WO1994000907A1 - Ac energy amplifier - Google Patents

Ac energy amplifier Download PDF

Info

Publication number
WO1994000907A1
WO1994000907A1 PCT/JP1993/000763 JP9300763W WO9400907A1 WO 1994000907 A1 WO1994000907 A1 WO 1994000907A1 JP 9300763 W JP9300763 W JP 9300763W WO 9400907 A1 WO9400907 A1 WO 9400907A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
utilization
energy
steam
heat
Prior art date
Application number
PCT/JP1993/000763
Other languages
English (en)
French (fr)
Inventor
Seiichi Akiba
Original Assignee
Seiichi Akiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiichi Akiba filed Critical Seiichi Akiba
Priority to AU43546/93A priority Critical patent/AU4354693A/en
Publication of WO1994000907A1 publication Critical patent/WO1994000907A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia

Definitions

  • energy amplification uses the amplification effect of vacuum tubes, transistors, etc. to obtain an output larger than the input due to the law of conservation of energy, etc.
  • the aim was to achieve a high degree of effective use of holistic, comprehensive and electric energy.
  • the purpose of the present invention will be described sequentially.
  • the control device such as a power supply and a switching device operates an electric motor controlled at a constant speed by a control device such as a power supply to drive an AC generator having a larger capacity than power consumption.
  • the components of the system are appropriately used in a complex manner (parallel operation, iterative amplification, etc.), and the newly created total electric energy is used as one unit control system power.
  • Designed to be versatile so that it can be set to the required number of revolutions, etc. (50 or 60 cycles, compatibility should be provided as a cyclical configuration according to the characteristics of the region.) It is advisable to use a large-capacity AC generator for driving.
  • the above-mentioned devices and the like may be used as a multi-layer facility, as appropriate, in a mutually complementary manner (such as application using octopus-shaped wiring, etc.), and the continuity in the configuration may include amplification of electrical energy, repetitive amplification, etc.
  • ⁇ i width of energies implies cycling, etc., rather than the use of direct conversion, etc., and that batteries and other structures (regulators such as rechargeable batteries, flywheel power storage, etc.) It is advisable to use the system in a cyclical manner as necessary by utilizing the system.
  • the compressor and other components are used to rotate the rotor, etc., and generate AC power.
  • power generation equipment such as pumps, or the pumping of hydroelectric power generation, etc.
  • pressurized water discharge power generation Application as pressurized water discharge power generation
  • indirect cycle power generation such as driving of generator by rational utilization, that is, rational due to capacity difference of AC generator etc. by continuous energy conversion technology etc. It cannot be denied that the complementary use, such as relative amplification and iterative amplification, is utilized.
  • Claim (2) is based on the norm of Claim (1), etc., and uses various electric heaters, etc., and uses a steam generator mainly based on a dielectric heating method, etc.
  • a steam generator mainly based on a dielectric heating method, etc.
  • To generate steam Drive high-speed turbine generator, etc. with steam energy, operate power generation equipment, cool steam pressure such as waste heat with condenser, etc., supply water with heater, feed water heating tank, etc., reheat, supply water with circulation pump, etc. Create a circulation system. Therefore, based on the above-mentioned components, etc., it is used to the maximum extent as a cogeneration system such as electric power and steam pressure.
  • reheat utilization including rational utilization of general cogeneration system, etc.
  • the strong magnet shown in Fig. 2 uses a two-electrode vacuum tube to emit electrons from the central cathode to the anode in the enclosure, and a strong magnetic field working in the vertical direction
  • the cavity acts like a series circuit of a coil and a capacitor, generating an oscillating current and oscillating microwaves.
  • This microwave propagates through the waveguide, and a plurality of such structures are provided.They are appropriately configured as a microwave irradiation device, which hits a large number of rotating metal blades, etc. to promote the irradiation effect, and the dielectric heating furnace generates high-pressure steam. I do.
  • the high-pressure steam is operated by a power generation facility including a bypass control system, a speed control device, a moisture separation heater, a generator such as a steam turbine, and the like, and is guided to a condenser.
  • a power generation facility including a bypass control system, a speed control device, a moisture separation heater, a generator such as a steam turbine, and the like, and is guided to a condenser.
  • the heat cycle of steam turbines includes pure condensing type, regenerative type, reheating type, etc.When using back pressure turbine, extraction turbine, extraction back pressure turbine, etc., make-up water tank etc. It is necessary to use make-up water etc. by heating it with a feed water heater. In addition, reheating of waste heat from other mechanisms (garbage incinerators, thermal power generation, gas turbine power generation, blast furnaces at steelworks, etc.) may be used, etc., and a reasonable and effective configuration and utilization shall be denied as appropriate. However, including the case where it is configured as a cross-compound type power generation, it is undeniable that the power generated once should be configured as a self-excited system, and the utilization of complementary operation should be used. Therefore, it is self-evident that it is possible to freely use amplification, repetition amplification, etc., according to the norms of the claims (1), without asking the use of the power once generated. I can't deny the structure and utilization.
  • a cooling water tank equipped with a compressor (compressor), evaporator (heat exchanger), thin tube (expansion valve), condenser (heat exchanger), etc. was installed and used as circulating cooling water. Rivers and the like may be appropriately used as circulating cooling water.
  • the primary thermal conductive material (light water, etc.) in the meandering pipeline is heated by the force shown in a) of Fig. 4 and the conventional thermal power generation mechanism.
  • An isothermal reservoir is formed, and the heat conductive material and the like pressurized by the pressurizer etc. keeps high temperature and prevents diffusion of heat by the immersion type electric heater etc. to drive the primary heat conductive material.
  • a primary heat transfer material circulation system is created. (If the amount of heat is not enough, the use of electric heaters, etc., cannot be denied as appropriate.)
  • the steam energy generated by the steam generator, etc. is restored while rotating the high-speed turbine generator etc. to operate the power generation equipment.
  • Cooling with a water heater, etc. increasing the driving efficiency of the turbine, and creating a secondary heat conduction material circulation system with a water supply circulation pump, lined water heater, etc.
  • a plurality of feedwater heaters, etc. may be provided. It is self-evident that the use of path control systems, moisture separation heaters, etc. cannot be denied, and the partial use of rational facilities in the explanations of claims (1) and (2).
  • the thermal cycle and the cyclic configuration may be installed together with a forced air blower, forced exhaust port, electric or other dust collecting device, etc., if necessary.
  • a pressurizer is provided above the heat reservoir of conductive material, a steam generator, a primary heat conductive material circulation system, etc. should be configured as appropriate, and should be used rationally in order for general utilization. .
  • the indirect heating cycle combined power generation system (indirect heating cycle system) utilizing the steam generator etc. in d) in Fig. 4 is a heat source for geothermal power generation, high-temperature rock power generation, and other heat sources such as various types of practical waste heat. It can be used as a heat source for heating such as steam generators, feed water heaters, etc., and the components of claims (1) and (2) can be used freely.
  • a system in which the water supply circulation system cycle such as secondary heat transfer material described as a pressurized combined power generation system is purposefully configured as an indirect heating cycle.
  • the water supply, etc., injected from the piping such as the water supply system inlet valve, is shaped so that the downflow and the upflow are separated by the heating adjustment diaphragm of the steam generator.
  • thermal power generation etc. is improved, or by utilizing various practical heat sources, etc., it is used as a cogeneration combined power generation system or pressurized combined power generation system, and by utilizing indirect heat sources, etc.
  • the configuration is used in a secondary indirect cycle or the configuration is applied to the gist of the present invention, a conflict may occur. (That is, the reason why semi-finished products are protected is that it is possible to use the amplification configuration according to the claims (1). At present, the configuration is indirectly used in geothermal power generation, etc. If not, it means that it is applicable.)
  • Constant-speed electric motor controller for various practical power sources, etc. 2. Constant-speed electric motor, 3. Rotary shaft, 4. Flange joint, etc. 5. Alternator with relatively large capacity, 6. Transformer Equivalent control system, 7.1 Unit control system power, 8. Constant speed electric motor centralized control system (distribution panel, etc.), 9. Constant speed electric motor (If necessary, use multi-stage 10) Rotary shaft, 11. Sway stand, etc. are used where necessary (see Figures b and c), 12. Flange shaft coupling, etc. (using universal joints, etc.) 13. Large-capacity AC generators (it is advisable to improve and utilize turbine generators, etc. as appropriate.) 14. Transformers, 15. Chargers such as batteries and regulators (use flywheel power storage systems, etc., as appropriate.) , May be used cyclically.), 16. Power transmission utilization.
  • the rotation speed such as the constant speed, may be configured and utilized so that it can be versatile and controlled at a constant level, if necessary.
  • 1 unit control system power is the basic component, the use of relative amplification, configured in a complex manner (parallel operation, repetitive amplification, etc.), and 1 unit power required to operate unit facilities, etc. To tell. b) Schematic illustration of side view of steady rest.
  • Rotary shaft 2. Split force bearing, 3. Bolt tightening, 4. Steady stop stand, 5. Double nut, 6. Lead screw, 7. Stand stand.
  • Induction heating coil 41. Convection, etc., induction heating heat conductor, 42.0 ring, 43. 44.
  • Water supply circulation pump 45. Steam generator Inside upper limit water level adjustment mechanism, 46. Lining stainless steel etc., 47. Collection water valve, 48. Collection water supply such as lined water tank, 49. Auxiliary water supply adjustment valve, 50 .Transformers, 51. Use of power transmission, 52.
  • Various types of waste heat may be used as appropriate. (Waste heat, reheat, etc. may be incorporated into the system, etc. and may be used as appropriate.)
  • Regenerative feed water heater 2. Feed water circulation system water supply inlet, 3. Water supply circulation system water supply outlet, 4. Heating high pressure steam inlet, 5. Heating pipeline meandering pipe 6. High-pressure steam exhaust port (may be used again as a water supply circulation system), 7. Stainless steel, etc. lining, 8. Support legs (support base).
  • Heating mechanism for thermal power generation, etc. 2. Heating pipeline, etc. 3. Heat reservoir (utilizing light water, etc.) such as primary heat conductive material, 4. Air extraction port (bolted), 5.0 ring, 6 Bolt tightening, 7. Pressurizer, 8. Immersion-type electric heater, etc. 9. Steam generator, 10. Primary heat conductive material drive pump, 11. Turbine generator and other power generation equipment, 12. Separation heater , 13. Condenser, 14. Feed water heater drive pump, 15. 1st line water heater, 16. 2nd feed water heater, 17. Transformer, 18. Power transmission, 19. Self-excited, etc. System power, 20. Self-excited type, separately-excited type, control system equipment and power supply such as switching switch for starting electric power.
  • an electric heater or the like may be supplementarily used as necessary.
  • thermo heating mechanism heat pool etc.
  • pressurizer integrated type This is an explanatory diagram of a thermal heating mechanism (heat pool etc.) and a pressurizer integrated type.
  • Gas pipes such as gas burners (multiple use), 2. Thermal power, 3. Heat pipes for primary thermal conductive materials, etc. 4. Heat reservoirs for primary thermal conductive materials, etc. 5.
  • Primary thermal conductive material driven pump steam Use as a heat source for the generator), 6.
  • Primary heat conduction material circulation inlet 7.
  • Pressurizer the necessary amount of heat may be supplemented by an electric heater, etc.
  • Immersion type electric heater 9 .
  • Light water or the like is generally used as the primary heat conductive material, but carbon dioxide gas or the like may be used to improve the design.
  • carbon dioxide gas or the like may be used to improve the design.
  • Light water is generally used as the primary thermal conductive material, but carbon dioxide gas may be used, and the design may be improved and utilized as appropriate. If heat sources such as hot rock power generation and geothermal power generation are used, Good.
  • High pressure steam inlet heat source inlet
  • Steam outlet waste heat port
  • Thin tube stacked pipelines, etc.
  • Water supply system inlet valve 5. Upper limit water level adjustment valve, 6 .Drainage system adjustment valve, 7. Heating adjustment diaphragm, 8. Moisture separator (using wire mesh), 9. Electric heater, 10. High pressure steam flow (Used as generator driving energy).
  • the above-mentioned combined thermal power generation system and the like may be configured to freely utilize the components and the like of claims (1) and (2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

明 細 書
ACエネルギー増幅装置
従来の技術と技術的背景
従来エネルギーの増幅とは、 エネルギー保存の法則等により、 入力より大きな出力を得る場 合、 真空管、 トランジスタ一等による増幅作用を利用したものであり、 内部にエネルギーを必 要としていたが、 定速度電気モーター等を活用する事により、 交流発電機等を駆動し、 相対的 に電気エネルギーを増幅、 若しくは、 交流発電機等の発電容量等の差異に着目し構成、 個別的 製品等と組合せる事により、総体的、総合的、電気エネルギー等の高度有効利用を目的とした。 以下、 発明の趣旨等を順次説明する。
構成としては、図 1に示した様に、電源及びスィツチング等制御装置によって、定速度に制御 される電気モーター等を作動し、 消費電力より相対的に容量の大きい交流発電機等を駆動、 且 つ、 その構成要素等を、 適宜、 複合的 (並行運転、 反復増幅等) に活用、 新たに創製された総 合的電気エネルギーを 1ュニッ ト制御系電力とし、 定速度、 若しぐは、 必要に応じた回転数等 (50、若しくは、 60サイクル、その他、地域の特性に合せたサイクル的構成として互換性等を持 たせるとよい。) に設定出来る様に汎用性を持たせた設計を行ない大容量交流発電機等を駆動活 用するとよい。 即ち、 回転数等を設定する事による連動性等に注目し、 調速制御等周波数制御 を実務的に可能とすると伴に、 汎用集中制御等により大容量交流発電機等 (タービン発電機等 を活用するとよい。) を駆動、合理的に活用するとよく、大容量交流発電機等の安定的駆動と合 理的設計要求等に基づき、定速度電気モータ一等を多段的 (3段〜 5段、 6段、 その他) に連結、 適宜、 合理的に構成活用するとよい。 (ロータ一の部分等を、適宜、一体型として加工構成して もよい。)
上記装置等は、 適宜、 重層設備として、 相互補完的に構成活用してもよく (たこ足型配線等 による応用等)、構成に於ける連铳性は、電気エネルギーの増幅、反復増幅等を意味するが、直 交変換等による活用等は許より、 ヱネルギ一の ±i幅は、 サイクル的活用等を余儀なく示唆する ものであり、 バッテリーその他の構造物等 (レギユレター等充電器、 フライホイール蓄電シス テム等の活用等をも含め) を活用することにより、 必要に応じて、 サイクル的に構成活用する とよい。
さら!こ、 活用と構成等に於いては、 交流発電機等の発電容量等による差異等に着目し、 圧縮 器等 (圧縮空気ェネルギー貯蔵装置等) を活用しロータ一等を回転、 交流発電機等発電設備の 稼働、 若しくは、 水力発電等の揚水等をも含めた (揚水タンク等を設け、 噴射ノズル等による 加圧放水発電としての活用等) 合理的活用による発電機の駆動等間接的サイクル発電としての 応用、 即ち、 附随した活用としての連続的エネルギー変換技術等による交流発電機等の容量差 による合理的活用等、 相対的増幅、 反復増幅等による相互補完的活用等を否めない。
従って、 定速度電気モータ一等を活用し、 交流発電機等を駆動する事による相対的増幅、 及 び、 交流発電機等の発電容量差による連続的総体的活用等による増幅が、 特許請求の範囲 (1) の上位概念となる力 (当然、 優先権の主張のおよぶ範疇等をも含めた、現時点で他の発明等に 抵触しない範囲で、 交流発電機等を活用した容量差による連铳的ェネルギー変換技術等による 増幅、 即ち、 補完的活用等をも含めた総体的構成の結果、 単純な回転機の駆動等による連続的 な増幅活用、及び、相対的増幅、反復増幅等による個別的製品との組合せによる活用方法等が、 本発明により抵触する事を言う。)反復増幅等交流発電機を活用することにより、必要可能な交 流電流等を増幅構成活用する装置の体系と言い表わす事が出来、 連続的ェネルギー変換技術等 の合理的活用等は許より、 並行運転等の活用等を否めるものではなく、 構成等に於いては、 ト ランジスタ一、 サイリ スター、 ダイォード、 コンデンサ一、 コイル、 可変コイル、 抵抗器、 可 変抵抗器、 変圧器、 イ ンバーター、 コンバータ—等の活用等は許より、 自動制御技術、 冷却技 術、 安全保全装置'(各種遮断器、 各種絶縁機器、 アース、 ヒューズ、 回転体防御カバ—、 振れ 止めスタ ン ド、 緊急停止ブレーキ、 その他) 等の合理的活用を否めない。
本発明の効果としては、 各種実用的電源等の増幅構成活用等は許より、 必要に応じサイ クル 的に構成活用し得ること。 クリーンエネルギーであり、保全等により長期間活用 (使用) 出来、 コスト低減を計る事が出来る。 発電設備そのものが、蓄電池としての役割等を担い、ヱネルギー 対策の展望が容易になり得る。 既存の発電様式等に特性を遺憾なく発揮し得る事、若しくは、既 存の発電様式等を改良すると伴に合理的に活用し得る事。 大型特殊車両、 船舶、 けん引車等と の組合せ等により、 動力源としての構成活用等は許より、 移動型発電設備、 移設補完型発電設 備として構成活用し得る事。 その他、 既存の電熱器、 電熱温水器 (間接抵抗加熱方式、 誘導加 熱方式、 マグネトロン等誘電加熱方式) 等と組合せ構成活用する、 コジェネレーショ ンシステ ムとしての平衡的活用等を述べる事が出来るが、 個別的製品等と組合せ構成活用する事を目的 とする。
以上が特許請求の範囲 (1) の説明であるが、 コジエネレーショ ンシステムとしての活用等が 本発明により抵触されると伴に、 延長線上に各種電熱器等活用による、 複合型発電システムを 構成し得る事に着目し、 以下、 説明による規範とした。
即ち、 特許請求の範囲 (2) は、 特許請求の範囲 (1 ) の規範等を受けて、 各種電熱器等を活 用すると伴に、 誘電加熱方式等を主体とした蒸気発生装置により、 高圧蒸気を発生させ、 その 蒸気エネルギーで高速タービン発電機等を駆動し、 発電設備を稼働、 廃熱等蒸気圧を復水器等 により冷却し、 給水加熱器、 給水加熱タンク等により、 再熱、 給水循環ポンプ等により給水循 環系を創製する。 従って、 以上の構成要素等を基に、 電力と蒸気圧等コジェネレーショ ンシス テムとして最大限に活用するが、 各種実用的電源等の合理的活用等は許より、 各種廃熱等の有 効的再熱活用等をも含め (一般的コジェネレーショ ンシステム等の合理的活用等をも含め) 複 合型発電設備として構成、 且つ、 その設備により、 電気ヱネルギ—及び熱ヱネルギ一 (蒸気圧 等) の抽出活用等、 さらに、 必要に応じ、 反復増幅活用等、 サイクル的活用等をも含め、 エネ ルギ一の高度有効利用を目的とした。
構成としては、図 2に示す力く、 マグネト口ンは、二極真空管で中央の陰極から出た電子は、囲 りにある陽極に向って飛びだし、 上下方向に働らいている強い磁界が進路を曲げ渦を巻いて陽 極へと向い、 陽極の空洞に電子が入ると、 空洞は、 コイルとコンデンサ一の直列回路の様な働 きをして振動電流を起こし、 マイクロ波を発振するが、 このマイクロ波が導波管を伝わり、 そ の構造物を複数設け、適宜、 マイクロ波照射装置として構成、大量に回転金属羽根等にあたり、 照射効果を促進し、 誘電加熱炉は高圧蒸気を発生する。
この高圧蒸気は、 バイパス制御系、 調速制御装置、 湿分分離加熱器、 蒸気タービン等発電機 などにより構成される発電設備等を稼働し、 復水器等に導かれる。
一般的、 蒸気タービンの熱サイクルには、 純復水式、 再生式、 再熱式等があり、 背圧タービ ン、 抽気タービン、 抽気背圧タービン等を活用する場合等は、 補給水タンク等を設け、 補給水 等を給水加熱器等により加熱して用いる必要がある。 また他の機構からの廃熱等(ゴミ焼却炉、 火力発電、 ガスタービン発電、 製鉄所高炉等) の再熱活用等を行なつてもよく、 適宜、 合理的 有効的構成と活用を否めるものではなく、 クロスコンパゥンド形発電として構成した場合等を も含め、 いったん発生した電力などは、 自励式に活用出来る様に設備等を構成、 補完的稼働等 の活用等を否めない。 従って、 いったん発生した電力等の用途を問うものではなく、 特許請求 の範囲 (1) の規範等により、増幅、反復増幅等自在に活用できる事は自明の事であり、相互補 完的サ 'ィクル的構成と活用を否めない。
また、 必要に応じて、 要所要所に給水ポンプ等を設置するが、 給水加熱器、 給水加熱タンク 等の基本的加熱方式として、間接抵抗加熱方式、誘導加熱方式(図 2等を参照)等を制御系と伴 に用いたが再生式等の活用を否めるものではなく、 誘電加熱炉等蒸気発生装置には、 マイクロ 波乱反射板、 上限水位調整機構、 マイクロ波を通す (せと物等を加工するとよい) 網目等のも のを重ね合わせた湿分分離器等を設け、 外面加熱型誘導加熱方式湿分分離加熱器 (磁気調理器 等に活用される方式で、 誘導加熱の外面式活用方法により、 金網を重ね合せた部分を加熱する と伴に高圧蒸気を通過、残留湿分を除去し、乾燥蒸気となってタービンへと導く) 等の活用等、 効率よく合目的的に構成活用するとよく、 適宜、 I台水加熱器、 給水加熱タ ンク等を再生式 (図 3等を参照) に構成活用する場合等は、誘電加熱炉等蒸気発生装置を複数設け活用するとよい。 さらに保全等の要求に応え、 各種実用的電源及び制御系等を備えて置くとよく、 緊急の場合等 をも含め、他励式の稼働等活用を否めるものではなく、復水器等は、圧縮器(コンプレッサー)、 蒸発器 (熱交換器)、細管 (膨張弁)、凝縮器(熱交換器)等を設けた冷却水タンクを設置し、循 環冷却水として構成活用したが、 海水、 河川等を循環冷却水として適宜活用してもよい。 以上が特許請求の範囲 (2) の構成等に於ける説明である力 発電規模等の大小、設備の部分 的、 総体的、 重複的活用等を問うものではなく、 消費電力等に注目し、 能動的に発生するエネ ルギ一が連铳的に増幅する様に構成活用してもよく、特許請求の範囲 (1) と組合せ、 コジ-ネ レーショ ンシステムとしての部分的特性の合理的活用と構成等を否めない。
すなわち、特許請求の範囲(1) に於けるコジヱネレ一ションシステムとしての活用体系の一 部と言い表わす事も出来るが、 総体的活用の範囲等に鑑み、 コジェネレーショ ン複合型発電シ ステムと発明の名称を認めた所以である。
特許請求の範囲 (3) の説明
特許請求の範囲 (1) と (2) の構成要素等を自在に活用し得る事は自明の事であり、 図 4に 示した様に、 従来の火力発電 (石炭、 石油、 ガスバーナー等活用の各種実用的熱源) 設備等を 改良し、熱伝導材に軽水等を、 おもに活用すると伴に、 1次熱伝導材循環系および 2次熱伝導材 循環系等を創製し、 適宜、 タービン発電機等を回転駆動してなる、 火力加圧複合型発電システ ムであるカ^上記装置等構成要素を基に、比較的小規模の実用的熱エネルギー等(地熱発電、高 温岩体発電等の熱源の活用等をも含め) を、 機械的電気的に増幅、 効率を極限まで高め活用す る事を目的とし、'加圧型、若しくは、間接的サイクル的構成と活用 (2次的活用) として合目的 的に改良、 補完的活用等をも含め、 電気エネルギー等の高度有効利用等を可能とする。
基本的構成としては、 図 4の a) に示す力、従来の火力発電等の機構により、蛇行型パイプラ ィン内の 1次熱伝導材 (軽水等) は、加熱され、 1次熱伝導材等熱溜まりを形成し、加圧器等に より加圧された熱伝導材等は高温を維持すると伴に、液浸式電熱器等により熱の拡散を防ぎ、 1 次熱 ί云導材駆動 'す:ンプ等により、 蒸気発生器内を駆動し、 1次熱 ί云導材循環系を創製する。 (熱 量が満たない場合等は、適宜、電熱器等の活用を否めない。) 蒸気発生器等により発生した蒸気 エネルギーは、 高速タービン発電機等を回転し発電設備を稼働すると伴に、 復水器等によって 冷却、 タ一ビンの駆動効率を高め、給水循環ポンプ、袷水加熱器等により、 2次熱伝導材循環系 を創製する。 当然、 必要に応じて、 給水加熱器等は複数設けてもよく、 調速制御系、 蒸気バイ パス制御系、 湿分分離加熱器等の活用を否めず、 特許請求の範囲 (1) と (2) の説明等に於け る合理的設備等の部分的活用等は自明の事である。
即ち、 いったん発生した電力の用途を問うものではなく、 適宜、 他励式、 自励式等の電力の 活用による制御等、 若しくは、 始動用動力等の活用等を否めるものではなく、 切換えスィ ッチ 等により併用するとよく、 熱サイクル及び電力活用によるサイクル的構成等は、 自在に活用し てもよい。 また、基本的熱源としての火力等は、必要に応じて、強制送風装置、強制排気口、電 気その他の集じん装置等と併設するとよく、図 4の b) に於いては、 1次熱伝導材熱溜まりの上 部に加圧器等を設けたものを示したが、適宜、蒸気発生器、 1次熱伝導材循環系等を構成、総体 的活用等に順次、 合理的に活用するとよい。
図 4の c) に於いては、 地熱発電、 高温岩体発電等、 各種実用的廃熱等の熱源を活用、 1次熱 伝導材及び給水加熱器等の加熱、 若しくは、 再熱等に活用するとよく、 発明の名称を複合型と 認めた所以であり、総体的活用等に順次、適宜、改良、合理的に活用するとよい。 また、図 4の b) とじ) の活用等構成に於いては、 1次熱伝導材等に炭酸ガス等を活用、適宜、密閉形の 1次熱 伝導材循環系を創製、 合目的的に活用してもよい。
図 4の d) の蒸気発生器等活用による間接加熱サイクル複合型発電システム (間接加熱サイク ル系) とは、地熱発電、高温岩体発電等の熱源及び、各種実用的廃熱等の熱源を、蒸気発生器、 給水加熱器等の加熱用熱源に活用、 特許請求の範囲 (1) と (2) の構成要素等を自在に活用し 得る事により、 適宜、 必要に応じて、 電熱器等を複数活用、 補完的に構成してもよく、 加圧複 合型発電システムとして説明した、 2次熱伝導材等給水循環系サイ クルを、間接的加熱サイクル として、合目的的に構成したものであり、給水系入口バルブ等配管より、注入された給水等は、 蒸気発生器の加熱調整隔板により、 下降流と上昇流が分離する様に形づくり、 細管を重ね内部 を通過する熱源、 即ち、 加熱作業部により、 加熱されると伴に上昇流となり、 湿分分離器等に より湿分が除却され、 電熱器等により、 さらに乾燥された蒸気流は逃げ場を失い、 タービンバ ィパス制御、 調速制御、 タービン、 湿分分離再熱器等を通過し、 発電機等を回転すると伴に発 電設備等を稼働し、 復水器等により冷却、 袷水加熱器等を経て、 給水循環系等を創製する。 従って、 間接的サイ クル的に構成活用する事により、 特許請求の範囲 (2) と (3) に附随す るものであるが、 蒸気発生器の活用等により、 特許請求の範囲 (3) の範疇に含めた。
即ち、 構成と活用等に於いては、 設備等の重複的活用、 若しくは、 部分的組合せによる合理 的活用等を否めるものではなく、 適宜、 加圧複合型発電システム、 若しくは、 間接加熱サイ? ル複合型発電システムとして構成、 特許請求の範囲 (1) と (2) の組合せ等により、 増幅 反 復増幅等、 適宜、 補助的補完的 (熱量等の補完的活用等をも含め) サイクル的、 若しくは、 他 励的に、 合理的に構成活用してもよい。
従って、 火力発電等を改良、 若しくは、 各種実用的熱源等の活用により、 コジエネレーショ ン複合型発電システム、若しくは、加圧複合型発電システムとして構成活用した場合、及び、間 接的熱源等の活用により、構成を、 2次的間接サイクル的に活用、若しくは、本発明の要旨にあ てはめ構成活用した場合等は、抵触するものとする。 (即ち、半製品等も保護される所以である が、特許請求の範囲 (1) 等により増幅構成活用し得る事に威儀があり、現時点で、地熱発電等 に於いて、 間接的に構成活用されていない場合等は該当する事を意味する。)
以上が、 特許請求の範囲に於ける説明であるが、 各種実用的電源、 及び、 各種実用的熱源等 を、 機械的電気的に増幅構成活用し得る事を特長とし、 それぞれの特許請求の範囲に於いて、 シーケンス技術、 機器、 計装設備等の活用は自明の事であり、 部分的特長の合理的活用等は許 より、 構成要素等を複合的重複的に活用し得る事は勿論の事、 発明の要旨に反しない範囲に於 いて、 適宜、 設計改変、 構成と活用、 実施可能な事は勿論である。
図面の簡単な説明
図 1の説明
a) 交流エネルギー増幅装置等の説明図である。
1.各種実用的電源等定速度電気モーター制御装置、 2.定速度電気モーター、 3.回転軸、 4. フ ランジ軸継手等、 5.相対的に容量の大きい交流発電機、 6.変圧器等制御系、 7. 1ュニッ ト制 御系電力、 8.定速度電気モーター集中制御系 (配電盤等)、 9.定速度電気モーター (必要に応 じ、 適宜、 多段的に構成活用してもよい。)、 10.回転軸、 11.振れ止めスタンド等を要所要所 において適宜活用 (図 b,c等を参照)、 12. フランジ軸継手等(ユニバーサルジォイ ント等を活 用してもよい。)、 13.大容量交流発電機(タービン発電機等を適宜改良活用するとよい。)、 14. 変圧器、 15.バッテリー及びレギユ レター等充電器 (フライホイール蓄電システム等を活用、 適宜、 サイ クル的に構成活用してもよい。)、 16.送電活用。
定速度等の回転数等は、 必要に応じて、 汎用性を持たせ、 一定にコン トロールできる様に構 '成活用してもよい。 1ュニット制御系電力とは、基本的構成要素である、相対的増幅の活用を、 複合的(並行運転、反復増幅等) に構成、 1ュニッ ト設備等を稼働するのに必要な電力等を言う。 b) 振れ止めスタ ンド側面図の説明略図である。
1.割り力ップ軸受、 2· ユニバーサルジオイ ント (フランジ軸継手等を活用してもよい。)、 3. 回転軸、 4.振れ止めスタ ンド、 5. ダブルナッ ト (高低を調節)、 6.親ネジ、 7. スタ ンド台。 c) 振れ止めスタ ンド正面図の説明略図である。
1.回転軸、 2.割り力ップ軸受、 3. ボルト締め、 4.振れ止めスタ ンド、 5. ダブルナッ ト、 6. 親ネジ、 7. スタ ンド台。
図 2の説明
誘電加熱方式等を主体とした、 コジエネレーショ ン複合型発電システムの説明略図である。 1.誘電加熱炉 (蒸気発生装置)、 2. マグネト口ン等制御系、 3.導波管、 4. マイク口波照射装 置、 5.回転金属羽根、 6.回転羽根制御装置、 7.湿分分離器、 8. 0リング、 9.ボルト締め、 10. 給水スパジャー、 11. マイク口波乱反射板、 12.外面加熱型誘導加熱方式湿分分離加熱器、 13. 主蒸気調整弁 (止め弁)、 14. ドレーン等抽気口及びバイパス制御系、 15, タービン発電設備、 16.湿分分離加熱器、 17.蒸気抽気ロバルブ、 18.復水器、 19.冷却水循環ポンプ、 20.蒸発器 (熱交換器)、 21.細管等、 22.凝縮器、 23.圧縮器、 24.冷却水タンク、 25.袷水系循環ポンプ、 26.間接抵抗加熱方式給水加熱器、 27.間接抵抗加熱発熱体等、 28.給水加熱器等制御系、 29. 間接抵抗加熱方式第 1給水加熱タンク、 30.間接抵抗加熱発熱体等、 31.第 1給水加熱タンク 等制御系、 32.給水加熱タ ンク内隔板、 33.給水系循環ポンプ、 34.袷水系循環パイプ、 35. 給水系循環バルブ、 36.誘導加熱方式第 2給水加熱タンク、 37.誘導加熱制御系及び電源、 38. 冷却調整循環水入口、 39.冷却循環水出口、 40.誘導加熱用コィル、 41.対流等を可能とした、 誘導加熱用熱伝導体、 42. 0リ ング、 43. ボルト締め、 44.給水循環ポンプ、 45.蒸気発生装置 内上限水位調整機構、 46. ステンレス鋼等を内張り、 47.捕給水バルブ、 48.捕助袷水タンク 等捕給水、 49.補助給水調整弁、 50.変圧器、 51.送電活用、 52.各種廃熱等を適宜活用して もよい。 (廃熱、 再熱利用等を体系等に組入、 適宜構成活用してもよい。)
上記装置等は構成要素等の複合的活用等、 部分的組替え、 組入れ等、 発明の要旨に反しない 範囲に於いて (他励式、 自励式等の電力の活用等をも含め、 他の発明等に低触しない範囲に於 いて)、 適宜、 構成活用してもよい。
図 3の説明
コジエネ レーショ ン複合型発電システム再生式等の説明略図である。
a) 再生式誘電加熱方式蒸気発生装置等の説明略図である。
1.誘電加熱炉 (蒸気発生装置)、 2.マグネト口ン等制御系 (複数設ける)、 3.導波管、 4.マイ ク口波照射装置、 5.回転金属羽根、 6.回転羽根制御装置、 7.マイク口波乱反射板、 8.湿分分 離器、 9.給水スパジャー、 10.給水系循環ポンプ、 11.給水系循環パイプ、 12.逆洗弁等 (適 宜活用)、 13.蒸気発生装置内上限水位調整機構、 14.再生式蒸気圧抽気口、 15. 0リング、 16. ボルト締め、 17.外面加熱型誘導加熱方式湿分分離加熱器、 18. バイパス制御系、 19. ドレー ン等廃熱 (循環系復水器へと導き活用)、 20.袷水系バルブ、 21.高圧蒸気流 (発電設備へと 活用)。 b) 再生式給水加熱タ ンクの説明図。
1.再生式給水加熱タンク、 2.再生式蒸気及び加熱用パイプ、 3.蛇行パイプライ ン、 4.放熱板、 5.給水加熱タンク内隔板、 6. ステンレス鋼等を内張り、 7.給水循環系給水口、 8.給水循環系 パイブ、 9.袷水循環系ポンプ。
c) 再生式給水加熱器の説明図。 (その 1)
1.再生式給水加熱器、 2.再生式蒸気加熱パイプ、 3.蛇行パイブラィン、 4.給水循環系ポンプ、 5. ステンレス鋼等内張り、 6.給水循環系給水出口。
d) 再生式給水加熱器の説明図。 (その 2)
1.再生式給水加熱器、 2.給水循環系給水入口、 3.給水循環系給水出口、 4.加熱用高圧蒸気入 口、 5.加熱用パイプライン蛇行配管 (放熱板等を重ね合せ、取付け活用してもよい。)、 6.高 圧蒸気廃気口 (給水循環系として再度活用してもよい。)、 7. ステンレス鋼等を内張り、 8.支 持脚 (支持台)。
再生式の構成等活用に於いては、 各種廃熱の利用等に応用してもよい。
図 4の説明
火力加圧複合型発電システム等の説明略図である。
a) 火力加圧複合型発電システムの総体的説明略図である。
1.火力発電等の加熱機構、 2.加熱用パイプライ ン等、 3. 1次熱伝導材等熱溜まり (軽水等を 活用)、 4.空気抽出口 (ボルト締め)、 5. 0リング、 6. ボルト締め、 7.加圧器、 8.液浸式電熱 器等、 9.蒸気発生器、 10. 1次熱伝導材駆動ポンプ、 11. タービン発電機等発電設備、 12.温 分分離加熱器、 13.復水器、 14.給水加熱器駆動ポンプ、 15.第 1袷水加熱器、 16.第 2給水加 熱器、 17.変圧器、 18.送電活用、 19.自励式等転用制御系電力、 20.自励式、 他励式、 始動 用電力等の切換えスィ ツチ等制御系設備及び電源。
上記、 3の熱溜まり、 7の加圧器等に於いて、必要に応じて、電熱器等を補完的に活用しても よい。
b) 火力加熱機構 (熱溜まり等) 及び加圧器一体型の説明図であ'る。
1. ガスバーナー等ガスパイプ (複数活用)、 2.火力、 3. 1次熱伝導材等加熱用パイプライ ン、 4. 1次熱伝導材等熱溜まり、 5. 1次熱伝導材駆動ポンプ (蒸気発生器の熱源として活用)、 6. 1次熱伝導材循環流入口、 7.加圧器(必要な熱量等を電熱器等により補完活用してもよい)、 8. 液浸式電熱器、 9.捕給水調整弁、 〗0.,補給水調整排水弁、 11.気圧調整弁 (加圧調整手段とし て圧縮空気圧等を適宜活用しても ·よい)。
1次熱伝導材等は、一般に軽水等を活用するが、炭酸ガス等を活用設計を改善活用してもよい。 c) 蒸気圧等による加熱機構及び加圧器一体型の説明図である。
1.高熱蒸気圧等、 2.廃熱、 3.加熱用細管熱源 (加熱用パイプを重ねたもの)、 4. 1次熱伝導 材等熱溜まり、 5. 1次熱伝導材駆動ポンプ (蒸気発生器へと導き、熱源として活用)、 6. 1次 熱伝導材循環流入口、 7.加圧器(必要な熱量等を電熱器等により補完活用してもよい)、 8.液 浸式電熱器、 9.補給水調整弁、 10.補給水調整排水弁、 11.気圧調整弁 (加圧調整手段として 圧縮空気等を適宜活用してもよい)。
1次熱伝導材等は、軽水等を一般的に活用するが、炭酸ガス等を活用、適宜、設計を改善活用 してもよく、 おもに高温岩体発電、 地熱発電等の熱源等を活用するとよい。
d) 蒸気発生器等活用による間接加熱サイクル複合型発電システムの説明図である。
1.高圧蒸気流入口 (熱源入口)、 2.蒸気流出口 (廃熱口)、 3.細管 (パイプライン等を重ねた もの)、 4.給水系入口バルブ、 5.上限水位調整バルブ、 6.排水系調整バルブ、 7.加熱調整隔 板、 8.湿分分離器 (金網を重ね合せ活用)、 9.電熱器、 10.高圧蒸気流 (発電機駆動エネル ギ一として活用)。
上記、 火力加圧複合型発電システム等は、 特許請求の範囲 (1) と (2) の構成要素等を自在 に活用構成するとよい。

Claims

請求の範囲 特許請求の範囲 (I)
電源及びスイ ッチング等制御装置 (1) によって、 定速度に制御される電気モーター (2) を 作動し、 消費電力より相対的に容量の大きい交流発電機 (5) を駆動、且つ、 その構成要素等を 適宜、複合的に活用する事により、新たに創製された総体的電気エネルギーを、 1ュニッ ト制御 系電力 (7) とし、 定速度、 若しくは、 汎用集中制御系 (8) と伴に、適宜、 電気モーダーを直 列に連結 (9)、 大容量交流発電機 (13) 等を始動、且つ、 必要に応じて、 重層設備としての相 互補完的活用、 交流発電機等の発電容量等の差異による連铳的総体的エネルギー変換技術等に よる増幅活用、 及び、 サイ クル的活用 ( ) 等を可能としてなる、 交流エネルギー増幅装置。 特許請求の範囲 (2)
特許請求の範囲 (1) の規範等に基づき、構成された電気エネルギーを、 おもな電源及び補完 的活用として、 誘電加熱方式等による蒸気発生装置により、 高圧蒸気を発生させ、 この蒸気ェ ネルギ一で、 高速タービン発電機等を回転、 発電設備を稼働すると伴に、 復水器、 給水加熱器 等給水ボンブ、 及び、 給水加熱タンク等により給水循環系を創製、 且つ、 誘電加熱による再生 式発電、 各種廃熱等の再熱利用、 若しくは、 補給水及び蒸気抽気ロ等の構成要素等による蒸気 エネルギーの活用等を可能としてなる、 コジエネレーショ ン複合型発電システム。
特許請求の範囲 (3)
特許請求の範囲 (1) と (2) の規範等に基づき、 構成された電気エネルギーを、 おもな電源 及び補完的活用として、火力発電等の加熱機構(1) により、パイプライン内の熱伝導材(2) が 加熱され、 1次熱 ί云導材等熱溜り (3) を形成し、加圧器 (7)、 液浸式電熱器 (8)、蒸気発生器 (9)、 1次熱伝導材駆動ポンプ (10) 等により、 1次熱伝導材循環系を創製すると伴に、蒸気発 生器 (9) により発生した蒸気エネルギーによって、 高速タービン発電機等を回転、 発電設備 (11) を稼働し、 2次熱伝導材等高圧蒸気等を復水器 (13) で冷却すると伴に、給水加熱器駆動 ポンプ (14)、 第 1袷水加熱器'(15)、 第 2給水加熱器 (16) 等の 2次熱伝導材循環系等からな り、 且つ、 必要に応じ、 発電設備等を複数備え、 他励式、 若しくは、 自励式及び始動用動力等 の設備を備え、 切換えスィツチ制御系 (20) 等により併用、 高温岩体発電、 地熱発電等の熱源 等の活用と改良、 間接的サイ クル的活用等を可能としてなる、 火力加圧複合型発電システム。 補正された請求の範囲
[1993年 10月 12日(12.10.93)国際事務局受理;出願当初の請求の範囲 1は補正された請求の 範囲 1に置き換えられた。 (3頁)]
特許請求の範囲 〔1〕
電源及びスイッチング等制御装置 (1) によって、 定速度に制御される電気モーター (2) を 作動し、消費電力より相対的に容量の大きい交流発電機 ) を駆動、且つ、 その構成要素等を 適宜、複合的に活用する事により、新たに創製された総体的電気エネルギーを、 1ュュット制御 系電力 (7) とし、 定速度、 若しくは、 汎用集中制御系 (8) と伴に、適宜、 電気モーターを直 列に連桔 (9)、 大容量交流発電機 (13) 等を始動、.基本的実施態様とすると伴に、 且つ、 必要 に応じて、 重層設備としての相互補完的活用、 交流発電機等の発電容量等の差異による連铳的 総体的エネルギー変換技術等による増幅活用、 及び、 サイクル的活用 (15) 等を可能として成 る、 交流エネルギー増幅装置。
特許請求の範囲 〔2〕
特許請求の範囲 〔1〕 の規範等に基づき、構成された電気エネルギーを、 おもな電源及び補完 的活用として、誘電加熱方式等による蒸気発生装置 (1) により、高圧蒸気を発生させ、 この蒸 気エネルギーで、 高速タービン発電機等を回転、 発電設備 (15) を稼働すると伴に、 復水器 (18)、 袷 7j加熱器 (26) 等給水ポンプ (25) (33)、 及び、 袷水加熱タンク (29) (36) 等によ り給水循環系を創製、 基本的実施態様とすると伴に、 且つ、 誘電加熱による再生式発電、 各種 廃熱等の再熱利用 (52)、若しくは、捕給水 (48)及び蒸気抽気ロ (17)等の構成要素等による 蒸気エネルギーの活用等を可能として成る、 コジュネレーション複合型発電システム。
特許請求の範囲 〔3〕
特許請求の範囲 〔1〕 と 〔2〕 の規範等に基づき、 構成された電気エネルギーを、 おもな電源 及び補完的活用として、火力発電等の加熱機構 (0 により、パイブライン内の熱 {云導材(2)が 加熱され、 1次熱伝導材等熱溜り (3) を形成し、加圧器 (7)、液浸式電熱器 (8)、蒸気発生器 (9)、 1次熱伝導材駆動ボンブ (10) 等により、 1次熱伝導材循環系を創製すると伴に、 蒸気発 生器 (9) により発生した蒸気エネルギーによって、 高速タービン発電機等を回転、 発電設備 (11) を稼働し、 2次熱伝導材等高圧蒸気等を復水器 (13) で冷却すると伴に、給水加熱器駆動 ポンプ (14)、 第 1給水加熱器 (15)、 第 2給水加熱器 (16) 等の 2次熱伝導材循環系等から成 り、 且つ、 必要に応じ、 発電設備等を複数備え、 他励式、 若しくは、 自励式、 及び、 始動用動 力等の設備を備え、切換えスィツチ制御系 (20)等により併用、基本的実施態様とすると伴に、 高温岩体発電、地熱発電等の熱源等の活用と改良、間接的サイクル的発電等を可能として成る、 火力加圧複合型発電システム。 第 19条に基づく説明書 本発明は、 定速度電気モーター等を活用する事により、 交流発電機等を駆動して成る相対的 増幅、 反復増幅等に主眼を置き、 必要可能な交流電流等を釗製活用する装匱の体系として位置 づけたものである。 従って構成等に於いては、エネルギー保存の法則等に制約される事なく、上 記構成要素等を複合的に活用すると伴に、 制御系等の活用等をも含め、 定速度等電気モーター を多段的に連桔、 連梡的に大容量交流発電機等を駆動する事による活用、 及び、 重層設備等に よる並行運転並びに構成要素等の相互捕完的活用、 若しくは、 交流発電機等の容量差等による 連続的総体的間接的増幅活用、 且つ、 サイクル的活用等をも含めた合理的活用等の特異性を示 して成り、 従属的規範として、 誘電加熱方式等により、 能動的活用等を可能として成る、 蒸気 発生装置を構成、 その蒸気圧等によりタービン発電設備等を回転駆動して成り、 各種廃熱等の 再熱活用等をも含めた、 コジ ネレーシヨン複合形発電システム、 及び、 各種廃熱等実用的熱 源を、 機械的電気的に増幅構成して成る、 間接型等の発電設備、 即ち、 火力加圧複合形発電シ ステム等を開示、 最良の実施形態等を示すと伴に、 実施態様等を捕足し整理する事により、 特 許請求の範囲として明記した。
従って、 エネルギーの増幅は、 卓越したサイクル的構成等を余儀なく示すものであり、 部分 的、 総体的活用等に於いても、 斬新的効率を極める事を意味し、 他の発電設備等への応用等を も含め、 21世紀に向けた、 人類のエネルギー対策の展望を指し示すものである。
PCT/JP1993/000763 1992-06-22 1993-06-07 Ac energy amplifier WO1994000907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43546/93A AU4354693A (en) 1992-06-22 1993-06-07 Ac energy amplifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP22313292 1992-06-22
JP4/223132 1992-06-22
JP11357293A JPH0678521A (ja) 1992-06-22 1993-03-25 交流エネルギー増幅装置
JP5/113572 1993-03-25

Publications (1)

Publication Number Publication Date
WO1994000907A1 true WO1994000907A1 (en) 1994-01-06

Family

ID=26452515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000763 WO1994000907A1 (en) 1992-06-22 1993-06-07 Ac energy amplifier

Country Status (3)

Country Link
JP (1) JPH0678521A (ja)
AU (1) AU4354693A (ja)
WO (1) WO1994000907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041291A1 (fr) * 1998-12-30 2000-07-13 Akiba Seiichi Amplificateur d'energie ca

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155933A (ja) * 1997-08-05 1999-02-26 Mitsuhiro Fukada 永久磁石型発電機
AU2462100A (en) * 1999-02-15 2000-08-29 Sheiichi Akiba Self-active power generating system composed mainly of dielectric heating type such as by magnetron
ITCL20050030A1 (it) * 2005-09-14 2007-03-15 Roberto Mirisola Generatore di energia elettrica ad alto rendimento e senza alcun costo

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213544A (ja) * 1986-03-12 1987-09-19 Hiroshi Takane 自動発電装置
JPH01238454A (ja) * 1988-03-17 1989-09-22 Sekio Miyazaki 増幅発電装置
JPH03143256A (ja) * 1988-07-08 1991-06-18 Makoto Yabusaki 発電用特殊電動機
JPH03253256A (ja) * 1990-03-01 1991-11-12 Kenichi Watanabe 発電原動機
JP3050977U (ja) * 1998-01-28 1998-08-07 新光金属株式会社 浄化材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213544A (ja) * 1986-03-12 1987-09-19 Hiroshi Takane 自動発電装置
JPH01238454A (ja) * 1988-03-17 1989-09-22 Sekio Miyazaki 増幅発電装置
JPH03143256A (ja) * 1988-07-08 1991-06-18 Makoto Yabusaki 発電用特殊電動機
JPH03253256A (ja) * 1990-03-01 1991-11-12 Kenichi Watanabe 発電原動機
JP3050977U (ja) * 1998-01-28 1998-08-07 新光金属株式会社 浄化材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041291A1 (fr) * 1998-12-30 2000-07-13 Akiba Seiichi Amplificateur d'energie ca

Also Published As

Publication number Publication date
JPH0678521A (ja) 1994-03-18
AU4354693A (en) 1994-01-24

Similar Documents

Publication Publication Date Title
ES2401849T3 (es) Almacenamiento de energía eléctrica con acumulador de calor y producción de energía de retorno por medio de un proceso de circuito termodinámico
CN113847109B (zh) 一种煤电机组电热综合储能调峰系统与工作方法
WO1989011178A1 (en) Self-active type generation system
GB2263734A (en) Wind farm generation scheme utilizing electrolysis to create gaseous fuel for a constant output generator.
WO2011030285A1 (en) Method and apparatus for electrical power production
CN111655989B (zh) 储能装置和系统
CN105531918A (zh) 风力发电系统
CN113390075A (zh) 一种火电厂固体蓄热发电调峰调频系统及工作方法
CN102769304A (zh) 一种锅炉烟气余热发电系统
KR101028634B1 (ko) 발전소의 출력증강으로 발생한 잉여증기를 이용한 보조발전시스템
CN111140445A (zh) 燃气—蒸汽联合循环的冷热电多能联供系统
CN113864015A (zh) 熔融盐储热背压机辅助火电黑启动系统
CN113864014A (zh) 火电换热熔融盐储能黑启动系统
WO1994000907A1 (en) Ac energy amplifier
JP6812252B2 (ja) 水素製造設備、発電システム及び水素製造方法
KR20140116977A (ko) 가스 발전 설비
CN102769305A (zh) 一种锅炉烟气余热发电系统
CN114641452A (zh) 用于发电和海水淡化的热电联产涡轮机
CN115800873B (zh) 基于余热提质利用的全光谱光伏电站系统
CN216518187U (zh) 熔融盐储热背压机辅助火电黑启动系统
RU2784570C1 (ru) Комбинированная маневренная энергоустановка
CN2684092Y (zh) 锅炉烟气余热发电机组
CN115478923B (zh) 变频发电及回热一体化给水泵汽轮机系统
CN214147901U (zh) 一种中小规模垃圾焚烧发电系统
TWM391588U (en) Energy storage type wind power generating system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KR LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA