (fr) | 1994-01-20 |
Family
ID=25431949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/006599 WO1994001131A1 (fr) | 1992-07-13 | 1993-07-13 | Apport transvasculaire et intracellulaire de proteines lipidisees |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0607408A4 (fr) |
JP (1) | JPH07502753A (fr) |
KR (2) | KR20030097604A (fr) |
AU (1) | AU4772793A (fr) |
CA (1) | CA2118586A1 (fr) |
FI (1) | FI941169A (fr) |
NZ (1) | NZ255043A (fr) |
OA (1) | OA09893A (fr) |
RU (1) | RU2157239C2 (fr) |
WO (1) | WO1994001131A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0869937A1 (fr) * | 1995-07-21 | 1998-10-14 | Genta Incorporated | Nouveaux lipides cationiques a base d'amides |
US5827819A (en) * | 1990-11-01 | 1998-10-27 | Oregon Health Sciences University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6063759A (en) * | 1990-11-01 | 2000-05-16 | Oregon Health Sciences University | Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting |
WO2003080115A1 (fr) * | 2002-03-22 | 2003-10-02 | Bipha Corporation | Complexes peptide hydrophile - immunoglobuline |
US7045543B2 (en) | 2001-11-05 | 2006-05-16 | Enzrel Inc. | Covalent conjugates of biologically-active compounds with amino acids and amino acid derivatives for targeting to physiologically-protected sites |
US7122656B2 (en) | 2002-01-10 | 2006-10-17 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Splice variant of MyD88 and uses thereof |
EP2096121A1 (fr) * | 2008-02-29 | 2009-09-02 | Institut Pasteur Of Shanghai | Peptides antiviraux comprenant des signaux de fixation de lipides et leurs procédés d'utilisation |
WO2010035261A2 (fr) | 2008-09-29 | 2010-04-01 | Ben Gurion University Of The Negev Research And Development Authority | Beta-peptides amyloides et procédés d'utilisation associés |
US7858593B2 (en) | 2006-01-17 | 2010-12-28 | Vib Vzw | Inhibitors of prolyl-hydroxylase-1 for the treatment of skeletal muscle degeneration |
WO2012001178A1 (fr) | 2010-07-02 | 2012-01-05 | Vib Vzw | Rôle du gène responsable du syndrome du x fragile et de la protéine associée dans les métastases cancéreuses |
WO2012013821A1 (fr) | 2010-07-30 | 2012-02-02 | Vib Vzw | Inhibition de la fonction dicer pour le traitement du cancer |
US8173423B2 (en) | 2006-11-07 | 2012-05-08 | Vib Vzw | Diagnosis and treatment of T-cell acute lymphoblastic leukemia |
WO2013038158A1 (fr) | 2011-09-14 | 2013-03-21 | Abeterno Limited | Sélection de cellules intracellulaires |
WO2013121042A1 (fr) | 2012-02-16 | 2013-08-22 | Vib Vzw | Sous-unités de pp2a dans la réparation de l'adn, la sous-unité b55α de pp2a en tant que nouvelle protéine d'interaction avec phd2, et implications pour le cancer |
US8835654B2 (en) | 2004-12-22 | 2014-09-16 | Bhi Limited Partnership | Method and compositions for treating amyloid-related diseases |
WO2014167282A1 (fr) | 2013-04-11 | 2014-10-16 | Abeterno Limited | Imagerie de cellule in vivo |
US9499480B2 (en) | 2006-10-12 | 2016-11-22 | Bhi Limited Partnership | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
WO2018226992A1 (fr) | 2017-06-07 | 2018-12-13 | Adrx, Inc. | Inhibiteur d'agrégation de tau |
WO2019036725A2 (fr) | 2017-08-18 | 2019-02-21 | Adrx, Inc. | Inhibiteurs peptidiques d'agrégation de tau |
US10967070B2 (en) | 2013-08-29 | 2021-04-06 | City Of Hope | Cell penetrating conjugates and methods of use thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790847B2 (en) * | 2006-03-16 | 2010-09-07 | The Scripps Research Institute | Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine |
AR083495A1 (es) * | 2010-10-22 | 2013-02-27 | Esbatech Alcon Biomed Res Unit | Anticuerpos estables y solubles |
KR101470793B1 (ko) * | 2014-06-30 | 2014-12-08 | 순천향대학교 산학협력단 | 흡수촉진제로서의 펩타이드와 이를 포함하는 조성물 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990010448A2 (fr) * | 1989-03-07 | 1990-09-20 | Genentech, Inc. | Conjugue covalent de lipides et d'oligonucleotides |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4429008B1 (en) * | 1981-12-10 | 1995-05-16 | Univ California | Thiol reactive liposomes |
AU626797B2 (en) * | 1987-09-08 | 1992-08-13 | Albany Medical College | Immunogenic composites capable of selectively inducing antibody production, pharmaceutical compositions employing the same and method of selectively inducing antibody production |
ATE136211T1 (de) * | 1989-06-23 | 1996-04-15 | Liposome Co Inc | Zielliposomen und verfahren zur kupplung von liposomen-proteinen |
US5264618A (en) * | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
ATE148713T1 (de) * | 1990-07-24 | 1997-02-15 | Seikagaku Kogyo Co Ltd | Glykosaminoglykan gemischt mit phospholipid oder lipid, seine herstellung und krebszellenmetastaseninhibitor |
-
1993
- 1993-07-13 CA CA002118586A patent/CA2118586A1/fr not_active Abandoned
- 1993-07-13 WO PCT/US1993/006599 patent/WO1994001131A1/fr not_active Application Discontinuation
- 1993-07-13 RU RU94024566/14A patent/RU2157239C2/ru not_active IP Right Cessation
- 1993-07-13 NZ NZ255043A patent/NZ255043A/en unknown
- 1993-07-13 EP EP93918190A patent/EP0607408A4/en not_active Withdrawn
- 1993-07-13 AU AU47727/93A patent/AU4772793A/en not_active Abandoned
- 1993-07-13 KR KR1020027011377A patent/KR20030097604A/ko not_active Application Discontinuation
- 1993-07-13 KR KR1019940700829A patent/KR100372119B1/ko not_active IP Right Cessation
- 1993-07-13 JP JP6503580A patent/JPH07502753A/ja active Pending
-
1994
- 1994-03-11 FI FI941169A patent/FI941169A/fi unknown
- 1994-03-11 OA OA60481A patent/OA09893A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990010448A2 (fr) * | 1989-03-07 | 1990-09-20 | Genentech, Inc. | Conjugue covalent de lipides et d'oligonucleotides |
Non-Patent Citations (4)
Title |
---|
ANNUAL REVIEW OF BIOCHEMISTRY, Volume 60, issued April 1991, Y.N. VAISHNAU et al., "The Biochemistry of AIDS", pages 577-630. * |
GENE ANALYSIS TECHNIQUES, Volume 5, issued May 1988, W.S. THOMPSON et al., "Antibodies Introduced Into Living Cells with Liposomes Localize Specifically and Inhibit Specific Intracellular Processes", pages 73-79. * |
PROC. NATL. ACAD. SCI. U.S.A., Volume 83, issued April 1986, J.D. RODWELL et al., "Site-Specific Covalent Modification of Monoclonal Antibodies: In Vitro and In Vivo Evaluations", pages 2632-2636. * |
See also references of EP0607408A4 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5827819A (en) * | 1990-11-01 | 1998-10-27 | Oregon Health Sciences University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6024977A (en) * | 1990-11-01 | 2000-02-15 | Oregon Health Sciences University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6063759A (en) * | 1990-11-01 | 2000-05-16 | Oregon Health Sciences University | Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting |
US6339060B1 (en) | 1990-11-01 | 2002-01-15 | Oregon Health & Science University | Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting |
US6436437B1 (en) | 1990-11-01 | 2002-08-20 | Oregon Health And Science University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6858582B2 (en) | 1990-11-01 | 2005-02-22 | Oregon Health And Sciences University | Composition containing porous microparticle impregnated with biologically-active compound for treatment of infection |
US7423010B2 (en) | 1994-05-19 | 2008-09-09 | Oregon Health & Science University | Nonporous microparticle-prodrug conjugates for treatment of infection |
EP0869937A1 (fr) * | 1995-07-21 | 1998-10-14 | Genta Incorporated | Nouveaux lipides cationiques a base d'amides |
EP0869937A4 (fr) * | 1995-07-21 | 2004-07-21 | Promega Biosciences Inc | Nouveaux lipides cationiques a base d'amides |
US7045543B2 (en) | 2001-11-05 | 2006-05-16 | Enzrel Inc. | Covalent conjugates of biologically-active compounds with amino acids and amino acid derivatives for targeting to physiologically-protected sites |
US7122656B2 (en) | 2002-01-10 | 2006-10-17 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Splice variant of MyD88 and uses thereof |
WO2003080115A1 (fr) * | 2002-03-22 | 2003-10-02 | Bipha Corporation | Complexes peptide hydrophile - immunoglobuline |
US8835654B2 (en) | 2004-12-22 | 2014-09-16 | Bhi Limited Partnership | Method and compositions for treating amyloid-related diseases |
US7858593B2 (en) | 2006-01-17 | 2010-12-28 | Vib Vzw | Inhibitors of prolyl-hydroxylase-1 for the treatment of skeletal muscle degeneration |
US9499480B2 (en) | 2006-10-12 | 2016-11-22 | Bhi Limited Partnership | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US11020360B2 (en) | 2006-10-12 | 2021-06-01 | Bellus Health Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US10857109B2 (en) | 2006-10-12 | 2020-12-08 | Bellus Health, Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US10238611B2 (en) | 2006-10-12 | 2019-03-26 | Bellus Health Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US8173423B2 (en) | 2006-11-07 | 2012-05-08 | Vib Vzw | Diagnosis and treatment of T-cell acute lymphoblastic leukemia |
EP2096121A1 (fr) * | 2008-02-29 | 2009-09-02 | Institut Pasteur Of Shanghai | Peptides antiviraux comprenant des signaux de fixation de lipides et leurs procédés d'utilisation |
WO2010035261A2 (fr) | 2008-09-29 | 2010-04-01 | Ben Gurion University Of The Negev Research And Development Authority | Beta-peptides amyloides et procédés d'utilisation associés |
WO2012001178A1 (fr) | 2010-07-02 | 2012-01-05 | Vib Vzw | Rôle du gène responsable du syndrome du x fragile et de la protéine associée dans les métastases cancéreuses |
WO2012013821A1 (fr) | 2010-07-30 | 2012-02-02 | Vib Vzw | Inhibition de la fonction dicer pour le traitement du cancer |
WO2013038158A1 (fr) | 2011-09-14 | 2013-03-21 | Abeterno Limited | Sélection de cellules intracellulaires |
WO2013121042A1 (fr) | 2012-02-16 | 2013-08-22 | Vib Vzw | Sous-unités de pp2a dans la réparation de l'adn, la sous-unité b55α de pp2a en tant que nouvelle protéine d'interaction avec phd2, et implications pour le cancer |
WO2014167282A1 (fr) | 2013-04-11 | 2014-10-16 | Abeterno Limited | Imagerie de cellule in vivo |
US10967070B2 (en) | 2013-08-29 | 2021-04-06 | City Of Hope | Cell penetrating conjugates and methods of use thereof |
WO2018226992A1 (fr) | 2017-06-07 | 2018-12-13 | Adrx, Inc. | Inhibiteur d'agrégation de tau |
WO2019036725A2 (fr) | 2017-08-18 | 2019-02-21 | Adrx, Inc. | Inhibiteurs peptidiques d'agrégation de tau |
Also Published As
Publication number | Publication date |
---|---|
OA09893A (en) | 1994-09-15 |
FI941169A0 (fi) | 1994-03-11 |
NZ255043A (en) | 1997-03-24 |
RU2157239C2 (ru) | 2000-10-10 |
KR20030097604A (ko) | 2003-12-31 |
EP0607408A4 (en) | 1997-12-10 |
RU94024566A (ru) | 1996-09-27 |
FI941169A (fi) | 1994-05-04 |
CA2118586A1 (fr) | 1994-01-20 |
EP0607408A1 (fr) | 1994-07-27 |
KR100372119B1 (ko) | 2003-06-28 |
JPH07502753A (ja) | 1995-03-23 |
AU4772793A (en) | 1994-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994001131A1 (fr) | Apport transvasculaire et intracellulaire de proteines lipidisees | |
RU2198895C2 (ru) | Конъюгат, обладающий способностью активировать иммунную систему, и фармацевтическая композиция, включающая указанный конъюгат | |
EP0490998B1 (fr) | Conjugues anticorps-agent neuropharmaceutique specifiques au recepteur de transferrine | |
US7150872B2 (en) | Polyalkylene oxide-modified single chain polypeptides | |
JP4114951B2 (ja) | 改変/キメラスーパー抗原およびその使用 | |
US5270199A (en) | Human mannose-binding protein | |
CZ418691A3 (en) | CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR RECEPTOR IL-2 PROTEIN p 55 TAC | |
EP0602290B1 (fr) | Antigène de surface du virus de l'hépatite B conjugué à des anticorps et utilisation d'un tel conjugué | |
US20050181987A1 (en) | Compositions and methods for treatment of cancer | |
JP2005539067A (ja) | ポリエチレングリコールリンカーを用いる二重特異性分子の産生 | |
US20110142756A1 (en) | Method And Composition For The Treatment Of Cancer By The Enzymatic Conversion Of Soluble Radioactive Toxic Precipitates In The Cancer | |
JPS61122224A (ja) | 部位選択性プラスミノ−ゲン活性化因子及びその製造方法 | |
RU2153885C2 (ru) | Способ осуществления селективного метионинового голодания клеток в организме млекопитающего, полинуклеотид, каталитически активный полипептид рекомбинантной метазы | |
US5474766A (en) | Methods and compositions for inhibition of hepatic clearance of tissue-type plasminogen activator | |
WO1996040248A1 (fr) | Liberation transvasculaire et intracellulaire de proteines lipidisees | |
WO1994014471A9 (fr) | Procedes et compositions d'inhibition de la clairance hepatique de l'activateur plasminogene de type tissulaire | |
US6825319B1 (en) | Synthetic peptides and pharmaceutical compositions comprising them for diagnosis and treatment of anti-phospholipid syndrome | |
AU714868B2 (en) | Transvascular and intracellular delivery of lipidized proteins | |
EP0365087B1 (fr) | Immunotoxines pour le traitement et la prophylaxie de maladies auto-immunitaires | |
US6440733B1 (en) | Monoclonal antibodies recognizing antigens on the surface of endothelial cells of tumor vessel | |
PT100568A (pt) | Anticorpos monoclonais e antigeneos para o melanoma humano | |
WO2000027420A9 (fr) | Compositions et methodes de traitement du cancer | |
WO2000027420A1 (fr) | Compositions et methodes de traitement du cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2118586 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 255043 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 941169 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993918190 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1993918190 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993918190 Country of ref document: EP |