WO1993021551A1 - Verfahren zur herstellung eines mikrosystems und daraus bildung eines mikrosystemlasers - Google Patents

Verfahren zur herstellung eines mikrosystems und daraus bildung eines mikrosystemlasers Download PDF

Info

Publication number
WO1993021551A1
WO1993021551A1 PCT/EP1993/000830 EP9300830W WO9321551A1 WO 1993021551 A1 WO1993021551 A1 WO 1993021551A1 EP 9300830 W EP9300830 W EP 9300830W WO 9321551 A1 WO9321551 A1 WO 9321551A1
Authority
WO
WIPO (PCT)
Prior art keywords
microsystem
laser
wafers
individual
elements
Prior art date
Application number
PCT/EP1993/000830
Other languages
English (en)
French (fr)
Inventor
Stefan Heinemann
Axel Mehnert
Peter Peuser
Nikolaus Schmitt
Helmut Seidel
Original Assignee
Deutsche Aerospace Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace Ag filed Critical Deutsche Aerospace Ag
Priority to EP93908902A priority Critical patent/EP0635141A1/de
Priority to JP5517945A priority patent/JPH07505728A/ja
Publication of WO1993021551A1 publication Critical patent/WO1993021551A1/de
Priority to US08/420,791 priority patent/US5637885A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the invention relates to a method for producing a microsystem and, from this, forming a microsystem laser in accordance with the preamble of claim 1.
  • German patent application P 4140404.1-33 (int. Az. 11197) has disclosed, among other things, a method for contacting wafers, that is to say different bonding methods and so-called optical contacts.
  • the present invention has for its object to show a method in which with the help of known semiconductor structuring Batch processes for producing complex microsystems which, in addition to the horizontal ones, preferably also have vertical structures for forming the microsystems, all wafers being adjusted to one another and in contact with one another, and a parallel and independent control of the microsystems is made possible.
  • FIG. 1 shows a schematic diagram to illustrate the proposed method for producing vertically structured microsystems
  • FIG. 2 shows a schematic diagram of an exemplary embodiment for the formation of a microsyst solid-state laser in an exploded view with a description of the individual system functions
  • FIG. 3 shows a schematic image of the exemplary embodiment according to FIG. 2 with the beam path of the laser system shown in the exploded view
  • FIG. 4 shows a schematic diagram of the exemplary embodiment according to FIG. 2 in real representation with the contacting of the individual wafers which form specific functions.
  • FIG. 1 illustrates the proposed method in a simple and schematic manner.
  • seven wafers 100 to 700 are contacted one above the other and with one another, the individual wafers carrying out specific functions of a specific microsystem.
  • individual wafers can include micromechanical adjustment elements (actuators), optical components (laser-active media, mirrors, imaging systems), sensors (photodiodes, temperature and pressure or displacement sensors etc.), electronic components (diodes, transistors, integrated circuits for controlling the components, for evaluating the sensors and deriving a control signal), cooling systems (controlled microcoolers) or a combination thereof.
  • Preferred catfish carry the wafers 100 to 700 such structures which on the one hand can be easily produced in the substrate used in each case and on the other hand can be structured in similar process methods.
  • the electrical contacts can also be made essentially in the wafer.
  • These different wafers which can consist of the known semiconductor materials, but also of other substrates that can be manufactured in wafers, such as glass, quartz or crystal, are adjusted as a whole according to their structuring - whereby e.g. Optical or mechanical position aids can be helpful - contacted with each other by the usual methods (bonding, optical contacting) and cut along the levels 10, 20, 30 ..., so that ultimately vertical structures 1, 2 etc. preferably result, which che represent complete microsystems with complex functions.
  • FIG. 2 illustrates an exemplary embodiment of a microsystem solid-state laser.
  • this laser consists of a solid-state crystal pumped by laser diodes, the laser diode radiation being focused into a crystal disk via coupling optics 711, 712, the output power of the solid-state laser being regulated and its F frequency adjustable and ultimately stabilized to a reference cavity .
  • the heat load induced by the laser diodes 641, 642 is led out of the system by the micro-channel coolers 701, 702.
  • the wafer 700 contains the microcooler.
  • This wafer itself can in turn consist of a silicon substrate 702, in which cooling channels 701 are etched, which are sealed across the surface by a second flat wafer 703.
  • the flow through such a micro cooler can be regulated, for example, by integrated micro valves.
  • This wafer 700 is followed by the wafer 600, which is manufactured, for example, from a gallium arsenide substrate 631.
  • the pump laser diodes 601, 602 are integrated therein monolithically.
  • Beam deflecting elements 611, 612 are integrated by anisotropic etching and optionally by optical vaporization, which deflect the horizontally emitted laser diode beam into the vertical.
  • Standard diodes 641, 642, which serve as temperature sensors for the laser diode temperature and from which a control signal for cooling can be derived, are structured near the laser diodes 601, 602.
  • the adjoining wafer 500 comprises an imaging optics 511, 512 for focusing the pump laser radiation into the laser crystal.
  • the respective lens 511, 512 is formed by shaping the silicon substrate 501 for infrared wavelengths at which silicon is transparent, but can also consist of integrated glass lenses or spheres for other wavelengths or can be embodied as a holographic optical element ⁇ det. In the latter case, glass is preferably used as the substrate 501, in which a phase grating is inscribed by etching processes and which has the imaging properties of a lens system. In certain cases, wafer 500 can also be omitted.
  • the subsequent wafer 400 consists of a laser crystal or laser glass.
  • the polished, laser-active layer 402 doped with ions of the lanthanide group is optically coated on both sides, in such a way that the Layer 403 emits an optical short-pass filter which is highly transmissive for the pump wavelength of the laser diode and highly reflective for the solid-state laser wavelength.
  • Coating 401 is designed as anti-flex coating for the laser wavelength and, if appropriate, reflective for the pumping wavelength.
  • the wafer 300 contains an essentially actively controlled laser mirror 331, 332 for the solid-state laser, which essentially consists of a mirror reflection which is partially reflecting for the laser wavelength and which is vapor-deposited on a silicon substrate 351, for example, and is embodied as a transmission mirror level. Furthermore, a micromechanical actuator 311, 321 and 312, 322 is arranged for the active movement of the mirror 331, 332.
  • this wafer 300 can be composed of two interconnected substrates 351 and 352 to suitably form the actuator elements, with photodiodes 341, 342 and 301, 302 also being embedded in the upper substrate.
  • the first two form sensors for measuring the laser output power, the two latter sensors for active frequency stabilization of the laser.
  • wafers with inter-cavity elements can now be arranged between wafer 400 and wafer 300, such as nonlinear optical crystals for frequency multiplication, phase modulation etc.
  • the further wafer 200 in the exemplary embodiment includes a beam deflection for coupling out a partial beam of low intensity, which is directed onto the photodiodes 341, 342 of the wafer 300 in order to measure the power, and a reference cavity for frequency stabilization of the laser.
  • the beam deflection is formed by a partially reflecting transmission mirror 251, 252 and a highly reflecting mirror layer 261, 262, which is attached to an obliquely etched substrate, so that the partial beam is reflected in the desired direction he follows.
  • beam deflection can also be formed in another way, for example by a holographic grating which reflects a partial beam of low intensity in the first order, or by suitably shaped integrated optics (waveguide structures).
  • each system consists of two mirror layers 211, 201, the latter being actively moved via the actuator elements 231, 221 and the other 211 being rigidly connected to the substrate 241.
  • the transmission frequency of the resonator formed in this way can be modulated by the micromechanical actuators, from which an error signal for controlling the laser mirror 301 of the wafer 300 can be derived.
  • the electronics can also be structured into the substrates, that is to say an intelligent sensor evaluation and control signal generation "on the chip" can be implemented with the actuators and sensors.
  • the wafer 100 which has an open beam deflection, formed from the partially reflecting transmission mirrors 711, 712 and the highly reflective reflecting mirrors 721, 722, which are analogous to the beam deflecting elements of the wafer 200 Decoupling a partial beam of low intensity of the solid-state laser for passage through the reference cavity of the wafer 200 and subsequent detection in the photodiode 301 of the wafer 300 is formed.
  • FIG. 3 again shows the optical beam path in the same structure as the exemplary embodiment described above.
  • the laser diode radiation (drawn with dots) is focused via an imaging element 800 into a solid-state crystal 801 which is vapor-coated on one side to reflect the laser wavelength and thus forms a laser-active resonator, together with a discrete, micromechanically movable laser mirror 802.
  • a first partial beam 803 of the laser is coupled out and directed via deflection elements 251, 261 onto the photodiode 341 for measuring the laser output power.
  • a further partial beam 804 is directed by a tunable reference cavity, the transmission maximum of which is modulated by active mirror movement of one of the two resonator mirrors and from which an error signal for frequency stabilization of the solid-state laser is derived by detection on a second photodiode 301 by active movement of the laser mirror.
  • FIG. 4 shows the structure analogous to the exploded view of FIG. 2.
  • the wafers 100 to 700 are shown in their positioned and contacted positions with respect to one another.
  • the possible interfaces along which the individual microlaser systems can be separated are also shown here. If a separation is dispensed with, a planar arrangement of micro laser systems which can be controlled independently of one another can be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Micromachines (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Mikrosystems und daraus der Bildung eines Mikrosystemlasers, der vorzugsweise als vertikales Strukturelement durch Kontaktierung von Waferplatten, welche unterschiedliche Funktionselemente eines Systems tragen, so daß dieses System einerseits so heterogene Funktionen wie Aktuatorik, Optik, Sensorik, Kühlsystem, Mikromechanik und Elektronik enthält und andererseits die diese Funktionen tragenden Wafer ein relativ homogenes Prozessing von jeweils auf einem Wafer integrierter recht ähnlicher Funktionen erlaubt, so daß die Komplexität des Systems erst durch die vertikale Anordnung dieser Funktionen entsteht.

Description

Verfahren zur Herstellung eines Mikrosystems und daraus Bildung eines Mikrosyste lasers
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Mi¬ krosystems und daraus Bildung eines Mikrosystemlasers gemäß dem Gat¬ tungsbegriff des Anspruches 1.
Methoden zur Strukturierung von Halbleitermaterialien - wie Silizium un Galliu arsenid - beispielsweise durch anisotropes Ätzen sind bekannt. Insbesondere ist es möglich, 1n einer definierten Abfolge unterschiedli cher Behandlungen ziemlich komplexe Strukturen in einzelnen Wafern zu erzeugen.Bei allen entsprechenden Verfahren des Standes der Technik wer den die einzelnen heterogenen Komponenten eines Mikrosystems jedoch auf einer gemeinsamen Basis integriert, was bedeutet, daß jedes System quas einzeln gefertigt werden muß. Eine gleichzeitige Bearbeitung von ähnli¬ chen Komponenten unter gleichzeitigem Entfallen jeglicher Justage oder Positionierung der Einzelko ponenten ist nach dem Stand der Technik bis her nicht möglich, wie beispielsweise auch aus der Druckschrift DE-PS 3925201 und der deutschen Patentanmeldung P 4041 130.3-33 (1nt. Az. 11035) hervorgeht.
Beispielsweise ist unter anderem auch durch die Anmelderin in der deut¬ schen Patentanmeldung P 4140404.1-33 (int. Az. 11197) ein Verfahren zur Kontaktierung von Wafern bekanntgeworden, also unterschiedliche Bondverfahren und sogenannte optische Kontaktierungen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren aufzuzeigen, bei dem mit Hilfe bekannter Halbleiter-Strukturierung im Batchverfahren komplexe Mikrosysteme herzustellen, die neben den hori¬ zontalen auch bevorzugt vertikale Strukturen zur Bildung der Mikrosyste¬ me aufweisen, wobei alle Wafer zueinander justiert und miteinander kon¬ taktiert werden und eine parallele und voneinander unabhängige Ansteue- rung der Mikrosysteme ermöglicht wird.
Diese Aufgabe wird durch die im Anspruch 1 aufgezeigten Maßnahmen ge¬ löst. In den Unteransprüchen sind Ausgestaltungen und Weiterbildungen angegeben und in der nachfolgenden Beschreibung sind Ausführungsbeispie¬ le erläutert und in den Figuren der Zeichnung skizziert. Es zeigen
Fig. 1 eine Schemaskizze zur Veranschaulichung des vorgeschlagenen Ver¬ fahrens zur Herstellung vertikal strukturierter Mikrosysteme,
Fig. 2 ein Schemabild eines Ausführungsbeispieles zur Bildung eines Mi- krosyste -Festkörperlasers in einer Explosionsdarstellung mit Bezeichnung der einzelnen Systemfunktionen,
Fig.3 ein Schemabild des Ausführungsbeispieles gemäß Fig. 2 mit einge¬ zeichnetem Strahlengang des Lasersystems in der Explosionsdar¬ stellung,
Fig. 4 ein Schemabild des Ausführungsbeispieles gemäß Fig. 2 in Real- darstellung mit der Kontaktierung der einzelnen - spezifische Funktionen bildende - Wafern.
Die Fig. 1 veranschaulicht in einfacher und schematisierter Weise das vorgeschlagene Verfahren. Es sind hier in diesem Ausführungsbeispiel sieben Wafer 100 bis 700 übereinander und miteinander kontaktiert, wobei die einzelnen Wafer spezifische Funktionen eines bestimmten Mikrosystems tragen. So können einzelne Wafer beispielsweise mikromechanische Ver¬ stellelemente (Aktuatoren), optische Komponenten (laseraktive Medien, Spiegel, abbildende Systeme), Sensoren (Photodioden, Temperatur-, Druck- oder Wegsensoren etc.), elektronische Komponenten (Dioden, Transistoren Integrierte Schaltkreise zur Ansteuerung der Komponenten, zur Auswertun der Sensoren und Ableitung eines Regelsignales), Kühlsysteme (geregelte Mikrokühler) tragen oder eine Kombination davon. Vorzugswelse tragen di Wafer 100 bis 700 solche Strukturen, die einerseits im jeweils verwende ten Substrat gut herstellbar sind und andererseits in ähnlichen Proze߬ verfahren strukturiert werden können.
Auch die elektrischen Kontaktierungen können im wesentlichen in den Wa¬ fern hergestellt werden. Diese unterschiedlichen Wafer, welche aus den bekannten Halble1termaterial1en, aber auch aus anderen in Waferfor fer tigbaren Substraten wie etwa Glas, Quarz oder Kristall bestehen können, werden nach Ihrer Strukturierung als Ganzes zueinander justiert - wobei z.B. optische oder mechanische Positionshilfen hilfreich sein können - nach den üblichen Verfahren (Bonden, optisches Kontaktieren) miteinande kontaktiert und entlang den Ebenen 10, 20, 30... zerschnitten, so daß letztlich sich vorzugsweise vertikale Strukturen 1, 2 etc. ergeben, wel che komplette Mikrosysteme mit komplexen Funktionen darstellen.
Verzichtet man auf ein Zerschneiden der Wafer, so können flächenmäßige Anordnungen von M1krosystemen parallel und unabhängig voneinander ange¬ steuert eingesetzt werden. Fig. 2 veranschaulicht ein Ausführungsbei¬ spiel eines Mikrosystem-Festkörperlasers. Dieser Laser besteht im vor¬ liegenden Falle aus einem von Laserdioden gepumpten Festkörperkristall, wobei die Laserdiodenstrahlung über eine Koppeloptik 711, 712 in eine Kristallscheibe fokussiert wird, der Festkörperlaser in seiner Ausgangs leistung geregelt und in seiner FFrequenz abstimmbar Ist und letztlich auf eine Referenzkavität stabilisiert wird. Die durch die Laserdioden 641, 642 induzierte Wärmelast wird durch die Mlkrokanalkühler 701, 702 aus dem System herausgeführt. Die Fig. 2 zeigt einen Ausschnitt aus ei¬ ner solchen Waferanordnung, typischerweise enthält jedoch ein Wafer ein Vielzahl solcher Elemente, wie sie in der Figur, die nachfolgend detail liert beschrieben wird, der Übersicht halber nur zweifach eingezeichnet sind. Der Wafer 700 enthält in diesem Ausführungsbeispiel den Mikrokühler. Dieser Wafer selbst kann nun seinerseits aus einem Siliziumsubstrat 702 bestehen, in welches Kühlkanäle 701 geätzt sind, die durch einen zweiten planen Wafer 703 flächig verschlossen werden. Der Durchfluß durch einen solchen Mikrokühler ist beispielsweise durch integrierte Mikroventile regelbar.
Auf diesen Wafer 700 schließt sich der Wafer 600 an, der beispielsweise aus einem Gallium-Arsenid-Substrat 631 gefertigt ist. Hierin sind mono¬ lithisch die Pumplaserdioden 601, 602 integriert. Durch anisotropes Ät¬ zen und gegebenenfalls durch optische Bedampfung sind Strahlumlenkele- mente 611, 612 integriert, welche den horizontal emittierten Laserdio¬ denstrahl in die Vertikale umlenken. Nahe der Laserdioden 601, 602 sind Standard-Dioden 641, 642 strukturiert, welche als Temperatursensoren für die Laserdiodentemperatur dienen und aus welchen ein RegelSignal für die Kühlung ableitbar ist.
Der daran anschließende Wafer 500 umfaßt eine abbildende Optik 511, 512 zur Fokussierung der Pumplaserstrahlung in den Laserkristall. Die jewei¬ lige Linse 511, 512 wird durch Formung des SiHziu substrates 501 für Infrarot-Wellenlängen, bei denen Silizium transparent ist, geformt, kann für andere Wellenlängen aber auch aus integrierten Glaslinsen oder -ku¬ geln bestehen oder aber als holographisches optisches Element ausgebil¬ det sein. Im letztgenannten Fall wird als Substrat 501 vorzugsweise Glas verwendet werden, in welchem durch Ätzprozesse ein Phasengitter einge¬ schrieben ist und welches die abbildenden Eigenschaften eines Linsensy¬ stems aufweist. In bestimmten Fällen kann Wafer 500 auch weggelassen werden.
Der anschließende Wafer 400 besteht aus einem Laserkristall oder Laser¬ glas. Die polierte, mit Ionen der Lanthanid-Gruppe dotierte laseraktive Schicht 402 ist beidseitig optisch beschichtet und zwar so, daß die Schicht 403 einen optischen Kurzpaßfilter abgibt, der hochtrans ittie- rend für die PumpUchtwellenlänge der Laserdiode und hochreflektierend für die Festkörperlaser-Wellenlänge ist. Das Coating 401 ist als Antire flexbeschlchtung für die Laserwellenlänge und gegebenenfalls reflektie¬ rend für die PumpUchtwellenlänge ausgeführt.
Der Wafer 300 beinhaltet 1m wesentlichen aktiv kontrollierte Laserspie- gel 331, 332 für den Festkörperlaser, die im wesentlichen aus einer für die Laserwellenlänge teilreflektierenden Spiegelschlcht bestehen, welch auf einem beispielsweise Siliziumsubstrat 351 aufgedampft und als Trans m1ss1onssp1egel ausgeführt ist. Weiterhin Ist zur aktiven Bewegung des Spiegels 331, 332 jeweils ein mikromechanischer Aktuator 311, 321 und 312, 322 angeordnet. Dieser Wafer 300 kann seinerseits zur geeigneten Ausbildung der Aktuatorelemente aus zwei miteinander verbundenen Sub¬ straten 351 und 352 zusammengesetzt sein, wobei in das obere Substrat noch Photodioden 341, 342 und 301, 302 eingelassen sind. Die beiden er- steren bilden Sensoren zur Messung der Laserausgangsleistung, die beide letzteren Sensoren zur aktiven Frequenzstabilisierung des Lasers.
Zwischen Wafer 400 und Wafer 300 können nun noch weitere Wafer mit In- ter-Cavity-Elementen angeordnet sein, wie beispielsweise nicht lineare optische Kristalle zur Frequenzvervielfachung, Phasenmodulation etc..
Der weitere Wafer 200 in dem Ausführungsbeispiel beinhaltet eine Strahl umlenkung zur Auskopplung eines Teilstrahles geringer Intensität, wel¬ cher auf die Photodioden 341, 342 des Wafers 300 gelenkt wird um die Leistung zu messen sowie eine Referenzkavität zur Frequenzstabilisieru des Lasers. Die Strahlumlenkung wird geformt durch einen teilreflektie¬ renden Transmissionsspiegel 251, 252 sowie einer hochreflektierenden Spiegelschlcht 261, 262, welche auf schräg geätztem Substrat angebrach ist, so daß eine Reflexion des Teilstrahles in der gewünschten Richtun erfolgt. Eine Strahlumlenkung kann prinzipiell auch auf andere Weise ge¬ bildet werden, beispielsweise durch ein holographisches Gitter, welches einen Teilstrahl geringer Intensität in der ersten Ordnung reflektiert, oder durch geeignet geformte integrierte Optik (Wellenleiterstrukturen).
Die Referenzkavität jedes Systems besteht aus zwei Spiegelschichten 211, 201, wobei die letztere über die AktuatoreTemente 231, 221 aktiv bewegt wird und diejenige 211 hingegen starr mit dem Substrat 241 verbunden ist. Durch die mikromechanischen Aktuatoren kann die Transmissionsfre¬ quenz des so gebildeten Resonators moduliert werden, woraus ein Fehler¬ signal zur Ansteuerung des Laserspiegels 301 des Wafers 300 ableitbar ist. Hier sei vermerkt, daß selbstverständlich auch die Elektronik in die Substrate mit einstrukturiert werden kann, also eine intelligente Sensor-Auswertung und StellSignalerzeugung "on the Chip" mit den Aktua¬ toren und Sensoren realisierbar ist.
Abschließend ist im beschriebenen Ausführungsbelspiel noch der Wafer 100 zu erläutern, der efne Strahlumlenkung, gebildet aus den teilreflektie¬ renden Transmissionsspiegeln 711, 712 sowie den hochreflektierenden Re¬ flexspiegeln 721, 722 aufweist, die in analoger Weise zu den Strahlum¬ lenkelementen des Wafers 200 zur Auskopplung eines Teilstrahles geringer Intensität des Festkörperlasers zum Durchgang durch die Referenzkavität des Wafers 200 und anschließender Detektion in der Photodiode 301 des Wafers 300 ausgebildet ist .
Die Fig.3 veranschaulicht in gleichem Aufbau, wie das vorbeschriebene Ausführungsbeispiel, nochmals den optischen Strahlengang. Die Laserdio¬ denstrahlung (gepunktet gezeichnet) wird über ein abbildendes Element - 800 in einen Festkörperkristall 801 fokussiert, welcher einseitig für die Laserwellenlänge reflektierend bedampft ist und so einen laserakti¬ ven Resonator bildet, zusammen mit einem diskreten, mikromechanisch be¬ wegbaren Laserspiegel 802. Man kann hier von einem halbmonollthisehen Laseraufbau sprechen. Ein erster Teilstrahl 803 des Lasers wird ausge¬ koppelt und über Umlenkelemente 251, 261 auf die Photodiode 341 zur Mes¬ sung der Laserausgangsleistung gelenkt. Ein weiterer Teilstrahl 804 wird durch eine abstimmbare Referenzkavität gelenkt, deren Transmissionsmaximum durch aktive Spiegelbewegung eines der beiden Resonatorspiegel moduliert wird und aus welchem durch Detek¬ tion auf einer zweiten Photodiode 301 ein Fehlersignal zur Frequenzsta¬ bilisierung des Festkörperlasers durch aktive Bewegung des Laserspiegel abgeleitet wird.
In der Fig.4 ist nun der Aufbau analog zur Explositionsdarstellung der Fig. 2 verdeutlicht. Hier sind die Wafer 100 bis 700 in Ihrer positio¬ nierten und kontaktierten Stellung zueinander dargestellt. Weiterhin sind hier die möglichen Schnittstellen eingezeichnet, entlang welcher die einzelnen Mikrolasersysteme getrennt werden können. Verzichtet man auf eine Trennung, so kann eine flächenmäßige Anordnung voneinander un¬ abhängig kontrollierbaren Mikrolasersyste en gebildet werden.

Claims

Verfahren zur Herstellung eines Mikrosystems und daraus Bildung eines Mikrosyste lasersPatentansprüche
1. Verfahren zur Herstellung eines komplexen Mikrosystems unter Ein¬ beziehung der Systemtechnik von Mikroelektronik, Mikromechanik und M1- krooptik, dadurch gekennzeichnet, daß mehrere unterschiedlich struk¬ turierte Wafer (100 bis 700), bestehend aus Halbleiter-, Quarz- oder
Kr1stallmaterial, welches die mikrooptischen, mikromechanischen oder mi¬ kroelektronischen Funktionen beinhaltet, übereinander!iegend miteinander verbunden werden, so daß ein Mikrosystem entsteht, welches eine komplexe Struktur vorwiegend in vertikaler Richtung aufweist, wobei die Wafer vor ihrer Kontaktierung zueinander positioniert und justiert werden und auf den Wafern optische, mechanische oder elektrische PositionierhUfen in¬ tegriert sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die un¬ terschiedlich strukturierten Wafer (100 bis 700) nach ihrer Justage und Kontaktierung an gekennzeichneten Schnittstellen (Sl, S2...) getrennt werden und jedes geschnittene vertikale Strukturelement ein unabhängiges Mikrosystem mit komplexen Funktionen bildet.
3. Mikrosystemlaser, gebildet nach dem Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die miteinander kontaktierten Wafer (100 bis 700) einen Verbund bilden, der in vertikaler Richtung komplexe Strukturen aufweist, daß weiterhin eine flächige Anordnung einer Mehr¬ zahl solcher komplexen Strukturen entsteht (Arrays), welche entweder als flächenhaft zusammengefaßte EinzelStrukturelemente jeweils unabhängig voneinander als Mikrolasersystem betreibbar sind, oder voneinander an vorgegebenen Schnittstellen (Sl, S2) getrennt werden, so daß eine Viel¬ zahl einzelner, unabhängiger Mikrosystemlaser entstehen.
4. Mikrosystemlaser nach Anspruch 3, dadurch gekennzeichnet, daß in jedem als Mikrolasersyste zusammengefaßten EinzelStrukturelement l seraktive Elemente sowie Sensoren zur Laserstrahlanalyse angeordnet si
5. Mikrosystemlaser nach Anspruch 3 oder 4, dadurch gekennzeich¬ net, daß elektronische Schaltkreise und mikromechanische Aktuatoren an¬ geordnet sind, welche aus den Sensoren Regelgrößen ableiten und Stell¬ größen zur aktiven Laserregelung ermitteln und zur aktiven Beeinflussu des Lasers in seinen Strahleigenschaften mikromechanische Aktuatoren a geordnet sind.
6. Mikrosystemlaser nach einem der Ansprüche 3 bis 5, dadurch ge¬ kennzeichnet, daß zur Wärmeabfuhr ein Wafer (700) als Mikrokühlsystem strukturiert Ist, dessen Kühlleistung regelbar Ist und hierfür eine Stellgröße durch einen oder mehrere in dem Mikrosystemlaser integriert Temperatursensoren ableitbar ist.
GEÄNDERTE ANSPRÜCHE
[beim Internationalen. Büro am 8. September 1993 (08.09.93) eingegangen; ursprünglicher Anspruch 1 geändert; alle weiteren Ansprüche unverändert (1 Seite)
Patentansprüche
1. Verfahren zur Herstellung eines komplexen Mikrosystems unter Einbeziehung der Systemtechnik von Mikroelektronik, Mikromechanik und Mikrooptik, dadurch gekenn¬ zeichnet, daß die für die systemgemäße Funktion des Mikrosystems erforderlichen mi¬ kroelektrischen, mikromechanischen oder mikrooptischen Systemelemente auf verschiede¬ nen Wafersubstraten, die aus unterschiedlichen Materialien wie Halbleiter-, Quarz- oder Kristallmaterialien bestehen, so angeordnet sind, daß diese Wafersubstrate justiert miteinan¬ der verbϊndbar sind, wobei die Verbindung (vorzugsweise) lokal durchgeführt wird, so daß der optische Strahlengang zwischen den Verbindungsflächen frei fühlbar ist und die einzel¬ nen Funktionselemente in ihrer Gesamtheit bei geeigneter Justage räumlich so angeordnet sind, daß sie ein fύnktionables System darstellen, dessen Komponenten der einzelnen Ebe¬ nen in systemgemäßer Weise aufeinander bezogen sind und die Wechselwirkung zwischen den Systemelementen speziell in vertikaler Richtung, d.h. senkrecht zur Substratebene der Systemelemente erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die unterschiedlich struk¬ turierten Wafer (100 bis 700) nach ihrer Justage und Kontaktierung an gekennzeichneten Schnittstellen (Sl, S2...) getrennt werden und jedes geschnittene vertikale Strukturelement ein unabhängiges Mikrosystem mit komplexen Funktionen bildet.
3. Mikrosystemlaser, gebildet nach dem Verfahren gemäß Anspruch 1, dadurch ge¬ kennzeichnet, daß die miteinander kontaktierten Wafer (100 bis 700) einen Verbund bilden, der in vertikaler Richtung komplexe Strukturen aufweist, daß weiterhin eine flächige An¬ ordnung einer Mehrzahl solcher komplexen Strukturen entsteht (Arrays), welche entweder als flächenhaft zusammengefaßte Einzelstrukturelemente jeweils unabhängig voneinander als Mikrolasersystem betreibbar sind, oder voneinander an vorgegebenen Schnittstellen (Sl, S2) getrennt werden, so daß eine Vielzahl einzelner, unabhängiger Mikrosystemlaser entste¬ hen. IN ARTIKEL 19 GENANNTE ERKLÄRUNG
Der Gegenstand der erstgenannten Druckschrift bezieht sich auf eine mehrdimensionale Anordnung von Halbleiterschaltungen, die, um elektrische Verbindungswege zu sparen, optisch miteinander kommunizieren, und zwar derart, daß die Informationen der einzelnen Halbleiterschaltungen in opti¬ sche Signale umgesetzt und in einen mit der oder den Ebenen der Halbleiterschaltungen kontaktier¬ ten Wellenleiter eingekoppelt und an gegebener Stelle wieder ausgekoppelt werden. Hierzu sind in die Substrate eingefügte Spiegel vorgesehen (vergLS. 3,Mitte). Weiterhin ist vorgesehen, auch die Information ganzer Ebenen auf diese Weise einer anderen Ebene zugänglich zu machen, wobei hier die optische Strahlführung am Rande der Ebenen vorgesehen ist (vergl. S.5,Ende 1. Abs.).
Allein schon die Aufgabe der Entgegenhaltung unterscheidet sich von derjenigen der vorliegenden Anmeldung dahingehend, daß nach dem anmeldungsgemäßen Erfindungsgedanken keine Kommu¬ nikation zwischen einzelnen Elementen stattfinden soll, sondern eine Ausführungsform vorgeschla¬ gen wird, bei der einzelne Komponenten eines Mikrosystems so aufgebaut sind, daß die dieses Sy¬ stem bildenden - mikromachanischen, mikrooptischen, mikroelelktrischen - Funktionselemente in mehreren Schichten genau so übereinander angeordnet sind, daß sie vorzugsweise senkrecht zur Substratebene eine Funktion innerhalb des Systems ausϋben.Es geht also keineswegs um eine Kommunikation von Halbleiter-Bausteinen, sondern um ein optisches oder mechanisches oder opto- mechanisches System aus mehreren Funktionselementen.
Daher ist festzustellen und hervorzuheben, daß die entgegengehaltene Ausführungsform weder Lö¬ sungswege noch Hinweise auf Lösungsmöglichkeiten gibt, die in der Lage wären, die dem Anmel¬ dungsgegenstand zugrundeliegende Aufgabe zu erfüllen.
Dies gilt auch in vollem Umfang für die zweitgenannte Druckschrift WO 87/04566. Allerdings wird hier daraufhingewiesen, daß auf den Wafern Justierhilfen angebracht sind und Wafer aus Gallium- Arsenid zusammen mit Silizium- Wafern verwendet werden können. Dies ist zwar bei uns auch vor¬ gesehen, aber ausschließlich im Hinblick auf die Bildung eines Mikrosystems.
Die Anmelderin schlägt einen sich deutlicher vom Stand der Technik abhebenden Alternativanspruc 1 vor, dessen Verwendung an Stelle des ursprünglichen Anspruches 1 dem Ermessen der Prüfungs¬ stelle anheimgestellt wird.
PCT/EP1993/000830 1992-04-09 1993-04-03 Verfahren zur herstellung eines mikrosystems und daraus bildung eines mikrosystemlasers WO1993021551A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93908902A EP0635141A1 (de) 1992-04-09 1993-04-03 Verfahren zur herstellung eines mikrosystems und daraus bildung eines mikrosystemlasers
JP5517945A JPH07505728A (ja) 1992-04-09 1993-04-03 マイクロシステムの作製方法およびこの方法からマイクロシステムレーザー源の形成
US08/420,791 US5637885A (en) 1992-04-09 1995-04-07 Method for producing a microsystem and forming a microsystem laser therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4211899.9 1992-04-09
DE4211899A DE4211899C2 (de) 1992-04-09 1992-04-09 Mikrosystem-Laseranordnung und Mikrosystem-Laser

Publications (1)

Publication Number Publication Date
WO1993021551A1 true WO1993021551A1 (de) 1993-10-28

Family

ID=6456442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/000830 WO1993021551A1 (de) 1992-04-09 1993-04-03 Verfahren zur herstellung eines mikrosystems und daraus bildung eines mikrosystemlasers

Country Status (5)

Country Link
US (1) US5637885A (de)
EP (1) EP0635141A1 (de)
JP (1) JPH07505728A (de)
DE (1) DE4211899C2 (de)
WO (1) WO1993021551A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664585A1 (de) * 1993-12-22 1995-07-26 Siemens Aktiengesellschaft Sende- und Empfangsmodul für eine bidirektionale optische Nachrichten- und Signalübertragung
EP0713112A1 (de) * 1994-11-17 1996-05-22 ANT Nachrichtentechnik GmbH Optische Sende- und Empfangseinrichtung mit einem oberflächenemittierenden Laser
EP0713113A1 (de) * 1994-11-17 1996-05-22 ANT Nachrichtentechnik GmbH Optische Sende- und Empfangseinrichtung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215797A1 (de) * 1992-05-13 1993-11-25 Deutsche Aerospace Lasersystem mit mikromechanisch bewegten Spiegel
DE4229657C2 (de) * 1992-09-04 1996-06-20 Daimler Benz Aerospace Ag Ein- oder zweidimensionale Anordnung von Laser-Phasenmodulatoren
DE4425636C2 (de) * 1994-07-20 2001-10-18 Daimlerchrysler Aerospace Ag Einrichtung mit einer optischen Komponente zur Integration in batch-processierte dreidimensionale Mikrosysteme
DE10002329A1 (de) * 2000-01-20 2001-08-02 Infineon Technologies Ag Herstellungsverfahren für eine optische Sende-Baugruppe
US6790691B2 (en) 2001-06-29 2004-09-14 Xanoptix, Inc. Opto-electronic device integration
US6633421B2 (en) 2001-06-29 2003-10-14 Xanoptrix, Inc. Integrated arrays of modulators and lasers on electronics
US6753199B2 (en) 2001-06-29 2004-06-22 Xanoptix, Inc. Topside active optical device apparatus and method
US6731665B2 (en) * 2001-06-29 2004-05-04 Xanoptix Inc. Laser arrays for high power fiber amplifier pumps
US7831151B2 (en) 2001-06-29 2010-11-09 John Trezza Redundant optical device array
US6724794B2 (en) 2001-06-29 2004-04-20 Xanoptix, Inc. Opto-electronic device integration
US6753197B2 (en) 2001-06-29 2004-06-22 Xanoptix, Inc. Opto-electronic device integration
US6775308B2 (en) 2001-06-29 2004-08-10 Xanoptix, Inc. Multi-wavelength semiconductor laser arrays and applications thereof
EP1964221A2 (de) * 2005-12-16 2008-09-03 Koninklijke Philips Electronics N.V. Trägersubstrat zur verpackung von mikrogeräten
DE102006017294A1 (de) 2005-12-30 2007-07-05 Osram Opto Semiconductors Gmbh Optisch pumpbare Halbleitervorrichtung
DE102006017293A1 (de) * 2005-12-30 2007-07-05 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer optisch pumpbaren Halbleitervorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000822A1 (en) * 1982-08-19 1984-03-01 Western Electric Co Optically coupled integrated circuit array
WO1987004566A1 (en) * 1986-01-21 1987-07-30 American Telephone & Telegraph Company Interconnects for wafer-scale-integrated assembly
US4881237A (en) * 1988-08-26 1989-11-14 Massachusetts Institute Of Technology Hybrid two-dimensional surface-emitting laser arrays
EP0366974A1 (de) * 1988-10-08 1990-05-09 Deutsche Aerospace AG Halbleiterschaltung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288455A (ja) * 1985-06-17 1986-12-18 Fujitsu Ltd 多層半導体装置の製造方法
US5115445A (en) * 1988-02-02 1992-05-19 Massachusetts Institute Of Technology Microchip laser array
US4953166A (en) * 1988-02-02 1990-08-28 Massachusetts Institute Of Technology Microchip laser
DE3925201A1 (de) * 1989-07-29 1991-02-07 Messerschmitt Boelkow Blohm Optische bank zur halterung optischer, elektrischer u.a. komponenten
DE3935610A1 (de) * 1989-10-26 1991-05-02 Messerschmitt Boelkow Blohm Monolithisch integrierbares peltier-kuehlelement
DE4041130A1 (de) * 1990-12-21 1992-07-02 Messerschmitt Boelkow Blohm Festkoerper-lasersystem
DE4140404C2 (de) * 1991-12-07 1994-05-26 Deutsche Aerospace Bondverfahren für die Aufbau- und Verbindungstechnik
JP2830591B2 (ja) * 1992-03-12 1998-12-02 日本電気株式会社 半導体光機能素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000822A1 (en) * 1982-08-19 1984-03-01 Western Electric Co Optically coupled integrated circuit array
WO1987004566A1 (en) * 1986-01-21 1987-07-30 American Telephone & Telegraph Company Interconnects for wafer-scale-integrated assembly
US4881237A (en) * 1988-08-26 1989-11-14 Massachusetts Institute Of Technology Hybrid two-dimensional surface-emitting laser arrays
EP0366974A1 (de) * 1988-10-08 1990-05-09 Deutsche Aerospace AG Halbleiterschaltung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 4, no. 162 (E-33)12. November 1980 *
PATENT ABSTRACTS OF JAPAN vol. 6, no. 128 (E-118)14. Juli 1982 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664585A1 (de) * 1993-12-22 1995-07-26 Siemens Aktiengesellschaft Sende- und Empfangsmodul für eine bidirektionale optische Nachrichten- und Signalübertragung
US5566265A (en) * 1993-12-22 1996-10-15 Siemens Aktiengesellschaft Transmission and reception module for a bidirectional, optical message and signal transmission
EP0713112A1 (de) * 1994-11-17 1996-05-22 ANT Nachrichtentechnik GmbH Optische Sende- und Empfangseinrichtung mit einem oberflächenemittierenden Laser
EP0713113A1 (de) * 1994-11-17 1996-05-22 ANT Nachrichtentechnik GmbH Optische Sende- und Empfangseinrichtung
US5577142A (en) * 1994-11-17 1996-11-19 Ant Nachrichtentechnik G.M.B.H. Optical fiber transmitting and receiving communications device

Also Published As

Publication number Publication date
JPH07505728A (ja) 1995-06-22
DE4211899C2 (de) 1998-07-16
US5637885A (en) 1997-06-10
DE4211899A1 (de) 1993-10-21
EP0635141A1 (de) 1995-01-25

Similar Documents

Publication Publication Date Title
DE4211899C2 (de) Mikrosystem-Laseranordnung und Mikrosystem-Laser
DE60301553T2 (de) Optischer schaltkreis mit optischen planaren hohlkern-lichtwellenleitern
EP0735397B1 (de) Mikrooptische Vorrichtung zum Umformen von Strahlenbündeln einer Laserdiodenanordnung sowie Verfahren zur Herstellung dieser Vorrichtung
DE69815860T2 (de) Integrierter strahlformer und seine verwendung
EP0873534B1 (de) Optoelektronische sendebaugruppe
DE69906704T2 (de) Integriertes optisches gerät zur erzeugung von getrennten strahlen auf einem detektor, und zugehörige verfahren
DE69733670T2 (de) Optischer demultiplexer mit einem beugungsgitter
EP0713112A1 (de) Optische Sende- und Empfangseinrichtung mit einem oberflächenemittierenden Laser
EP0660467A1 (de) Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE10220378A1 (de) Laserlichtquellenvorrichtung
DE102016221806B4 (de) Wellenlängen-Multiplexeinheit, Wellenlängen-Multiplexsystem und Verfahren zum Bilden einer Wellenlängen-Multiplexeinheit
DE102005015148A1 (de) Laservorrichtung
EP3196598B1 (de) Optische positionsmesseinrichtung
DE69738279T2 (de) Vertikale Positionierung eines optoelektronischen Bauelements auf einem Träger in Bezug auf einen, auf diesem Träger integrierten optischer Leiter
EP0607524B1 (de) Anordnung zur Ankopplung von Lichtwellenleiterenden an Sende- oder Empfangselemente
DE69724536T2 (de) Integrierte optische Vorrichtung, die aus mindestens einem optischen Filter und einem Spiegel besteht, sowie ein Verfahren zu ihrer Herstellung
DE4211898C2 (de)
DE102006042195A1 (de) Etalon und optoelektronische Halbleitervorrichtung
DE10324044B4 (de) Dilatometer mit einer Interferometeranordnung und Verwendung des Dilatometers mit der Interferometeranordnung
DE102012025565A1 (de) Optisches Kopplungssystem mit einem optischen Koppler und einem lichtdurchlässigen äußeren Medium sowie Herstellung und Verwendung eines solchen Systems
EP0744798A1 (de) Anordnung zur Ankopplung eines Lasers
EP1476776B1 (de) Strahlführendes und/oder frequenzkonvertierendes optisches system sowie verfahren zur herstellung
DE102006060826A1 (de) Einheitliches optisches Element mit Wellenlängenauswahl
DE112022003127T5 (de) Optoelektronisches halbleiterbauelement und brille
EP3997495A1 (de) Optische vorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 318663

Date of ref document: 19941009

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1993908902

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993908902

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993908902

Country of ref document: EP