WO1993024198A1 - Procede et dispositif de traitement de solvants contamines a haut point d'ebullition - Google Patents

Procede et dispositif de traitement de solvants contamines a haut point d'ebullition Download PDF

Info

Publication number
WO1993024198A1
WO1993024198A1 PCT/EP1993/001361 EP9301361W WO9324198A1 WO 1993024198 A1 WO1993024198 A1 WO 1993024198A1 EP 9301361 W EP9301361 W EP 9301361W WO 9324198 A1 WO9324198 A1 WO 9324198A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
condenser
boiling
solvent
liquid
Prior art date
Application number
PCT/EP1993/001361
Other languages
German (de)
English (en)
Inventor
Michael Rannow
Original Assignee
Transferon Wäschereimaschinen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transferon Wäschereimaschinen Gmbh filed Critical Transferon Wäschereimaschinen Gmbh
Publication of WO1993024198A1 publication Critical patent/WO1993024198A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0094Evaporating with forced circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0082Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/284Special features relating to the compressed vapour
    • B01D1/2856The compressed vapour is used for heating a reboiler or a heat exchanger outside an evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0045Vacuum condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0051Regulation processes; Control systems, e.g. valves

Definitions

  • the invention relates to a process for the preparation of contaminated, higher-boiling solvents, in which all components of the contaminated solvent, with the exception of the higher-boiling contaminants, are converted into vapor form in one evaporation process and in which the solvent is subsequently condensed,
  • perchlorethylene has preferably been used as the organic solvent for cleaning textiles and leather.
  • This solvent has a relatively low boiling point of around 121 ° C.
  • the contaminated solvent is processed by simple bubble distillation at atmospheric pressure. Solvent and water are distilled off, condensed and separated from one another by gravity. All contaminants that have got into the solvent from the items to be cleaned remain in the distillation residue and become batches of residual sludge taken from the still.
  • the low-boiling constituents When working with perchlorethylene, the low-boiling constituents remain in the residue during distillation because their boiling points are higher than that of perchlorethylene. This situation changes when higher-boiling solvents are used: the boiling point of the low-boiling impurities is below that of the solvent boiling at 170 to 190 ° C .; these impurities therefore pass into the distillate during evaporation. They are thus enriched in the solvent. This ultimately leads to a lowering of the flash point of the solvent to below 55 ° C or even below 21 ° C, which places the solvent in safety groups A2 or even AI in the categories of flammable liquids.
  • a disadvantage of the known method and the known device for the treatment of higher-boiling hydrocarbons is also that the residues remaining in the still are exposed to a permanent, high temperature load, because these residues are removed only once a day or even less frequently and so that they remain in the heated still for a long time. This long dwell time at the high surface temperature of the heated still bottom leads to the decomposition and conversion of the contaminants, from which odors are formed. In the case of higher-boiling solvents, these substances are exaggerated in the bubble distillation and enriched in the solvent. This also means that the solvent can no longer be used for cleaning in the long term.
  • the object of the present invention is to design a method or a device of the type mentioned at the outset so that complete cleaning of the solvent is ensured.
  • the first “separating cut” removes the higher-boiling impurities from the solvent.
  • solvents and all low-boiling impurities evaporated while the higher boiling Ver ⁇ impurities remain behind as a residue.
  • the second “separation cut” the solvent is separated from the low-boiling impurities by choosing the process parameters temperature and / or pressure.
  • the solvent is selectively condensed out, while the low-boiling impurities ⁇ initially remain still in vapor form and are recovered later in a separate, externally cooled condensation process.
  • the solvent prepared with the method according to the invention is thus free of all impurities, be they low or high boiling. Enrichment with, in particular, low-boiling impurities, which could result in a shift in the flash point, no longer occurs.
  • the contaminated solvent is evaporated in a flashing process.
  • the relaxation process is in contrast to the bubble distillation previously used.
  • the contaminated solvent, and in particular the residue that forms, is no longer in contact with a hot surface. The decomposition and conversion of contaminants, in which odor carriers can form, is thus reduced.
  • the vapors produced in the evaporation process are compressed during suction and the heat supplied to the vapors and the enthalpy of vaporization are used to preheat the contaminated solvent supplied to the evaporation.
  • a separate heating can largely be dispensed with due to the mechanical energy which is supplied to the vapors during the compression, and by the recovery of the enthalpy of vaporization.
  • the vapors generated in the evaporation process should be conveyed volumetrically to the condensation process. This avoids a shift in the partial pressure ratio, which would result in a deterioration in the efficiency in the selective condensation.
  • the residue remaining in the evaporation process can be fed several times in the evaporation cycle until it consists almost entirely of higher-boiling impurities.
  • all lower-boiling components are therefore not removed from the contaminated solvent "in one step". Rather, this takes place in a large number of passes through the evaporation process, so that the residence time of the contaminated solvent or of the residue in the evaporation device is relatively short. This also reduces the risk of contamination decomposing during evaporation.
  • the boiling point of the residue which forms on evaporation can be monitored; in the event of a significant shift, the residue in the circuit is subtracted.
  • the residue which forms in the process is increasingly enriched with high-boiling impurities until it finally consists almost entirely of such impurities.
  • This process is associated with a corresponding shift in the boiling point of the residue, which can be detected by monitoring the pressure and / or the temperature in the evaporation device. A significant shift in the boiling point is therefore taken as an indication that the residue is now almost exclusively from high-boiling Contamination exists and can be deducted.
  • the process according to the invention also contributes to a favorable energy balance if the residue remaining in the evaporation is used as a coolant in the condensation of the vapors formed.
  • the separation of the low-boiling contaminants from the solvent in the selective condensation process requires precise control of the pressure at which this process takes place.
  • an embodiment of the method is particularly recommended, in which the solvent is separated from the low-boiling impurities at a pressure which corresponds to the partial pressure of a liquid used as a pump medium. This partial pressure is very well defined and can also be reproduced very well.
  • the partial pressure of the liquid used as the pump medium is adjusted by regulating its temperature.
  • the liquid used as the pump medium is expediently the condensate of the low-boiling impurities.
  • a vacuum device which generates a defined vacuum in the condenser, such that the low-boiling impurities remain in vapor form at the prevailing temperature and only the pure solvent condenses.
  • a liquid ring pump is particularly suitable for generating the negative pressure in the condenser, and operates continuously at its final pressure, which is determined by the partial pressure of the ring liquid. Then the vacuum in the condenser also corresponds to the partial pressure of the ring liquid.
  • the liquid ring pump can be followed by an externally cooled condenser for the low-boiling impurities.
  • this condenser which can contain a water cooling coil, for example, the low-boiling impurities are then obtained as a liquid.
  • a connecting line can be provided between the condenser and the liquid ring pump be, via which permanent gases can be supplied from the condenser to the liquid ring pump. These permanent gases reduce the tendency to form cavitation within the liquid ring pump and thus reduce wear and operating noise.
  • the e.g. High-boiling hydrocarbon coming from a chemical cleaning machine and contaminated is input via line 1 at a point 2 into a circuit which circulates in the device and is explained in more detail below.
  • the addition is carried out continuously; if the contaminated solvent - as is the case with chemical cleaning machines - accumulates in batches, it is temporarily stored in a tank.
  • the solvent Before being added to the circuit at point 2, the solvent can be heated to a temperature in the range between about 125 and 130 ° C. in a start-up heater.
  • the residue circulating in the circuit which contains the contaminated solvent newly added at point 2, first flows into a heat exchanger 3, which it leaves at a temperature of about 140 ° C. in a superheated state. It then passes into a flash evaporator 4, in which there is an absolute pressure of approximately 50 millibars. By removing the heat of evaporation, the temperature of the solvent and the vapors within the expansion evaporator 4 drops to about 128 to 130 ° C.
  • the non-evaporated solvent that collects with higher boiling points Impurities is enriched. It is fed as a residue from the pump 5 to a condenser 6, through which it passes as a cooling liquid and from which it returns via a throttle 7 to the line point 2 already mentioned above.
  • the evaluation electronics 26 opens a solenoid valve 9. This is located in a discharge line 10, which branches off from the line 11 running between the pump 5 and the condenser 6. The residue in the circuit is now withdrawn via line 10; it consists almost exclusively of higher-boiling impurities.
  • the vapors generated in the flash evaporator 4 contain, as already mentioned above, the solvent itself and low-boiling impurities. These vapors first pass through a separator 12 within the flash evaporator 4, on which aerosols separate.
  • the vapors are fed by a volumetric fan 13, e.g. a Roots blower, suctioned, which ensures the already mentioned absolute pressure of about 50 millibars within the flash evaporator 4.
  • the volumetric fan 13 conveys all types of vapors and gases in the same way, so that there can be no shift in the partial pressure ratio in the steam (mixture) it moves.
  • the vapors are fed to the heat exchanger 3 and, as has also been explained, heat the residue circulating in the circuit to the temperature required for admission to the expansion evaporator 4.
  • the steam temperature is adjusted so that just the solvent condenses out within the condenser 6, while the low-boiling impurities remain in the vapor form and can be drawn off via a line 14.
  • the recovered solvent which is now freed of both higher and lower-boiling impurities, is conveyed out of the condenser 6 by the pump 15 and fed to the reuse via the line 16.
  • the vapors of the low-boiling impurities removed from the condenser 6 via the line 14 are drawn off by a liquid ring pump 17 via a throttle 18.
  • the liquid ring pump 17 is operated so that the pressure in the line 14 and thus in the condenser 6 is exclusively determined by the liquid partial pressure of its ring liquid.
  • the liquid ring pump 17 supplies the vapors of low-boiling impurities to a condenser 19, which is cooled by a cooling coil 20.
  • the condensate of the low-boiling impurities formed in the condenser 19 is continuously drawn off via a line 21.
  • a small part of the condensate of the low-boiling impurities is returned via a return line 22 to the liquid ring pump 17 and serves there as a ring liquid, which determines the pressure in the line 14 and in the condenser 6 generated by the liquid ring pump 17 .
  • the exact setting of the partial pressure at which the "correct" separation cut takes place within the condenser 6 at the operating temperature prevailing there, at which the solvent is condensing while the low-boiling impurities remain in vapor form, is carried out by the choice of the temperature the condensate of the low-boiling impurities, which leaves the heat exchanger 19. This temperature is monitored by a temperature sensor 23, which is connected in a suitable manner to a control circuit (not shown in the drawing). This control circuit controls the cooling within the capacitor 19 so 'that the capacitor 19 condensate leaving always has the same, selected Tempe ⁇ temperature.
  • a connecting line 24 is also shown, via which permanent gases can be removed from the condenser 19 and fed to the liquid ring pump 17.
  • the permanent gases counteract the formation of cavitation within the liquid ring pump 17.
  • An additional heater 27 serves to bring the residue forming in the flash evaporator 4 or already located there to the required temperature in the start-up phase of the device and, if necessary, to bring about small changes in the temperature of the residue during operation of the device. to "trim" this temperature.
  • distillate can also be removed from the condenser 6 via a line 28 and fed to the blower 13, so that overheating of the blower 13 is avoided and at the same time the heat is transferred to the expansion evaporator 4.
  • the entire device manages essentially without the supply of external heat, apart from any start-up heating that may be required.
  • the clever choice of the various heat exchangers and the mechanical energy of the fan 13, which is converted into heat, enables continuous operation with a closed heat balance.

Abstract

Un procédé et un dispositif servent à traiter des solvants contaminés à haut point d'ébullition, tels ceux qui sont produits dans des machines de nettoyage chimique, par example. Les solvants évaporables et les impuretés à bas point d'ébullition sont séparés pendant une première étape de séparation dans un vaporisateur éclair (4) des impuretés à haut point d'ébullition, qui sont retenues en tant que résidu, et sont amenés à un condenseur (6) par un ventilateur (13) à effet volumétrique. Dans le condenseur (6) une deuxième étape de séparation se produit, dans laquelle les impuretés à bas point d'ébullition sont séparées du solvant pur; les premières sont enlevées par aspiration sous forme de vapeur et sont condensées dans un condenseur (20) séparé à refroidissement externe, alors que le solvant pur est condensé dans le premier condenseur (6) et recyclé.
PCT/EP1993/001361 1992-06-04 1993-05-30 Procede et dispositif de traitement de solvants contamines a haut point d'ebullition WO1993024198A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924218451 DE4218451A1 (de) 1992-06-04 1992-06-04 Verfahren zur Aufbereitung verunreinigter höhersiedender Lösemittel sowie Vorrichtung zur Durchführung des Verfahrens
DEP4218451.7 1992-06-04

Publications (1)

Publication Number Publication Date
WO1993024198A1 true WO1993024198A1 (fr) 1993-12-09

Family

ID=6460400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/001361 WO1993024198A1 (fr) 1992-06-04 1993-05-30 Procede et dispositif de traitement de solvants contamines a haut point d'ebullition

Country Status (2)

Country Link
DE (1) DE4218451A1 (fr)
WO (1) WO1993024198A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026780A1 (fr) * 1995-03-01 1996-09-06 Esa Tech Dr Baumann Gmbh Procede et dispositif de regeneration d'un solvant contamine
EP0719575A3 (fr) * 1994-12-30 1997-05-21 Corning Inc Système de vaporisation vertical pour des composés siliciques exempt de halogénure
WO1997020606A1 (fr) * 1995-12-06 1997-06-12 C.I.T. S.R.L. Procede et dispositif pour purifier l'eau
EP0995472A1 (fr) * 1998-10-23 2000-04-26 Bionorica Arzneimittel GmbH Installation de destillation sous vide et son utilisation pour la concentration des mélanges de solvants organiques et aqueuses
WO2000024488A1 (fr) * 1998-10-23 2000-05-04 Bionorica Arzneimittel Gmbh Installation de distillation sous vide et son utilisationour concentrer des melanges de solvants organiques aqueux
US6117275A (en) * 1996-03-01 2000-09-12 Didda Maria Janina Baumann Process and device for regenerating a contaminated solvent
AT407120B (de) * 1998-08-14 2000-12-27 Novafluid Innovative Stroemung Anlage zum auftrennen eines strömenden dampf-flüssigkeit-gemisches
US7291250B1 (en) 1999-10-20 2007-11-06 Bionorica Ag Vacuum distillation system and use thereof for concentrating organic-aqueous solvent mixtures
JP2010036057A (ja) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk 分離プロセスモジュール、集積分離プロセスモジュール、大規模集積分離プロセスモジュール
CN107797395A (zh) * 2017-09-29 2018-03-13 江苏盈天化学有限公司 一种混合废光阻清洗剂的回收方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4402499C1 (de) * 1994-01-28 1995-04-27 Boewe Passat Reinigung Verfahren und Vorrichtung zum Destillieren einer verschmutzten Kohlenwasserstoff-Lösemittelflotte
DE19507126A1 (de) * 1995-03-01 1996-09-12 Esa Tech Dr Baumann Gmbh Verfahren und Vorrichtung zur Wiederaufbereitung eines verunreinigten Lösemittels
DE19939032A1 (de) * 1999-03-24 2000-10-05 Wolf Gmbh Verfahren und Anlage zur Oberflächenbehandlung von Teilen mit einem Lösungsmittel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1940803A (en) * 1929-12-16 1933-12-26 Floyd L Kallam Condenser control device
US2067627A (en) * 1933-09-13 1937-01-12 Pennsylvania Petroleum Res Cor Method for flashing mineral oils
FR1347558A (fr) * 1963-02-18 1963-12-27 Leybold Hochvakuum Anlagen Procédé et dispositif pour la récupération des constituants volatils pendant la dessiccation par congélation
FR2360055A1 (fr) * 1976-07-28 1978-02-24 Boc Ltd Procede de condensation de la vapeur d'un liquide volatil tel que le chlorure de vinyle monomere
FR2384521A1 (fr) * 1977-03-21 1978-10-20 Ver Edelstahlwerke Ag Installation pour eviter une chute de pression dans un systeme
EP0154868A2 (fr) * 1984-02-24 1985-09-18 Multimatic Maschinen GmbH. & Co. Dispositif de distillation de solvant pollué
EP0236813A2 (fr) * 1986-03-07 1987-09-16 EBRO Electronic GmbH Procédé et dispositif d'évaporation sous vide d'un mélange de constituants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1940803A (en) * 1929-12-16 1933-12-26 Floyd L Kallam Condenser control device
US2067627A (en) * 1933-09-13 1937-01-12 Pennsylvania Petroleum Res Cor Method for flashing mineral oils
FR1347558A (fr) * 1963-02-18 1963-12-27 Leybold Hochvakuum Anlagen Procédé et dispositif pour la récupération des constituants volatils pendant la dessiccation par congélation
FR2360055A1 (fr) * 1976-07-28 1978-02-24 Boc Ltd Procede de condensation de la vapeur d'un liquide volatil tel que le chlorure de vinyle monomere
FR2384521A1 (fr) * 1977-03-21 1978-10-20 Ver Edelstahlwerke Ag Installation pour eviter une chute de pression dans un systeme
EP0154868A2 (fr) * 1984-02-24 1985-09-18 Multimatic Maschinen GmbH. & Co. Dispositif de distillation de solvant pollué
EP0236813A2 (fr) * 1986-03-07 1987-09-16 EBRO Electronic GmbH Procédé et dispositif d'évaporation sous vide d'un mélange de constituants

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719575A3 (fr) * 1994-12-30 1997-05-21 Corning Inc Système de vaporisation vertical pour des composés siliciques exempt de halogénure
US5938853A (en) * 1994-12-30 1999-08-17 Corning Incorporated Vertical vaporizer for halide-free, silcon-containing compounds
WO1996026780A1 (fr) * 1995-03-01 1996-09-06 Esa Tech Dr Baumann Gmbh Procede et dispositif de regeneration d'un solvant contamine
WO1997020606A1 (fr) * 1995-12-06 1997-06-12 C.I.T. S.R.L. Procede et dispositif pour purifier l'eau
US6117275A (en) * 1996-03-01 2000-09-12 Didda Maria Janina Baumann Process and device for regenerating a contaminated solvent
AT407120B (de) * 1998-08-14 2000-12-27 Novafluid Innovative Stroemung Anlage zum auftrennen eines strömenden dampf-flüssigkeit-gemisches
EP0995472A1 (fr) * 1998-10-23 2000-04-26 Bionorica Arzneimittel GmbH Installation de destillation sous vide et son utilisation pour la concentration des mélanges de solvants organiques et aqueuses
WO2000024488A1 (fr) * 1998-10-23 2000-05-04 Bionorica Arzneimittel Gmbh Installation de distillation sous vide et son utilisationour concentrer des melanges de solvants organiques aqueux
US7291250B1 (en) 1999-10-20 2007-11-06 Bionorica Ag Vacuum distillation system and use thereof for concentrating organic-aqueous solvent mixtures
JP2010036057A (ja) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk 分離プロセスモジュール、集積分離プロセスモジュール、大規模集積分離プロセスモジュール
CN107797395A (zh) * 2017-09-29 2018-03-13 江苏盈天化学有限公司 一种混合废光阻清洗剂的回收方法及装置

Also Published As

Publication number Publication date
DE4218451A1 (de) 1993-12-09

Similar Documents

Publication Publication Date Title
DE3038493C1 (de) Anlage zum Aufheizen und Trocknen von Teilen unter Vakuum durch Dampfkondensation und Abscheiden einer zweiten hoeher siedenden Fluessigkeit
EP1363855B1 (fr) Procede et dispositif de traitement de liquides
WO1993024198A1 (fr) Procede et dispositif de traitement de solvants contamines a haut point d'ebullition
DE3016406A1 (de) Mehrstufige verdampferanlage mit kombiniertem bruedenverdichter und waermetransformator zur rueckgewinnung der in den brueden enthaltenden waerme
DE102007017613A1 (de) Verfahren und Vorrichtung zur Aufbereitung von Flüssigkeiten
DE2940937C2 (de) Verfahren zur Fraktionierung von wasserhaltigen Aromatenextrakten bei Unterdruck
DE2407686A1 (de) Destillierverfahren
DE2823570A1 (de) Rueckgewinnungsvorrichtung fuer chemische prozesse
DE1805652C3 (de) Verfahren zur Gewinnung von Frischwasser aus einer wäßrigen Salzlösung sowie Vorrichtung zur Durchführung des Verfahrens
DE102006052671B4 (de) Verfahren und Anlage zur Entsalzung von salzhaltigem Rohwasser
DE19637313C2 (de) Vorrichtung zum Aufheizen von Teilen
EP0256214B2 (fr) Procédé pour séparer des distillats insolubles dans l'eau de la vapeur d'eau
DE19758184A1 (de) Verfahren und Vorrichtung zur Dehydratation und Trocknung von Feststoff-Flüssigkeitsgemischen
EP0033849B1 (fr) Procédé de récupération d'énergie thermique renfermée dans les concentrats des évaporateurs à effet multiple utilisés dans les procédés d'échange de masse thermique, et dispositif pour la mise en oeuvre du procédé
DE3534094A1 (de) Eindampfung von sickerwasser aus muell-deponien
DE19905323C2 (de) Vakuumdestillationsanlage und Verwendung derselben zur Aufkonzentration von organisch-wässrigen Lösungsmittelgemischen
DE4446204C1 (de) Vorrichtung zum Aufheizen und Trocknen von Teilen mit hygroskopischen Elektro-Isolierungen
DE4402499C1 (de) Verfahren und Vorrichtung zum Destillieren einer verschmutzten Kohlenwasserstoff-Lösemittelflotte
EP1202784B1 (fr) Procede et dispositif pour le traitement d'un effluent liquide
DE2034372B2 (de) Verfahren und Vorrichtung zum Behandeln von Abscheidungsdampf aus der Fraktionierung von Tallöl
DE2406868A1 (de) Trockenreinigunsverfahren und vorrichtung zu seiner durchfuehrung
DE19826682C5 (de) Vorrichtung zum Aufheizen von Teilen
DE2348734C2 (de) Verfahren zum Abtrennen des Lösungsmittels aus Miscella
DE2552746A1 (de) Einsatz eines duennschichtverdampfers bei kondensations-aufheizanlagen
CH695116A5 (de) Verfahren und Vorrichtung zum Aufheizen und Trocknen von Teilen.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993912834

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993912834

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase