WO1993021053A1 - Traction controller for crawler vehicles - Google Patents

Traction controller for crawler vehicles Download PDF

Info

Publication number
WO1993021053A1
WO1993021053A1 PCT/JP1993/000507 JP9300507W WO9321053A1 WO 1993021053 A1 WO1993021053 A1 WO 1993021053A1 JP 9300507 W JP9300507 W JP 9300507W WO 9321053 A1 WO9321053 A1 WO 9321053A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
pair
loads
crawler
sum
Prior art date
Application number
PCT/JP1993/000507
Other languages
English (en)
French (fr)
Inventor
Tetsuo Torii
Kimihiko Takagi
Tomoo Matsuda
Shigeru Honda
Takuya Sakamoto
Soichi Nakamura
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to EP93908116A priority Critical patent/EP0636533A4/en
Priority to US08/318,872 priority patent/US5517416A/en
Publication of WO1993021053A1 publication Critical patent/WO1993021053A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks

Definitions

  • the present invention relates to a traction control device for a tracked vehicle, particularly when a tracked vehicle having a four-wheel track frame structure used for rescue of natural disasters travels on uneven terrain outdoors.
  • the present invention relates to a traction control device that controls a vehicle so that it can travel while effectively gripping a road surface.
  • a tracked vehicle (hereinafter referred to as a “four-crawler vehicle”) with a motor is known, for example, from Japanese Patent Publication No. 63-270.
  • Such a four-crawler vehicle is the same as the above-mentioned four-wheel drive vehicle in that it drives four wheels, so the diagonal stack is used when the four-wheeler vehicle travels on uneven terrain with a large unevenness. Will also occur.
  • the traditional four-crawler car can be used indoors or outdoors. It is designed for remote maneuvering on flat terrain or on a road surface with a small difference in unevenness at best, and no design has been made assuming the occurrence of diagonal stacks.
  • the four crawler cars are capable of turning four crawling wheels. For this reason, the variation in the same distance is extremely large compared to a 4WD car, in which the size of each plant wheel is almost uniform and the variation in the distance from the vehicle body to the road surface is small. Therefore, the technology for controlling the suspension stroke cannot be used as it is because of the mechanical design and economic constraints.
  • the four crawler tracks are driven by a total of four independent motors, and these motors are controlled so that the number of revolutions reaches the target value. Therefore, when the driving load increases, the rotation speed Is controlled so that the current for torque generation increases automatically in an attempt to maintain the current.
  • the present invention has been made in view of such circumstances, and by preventing diagonal stacks in advance and automatically, it is possible to ensure that stacks do not lose time even in emergency situations. Its purpose is to provide a traction control device for tracked vehicles that can travel. Disclosure of the invention
  • the track frames of each of the above-mentioned crawler tracks are arranged so as to be able to turn in the front and rear directions of the vehicle body via turning joy, and
  • Load detection means for detecting a load applied to each of the crawler tracks
  • the sum of loads applied to a pair of crawler tracks on the front left side of the vehicle body and the rear right side of the vehicle body is calculated based on the detection result of the load detection means.
  • the load applied to each crawler belt is detected, and based on the detection results, the sum of the loads of the pair of crawler belts on the front left side of the vehicle body and the right side rearward of the vehicle body is calculated, and also, the front right side of the vehicle body and the rear body The sum of the loads of a pair of crawler tracks on the left side is calculated. If the difference between the calculated sums is equal to or greater than a predetermined value, it means that a diagonal stack has occurred, so that the load on the set of tracks with a small load increases in the direction of increasing the load on the set of tracks.
  • a set of crawler tracks floating in the air touches the road surface and effective driving force can be obtained.
  • FIG. 1 is a flowchart illustrating a control procedure in an embodiment of a traction control device for a tracked vehicle according to the present invention.
  • FIG. 2 is a diagram exemplifying a possible posture of the tracked vehicle of the embodiment, and is a diagram for explaining the flowchart shown in FIG.
  • Fig. 3 is a diagram showing the turning mechanism and traveling mechanism of the rain tracked vehicle of the embodiment ⁇ 3 o
  • FIG. 4 is a side view showing a side surface of the tracked vehicle of the embodiment.
  • FIG. 5 is a bottom view showing the direction of arrow A in FIG.
  • FIG. 6 is a front view showing the direction of arrow B in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 4 is a side view of the tracked vehicle of the embodiment
  • FIG. 5 is a bottom view showing the direction A in FIG. 4
  • FIG. 6 is a front view showing the direction B in FIG. .
  • the front crawler 1 2 F is distinguished by setting the crawler on the left side in the traveling direction to 12 FL and the crawler on the right side in the traveling direction to 12 FL.
  • the crawler track on the left side in the traveling direction is referred to as 12 RL
  • the crawler track on the right side in the traveling direction is referred to as 12 RR.
  • Each of the track frames 16 of each of the garbage 1 2 FL... is disposed on the vehicle body 10 via a turning shaft 14 which is coaxial with the rotating shaft of the driving sprocket 20.
  • Each track 1 2 FL... can rotate 360 ° around 14 as the center of rotation.
  • the turning axis 14 is the maximum turning locus CF or CR drawn by the front end 12a of the crawler belts 12F and 12R in the front and rear of the vehicle body. Dear 1 2F, 1 2R are arranged in a position where they do not interfere with each other.
  • the distance L between the turning axes 14 of the front and rear 1F and 1R is larger than the sum of the radiuses of the maximum turning trajectories CF and CR of both tracks 1F and 1R.
  • a tracked vehicle is designed (see Fig. 4).
  • center of gravity G of the vehicle body 10 is designed to pass through the middle of the turning trajectories C F and C R, so that the grounding position of the Ryudy 12 F and 12 R is always outside the center of gravity G.
  • reference numeral 21 denotes a sprocket on the idler side
  • reference numeral 22 denotes a lower rolling wheel.
  • FIG. 3 shows a driving machine for turning and running each of the tracks 1 2 FL of the tracked vehicle.
  • the mechanism that drives the four Rakudai 1 2 FL is the same mechanism, only the mechanism that drives the front left Rokudai 1 2 FL is shown in the figure as a representative.
  • the traveling motor 26 is a motor for rotating the shodai 1 2 FL, and the driving force of the motor 26 is the driving sprocket 2 via the ⁇ speed machine 28 and the chain 30. It is transmitted to the 0 rotation axis 24 and the drive ⁇ sprocket 20. As a result, the footwear 1 2 FL engaged with the sprocket 20 is rotated so as to orbit the outer periphery of the track frame 16, and the tracked vehicle runs.
  • the traveling motor 26 is provided with a sensor 45 for detecting an output torque T 1 of the motor 26, and the torque T 1 detected by the sensor 45 is applied to a control device 55 described later.
  • the sensor 45 may be any sensor that can detect the load applied to the shodai 1 2 FL, that is, the contact state between the shodai 12 FL and the road surface.
  • the motor 26 is a DC motor
  • the armature current can be detected.
  • the motor 26 is an AC servomotor
  • the output signal of the AC servo amplifier can be detected.
  • the torque applied to the ending 1 2 FL may be directly detected by a torque sensor.
  • the turning axis 14 is a cylindrical axis that contains the rotating axis 24.
  • the turning axis 14 detects the turning angle 0 of the axis 14, that is, the turning angle 0 of Ryudy 1 2F.
  • a separate encoder 4 is provided.
  • the revolving shaft 14 is fixed to the track frame 16 and is rotatably supported by the vehicle body 10 via a bearing.
  • a gear 32 is rotatably disposed on the outer peripheral surface of the revolving shaft 14, and a torque limiter 34 is integrally provided around the revolving shaft 14.
  • the torque limiter 34 is connected to the gear 32 when the load applied to the rotating shaft 14 is smaller than a predetermined value, and the connection with the gear 32 is released when the load is equal to or larger than the predetermined vagina. Works.
  • the turning motor 36 is driven and controlled by the controller 55 described above. Turn the frame 1 6 or track 1 2 FL. At this time, feedback control is performed using the detection value of the encoder 44 as a feedback amount so that the turning angle of the crawler belt 12 FL becomes a desired angle.
  • the driving force of the motor 36 is transmitted to the gear 32 via the reduction gear 38, the driving gear 40, and the intermediate gear 42.
  • the crawler belt 1 2 FL is turned in accordance with the rotation of the motor 36, but when an excessive turning force is externally forcibly applied to the crawler 1 2 FL due to a fall or the like, the torque is increased.
  • the drive mechanism as described above is provided independently for each of the four crawler tracks, 12 FL, 12 FR, 12 RL, and 12 RR, and travels and turns independently.
  • the traveling motor 46 for rotating the track 1 2 FR is provided with a sensor 47 for detecting the output torque T 2 of the motor 46, and the detected torque T 2 is output to the control device 55.
  • a traveling motor 49 for rotating the crawler belt 12 RL is provided with a sensor 50 for detecting the output Tnorek T 3 of the motor 49, and the detected torque T 3 is output to the control device 55.
  • the traveling motor 52 that rotates the crawler track 1 2 RR is provided with a sensor 53 that detects the output torque T4 of the motor 52, and the detected torque T4 is output to the controller 55.
  • the respective 1 2 FR, 1 2 RL and 1 2 RR are turned by turning motors 48, 51 and 54, and these turning motors are driven and controlled by a controller 55.
  • the tracked vehicle is connected to a remote control (not shown). It is operated by the remote control, and the running modes 26, 46, 49, and 52 are controlled so that the set speed is achieved, and the turning angle set by the remote control
  • Each of the turning motors 36, 48, 51 and 54 is controlled so as to obtain the following.
  • Japanese Patent Application No. 2 1 2 9 6) Japanese Patent Application No. 2 1 2 9 6)
  • the control device 55 performs the processing shown in FIG. FIG. 2 is a diagram for explaining the processing of FIG. 1, and shows a possible attitude “standard attitude” (FIGS. 2 (a) and (b)) of a tracked vehicle, and a falling alert attitude (FIG. 2 (c)). , (D)) and the “super embankment attitude” (Fig. 2 (e)).
  • step 101 When the power of the control device 55 is turned on, the process shown in FIG. 1 is executed, and it is first determined whether or not the tracked vehicle is operating (step 101).
  • the emergency stop switch or operation stop switch of the remote control is operated, the operation is immediately judged to be ended, and the operation state is ended (judgment Y E S in step 101).
  • step 102 If it is not determined that the operation has been completed (NO in step 101), it is then determined whether or not the running finger for the tracked vehicle is in the on-down state (step 102).
  • the travel stop action is output from the remote control and the tracked vehicle is stopped (judgment N 0 in step 102), the tracked vehicle has fallen into a diagonal stack state.
  • Step 1 ⁇ 8 since the respective traction motors are not driven, the traction motor is not overloaded by the stack. Therefore, it is meaningless to perform the traction control (step 1 ⁇ 8) to prevent the following stacks before they occur, and it is meaningless to prevent overloading of the driving mode. Is moved to Step 1 ⁇ 3.
  • step 103 an operation of returning the turning angle of the track frame 16 to the center is performed. That is, in Fig. 2 As shown in the figure, there is a turning angle of each of the shodai 1 2 FL... which is the least mechanically applicable angle depending on each posture. Therefore, if the vehicle is stopped, the turning angle is returned to the median value during this stop period to prepare for running without load.
  • the traveling command is output from the remote control and the tracked vehicle is traveling (YES in step 102)
  • the traveling mode is overloaded due to the diagonal stack. Since there is a risk, the process proceeds to the next step 104 in order to perform the traction control for preventing the stack from occurring.
  • step 104 the detection angle of the turning angle of each track 1 2FL... is input (for example, if the track 1 2FL, the detected value of the encoder 44 is input as 0). It is determined whether or not rack frame 16 is turning. Here, if it is determined that any of the track frames 16 is turning (determination YES in step 104), control to change the attitude of the tracked vehicle to another attitude is performed. In this case, it is possible to escape from this stack state even if a diagonal stack is generated due to a change in posture. No session control is performed.
  • step 104 if it is determined that all the track frames 16 are not turning (judgment N 0 in step 104), it means that the tracked vehicle is traveling while maintaining the same posture. However, there is a danger that a diagonal hook state will occur if left untouched. Therefore, in order to prevent this, first, the detected torques T1, T2, T3 and T4 of the sensors 45, 47, 50 and 53 are inputted (step 105). Next, as shown by the broken line in FIG. 5, for the two crawler tracks 12 FL and 12 RR on the diagonal line, the corresponding torques T 1 and T 4 are added together as shown by Ta in the following equation (1). You.
  • i T a I 1 Tb I is not less than the predetermined value K and not more than the predetermined value 1 ZK, it is determined that the state is not shifting to the diagonal ⁇ stack (step 107, determination Y E S :).
  • the predetermined straight line K is, for example, 0.8.
  • the predetermined K may be varied according to various states such as the posture of the tracked vehicle at present.
  • the judgment is made by calculating the ratio of the diagonal torques Ta and Tb.However, the difference is not limited to the ratio and the difference between the diagonal torques Ta and Tb can be obtained. Any operation may be used.
  • the traction control that is, the correction of the angle command of the track frame 16 to avoid the diagonal stack is performed. That is, as a result of the calculation in step 106, the two diagonal torques T a and T b, both of which are on the diagonal with the larger diagonal torque, are currently being tracked. The vehicle is turned toward the allowable upper limit value in the posture. At the same time, as a result of the calculation in step 106, the two diagonal torques T a and T b can be permissible in the posture that the mounted vehicle is currently in on the diagonal with the smaller diagonal torque. A turn is made to the lower limit (see Fig. 2). If the track has reached the upper limit or lower limit, it will not be turned further. Here, the turning direction of the crawler belt differs depending on various postures.
  • the rotation direction of the crawler belt differs depending on the various postures as in (2), the current posture of the tracked vehicle is detected based on the current turning angle, and the rotation direction is determined based on the detection result.
  • the rotation (turning) direction is such that the lightly loaded crawler is turned in the direction in which the load increases and the heavier crawler is turned in the direction in which the load decreases. Good.
  • step 108 only the two tracks whose diagonal torque has become smaller may be turned only (step 108).
  • the turning angle is corrected by a certain angle.
  • This angle correction amount is, for example, a constant value of 0.5 degrees, and every time the processing of steps 101 to 108 in FIG. 1 is repeatedly executed, the angle is corrected to 0.5 in step 108.
  • the turning angle will be corrected, and the diagonal cross will be avoided in due course.
  • diagonal stacking can be automatically and automatically prevented beforehand, and even in an urgent situation, a tracked vehicle can be surely prevented without any time gap due to stacking. Can run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

明细書 装軌車両の トラ ク シ ョ ン制御装置
技術分野
本発明は、 装軌車両の トラ ク シ ヨ ン制御装置に関し、 特に自然災 害救援用などに使用される 4輪 トラ ッ クフ レーム構造の装軌車両が 屋外の不整地を走行する場合に、 路面を有効にグリ ップして走行で きるように制御する トラク シ ョ ン制御装置に関する。
背景技術
いわゆる 4 W D自動車によって凹凸の差が大きい不整地をスポー ッ走行する際、 2組ある対角線上の車輪ペアのう ち、 いずれか 1組 の車輪ペアに負荷が集中してしま う とと もに他の 1組の車輪ペア力《 路面にグリ ップできずに空転してスタ ッ ク してしま う こ とがある。 この状態は 「対角線スタ ッ ク」 と呼ばれており、 かかるスタ ッ ク状 態になるか否かは 4 W D自動車の運転者の運転技能に委ね られてい る。 また、 ひとたびこの対角線スタ ッ クが発生してしま う と、 ウイ ンチを使用するなどしてスタ ツ クから脱出する必要があり、 脱出に 多大な時間および手間を要する ことになつている。
ま た、 従来より、 左右一対の履蒂を車体の前側および後側に設け、 これら各履蒂のスプロケッ トをそれぞれ独立して駆動制御する こ と によ り走行する 4輪 トラ ッ クフ レーム構造を持つ装軌車両 (以下 「4 ク ローラ車」 という) が例えば特公昭 6 3— 2 7 0号によ り公 知となっている。
かかる 4 ク ローラ車は 「4輪」 を駆動するという点では上記 4 W D自動車と同じである こ とから上記対角線スタ ツ ク は 4 ク ロ一ラ車 が凹凸差が大きい不整地を走行する場合にも発生する こ とになる。
し力、し、 従来の 4 ク ローラ車は、 屋内、 も し く は屋外であっても 平坦地あるいはせいぜい凹凸差の小さい路面での遠隔操縱を想定し て設計されており、 対角線スタックの発生を想定した設計は何等な されていない。
したがつて 4クローラ車においても対角線スタッ クを未然に防止 することができるか否かは、 4 W D自動車と同様に運転者 (操縦者) の技能に専ら委ねられることとなっており、 またスタ ック してしま つた場合にはウィ ンチ等により脱出を図る しかすベはないこととな つている。
しかし、 4クロ一ラ車は、 主としてレジャー用に使用される 4 W D自動車に比較して、 緊急を要する自然災害救援用に使用されるこ とが多い。 このため運転技能に委ねられることなく スタ ックを確実 に防止すること、 および仮にスタッ ク したとしてもスタ ッ ク脱出に 時間と手間がかからないことが要請される。
ここに、 車輪式の車両にあっては、 各車輪ごとのサスペンショ ン のス ト π—クを制御することで、 路面から浮き上がつた車輪を路面 に接地させ有効な駆動力を得るようにする試みがなされている。
しかし、 4クローラ車はその構造上、 4つの履蒂が旋回自在とな つている。 このため各草輪がほぼ均一な大きさであり車体から路面 までの距離のばらつきが小さい 4 W D車に比較して、 同距離のばら つきは非常に大きい。 したがって、 サスペンショ ンのス ト ロークを 制御する技術は、 機構設計ならびに経済性上の制約からそのまま採 用することはできない。
また、 4 W D自動車においては対角線スタッ クが発生しても、 適 常の 4 W D自動車はエンジンの動力がドラィブシャフ トノを介して 4 つの車輪に分配されて伝達されるため、 空転する車輪があつたとし てもエンジンが過負荷となることはない。
しかし、 4クローラ車では、 4つの履帯はそれぞれ独立した合計 4つのモータで駆動されており、 これらモータは回転数が目標値と なるよう制御されている。 このため駆動負荷が大き く なると回転数 を維持しよう として トルク発生のための電流が自動的に増大するよ うに制御される。
こ こに走行駆動用モータの選定にあたっては経済性ならびに寸法 の制約からなるべく容量は節約したい要請がある。 つま りモータの 容量の計算にあたつては、 全体の所用動力を 4つの履帯に均等配分 することを前提と したうえでさらに数 1 0 %の余裕を持たせている。 ところが、 「対角線スタック」 状態になり、 浮き上がつた一組の履 蒂が地面をグリ ップできなく なると、 車体の重量はもう一組の履帯 のみにかかってしまう。 単純計算でも明かなように、 元来は車体重 量の 4分の 1を分担して走行すべく容量が選定された走行駆動モー 夕が、 車体重量の半分を分担することになる。 したがって、 定格の 2倍の負荷 トルク電流がモータに流れることになりモータ若しく は モータ電源の過負荷を招来する。 このためモータ焼損あるいは保護 ブレーカ作動によつて車両前進不能の状態となり、 時間ロスが発生 して緊急事態に迅速に対応できないことになる。
本発明はこう した実状に鑑みてなされたものであり、 対角線スタ ッ クを未然に、 かつ自動的に防止することにより、 緊急を要する事 態であってもスタ ッ クによる時間ロスなく確実に走行できる装軌車 両の トラク シ ョ ン制御装置を提供することをその目的と している。 発明の開示
そこで、 この発明では、 左右一対の履蒂が車体の前側および後側 に設けられ、 各履蒂のスプロケッ 卜がそれぞれ独立して駆動制御さ れて走行する装軌車両において、
前記各履帯の トラ ッ クフ レームを、 旋回幸由を介して車体の前後方 向に旋回自在に配設するとと もに、
前記各履帯にかかる負荷を検出する負荷検出手段と、
前記負荷検出手段の検出結巣に基づき車体前側左.および車体後側 右における一組の履帯にかかる負荷の和を演算するとともに、 車体 前側右および車体後側左における一組の履蒂にかかる負荷の和を演 算する演算手段と、
前記演算手段で演算された各和の偏差が所定値以上となつた場合 に、 前記各組の負荷の和のうち負荷の和が小さい方の組の履蒂にか かる負荷が增大する方向に当該一組の履蒂の旋回轴を駆動制御する 駆動制御手段と
を具えている。
かかる構成によれば、 各履帯にかかる負荷が検出され、 この検出 結果に基づき車体前側左および車体後側右における一組の履帯の負 荷の和が演算されるとともに、 車体前側右および車体後側左におけ る一組の履帯の負荷の和が癀算される。 そして演算された各和の偏 差が所定値以上となった場合は、 対角線スタックが発生した場合な ので、 負荷の小さい一組の履帯にかかる負荷が増大する方向に当該 —組の履蒂の旋回軸が駆動制御されることで宙に浮いていた一組の 履帯が路面に接地して有効な駆動力が得られるようになる。 図面の簡単な説明
第 1図は本発明に係る装軌車両の トラクショ ン制御装置の実施例 における制御手順を例示したフ ローチャー トである。
第 2図は実施例の装軌車両がとり得る姿勢を例示した図で、 第 1 図に示すフローチャー トを説明する図である。
第 3図は実施例の装軌車雨の旋回機構および走行機構を示す図で め ^ 3 o
第 4図は実施例の装軌車両の側面を示す側面図である。
第 5図は第 4図の矢視 A方向を示す底面図である。
第 6図は第 4図の矢視 B方向を示す前面図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明に係る装軌車両のトラク シヨ ン制御 装置の実施例について説明する。
第 4図は実施例の装軌車両の側面図、 第 5図は第 4図の矢視 A方 向を示す底面図、 第 6図は第 4図の矢視 B方向を示す前面図である。
これら図に示すように装軌車両の車体の 4隅にはそれぞれ独立し た駆動源により回転駆動される左右一対の前側履蒂 1 2 F、 左右一 対の後側履蒂 1 2 Rが配設されている。 ここで前側の履蒂 1 2 Fに ついては進行方向左側の履帯を 1 2 F L、 進行方向右側の履帯を 1 2 F Rとして両者を区別する。 同様に後側の履帯 1 2 Rについては 進行方向左側の履帯を 1 2 R L、 進行方向右側の履帯を 1 2 R Rと して両者を区別する。
各履蒂 1 2 F L…の トラ ックフ レーム 1 6はそれぞれ駆動用スプ ロケッ ト 2 0の回転軸と同軸上にある旋回軸 1 4を介して車体 1 0 に配設されており、 該旋回軸 14を回転中心にして各履帯 1 2 F L …が 3 6 0 ° 旋回自在となっている。 ここで、 旋回軸 1 4と しては、 車体前後の履帯 1 2 F、 1 2 Rの先端 1 2 aが描く最大旋回軌跡 C F、 C R同士がオーバーラ ップしない位置、 つま り前後の履蒂 1 2 F、 1 2 R同士が互いに干渉しないような位置に配設されている。 すなわち、 前後履蒂 1 2 F、 1 2 Rの旋回軸 1 4間距離 Lが、 両履 帯 1 2 F、 1 2 Rの最大旋回軌跡 C F、 C Rの半径の和より も大き く なるように装軌車両が設計されている (第 4図参照) 。
さ らに車体 1 0の重心 Gが旋回軌跡 C F、 C Rの中間を通るよう に設計され、 履蒂 1 2 F、 1 2 Rの接地位置が常に重心 Gの外側と なるようにされている。
なお、 第 4図において 2 1 はアイ ドラ側のスプロケ ッ ト、 2 2は 下転輪を示している。 以上のように各履蒂 1 2 F L…が旋回自在で あるため前後履帯 1 2 F、 1 2 Rの先端 1 2 a、 1 2 aをそれぞれ 車体 Γ0の前方および後方に伸張させた旋回姿勢をとることにより 車両全体として最大長が得られ、 また先端 1 2 a、 1 2 aを車体重 心 G側に向けた旋回姿勢をとることによる車両全体と して最小長力く 得られる。
かかる装軌車両の各履蒂 1 2 F L…の旋回および走行の駆動機搆 を第 3図に示す。 なお、 4つの履蒂 1 2 F L…を駆動する機構は同 —機構であるので、 図では前側左の履蒂 1 2 F Lを駆動する機構の みを代表させて示す。
同図に示すように走行モータ 2 6は履蒂 1 2 F Lを回転させるモ 一夕であり、 モータ 2 6の駆動力は'减速機 2 8、 チェーン 3 0を介 して駆動用スプロケッ 卜 2 0の回転軸 2 4、 駆動甩スプロケッ ト 2 0に伝達される。 これによりスプロケッ ト 2 0に歯合した履蒂 1 2 F Lがトラックフレーム 1 6の外周を周回するよう回転され、 装軌 車両が走行する。 走行モータ 2 6には該モータ 2 6の出力 トルク T 1 を検出するセンサ 4 5が付設されており、 該センサ 4 5で検出さ れた トルク T 1 は後述する制御装置 5 5に加えられる。 なお、 この センサ 4 5としては履蒂 1 2 F Lにかかる負荷、 つまり この履蒂 1 2 F Lと路面との接地状態を検出できるものであればよい。 たとえ ばモータ 2 6が D Cモータであれば、 電機子電流を検出する実施、 また A Cサーボモータなら A Cサーボアンプの出力信号を検出する 実施が可能である。 また履蒂 1 2 F Lにかかる トルクを トルクセン ザで直接検出するようにしてもよい。
—方、 旋回軸 1 4は回転軸 2 4を内包する円筒状の軸であり、 旋 回軸 1 4には該軸 1 4の旋回角 0、 つまり履蒂 1 2 Fの旋回角 0を 検出するエンコーダ 4 4が付設されている。 旋回軸 1 4は トラ ッ ク フ レーム 1 6に固設されるとともに、 車体 1 0に軸受けを介して回 動自在に支承されている。 旋回軸 1 4の外周面には歯車 3 2が回動 自在に配設されるとともに、 トルク リ ミ ッタ 3 4が一体に周設され ている。 トルクリ ミ ッタ 3 4は旋回軸 1 4にかかる負荷が所定暄よ り も小さいときに歯車 3 2と接合し、 同負荷が所定膣以上のときに 歯車 3 2との接合が解除されるよう作用する。
旋回モー夕 3 6は、 上記制御装置 5 5により駆動制御され、 トラ ックフ レーム 1 6、 つまり履帯 1 2 F Lを旋回させる。 この際、 履 帯 1 2 F Lの旋回角度が所望の角度となるようにエンコーダ 44の 検出値をフィ 一 ドバック量と してフィ 一 ドバッ ク制御される。 モー 夕 36の駆動力は減速機 38、 駆動歯車 4 0、 中間歯車 4 2を介し て上記歯車 3 2に伝達される。 こ こで通常の場合、 モータ 3 6の回 転に応じて履帯 1 2 F Lが旋回されるが、 転落等により履蒂 1 2 F Lに外部から強制的に過大な旋回力が加えられたときには トルク リ ミ ッタ 34 と歯車 3 2 との接合が解除され、 外部の旋回衝撃力が歯 車 3 2〜モータ 3 6間の動力伝達機構に直接に伝達されないように される。 このため動力伝達機構の破損という事態を回避することが できる。 また、 エンコーダ 44は旋回軸 1 4に設けるようにしてい るので、 旋回衝撃力により動力伝達機構と旋回軸 1 4 とが遮断され た事態になつたと しても履蒂 1 2 F Lの旋回角 を検出し得る。 力、 かる機構に関する詳細は本出願人に係る先願 (特願平 2— 2 1 〇 9 2 2号) に記載されており、 本願の主旨とは直接関係ないので、 こ れ以上の説明は省略する。
以上のような駆動機構は 4つの履帯 1 2 F L、 1 2 F R、 1 2 R Lおよび 1 2 R Rごとに独立して設けられており、 単独で走行、 旋 回が行われる。 履帯 1 2 F Rを回転させる走行モータ 4 6には該モ ータ 4 6の出力 トルク T 2 を検出するセ ンサ 4 7が付設されており、 検出 トルク T 2 が制御装置 5 5に出力される。 同様に履帯 1 2 R L を回転させる走行モータ 4 9には該モータ 4 9の出力 トノレク T 3 を 検出するセンサ 5 0が付設されており、 検出 トルク T 3 が制御装置 5 5に出力される。 同様に履帯 1 2 R Rを回転させる走行モー夕 5 2には該モ一夕 5 2の出力 トルク T4 を検出するセ ンサ 5 3が付設 されており、 検出 トルク T4 が制御装置 5 5に出力される。
各履蒂 1 2 F R、 1 2 R Lおよび 1 2 R Rは旋回モータ 4 8、 5 1および 54によって旋回され、 これら各旋回モータは制御装置 5 5により駆動制御される。 なお、 装軌車両は図示せぬリモコ ンに より操縦され、 リモコンで操作、 設定された速度になるように各走 行モ一夕 2 6、 4 6、 4 9および 5 2が駆動制御されるとともに、 同リモコンで操作、 設定された旋回角度が得られるように各旋回モ 一夕 3 6、 4 8、 5 1および 5 4が駆動制御されるが、 かかる事項 は本願発明に直接関係なく本出願人の先願 (特願平 3— 1 2 1 2 9 6号) に係る事項であるので詳細な説明は省略する。 実施例では本 願発明に係る制御 (以下これを 「トラク シヨ ン制御」 という) のみ を行う制御装置 5 5のみを示している。
制御装置 5 5では第 1図に示す処理が行われる。 第 2図は第 1図 の処理を説明する図であり、 装軌車両の取る得る姿勢 「標準姿勢」 (第 2図 ( a ) 、 (b ) ) 、 転落警戒姿勢 (第 2図 ( c ) 、 ( d ) ) および 「超堤姿勢」 (第 2図 ( e ) ) を示している。
制御装置 5 5の電源が投入ざれることにより図 1に示す処理がス 夕一 ドされ、 まず装軌車両が運転中であるか否かが判断される (ス テツプ 1 0 1 ) 。 こ こでリモコ ンの非常停止スイ ッチや運転停止ス ィ ッチ等が操作された場合には直ちに運転終了と判断され、 運転状 態が終了する (ステップ 1 0 1の判断 Y E S ) 。 運転終了と判断さ れなければ (ステップ 1 0 1の判断 N O ) 、 つぎに装軌車両に対す る走行指合がオン伏態であるか否かが判断される (ステッ プ 1 0 2 ) 。 ここで、 リモコ ンから走行停止措合が出力されており装軌車両が 停止している場合には (ステップ 1 0 2の判断 N 0 ) 、 装軌車両が たとえ対角線スタッ ク状態に陥っていたとしても各走行モータが駆 動されていないのでスタックによつて走行モ一タ力《過負荷となって しまう ことがない。 したがって、 以下のスタックを未然に防止する ための トラク ショ ン制御 (ステップ 1 ◦ 8 ) を行い、 走行モー夕の 過負荷を防止せんとすることは無意味であるので、 かかる処理を行 わずにステップ 1 ◦ 3に移行される。
ステップ 1 0 3では、 トラ ッ クフ レーム 1 6の旋回角度を中央 ί直 に復帰させる動作が行われる。 すなわち、 第 2図に 「中央暄」 と し て示すように各履蒂 1 2 F L…の旋回角度には、 各姿勢に応じて機 械的に最も無理のかからない角度という ものがある。 そこで車両停 止中であれば、 この停止期間中に旋回角度を中央値に復帰させてや り、 負荷のかからない走行の準備をしょう とする ものである。
一方、 リモコ ンから走行指令が出力されており、 装軌車両が走行 中であれば (ステップ 1 0 2の判断 Y E S ) 、 対角線スタ ッ クによ り走行モー夕が過負荷となってしま う虞があるのでスタ ッ クを未然 に防止する トラ ク シ ヨ ン制御を行うべく 、 つぎのステップ 1 0 4に 移行される。
ステップ 1 0 4では各履帯 1 2 F L…の旋回角度の検出暄が入力 され (履帯 1 2 F Lであればたとえばエンコーダ 4 4の検出値 0力く 入力される) 、 この検出値に基づき各 卜ラ ッ クフ レーム 1 6が旋回 中であるか否かが判断される。 こ こで仮に各 トラ ッ ク フ レーム 1 6 のう ちいずれかが旋回中であると判断されれば (ステップ 1 0 4の 判断 Y E S ) 、 装軌車両の姿勢を別の姿勢に変化させる制御を行つ ている場合であり、 また姿勢が変化する こ とによ り たとえ対角線ス タ ッ クが発生していてもこのスタ ッ ク状態から脱出でき る こ と もあ るので、 以下の トラ ク シ ョ ン制御は行わないよう にされる。
—方、 各 トラ ッ クフ レーム 1 6すべてについて旋回中ではないと 判断されれば (ステッ プ 1 0 4の判断 N 0 ) 、 装軌車両が同一姿勢 を保持しつつ走行している場合であり、 そのままでは対角線ス夕 ッ ク状態になる虞がある。 そこでこれを未然に防止すべく 、 まず各セ ンサ 4 5、 4 7、 5 0および 5 3の検出 トルク T 1 、 T 2 、 T 3 お よび T 4 が入力される (ステップ 1 0 5 ) 。 ついで、 第 5図に破線 で示すように対角線上の 2つの履帯 1 2 F L、 1 2 R Rについて、 対応する トルク T 1 、 T 4 同士が下記 ( 1 ) 式の T a に示すごと く 加算される。 同様に他方の対角線上の 2つの履帯 1 2 F R、 1 2 R Lについても、 対応する トルク T 2 、 T 3 同士が下記 ( 1 ) 式の T b に示すごと く 加算される。 これら加算 ί直 T a、 T bを以下 「対角 線トルク」 という。
T a =Tl +T4
T b = T 2 + T 3 … ( 1 ) (ステップ 1 06 )
ついで、 上記ステップ 1◦ 6で演算された 2つの対角線トルク Τ a、 T bの比がと られ、 下記 (2) 式を満足する場合、
I T a I Z I T b I く K、 または I T b I / i T a I く K … (2)
つま り、
i T a I X I T b Iが所定値 Kより も小さい力、、 または i T a I X [ T b 1が所定値 1 /Kより も大きい場合には装軌車両が対角線 スタックに移行しつつある状態であると判断する (ステップ 1 〇 7 の判断 Ν 0) ο
逆に、 I T a [ / I T b I ≥ K、 かつ I T b I Z I T a I ≥K … (3)
つま り、
i T a I 1 T b I が所定暄 K以上、 かつ所定値 1 ZK以下の場 合には対角籙スタツ クに移行しつつある状態ではないと判断される (ステップ 107 判断 Y E S:) 。
なお、 上記所定直 Kの暄と してはたとえば 0. 8である。 なお、 この所定暄 Kは装軌車両が現在とつている姿勢等、 各種状態に応じ て可変させるようにしてもよい。 なお、 ステツプ 1 0 7では対角線 トルク T a、 T bの比を演算することにより判断しているが、 比に 限定されることなく対角線トルク T a、 T bの備差を求めるこ と力 できる演算であればよい。
対角線スタ ッ クに移行しつつある状態であると判断されたならば、 トラク シヨ ン制御、 つまり対角線スタッ クを回避するための トラ ッ クフ レ一ム 1 6の角度指令の修正が行われる。 すなわち、 ステップ 106の演算の結果、 両対角線 トルク T a、 T bのうち対角線 トル クが大きい方の対角線上の両履蒂にっき、 現在装軌車両がとつてい る姿勢において許容し得る上限値に向けて旋回がなされる。 これと 同時に、 ステップ 1 0 6の演算の結果、 両対角線トルク T a、 T b のうち対角線トルクが小さい方の対角線上の両履蒂にっき、 現在装 執車両がとっている姿勢において許容し得る下限値に向けて旋回が なされる (第 2図参照) 。 なお、 現在、 履帯が上限値または下限値 に到達している場合には、 それ以上旋回されないようになされる。 こ こで、 履帯の旋回方向は、 各種姿勢に応じて異なる。
すなわち、 第 2図 ( a ) に示す標準姿勢における トラク シヨ ン制 御の場合、 対角線トノレク T aが対角線トルク T bより も小さいと仮 定すると、 T aに対応する履帯 1 2 F L ( 1 2 R R) において有効 な トラク シ ヨ ンを得るべく 当該履帯.1 2 F L ( 1 2 R R ) が右方向 に回転される。 これと同時に負荷が集中している履帯 1 2 R L ( 1 2 F R) が右方向に回転される (第 2図 ( b ) の矢印参照、) 。
また、 第 2図 ( c ) に示す転落警戒姿勢の場合、 同一条件におい て履蒂 1 2 F L ( 1 2 R R) は上記標準姿勢とは逆の左方向に回転 される (第 2図 ( d ) の矢印参照) 。
また、 第 2図 ( e ) に示す超堤姿勢の場合、 同一条件において矢 印 Dに示すように履蒂 1 2 R L ( 1 2 F R) は上記標準姿勢とは逆 の左方向に回転される (なお、 履帯 1 2 F L ( 1 2 R R ) は矢印 C に示すように右方向に回転される) 。
二のように各種姿勢に応じて履帯の回転方向は異なってく るので、 現在の装軌車両の姿勢を現在の旋回角度 に基づき検出し、 この検 出結果に応じて回転方向を決定する。 要は、 回転 (旋回) 方向と し ては、 負荷の小さい方の履蒂を負荷が大き く なる方向に、 かつ負荷 の大きい方の履帯を負荷が小さ く なる方向に旋回させるものであれ ばよい。
なお、 接地していない方の履帯を路面に接地させる方向に旋回さ せると同時に、 接地している方の履帯を路面から離間させる方向に 旋回させているのは各履蒂あたりの旋回角度を少なく することがで き、 これによつて制御の応答速度が向上するからである。
また、 制御の態様としては、 対角線トルクが小さく なつた方の両 履帯のみを旋回させるだげでもよい (ステップ 1 0 8 ) 。 ステップ 1 0 8に移行されるごとに一定角度づっ旋回角度が修正される。 こ の角度修正量は、 たとえば一定値 0 . 5度であり、 第 1図のステツ プ 1 0 1〜 1 0 8の処理が操り返し実行されるごとにステップ 1 0 8において角度 0 . 5。 づっ旋回角度が修正され、 やがて対角線ス 夕ックが回避されることになる。 ただし、 現在の トルク比 (つまり 対角線トルク T a、 T bの偏差) 、 現在の姿勢等に応じて上記角度 修正暈を可変させる実施も可能である。
以上のような トラクシヨン制御がなされることで、 装軌車両の対 角線スタックが未然に、 かつ自動的に防止され、 緊急を要する災害 救援作業を迅速かつ確実に行うことができるようになる。 また、 走 行モータが過負荷となり車両がス ト ップするような事態も招来しな い。 さらに、 自動的に走行モータの負荷バランスが取れるので、 設 計にあたり走行モータの容量の余裕を大きく とる必要がなくなり、 経済的で軽量な設計できるという付随的な効杲も得られる。 この結 杲従来なみの過負荷に耐える大容量のモータを使う ことで走行に利 用できる トルクの余裕が生まれ、 運転速度を上げたり積載加重を增 やしたりすることも可能となる。 産業上の利用可能性
以上説明したように本発明によれば、 対角線スタ ツ クを未然にか つ自動的に防止することができ、 緊急を要する事態であってもスタ ックによる時間口スなく確実に装軌車両が走行できるようになる。

Claims

. 請求の範囲
1 . 左右一対の履蒂が車体の前側および後側に設けられ、 各 履蒂のスプロケッ トがそれぞれ独立して駆動制御されて走行する装 軌車両において、
前記各履帯の トラ ッ クフレームを、 旋回拿由を介して車体の前後方 向に旋回自在に配設するとと もに、
前記各履帯にかかる負荷を検出する負荷検出手段と、
前記負荷検出手段の検出結果に基づき車体前側左および車体後側 右における一組の履帯にかかる負荷の和を演算するとと もに、 車体 前側右および車体後側左における一組の履帯にかかる負荷の和を演 算する演算手段と、
前記演算手段で演算された各和の偏差が所定値以上となつた場合 に、 前記各組の負荷の和のうち負荷の和が小さい方の組の履蒂にか かる負荷が増大する方向に当該一組の履帯の旋回軸を駆動制御する 駆動制御する駆動制御手段と
具えた装軌車両の トラク ショ ン制御装置。
2 . 左右一対の履蒂が車体の前側および後側に設けられ、 各 履帯のスプロケッ トがそれぞれ独立して駆動制御されて走行する装 軌卑両において、
前記各履帯の トラ ッ ク フ レームを、 旋回軸を介して車体の前後方 向に旋回自在に配設するとともに、 '
前記各履帯にかかる負荷を検出する負荷検出手段と、
前記負荷検出手段の検出結果に基づき車体前側左および車体後側 右における一組の履蒂にかかる負荷の和を演算するとと もに、 車体 前側右および車体後側左における一組の履帯にかかる負荷の和を演 算する演算手段と、
前 Ϊ己演算手段で演算された各和の瞌差が所定値以上となつた場台 に、 前記各組の負荷の和のうち負荷の和が小さい方の組の履帯にか かる負荷が増大する方向に当該一組の履蒂の旋回^!を駆動制御する と同時に前記各組の負荷の和のうち負荷の大きい方の組の履帯にか かる負荷が減少する方向に当該一組の履蒂の旋回軸を駆動制御する 駆動制御手段と
具えた装軌車両の トラク ショ ン制御装置。
― 1 一
PCT/JP1993/000507 1992-04-21 1993-04-20 Traction controller for crawler vehicles WO1993021053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP93908116A EP0636533A4 (en) 1992-04-21 1993-04-20 TRACTION CONTROLLER FOR TRACKED VEHICLES.
US08/318,872 US5517416A (en) 1992-04-21 1993-04-20 Traction controller for crawler vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP04101348A JP3093866B2 (ja) 1992-04-21 1992-04-21 装軌車両のトラクション制御装置
JP4/101348 1992-04-21

Publications (1)

Publication Number Publication Date
WO1993021053A1 true WO1993021053A1 (en) 1993-10-28

Family

ID=14298335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000507 WO1993021053A1 (en) 1992-04-21 1993-04-20 Traction controller for crawler vehicles

Country Status (4)

Country Link
US (1) US5517416A (ja)
EP (1) EP0636533A4 (ja)
JP (1) JP3093866B2 (ja)
WO (1) WO1993021053A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621643A (en) * 1991-04-12 1997-04-15 Komatsu Ltd. Dozing system for bulldozers
US6199646B1 (en) * 1996-08-01 2001-03-13 Kubota Corporation Working vehicle with semicrawlers
CN1076655C (zh) * 1999-10-08 2001-12-26 东华大学 自主变位四履带足机器人行走机构
US6697725B1 (en) * 2000-01-04 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Load-based torque redistribution method in 4-wheel drive vehicle
US6672413B2 (en) 2000-11-28 2004-01-06 Siemens Westinghouse Power Corporation Remote controlled inspection vehicle utilizing magnetic adhesion to traverse nonhorizontal, nonflat, ferromagnetic surfaces
US20040216932A1 (en) * 2001-07-09 2004-11-04 United Defense, Lp Hybrid wheel and track vehicle drive system
US6814169B2 (en) * 2001-11-27 2004-11-09 Siemens Westinghouse Power Corporation Interchangeable accessories for a remote controlled inspection vehicle
US8061459B2 (en) * 2006-01-17 2011-11-22 GM Global Technology Operations LLC Traction control method for a tracked vehicle
US7581605B2 (en) * 2006-02-22 2009-09-01 Mga Entertainment, Inc. Quad tracked vehicle
DE102006011183B4 (de) * 2006-03-10 2015-02-19 Wabco Gmbh Verfahren zur Traktionsregelung eines pneumatisch gefederten Fahrzeuges
US20110042164A1 (en) * 2009-08-18 2011-02-24 Genie Industries, Inc. Apparatuses and methods for determining and controlling vehicle stability
JP5561719B2 (ja) * 2009-11-17 2014-07-30 学校法人千葉工業大学 クローラ型走行装置
US10723571B2 (en) 2013-10-13 2020-07-28 Maytronics Ltd Pool cleaning robot having an interface
US9758980B2 (en) 2013-10-13 2017-09-12 Maytronics Ltd. System for extracting a pool cleaning robot
DE102015008778B4 (de) * 2014-11-19 2017-06-14 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr Hybrides Antriebskonzept für ein Kettenfahrzeug mit zwei angetriebenen Kettenpaaren
JP6344668B2 (ja) * 2015-02-10 2018-06-20 国立研究開発法人宇宙航空研究開発機構 不整地用走行車両
KR101726697B1 (ko) * 2015-03-13 2017-04-13 한화테크윈 주식회사 전방 플리퍼와 후방 플리퍼를 구비한 트랙형 무인 지상 로봇
ES2546053B1 (es) * 2015-06-18 2016-06-23 Proytecsa Security, S.L. Robot para manipulación de artefactos sospechosos

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2231057A1 (de) * 1972-06-24 1974-01-17 Kernforschung Gmbh Ges Fuer Fahrzeug mit variabler fahrwerksgeometrie
JPS63149272A (ja) * 1986-07-01 1988-06-22 Okano Kosan Kk 不整地走行車
JPH0492784A (ja) * 1990-08-08 1992-03-25 Komatsu Ltd 災害救援ロボット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753830A (en) * 1970-07-13 1973-08-21 United States Steel Corp Apparatus for laminating a plastic sheet onto a surface of a hollow body
US3869010A (en) * 1972-09-11 1975-03-04 Caterpillar Tractor Co Crawler tractor
JPS56138071A (en) * 1980-03-29 1981-10-28 Toshiba Corp Mobile monitoring equipment
US4763742A (en) * 1987-02-05 1988-08-16 Allied Systems Company Tree feller-buncher
JPS63203483A (ja) * 1987-02-18 1988-08-23 Res Dev Corp Of Japan 能動適応型クロ−ラ走行車
FR2630392A1 (fr) * 1988-04-26 1989-10-27 Mancheron Daniel Vehicule a chenilles pour transport de charges et/ou fourniture d'energie dans des zones difficiles d'acces ou dangereuses pour l'homme
FR2653732B1 (fr) * 1989-10-31 1994-12-09 Alsthom Cge Alcatel Vehicule d'intervention a configuration variable pour sols accidentes.
WO1992002398A1 (fr) * 1990-08-08 1992-02-20 Kabushiki Kaisha Komatsu Seisakusho Robot de secours en cas de catastrophe et unite associee de commande des manoeuvres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2231057A1 (de) * 1972-06-24 1974-01-17 Kernforschung Gmbh Ges Fuer Fahrzeug mit variabler fahrwerksgeometrie
JPS63149272A (ja) * 1986-07-01 1988-06-22 Okano Kosan Kk 不整地走行車
JPH0492784A (ja) * 1990-08-08 1992-03-25 Komatsu Ltd 災害救援ロボット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0636533A4 *

Also Published As

Publication number Publication date
EP0636533A4 (en) 1996-04-03
JPH05294252A (ja) 1993-11-09
JP3093866B2 (ja) 2000-10-03
US5517416A (en) 1996-05-14
EP0636533A1 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
WO1993021053A1 (en) Traction controller for crawler vehicles
US5845222A (en) Vehicle steering control system
EP2319750B1 (en) Coaxial two-wheel vehicle and method for controlling same
JP2534730B2 (ja) 4輪操舵・差動制限力総合制御装置
CN105102304B (zh) 载重卡车
EP1875888B1 (en) Differential steering type motorized vehicle
US9956472B2 (en) Standing-ride type moving device
JP2000025633A (ja) 液圧式推進車両のための操舵アシスト及びスピン防止を達成するための方法及び手段
JPS6133746B2 (ja)
CN111152661A (zh) 一种四轮分布式驱动客车电驱动系统失效控制方法
US6148951A (en) Reactive steering control system
JP2013001230A (ja) 自走車両
US20230140923A1 (en) Bogie systems for autonomous and remote-piloted vehicles
JP2694554B2 (ja) 自動車の後輪操舵制御方法
JP2939569B2 (ja) リーチ型フォークリフト
JP6471715B2 (ja) 立ち乗り型移動装置
US6863149B2 (en) Steering mechanism of electric car
JP4349204B2 (ja) 左右独立駆動式車両
JP2670626B2 (ja) 車両の姿勢制御装置
JPS63287675A (ja) 車両の車輪補助転舵装置
JP3388504B2 (ja) 3軸トラック
US20030132038A1 (en) Lift truck
JPH01111538A (ja) 車両の姿勢制御装置
GB2358004A (en) A drive and active suspension system for a vehicle that allows the vehicle to turn on the spot
CN220374296U (zh) 一种实现车辆横走和原地掉头的四驱系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993908116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08318872

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993908116

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993908116

Country of ref document: EP