WO1993013356A1 - Fossil befeuerter durchlaufdampferzeuger - Google Patents

Fossil befeuerter durchlaufdampferzeuger Download PDF

Info

Publication number
WO1993013356A1
WO1993013356A1 PCT/DE1992/001054 DE9201054W WO9313356A1 WO 1993013356 A1 WO1993013356 A1 WO 1993013356A1 DE 9201054 W DE9201054 W DE 9201054W WO 9313356 A1 WO9313356 A1 WO 9313356A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heating
pipes
pressure compensation
steam generator
Prior art date
Application number
PCT/DE1992/001054
Other languages
English (en)
French (fr)
Inventor
Wolfgang Kastner
Wolfgang Köhler
Eberhard Wittchow
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6447758&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993013356(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP51134193A priority Critical patent/JP3241382B2/ja
Priority to DE59203702T priority patent/DE59203702D1/de
Priority to EP92924576A priority patent/EP0617778B1/de
Priority to RU9294031204A priority patent/RU2091664C1/ru
Publication of WO1993013356A1 publication Critical patent/WO1993013356A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a once-through steam generator with burners for fossil fuels with a vertical gas flue from essentially vertically arranged pipes which are connected with their inlet ends to an inlet collector and with their outlet ends to an outlet collector.
  • the invention also relates to such continuous steam generators which have a funnel arranged at their lower end, which has at least four walls made of tubes welded to one another in a gastight manner and inlet and outlet collectors for these tubes.
  • the tubes at the outlet of the combustion chamber walls often have large temperature differences since different amounts of heat are transferred to the individual tubes of the parallel tube system.
  • the causes of the different amounts of heat transferred are due to the different heat flow density profile - for example, transfer less heat in the corners of the combustion chamber than in the vicinity of the burners - and in the differences in the heated pipe lengths, especially in the funnel area, for continuous steam generators designed for coal firing
  • the pressure compensation collector is located in the wet steam area - i.e. at a point where all pipes are still the same
  • the incoming wet steam can therefore be segregated in such a way that individual outgoing pipes are preferably given water and others are preferably given steam.
  • the result is that, even with uniform heating of the tube walls above the pressure compensation collector, the steam is heated up to a very different extent and thus different tube wall temperatures and the resulting thermal stresses which can lead to tube rips.
  • the invention is based on the object of designing the tube walls of the vertical throttle cable in such a way that, despite the unavoidable different heating of individual tubes, the steam temperatures at the outlet of all tubes are almost the same and that malfunctions such as occur due to clogging of throttle orifices at the tube inlet can be avoided.
  • this object is achieved for continuous-flow steam generators of the type mentioned at the outset by arranging a pressure compensation vessel on the outside of the combustion chamber walls at an altitude which ensures that a multi-heated tube has a greater throughput than a parallel tube has medium heating. This is generally the case when the geodetic pressure drop of a pipe with medium heating is a multiple of its friction pressure drop.
  • the pressure drops mentioned relate to the part of the evaporator tubes which is located between the collector located at the inlet to the evaporator and the downstream branch to the pressure compensation vessel.
  • the condition for a mass flow increase in a more heated pipe is:
  • the friction pressure drop ( ⁇ p R ) is according to Q. Zheng, W. Köhler, W. Kastner and K. Riedle, "Pressure loss in smooth and internally finned evaporator tubes, heat and mass transfer 26", p. 323 - 330, Springer Verlag 1991, while the geodetic pressure drop ( ⁇ P Q ) according to Z. Rouhani "Modified correlation for void-fraction and two-phase pressore drop", AE-RTV-841, 1969 is to be determined. In contrast, the acceleration pressure drop ( ⁇ P q ) is of minor importance and can be neglected in this calculation.
  • the mass flow in a tube with multiple heating should not remain constant, but should increase ( ⁇ M> 0). This is the case in a parallel pipe system if equation (1) is fulfilled. This applies to the multi-heated pipe
  • Equation (2) says nothing about the extent of the mass flow increase. An increase would be desirable that just completely compensates for the additional heating. In this
  • the index Ref here refers to a reference pipe which has the mean throughput M and the mean heat absorption Q.
  • the height of the pressure compensation vessel that is to say the connection of the pressure compensation vessel into the parallel tube system of the vertically arranged tubes with at least part of their length internally finned, is therefore chosen so that one of the following conditions applies:
  • FIG. 1 shows a longitudinal section of a once-through steam generator in a simplified representation
  • Figure 2 shows a single tube from a vertically touched part of the continuous steam generator with a connection of this tube to a pressure compensation vessel.
  • a continuous steam generator according to FIG. 1 with a vertical throttle cable 1 consists of tube walls which are welded together gas-tight in the lower part from tubes 2 arranged vertically and next to one another, and which in the upper part consist of tubes 3 arranged vertically and next to one another, which are likewise gas-tight with one another are welded.
  • the vertical throttle cable 1 has a funnel 10 at its lower end for receiving ash, the surrounding walls of which are also formed by the tube walls. In the lower part of the vertical throttle cable 1, main burners 11 for fossil fuel are attached.
  • the tubes 2 are connected with their inlet ends to an inlet header 9 and, at a height H, measured from the central axis of the inlet header 9, go directly into the inlet ends of the tubes with their outlet ends
  • the outlet headers 12 are connected by connecting lines 13 to a separator 14 to which an outlet line 15 and a connecting line 16 are connected.
  • the connecting line 16 leads to an inlet header 17 of a superheater heating surface 18, the pipe outlet ends of which are connected to a superheater outlet header 19.
  • an intermediate superheater heating surface 21 with an inlet header 20 and an outlet header 22 and an Econo heater surface 6 with an inlet header 5 and an outlet header 7 are arranged within the vertical gas flue 1.
  • the outlet header 7 is connected to the inlet header 9 by a connecting line 8.
  • FIG. 2 shows a single pipe 2, which at point H, at which a pressure compensation pipe branches off, merges with its outlet end directly into the inlet end of pipe 3.
  • the pressure compensation tube 25 is connected to a pressure compensation vessel 4, which is located outside the vertical throttle cable 1.
  • a pressure compensation tube 25 branches off from each tube 2 of the tube walls.
  • a feed pump conveys water into the inlet collector 5 and from there into the economizer heating surface 6, in which the water is preheated.
  • the water then flows through the connecting line 8 and the inlet header 9 into the tubes 2 of the tube walls of the vertical gas flue 1, in which it largely evaporates.
  • the remaining evaporation and the first part of the overheating takes place in the tubes 3 of the tube walls of the vertical throttle cable 1.
  • the separator 14 is only in operation during the start-up process, that is, as long as not all water evaporates in the pipe walls due to insufficient heat input.
  • the entering water-steam mixture is then separated in the separator 14.
  • the separated water is led through the drain line 15, for example, to an expansion device, not shown, the separated steam flows through the connecting line 16 to the superheater heating surface 18.
  • the steam expanded in the high-pressure part of the steam turbine is reheated in the reheater heating surface 21.
  • the mass flow density. in the vertically arranged pipes 2 and 3 is chosen so that the geodetic pressure drop in the pipes is considerably greater than the friction pressure drop. The result of this is that a pipe receives a higher throughput in the case of multiple heating and the effect of the multiple heating with regard to the outlet temperature is largely compensated for.
  • the friction pressure drop in the tubes of the upper increases despite a low mass flow density of 1000 kg / m z s and less, based on 100% load Part of the vertical throttle cable, ie in the tubes 3, strongly due to the large steam volumes.
  • the drop in frictional pressure in relation to the geodetic drop in pressure can be so great that the throughput decreases due to a multi-heated pipe compared to the parallel pipes and this leads to undesirably high steam temperatures at the pipe end.
  • Pipes 3 are uncoupled. All tubes 2, through which flow flows from bottom to top and are connected in parallel in terms of flow, have the same pressure drop between the inlet header 9 and the pressure compensation vessel 4. With this pressure drop, the proportion of the geodetic pressure drop is a multiple of the portion of the friction pressure drop , so that the advantage of increasing the throughput when heating individual pipes is very effective. This is particularly important in the lower part of the vertical throttle cable 1, in which the different heating in the area of the funnel and the main burner is particularly pronounced. In the upper part of the vertical throttle cable 1, in which the pipes 3 are located, both the heating and their irregularities are less than in the lower part of the gas cable 1.
  • the pressure compensation vessel 4 now causes a partial flow of through a part of the pressure compensation tubes 25 the tubes 2 flows to the pressure compensation vessel 4 and through a different part of the pressure compensation tubes 25 a partial stream flows from the pressure compensation vessel 4 to the tubes 3.
  • a uniform flow through the tubes 3 is achieved.
  • the cooling of the tubes 2 and 3 is improved and thus the tube wall temperature is reduced if the tubes have ribs forming a multi-start thread on their inside. This is particularly true in the areas of high heat radiation, e.g. in the area of the burner 11, required.
  • the ribs forming the multi-start thread expediently extend over more than 50% of the length of the tubes 2.
  • the mass flow density in the solution according to the invention with a pressure compensation vessel and with internally finned tubes in the area of the flame space is less than 1000 kg / m 2 s at full load due to the good heat transfer properties of internally finned tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Bei Durchlaufdampferzeugern mit einem Brenner (11) für fossile Brennstoffe mit einem vertikalen Gaszug (1) aus im wesentlichen vertikal angeordneten Rohren (2, 3) sind deren Eintrittsenden an einen Eintrittssammler (9) und deren Austrittsenden an einen Austrittssammler (12) angeschlossen. Erfindungsgemäß zweigt von jedem Rohr (2) in gleicher Höhe H ein Druckausgleichsrohr (25) ab, das mit einem Druckausgleichsgefäß (4) verbunden ist, und ist die Höhe H so gewählt, daß bei einer Mehrbeheizung eines einzelnen Rohres (2) zwischen dem Eintrittssammler (9) und dem Abzweig des Druckausgleichsrohres (25) gegenüber dem Mittelwert der Beheizung aller Rohre (2) der Massenstrom durch dieses einzelne Rohr (2) ansteigt.

Description

Fossil befeuerter Durchlaufdampferzeuger
Die Erfindung betrifft einen Durchlaufdampferzeuger mit Brennern für fossile Brennstoffe mit einem vertikalen Gaszug aus im wesentlichen vertikal angeordneten Rohren, die mit ihren Eintrittsenden an einen Eintrittssammler und mit ihren Austrittsenden an einen Austrittssammler angeschlossen sind.
Die Erfindung betrifft auch derartige Durchlaufdampferzeu¬ ger, die einen an ihrem Unterende angeordneten Trichter aufweisen, der mindestens vier Wände aus gasdicht mitein¬ ander verschweißten Rohren und Eintritts- und Austritts¬ sammler für diese Rohre aufweist.
Bei mit fossilen Brennstoffen befeuerten Durchlaufdampf- erzeugern mit senkrecht berührten Brennkammerwänden weisen die Rohre am Austritt der Brennkammerwände häufig große Temperaturunterschiede auf, da an die einzelnen Rohre des Parallelrohrsystems unterschiedlich viel Wärme übertragen wird. Die Ursachen der unterschiedlich großen übertragenen Wärmemengen liegen an dem unterschiedlichen Wärmestrom¬ dichteprofil - so wird z.B. in den Brennkammerecken weniger Wärme übertragen als in der Nähe der Brenner - und in den Differenzen der beheizten Rohrlängen, insbesondere im Trichterbereich, bei für Kohlefeuerung dimensionierten Durchlaufdampferzeugern.
Zur Minderung dieser Temperaturunterschiede an den Rohr- enden ist aus einer Veröffentlichung in der VGB Kraftwerks¬ technik 64, Heft 4, Seiten 298 und 299 eine Lösung mit Drosselblenden und einem Druckausgleichssammler bekannt. Hiernach erhalten die einzelnen Rohre Drosselblenden am Eintritt, um den Wasser/ Dampfdurchsatz einzelner Rohre den Beheizungs- und Längenunterschieden anzupassen. Nach¬ teile dieser Lösung sind, daß die Drosselblenden am Rohr- eintritt nur für einen einzigen Betriebsfall ausgelegt werden können und daß wechselnde Verschmutzungen der Brennkammerwände jedoch eine überproportionale Tempera¬ turabweichung einzelner Rohre zur Folge haben können. Es hat sich auch gezeigt, daß die Drosselblenden verstop¬ fen können, so daß den hierdurch betroffenen Rohren zu wenig Wasser zugeführt wird.
Der Druckausgleichssammler wird hierbei im Naßdampfgebiet - also an einer Stelle, wo alle Rohre noch die gleiche
Temperatur haben, aber Naßdampf unterschiedlichen Dampf¬ gehaltes führen - an der Stelle angeordnet, an der bei 35% der Kessellast ein mittlerer Dampfgehalt von 80 % erreicht ist. Durch Druckausgleichssammler wird der gesamte Ver- dampfer assenstrom durchgesetzt, so daß eine Mischung des aus den Einzelrohren des Parallelrohrsystems austretenden Naßdampfes zu erzwungen wird.
Bei diesem bekannten Durckausgleichssammler kann daher eine Entmischung des eintretenden Naßdampfes derart erfol¬ gen, daß einzelne abgehende Rohre bevorzugt Wasser und andere wiederum bevorzugt Dampf erhalten. Die Folge ist, daß dann auch bei gleichmäßiger Beheizung der Rohrwände oberhalb des Druckausgleichssammlers eine stark unter- schiedliche Erwärmung des Dampfes und damit unterschiedli¬ che Rohrwandtemperaturen sowie daraus resultierende Wärme¬ spannungen auftreten, die zu Rohrreißern führen können.
Der Erfindung liegt die Aufgabe zugrunde, die Rohrwände des vertikalen Gaszuges so zu gestalten, daß trotz der un¬ vermeidbaren unterschiedlichen Beheizung einzelner Rohre die Dampftemperaturen am Austritt aller Rohre nahezu gleich sind und daß Betriebsstörungen, wie sie durch Ver¬ stopfen von Drosselblenden am Rohreintritt auftreten kön- nen, vermieden werden. Erfindungsgemäß wird diese Aufgabe für Durchlaufdampferzeu¬ ger der eingangs genannten Art dadurch gelöst, daß ein Druckausgleichsgefäß an der Außenseite der Brennkammer¬ wände in einer Höhenlage angeordnet ist, bei der sicher- gestellt ist, daß ein .mehrbeheiztes Rohr einen größeren Durchsatz gegenüber einem Parallelrohr mit mittlerer Beheizung aufweist. Dies ist im allgemeinen dann der Fall, wenn der geodätische Druckabfall eines Rohres mit mittle¬ rer Beheizung ein Mehrfaches seines Reibungsdruckabfalls beträgt. Die genannten Druckabfälle beziehen sich auf den Teil der Verdampferrohre, der sich zwischen dem am Ein¬ tritt in den Verdampfer liegenden Sammler und dem genann¬ ten stromabwärts liegenden Abzweig zum Druckausgleichs¬ gefäß befindet. Die Bedingung für einen Massenstromanstieg in einem stärker beheizten Rohr lautet:
Figure imgf000005_0001
das heißt, daß der gesamte Druckabfall (Δ PGes) des betrachteten Rohrabschnittes bei einer Mehrbeheizung (Δ ) abnehmen muß, wenn man den Durchsatz (M) konstant hält. Für innen berippte Rohre ist dabei der Reibungsdruckabfall (ΔpR) gemäß Q. Zheng, W. Köhler, W. Kastner und K. Riedle, "Druckverlust in glatten und innenberippten Verdampferroh¬ ren, Wärme- und Stoffübertragung 26", S. 323 - 330, Springer Verlag 1991 zu bestimmen, während der geodätische Druckabfall (ΔPQ) gemäß Z. Rouhani "Modified correlation for void-fraction and two-phase pressore drop", AE-RTV-841, 1969 zu bestimmen ist. Der Beschleunigungsdruckabfall (ΔPq) ist demgegenüber von untergeordneter Bedeutung und kann bei dieser Berechnung vernachlässigt werden.
Erfindungsgemäß soll jedoch der Massenstrom in einem Rohr mit Mehrbeheizung nicht konstant bleiben, sondern ansteigen (ΔM > 0). Dies ist in einem Parallelrohrsystem dann der Fall, wenn Gleichung (1) erfüllt ist. Somit gilt für das mehrbeheizte Rohr
A — > 0 (2)
Δ
Gleichung (2) sagt noch nichts über das Ausmaß des Massen- stro anstiegs aus. Erwünscht wäre ein Anstieg, der die Mehrbeheizung gerade vollständig kompensiert. In diesem
Fall würde auch im Rohr mit stärkerer Beheizung die glei¬ che Aufheizspanne, d.h. die gleiche Enthalpie-Erhöhung wie in den Rohren mit mittlerer Beheizung vorliegen, was zu einer sehr starken Verminderung der beschriebenen Tempera- turdifferenz bis auf Null führen würde. Die Bedingung hierfür lautet:
Figure imgf000006_0001
Der Index Ref bezieht sich hierbei auf ein Referenzrohr, das den mittleren Durchsatz M und die mittlere Wärmeauf- nähme Q aufweist.
in der Praxis wird es nicht immer möglich sein, die in Gleichung (3) aufgeführte Bedingung zu erfüllen. Die Höhenlage des Druckausgleichsgefäßes, also die Einschal¬ tung des Druckausgleichsgefäßes in das Parallelrohrsystem der senkrecht angeordneten, mindestens auf einem Teil ihrer Länge innenberippten Rohre, wird deshalb so gewählt, daß eine der folgenden Bedingungen zutrifft:
Δ M > 0 (4)
Δ Q
Figure imgf000007_0001
Da bei dieser strömungstechnischen Auslegung alle Parallel¬ rohre bei unterschiedlicher Beheizung zwar unterschiedliche Durchsätze, jedoch annähernd gleiche Dampfgehalte (bei Na߬ dampf) bzw. Temperaturen (bei überhitztem Dampf) aufweisen, ist ein Durchsatz des gesamten Massenstromes durch den Druckausgleichssammler nicht erforderlich. Ein Durchsatz des gesamten Massenstromes durch den Druckausgleichssamm¬ ler wäre sogar nachteilig, weil dabei wieder die Gefahr der Entmischung des Wasser-Dampf-Gemisches bestünde. Es ist deshalb nur ein Druckausgleichsgefäß vorgesehen, das lediglich von einem Teil des gesamten Naßdampfstromes durchströmt wird. Dieser sich einstellende Teilstrom be¬ wirkt nicht nur eine Vergleichmäßigung der Strömungsvertei¬ lung und eine dem Beheizungsprofil angepaßte Strömungsver¬ teilung in den Parallelrohren zwischen dem Eintrittssamm¬ ler und den abgehenden Druckausgleichsrohren zum Druckaus¬ gleichsgefäß, sondern er führt durch die Druckausgleichs¬ rohre minderdurchströmten Rohren einen zusätzlichen Massen¬ strom zu, so daß in den Rohren zwischen den Druckausgleichs¬ rohren und dem stromabwärts liegenden Austrittssammler eine nahezu gleichmäßige Strömungsverteilung herrscht. Die Ge¬ fahr der Entmischung des Naßdampfes in Wasser und Dampf be¬ steht nicht, so daß alle Rohre am oberen Ende der Rohrwände annähernd gleiche Temperatur besitzen und Schäden wegen Wärmespannungen nicht auftreten können. Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Dabei zeigt
Figur 1 einen Längsschnitt eines Durchlaufdampferzeugers in vereinfachter Darstellung und
Figur 2 ein einzelnes Rohr aus einem vertikal berührten Teil des Durchlaufdampferzeugers mit einem Anschluß dieses Rohres an ein Druckausgleichsgefäß.
Ein Durchlaufdampferzeuger gemäß Figur 1 mit einem verti¬ kalen Gaszug 1 besteht aus Rohrwänden, die im unteren Teil aus vertikal und nebeneinander angeordneten Rohren 2 gasdicht miteinander verschweißt sind, und die im oberen Teil aus vertikal und nebeneinander angeordneten Rohren 3 bestehen, die ebenfalls miteinander gasdicht verschweißt sind. Die miteinander gasdicht verschweißten Rohre bilden beispielsweise in einer Rohr-Steg-Rohrkonstruktion oder in einer Flossenrohr-Konstruktion eine gasdichte Rohrwand.
Der vertikale Gaszug 1 weist an seinem Unterende zur Aufnahme von Asche einen Trichter 10 auf, dessen Umfassungswände ebenfalls von den Rohrwänden gebildet werden. Im unteren Teil des vertikalen Gaszugs 1 sind Hauptbrenner 11 für fossilen Brennstoff angebracht.
Die Rohre 2 sind mit ihren Eintrittsenden an einen Ein¬ trittssammler 9 angeschlossen und gehen in einer Höhe H, gemessen von der Mittelachse der Eintrittssammler 9, mit ihren Austrittsenden direkt in die Eintrittsenden der
Rohre 3 über. Die Rohre 3 sind mit ihren Austrittsenden an einen Austrittssammler 12 angeschlossen.
Die Austrittssammler 12 sind durch Verbindungsleitungen 13 mit einem Abscheider 14 verbunden, an den eine Ablauflei- tung 15 und eine Verbindungsleitung 16 angeschlossen sind. Die Verbindungsleitung 16 führt zu einem Eintrittssammler 17 einer Überhitzerheizfläche 18, deren Rohraustrittsenden an einen Überhitzeraustrittssammler 19 angeschlossen sind. Außerdem sind innerhalb des vertikalen Gaszuges 1 eine Zwischenüberhitzerheizfläche 21 mit einem Eintrittssammler 20 und einem Austrittssammler 22 sowie eine Econo izer- heizfläche 6 mit einem Eintrittssammler 5 und einem Aus¬ trittssammler 7 angeordnet. Der Austrittssammler 7 ist durch eine Verbindungsleitung 8 mit dem Eintrittssammler 9 verbunden.
Figur 2 zeigt ein einzelnes Rohr 2, das an der Stelle H, an der ein Druckausgleichsrohr 25 abzweigt, mit seinem Austrittsende direkt in das Eintrittsende des Rohres 3 übergeht. Das Druckausgleichsrohr 25 ist an ein Druck¬ ausgleichsgefäß 4 angeschlossen, das sich außerhalb des vertikalen Gaszuges 1 befindet. Von jedem Rohr 2 der Rohrwände zweigt jeweils ein Druckausgleichsrohr 25 ab.
Eine nicht dargestellte Speisepumpe fördert Wasser in den Eintrittssammler 5 und von dort aus in die Economizer- heizfläche 6, in der das Wasser vorgewärmt wird. Anschließend strömt das Wasser durch die Verbindungsleitung 8 und den Eintrittssammler 9 in die Rohre 2 der Rohrwände des vertikalen Gaszuges 1, in denen es zum größten Teil verdampft. Die restliche Verdampfung und der erste Teil der Überhitzung findet in den Rohren 3 der Rohrwände des vertikalen Gaszuges 1 statt.
Der Abscheider 14 ist nur während des Anfahrvorganges in Funktion, das heißt so lange, wie in den Rohrwänden auf¬ grund zu geringer Wärmezufuhr nicht alles Wasser verdampft. In dem Abscheider 14 wird dann das eintretende Wasser- Dampf-Gemisch getrennt. Das abgeschiedene Wasser wird durch die Ablaufleitung 15 beispielsweise zu einem nicht darge¬ stellten Entspanner geführt, der abgeschiedene Dampf strömt durch die Verbindungsleitung 16 zur Überhitzerheizfläche 18. In der Zwischenüberhitzerheizfläche 21 wird der in dem Hochdruckteil der Dampfturbine entspannte Dampf wieder erhitzt.
Die Massenstromdichte. in den senkrecht angeordneten Rohren 2 und 3 ist so gewählt, daß der geodätische Druckabfall in den Rohren wesentlich größer ist als der Reibungsdruckab¬ fall. Dies bewirkt, daß ein Rohr bei einer Mehrbeheizung einen höheren Durchsatz erhält und somit die Auswirkung der Mehrbeheizung im Hinblick auf die Austrittstemperatur zum größten Teil kompensiert wird. Bei sehr langen senk¬ rechten Verdampferrohren, wie sie z.B. bei Durchlauf¬ dampferzeugern in Einzug-Bauart verwendet werden, steigt trotz einer niedrigen Massenstromdichte von 1000 kg/mzs und weniger, bezogen auf 100% Last, der Reibungsdruckabfall in den Rohren des oberen Teils des vertikalen Gaszugs, also in den Rohren 3, aufgrund der großen Dampfvolumina stark an. Dabei kann der Reibungsdruckabfall im Verhältnis zum geodätischen Druckabfall so groß werden, daß der Durchsatz durch ein mehrbeheiztes Rohr gegenüber den Parallelrohren zurückgeht und dadurch unerwünscht hohe Dampftemperaturen am Rohrende entstehen.
Die Anordnung des Druckausgleichsgefäßes 4 bewirkt nun, daß hinsichtlich des Druckabfalls die Rohre 2 von den
Rohren 3 abgekoppelt werden. Alle Rohre 2, die von unten nach oben durchströmt und strömungsmäßig parallel geschal¬ tet sind, haben den gleichen Druckabfall zwischen dem Ein¬ trittssammler 9 und dem Druckausgleichsgefäß 4. Bei diesem Druckabfall beträgt der Anteil des geodätischen Druckab¬ falls ein Mehrfaches des Anteils des Reibungsdruckabfalls, so daß der Vorteil der Durchsatzerhöhung bei Mehrbeheizung einzelner Rohre sehr wirksam ist. Dies ist gerade in dem unteren Teil des vertikalen Gaszuges 1 wichtig, in dem die unterschiedliche Beheizung im Bereich des Trichters und der Hauptbrenner besonders ausgeprägt ist. In dem oberen Teil des vertikalen Gaszuges 1, in dem sich die Rohre 3 befinden, sind sowohl die Beheizung als auch deren Ungleichmäßigkeiten geringer als im unteren Teil des Gaszuges 1. Das Druckausgleichsgefäß 4 bewirkt nun, daß durch einen Teil der Druckausgleichsrohre 25 ein Teilstrom von den Rohren 2 zum Druckausgleichsgef ß 4 strömt und durch einen anderen Teil der Druckausgleichsrohre 25 ein Teilstrom vom Druckausgleichsgefäß 4 zu den Rohren 3 strömt Dadurch wird trotz ungleicher Durchströmung der Rohre 2 auch bei sehr unterschiedlicher Beheizung derselben eine gleichmäßige Durchströmung der Rohre 3 erzielt.
Diese Wirkung tritt erfindungsgemäß besonders deutlich auf, wenn das Druckausgleichsgef ß in einer solchen Höhe an das Parallelrohrsystem eingeschaltet wird, daß bei 100% Last und einer Mehrbeheizung von a% in einem einzelnen Rohr der Massenstrom durch dieses einzelne Rohr je nach den übrigen Randbedingungen entweder um mindestens 0,25 . a% oder 0,50 . a% oder 0,75 . a% ansteigt.
Die Kühlung der Rohre 2 und 3 ist verbessert und damit die Rohrwandtemperatur reduziert, wenn die Rohre auf ihrer In¬ nenseite ein mehrgängiges Gewinde bildende Rippen tragen. Dies ist besonders in den Bereichen hoher Wärmeeinstrahlung, z.B. im Bereich der Brenner 11, erforderlich. Die das mehr¬ gängige Gewinde bildenden Rippen erstrecken sich zweck¬ mäßig über mehr als 50% der Länge der Rohre 2.
Gegenüber Anordnungen mit bekannten Druckausgleichssammlern besteht die Möglichkeit, daß die Massenstromdichte bei der erfindungsgemäßen Lösung mit einem Druckausgleichsgefäß und mit innen berippten Rohren im Bereich des Flammenraumes aufgrund der guten Wärmeübertragungseigenschaften innen berippter Rohre bei Vollast weniger als 1000 kg/m2s beträgt.

Claims

Patentansprüche
1. Durchlaufdampferzeuger mit Brennern (11) für fossile Brennstoffe mit einem vertikalen Gaszug (1) aus im wesentlichen vertikal.angeordneten Rohren (2, 3), die mit ihren Eintrittsenden an einen Eintrittssammler- (9) und mit ihren Austrittsenden an einen Austrittssammler (12) ange¬ schlossen sind, d a d u r c h g e k e n n z e i c h n e t , - daß von jedem Rohr oberhalb der Brenner (11) in gleicher Höhe H ein Druckausgleichsrohr (25) abzweigt, das mit einem Druckausgleichsgef ß (4) verbunden ist, und - daß die Höhe H so gewählt ist, daß bei einer Mehrbehei¬ zung eines einzelnen Rohres (2) zwischen dem Eintritts- Sammler (9) und dem Abzweig des Druckausgleichsrohres
(25) gegenüber dem Mittelwert der Beheizung aller Rohre (2) der Massenstrom durch dieses einzelne Rohr ansteigt.
2. Durchlaufdampferzeuger nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Rohre (2) zu mehr als 50 % ihrer Länge auf ihrer Innen¬ seite ein mehrgängiges Gewinde bildende Rippen tragen.
3. Durchlaufdampferzeuger nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Rohre (2, 3) des Gaszuges (1) gasdicht miteinander verschweißt sind.
4. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die
Höhe H so gewählt ist, daß bei Nennlast und einer Mehr¬ beheizung von a % eines einzelnen Rohres zwischen dem Ein¬ trittssammler (9) und dem Abzweig des Druckausgleichsrohres (25) gegenüber dem 100 % entsprechenden Mittelwert der Be- heizung aller Rohre (2) der rechnerisch ermittelte Massen¬ strom durch dieses einzelne Rohr (2) um mindestens 0,25 . a % ansteigt.
5. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Höhe H so gewählt ist, daß bei Nennlast und einer Mehrbe¬ heizung von a % eines einzelnen Rohres (2) zwischen dem Eintrittssammler (9) und dem Abzweig des Druckausgleichs¬ rohres (25) gegenüber dem 100 % entsprechenden Mittelwert der Beheizung aller Rohre (2) der rechnerisch ermittelte Massenstrom durch dieses einzelne Rohr (2) um mindestens 0,50 . a % ansteigt.
6. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Höhe H so gewählt ist, daß bei Nennlast und einer Mehrbe¬ heizung von a % eines einzelnen Rohres (2) zwischen dem Eintrittssammler (9) und dem Abzweig des Druckausgleichs¬ rohres (25) gegenüber dem 100 % entsprechenden Mittelwert der Beheizung aller Rohre (2) der rechnerisch ermittelte Massenstrom durch dieses einzelne Rohr (2) um mindestens 0,75 . a % ansteigt.
PCT/DE1992/001054 1991-12-20 1992-12-16 Fossil befeuerter durchlaufdampferzeuger WO1993013356A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51134193A JP3241382B2 (ja) 1991-12-20 1992-12-16 化石燃料燃焼形貫流ボイラ
DE59203702T DE59203702D1 (de) 1991-12-20 1992-12-16 Fossil befeuerter durchlaufdampferzeuger.
EP92924576A EP0617778B1 (de) 1991-12-20 1992-12-16 Fossil befeuerter durchlaufdampferzeuger
RU9294031204A RU2091664C1 (ru) 1991-12-20 1992-12-16 Способ эксплуатации прямоточного парогенератора, работающего на ископаемом топливе

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4142376.3 1991-12-20
DE4142376A DE4142376A1 (de) 1991-12-20 1991-12-20 Fossil befeuerter durchlaufdampferzeuger

Publications (1)

Publication Number Publication Date
WO1993013356A1 true WO1993013356A1 (de) 1993-07-08

Family

ID=6447758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/001054 WO1993013356A1 (de) 1991-12-20 1992-12-16 Fossil befeuerter durchlaufdampferzeuger

Country Status (10)

Country Link
US (1) US5735236A (de)
EP (1) EP0617778B1 (de)
JP (1) JP3241382B2 (de)
KR (1) KR100260468B1 (de)
CN (1) CN1040146C (de)
CA (1) CA2126230A1 (de)
DE (2) DE4142376A1 (de)
ES (1) ES2077442T3 (de)
RU (1) RU2091664C1 (de)
WO (1) WO1993013356A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901669A (en) * 1995-04-05 1999-05-11 The Babcock & Wilcox Company Variable pressure once-through steam generator upper furnace having non-split flow circuitry
DE19600004C2 (de) * 1996-01-02 1998-11-19 Siemens Ag Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
RU2193726C2 (ru) * 1997-06-30 2002-11-27 Сименс Акциенгезелльшафт Парогенератор, работающий на отходящем тепле
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
EP1512905A1 (de) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Durchlaufdampferzeuger sowie Verfahren zum Betreiben des Durchlaufdampferzeugers
US7021106B2 (en) * 2004-04-15 2006-04-04 Mitsui Babcock (Us) Llc Apparatus and method for forming internally ribbed or rifled tubes
EP1614962A1 (de) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Durchlaufdampferzeugers
WO2006032556A1 (de) * 2004-09-23 2006-03-30 Siemens Aktiengesellschaft Fossil beheizter durchlaufdampferzeuger
EP1701091A1 (de) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Durchlaufdampferzeuger
US20080156236A1 (en) * 2006-12-20 2008-07-03 Osamu Ito Pulverized coal combustion boiler
EP2065641A3 (de) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betrieben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
DE102009036064B4 (de) 2009-08-04 2012-02-23 Alstom Technology Ltd. rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
WO2011091882A2 (de) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft Vermeidung dynamischer instabilitäten in zwangdurchlauf-dampferzeugern in solarthermischen anlagen durch einsatz von druckausgleichsleitungen
DE102010040204A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Solarthermischer Durchlaufverdampfer
DE102010061186B4 (de) * 2010-12-13 2014-07-03 Alstom Technology Ltd. Zwangdurchlaufdampferzeuger mit Wandheizfläche und Verfahren zu dessen Betrieb
DE102011004279A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Dampferzeuger für solarthermisches Kraftwerk
CA2919408C (en) 2013-08-21 2019-04-02 Vista Acquisitions Inc. Audio systems for generating sound on personal watercraft and other recreational vehicles
EP2871336B1 (de) 2013-11-06 2018-08-08 General Electric Technology GmbH Verfahren zur Abschaltung eines Kessels
CN105240814B (zh) * 2015-11-14 2017-09-19 沈阳思达机械设备有限公司 一种高温高压蒸汽发生装置
KR20200093282A (ko) 2019-01-28 2020-08-05 이태연 조립형 교통안전 칼라콘
JP7451343B2 (ja) 2020-08-04 2024-03-18 キヤノン株式会社 画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280799A (en) * 1965-08-26 1966-10-25 Combustion Eng Fluid heater support arrangement
US3308792A (en) * 1965-08-26 1967-03-14 Combustion Eng Fluid heater support
EP0462486A1 (de) * 1990-06-18 1991-12-27 Mitsubishi Jukogyo Kabushiki Kaisha Feuerraumverdampfungsrohre für einen Durchlaufkessel im Gleitdruckbetrieb

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3863153D1 (de) * 1987-09-21 1991-07-11 Siemens Ag Verfahren zum betreiben eines durchlaufdampferzeugers.
EP0425717B1 (de) * 1989-10-30 1995-05-24 Siemens Aktiengesellschaft Durchlaufdampferzeuger
AT394627B (de) * 1990-08-27 1992-05-25 Sgp Va Energie Umwelt Verfahren zum anfahren eines waermetauschersystems zur dampferzeugung sowie waermetauschersystem zur dampferzeugung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280799A (en) * 1965-08-26 1966-10-25 Combustion Eng Fluid heater support arrangement
US3308792A (en) * 1965-08-26 1967-03-14 Combustion Eng Fluid heater support
EP0462486A1 (de) * 1990-06-18 1991-12-27 Mitsubishi Jukogyo Kabushiki Kaisha Feuerraumverdampfungsrohre für einen Durchlaufkessel im Gleitdruckbetrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOLEZAL 'Dampferzeugung' 1985 , SPRINGER , BERLIN, DE *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
US6189491B1 (en) 1996-12-12 2001-02-20 Siemens Aktiengesellschaft Steam generator

Also Published As

Publication number Publication date
EP0617778A1 (de) 1994-10-05
KR100260468B1 (ko) 2000-07-01
DE59203702D1 (de) 1995-10-19
CN1040146C (zh) 1998-10-07
JPH07502333A (ja) 1995-03-09
ES2077442T3 (es) 1995-11-16
EP0617778B1 (de) 1995-09-13
US5735236A (en) 1998-04-07
KR940703983A (ko) 1994-12-12
RU2091664C1 (ru) 1997-09-27
CN1075789A (zh) 1993-09-01
JP3241382B2 (ja) 2001-12-25
DE4142376A1 (de) 1993-06-24
CA2126230A1 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
EP0617778B1 (de) Fossil befeuerter durchlaufdampferzeuger
EP0657010B2 (de) Dampferzeuger
EP0581760B2 (de) Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren
DE69733812T2 (de) Heizkessel
DE19510033A1 (de) Verwendung einer eingängigen und mehrgängigen gerippten Verrohrung für Gleitdruck-Zwangsdurchlaufkessel
EP0937218B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
DE19602680C2 (de) Durchlaufdampferzeuger
EP1144910B1 (de) Fossilbeheizter dampferzeuger
DE19858780C2 (de) Fossilbeheizter Durchlaufdampferzeuger
WO2000060282A1 (de) Fossilbeheizter durchlaufdampferzeuger
EP1166015B1 (de) Fossilbeheizter durchlaufdampferzeuger
WO2015039831A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger
CH653758A5 (de) Zwangsdurchlaufkessel.
EP2567151B1 (de) Verfahren zum betreiben eines dampferzeugers
DE19600004C2 (de) Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
DE4236835A1 (de) Dampferzeuger
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
DE3511877A1 (de) Durchlaufdampferzeuger
EP1533565A1 (de) Durchlaufdampferzeuger
EP2564117B1 (de) Dampferzeuger
WO1994005950A1 (de) Dampferzeuger
DE102016225338A1 (de) Wärmeübertrager zur Wärmeübertragung zwischen einem partikelförmigen Wärmeträgermedium und einem zweiten Medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
EX32 Extension under rule 32 effected after completion of technical preparation for international publication
WWE Wipo information: entry into national phase

Ref document number: 1992924576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2126230

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08262466

Country of ref document: US

Ref document number: 1019940702155

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1992924576

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992924576

Country of ref document: EP