WO1993013231A1 - Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same - Google Patents

Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same Download PDF

Info

Publication number
WO1993013231A1
WO1993013231A1 PCT/JP1992/001663 JP9201663W WO9313231A1 WO 1993013231 A1 WO1993013231 A1 WO 1993013231A1 JP 9201663 W JP9201663 W JP 9201663W WO 9313231 A1 WO9313231 A1 WO 9313231A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oriented electrical
electrical steel
random
product
Prior art date
Application number
PCT/JP1992/001663
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoji Kumano
Takeshi Kubota
Hiroaki Masui
Takeaki Takeshita
Kenji Kosuge
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26349259&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993013231(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO1993013231A1 publication Critical patent/WO1993013231A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Definitions

  • the present invention relates to a non-oriented electrical steel sheet having extremely high magnetic flux density in all circumferential directions and low iron loss, and a method for manufacturing the same.
  • the cooling and cooling body surface is moved and renewed to solidify into a green strip, and then the cold-rolled steel strip is cold-rolled to a predetermined thickness, and then subjected to finish annealing to form a non-oriented electrical steel sheet.
  • a way to get it was developed.
  • the texture after the final annealing becomes the so-called Goss orientation ⁇ 1101 ⁇ 001> or (1111 ⁇ 112>), but the U001 ⁇ Gv ff > orientation Since the magnetism in the entire circumferential direction is inferior to that of, the improvement of the magnetic properties of the entire circumference, especially the improvement of the magnetic flux density, is limited.
  • An object of the present invention is to provide a non-oriented electrical steel sheet having a low iron loss in all circumferential directions and an extremely high magnetic flux density, and a method for manufacturing the same.
  • FIG. 1 is a chart showing the relationship between the cold rolling reduction and B (T) in all circumferential directions.
  • FIG. 2 is a (1001 positive electrode spot diagram) of the product of the present invention.
  • FIG. 3 is a (100) positive electrode spot diagram of another product of the present invention.
  • the present invention relates to a non-oriented electrical steel sheet having a thickness of 20 strokes to 1.20 pieces, in which the structure after primary recrystallization has a U0D1 ⁇ 0vw> texture and the ⁇ 100 ⁇ plane strength parallel to the rolling plane. It is characterized by having a random cube texture that is at least twice as large as the random azimuthal strength, thereby providing extremely excellent magnetic characteristics in all circumferential directions. Property is obtained.
  • the above steel sheet shall contain, by weight%, Si ⁇ 4.0%, A ⁇ 2. Q%, and other elements normally contained in non-oriented electrical steel sheets, with the balance being Fe and impurities.
  • the present invention provides, in weight%, S i ⁇ ⁇ ⁇ %, A II ⁇ 2.0%.
  • a non-directional electromagnetic process comprising a step of solidifying with the surface of a cooling body to be moved and renewed into a steel strip, a step of cold-rolling the steel strip to a predetermined thickness, and a step of finish annealing.
  • the method for producing a steel sheet is characterized in that the cold rolling is performed at a rolling reduction of 5% or more and less than 40%.
  • the content of S i and A above can be either (S i + 2 A)> 2.5% without transformation or (S i + 2 A) ⁇ 2.5% with transformation. Cases can also be targeted.
  • the inventors have conducted intensive studies to solve the technical problems of the present invention, and as a result, have confirmed the existence of a random cube base structure, which has been conventionally regarded as an ideal texture of non-oriented electrical steel sheets. At the same time, it was proved that this random cube was an ideal base structure of non-oriented electrical steel sheets, and the present invention was completed.
  • the random cube is obtained by directly forming a thin steel strip from molten steel and then appropriately setting the cold rolling rate, thereby assembling the product after finish annealing.
  • the structure can be controlled, and as a result, a non-oriented electrical steel sheet with extremely high magnetic flux density and low iron loss value has been successfully obtained.
  • Non-oriented electrical steel sheets are mainly used for rotating machines. From the viewpoint of stabilization of magnetic properties, it is required that the magnetic properties do not deteriorate (magnetic aging) during use.
  • the C content is preferably as low as possible, and is desirably 0.005% or less.
  • the present inventors control the cooling rate of the non-oriented electrical steel sheet having the phase transformation during the cooling transformation (r ⁇ n) (hereinafter referred to as “a treatment”), so that the magnetic flux density is extremely high and the iron loss value is reduced
  • a treatment control the cooling rate of the non-oriented electrical steel sheet having the phase transformation during the cooling transformation
  • C can be made harmless, so that the allowable range can be made up to 0.05%.
  • N may be (L 010% or less.
  • Conventional non-directional electromagnetic In the steel sheet manufacturing method, when N has a high content like S, it temporarily re-dissolves during slab heating during hot rolling, and precipitates such as A £ N and MnS are formed during hot rolling.
  • the so-called pinning effect which hinders the growth of recrystallized grains during finish annealing or hinders the movement of the domain wall when the product is magnetized, is a factor that hinders the reduction of iron loss in the product. Therefore, the N content is preferably as low as possible and is set to 0.005% or less.
  • cooling conditions equivalent to the y treatment are applied, N can be rendered harmless, so that up to 0.050% is acceptable.
  • S is an element that is inevitably mixed in the steel smelting stage. If the content increases, the workability deteriorates, so the content should be 0.001% or less, preferably 0.005% or less, but if cooling conditions equivalent to 7 treatments are applied, S Can be made harmless, so that up to 0.020% is acceptable.
  • Si is added to increase the specific resistance of a steel sheet and reduce eddy current loss. If Si is added in excess of 4.0%, workability will be extremely deteriorated, making cold rolling difficult and unsuitable for mass production.
  • S is also added to increase the specific resistance of the steel sheet and reduce eddy current loss.
  • up to 2.0% of A is conventionally added to non-oriented electrical steel sheets.
  • the maximum is set to 2.0% in consideration of cold rolling properties like Si.
  • the above S i .Ai includes both the range where (31 + 28) is more than 2.5% without transformation and the range where (S i + 2A ⁇ ) is less than or equal to 2.5%.
  • N If the content of Mn is less than 0.1%, the processability of the product deteriorates. It is also added to make S harmless. However, when the addition amount of Mn exceeds 2.0%, the magnetic flux density of the product is significantly deteriorated, so that Mn is preferably set to 2.0%.
  • P is added in a range of up to 0.1% in order to improve the punchability of the product. If ⁇ ⁇ 0.2%, there is no problem from the viewpoint of the magnetic properties of the product.
  • is added as necessary to detoxify ⁇ . When added, it is necessary to balance with the amount of ⁇ , and the maximum content should be 0.005%. Since N can be rendered harmless by applying the same cooling conditions as in the treatment with iron, melting the ultra-low nitrogen steel and adding an appropriate amount of N, it is not necessary to add N in this case.
  • Ni, Cr, Sb, Sn and Cu may contain one or more of them as necessary, and their contents are appropriately selected depending on the purpose.
  • the present invention reduces the product thickness to 0.2! ) To 1.20 hidden.
  • the product thickness of non-oriented electrical steel sheets conventionally produced in large quantities is 0.20 to 1. DO. Batadais with a height of less than 0.20 are also exceptionally used for medium and high frequency regions.
  • the lower limit of the plate thickness is 0.20 images that can be mass-produced.
  • the product application below 0.20 mm is in the region above QHz, where iron loss is largely affected by eddy current loss and hysteresis loss contributed by texture is small. This is related to the reason for limiting the thickness. In addition, the upper limit of 1.20 is stated. Even if the thickness is further increased, the usefulness of the random cube texture does not change, but it exceeds the current actual processing range. On the other hand, the increase in iron loss is contrary to the current trend of high efficiency and energy saving.
  • the preferred range of product thickness is 0.35 to 0.80, which is often used in practice.
  • a random cube is formed by primary recrystallization regardless of such a method. Specific manufacturing for this The method is described below.
  • a cast steel strip obtained by being solidified by a moving and renewed cooling body surface is cold-rolled at an appropriate rolling reduction.
  • this steel strip is rolled at a relatively high cold rolling reduction, the magnetic flux density increases, but the columnar crystals formed during the solidification process are considerably broken at this high rolling reduction.
  • the recrystallized texture of the product sheet is approximately the same as the ⁇ 111> axial density parallel to the steel sheet normal and the ⁇ 100> glaze density parallel to the steel sheet normal, making it ideal for non-oriented electrical steel sheets. It is not a simple texture.
  • the present inventors have conducted intensive studies and found that when the cold rolling reduction was set to less than 40% (preferably, less than 30%), the columnar crystals formed at the time of fabrication were used as nuclei, and after finish annealing.
  • the recrystallized texture of was found to be almost perfect ⁇ ii ⁇ 0vw> (random cube).
  • the product is manufactured with the product thickness.
  • the surface properties are not suitable for the product, but also the magnetic properties as shown in Fig. 1 The characteristics themselves are not so good.
  • Figure 1 shows the production of a non-oriented electrical steel sheet which is solidified by the moving and renewed cooling body surface to form a ⁇ steel strip, and then cold rolled to a predetermined thickness and then finish-annealed.
  • the relationship between the cold rolling reduction and the magnetic flux density [B (T)] was shown.
  • the product thickness is not necessarily 0.50 mm, an extremely excellent magnetic flux density is shown by setting the cold rolling reduction to 5 to 40%.
  • the molten steel of the components shown in Table 1 (consisting of the balance Fe and unavoidable impurities) is directly solidified on the surface of the cooling body to be renewed.
  • the magnetic properties were measured by the Epstein-Lead method. These values were compared with those of the comparative method where the cold rolling reduction was 40% or more (steel thickness was 2.0 turns and 1.5 nmi).
  • the present invention 0.0069 2, 9 0.22 0, 019 0.0018 0.26 0.0036 0.56 0.50 11 2.57
  • the present invention 0.0069 2.9 0.22 0, 019 0.0018 0, 26 0, 0036 0.62 0.50 19 2.39 1J36 Comparative material 0.0050 3.0 0.2 ⁇ 0.018 0, 0008 0.29 0.0030 2.0 0, 50 15 3.50 1.648 Specific drawn material 0, 0050 3.0 0, 21 0.018 0.0008 0, 29 0.0030 1.5 0.50 6? 3.40 1.6
  • the magnetic properties are the circumferential properties (rolling direction, 22. direction, 45 degree direction, 67.5 direction, 90 ° ⁇ direction, 112.5 direction, 135 degree direction, average of 8 directions of 15U degree direction, each angle from the cold rolling direction Angle).
  • the solidified steel strip is solidified by the surface of the cooling body that moves and renews in this manner, and then the steel strip is cold-rolled to a predetermined thickness and then finish-annealed.
  • the rolling reduction is 5% or more and less than 40% in the cold rolling, a non-oriented silicon steel sheet having extremely excellent magnetic properties in all circumferential directions can be obtained as compared with the case where the cold rolling reduction is high.
  • FIG. 2 shows the texture of the product sheet after finish annealing obtained in the example of the present invention. A very nice, so-called random cube is thus obtained. This is ideal for non-oriented electrical steel sheets.
  • the molten steel of the composition shown in Table 2 (consisting of the balance Fe and unavoidable impurities) is solidified on the surface of the cooling body that moves and renews to obtain steel strips of 0.56 recitation, 0.62 0 and 0.70 ⁇ . Was. Then, it was pickled and cold rolled to the thickness of 50).
  • the cold-rolled steel sheet was degreased and annealed in a continuous annealing furnace at 850 ° C. for 30 seconds in a dry atmosphere of H 2: 5% and N 2 : 95%.
  • the magnetic properties are all-around properties (rolling direction, 22, 5 direction, 45 direction, 67.51 ⁇ direction, 90 degree direction, 112.5 direction, 135 degree direction, average of 8 directions of 15 U degree direction, each angle is cold Angle from the rolling direction).
  • Example 1 the forged steel strip solidified by the cooling body surface to be moved and renewed is cold-rolled at a rolling ratio of 5% or more and less than 40%.
  • a non-oriented electrical steel sheet having extremely excellent magnetic properties in all circumferential directions as compared with a case where the rolling reduction is high can be obtained.
  • FIG. 3 shows the texture of the product sheet after finish annealing obtained in the example of the present invention.
  • a random cup that can be said to be ideal has been obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A non-oriented electromagnetic steel sheet having random cubes and very good magnetic characteristics in the full circumferential direction; and a method of manufacturing such steel sheets. A non-oriented electromagnetic steel sheet 0.20-1.20 mm in thickness having a {100} <Ovw> texture after the completion of a primary recrystallization operation, and random cubes in which the strength of a {100} surface, which is parallel to a rolled surface, with respect to the random cubes is two times as high as that of a conventional steel sheet of this kind; and a method of manufacturing non-oriented electromagnetic steel sheets, having the steps of solidifying molten steel, which contains mainly Si « 4.0 % and Al « 2.0 %, by the surface of a cooling body which is renewed as it is moved, and setting a cold rolling rate to not lower than 5 % and lower than 40 % in an acid washing step, a cold rolling step and a finish-annealing step. By this method, random cubes {100} <Ovw> which are practically ideal are formed, and a product having very good magnetic characteristics in the full circumferential direction is easily obtained.

Description

明 細 書 磁気特性が極めて優れた無方向性電磁鋼板 及びその製造方法 技 術 分 野  Description Non-oriented electrical steel sheet with extremely excellent magnetic properties and its manufacturing method
本発明は、 全周方向の磁束密度が極めて高く、 鉄損が低 い無方向性電磁鋼板及びその製造方法に関する。  The present invention relates to a non-oriented electrical steel sheet having extremely high magnetic flux density in all circumferential directions and low iron loss, and a method for manufacturing the same.
背 景 技 術  Background technology
近年、 回転機用磁芯材料と しての無方向性電磁鋼板に対 する品質向上の要求は、 省エネルギーの観点からますます 強く なっている。 電磁鋼板製造メ 一力一の側においても、 この要望に応えるべく無方向性電磁鋼板の磁気特性の向上 のための研究開発が進め られてきており、 工業的には、 In recent years, the demand for improved quality of non-oriented electrical steel sheets as magnetic core materials for rotating machines has become increasingly stronger from the viewpoint of energy saving. In order to respond to this demand, research and development for improving the magnetic properties of non-oriented electrical steel sheets have been promoted on the one side of the production of electrical steel sheets.
J I Sに規定されている数々の無方向性電磁鋼板が製造さ れている。 Numerous non-oriented electrical steel sheets specified in JIS are manufactured.
無方向性電磁鋼板の製造プロセスにおいて、 鉄損値が低 い製品を得るためには、 従来鋼をその溶製段階で高純度化 したり、 鋼中の S i 含有量を多くすることや、 仕上げ焼鈍 において温度 · 時間を十分にとる等の手段が採用されてき た。 しかしながら、 これらの技術的手段による時は、 製品 の鉄損値は低く なるが、 磁束密度が低下するという問題が あり、 これは製品板の集合組織に起因するといわれている。 この問題を解決するために、 熱延で高温で巻き取り保温 するいわゆる 自己焼鈍、 または熱延板を焼鈍する方法が 採られてきた。 さらに、 最近、 移動更新する冷却体表面に よって凝固せしめて鐯造鐧帯とし、 次いで、 該铸造鋼帯を 冷間圧延して所定の厚さとした後、 仕上げ焼鈍して無方向 性電磁鋼板を得る方法が開発された。 これらの方法でも、 冷延圧下率が 以上では、 仕上げ最終焼鈍後の集合組織 はいわゆるゴス方位 {1101 〈001〉 や (1111 〈112〉 方位 が発達したものとなるが、 U001 〈 Gvff〉 方位と比較して 全周方向の磁性が劣るので、 全周の磁気特性、 特に磁束密 度の向上に限界があつた。 In the production process of non-oriented electrical steel sheets, to obtain products with low iron loss values, it is necessary to purify conventional steel at the melting stage, increase the Si content in steel, Means such as sufficient temperature and time have been adopted in finish annealing. However, when using these technical means, the iron loss value of the product is low, but there is a problem that the magnetic flux density is low, which is said to be due to the texture of the product plate. In order to solve this problem, take up at high temperature by hot rolling and keep it warm. So-called self-annealing or annealing of hot-rolled sheet has been adopted. Furthermore, recently, the cooling and cooling body surface is moved and renewed to solidify into a green strip, and then the cold-rolled steel strip is cold-rolled to a predetermined thickness, and then subjected to finish annealing to form a non-oriented electrical steel sheet. A way to get it was developed. Even with these methods, when the cold rolling reduction is above, the texture after the final annealing becomes the so-called Goss orientation {1101 <001> or (1111 <112>), but the U001 <Gv ff > orientation Since the magnetism in the entire circumferential direction is inferior to that of, the improvement of the magnetic properties of the entire circumference, especially the improvement of the magnetic flux density, is limited.
発 明 の 開示  Disclosure of the invention
本発明は、 全周方位での鉄損が低く かつ、 磁束密度が極 めて高い無方向性電磁鋼板及びその製造方法を提供するこ とを目的とする。  An object of the present invention is to provide a non-oriented electrical steel sheet having a low iron loss in all circumferential directions and an extremely high magnetic flux density, and a method for manufacturing the same.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 冷間圧延率と全周方向の B (T) との関係を 示す図表である。  FIG. 1 is a chart showing the relationship between the cold rolling reduction and B (T) in all circumferential directions.
図 2は、 本発明製品の (1001正極点図である。  FIG. 2 is a (1001 positive electrode spot diagram) of the product of the present invention.
図 3は、 本発明の他の製品の (100}正極点図である。 発明を実施するための最良の形態  3 is a (100) positive electrode spot diagram of another product of the present invention.
本発明は、 板厚 20画〜 1.20譲の無方向性電磁鋼板にお いて、 一次再結晶後の組織が U0D1 〈0vw〉 集合組織を有 し、 かつ圧延面に平行な {100}面強度がランダム方位強度 の 2倍以上であるランダムキューブ集合組織を有すること を特徵とし、 これによつて全周方向に極めて優れた磁気特 性が得られる。 The present invention relates to a non-oriented electrical steel sheet having a thickness of 20 strokes to 1.20 pieces, in which the structure after primary recrystallization has a U0D1 <0vw> texture and the {100} plane strength parallel to the rolling plane. It is characterized by having a random cube texture that is at least twice as large as the random azimuthal strength, thereby providing extremely excellent magnetic characteristics in all circumferential directions. Property is obtained.
上記鋼板は、 重量%で、 S i ≤ 4. 0%、 A ≤ 2. Q%、 その他無方向性電磁鋼板に通常含有する元素を含み、 残部 F e及び不純物から成るものとする。  The above steel sheet shall contain, by weight%, Si ≤ 4.0%, A ≤ 2. Q%, and other elements normally contained in non-oriented electrical steel sheets, with the balance being Fe and impurities.
また本発明は、 重量%で、 S i ≤ ^Λ%, A II ≤ 2. 0%. その他無方向性電磁鋼板に通常含有する元素を含み、 残部 F e及び不可避的不純物からなる溶鋼を、 移動更新する冷 却体表面によって凝固せしめて铸造鋼帯とする工程、 次い で、 該铸造鋼帯を冷間圧延して所定の厚さとする工程、 仕 上げ焼鈍する工程からなる無方向性電磁鋼板を製造する方 法において、 冷間圧延に際し圧延率を 5 %以上 40%未満と することを特徴とする。  In addition, the present invention provides, in weight%, S i ≤ ^ Λ%, A II ≤ 2.0%. The molten steel containing other elements normally contained in non-oriented electrical steel sheets, the balance being Fe and unavoidable impurities, A non-directional electromagnetic process comprising a step of solidifying with the surface of a cooling body to be moved and renewed into a steel strip, a step of cold-rolling the steel strip to a predetermined thickness, and a step of finish annealing. The method for producing a steel sheet is characterized in that the cold rolling is performed at a rolling reduction of 5% or more and less than 40%.
なお、 上記 S i 及び A の含有量は、 変態を有しな い ( S i + 2 A ) > 2. 5%、 また変態を有する ( S i + 2 A ) ≤ 2. 5 %のいずれの場合をも対象にできる。  The content of S i and A above can be either (S i + 2 A)> 2.5% without transformation or (S i + 2 A) ≤ 2.5% with transformation. Cases can also be targeted.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
発明者等は、 本発明における技術的課題を解決すべく鋭 意検討を重ねた結果、 従来から無方向性電磁鋼板の理想集 合組織といわれていたラ ンダムキューブ集台組織の存在を 確認すると共に、 現実にこのラ ンダムキューブが無方向性 電磁鋼板の理想集台組織であるこ とを証明でき、 本発明を 完成するに至つた。  The inventors have conducted intensive studies to solve the technical problems of the present invention, and as a result, have confirmed the existence of a random cube base structure, which has been conventionally regarded as an ideal texture of non-oriented electrical steel sheets. At the same time, it was proved that this random cube was an ideal base structure of non-oriented electrical steel sheets, and the present invention was completed.
この理想集合組織であるラ ンダムキューブを得るために は、 溶鋼から直接铸造薄帯を得、 その後の冷間圧延率を適 切にとることによって、 仕上げ焼鈍後の製品における集合 組織を制御することができ、 これによつて磁束密度が極め て高く鉄損値が低い無方向性電磁鋼板を得ることに成功し た。 In order to obtain this ideal texture, the random cube is obtained by directly forming a thin steel strip from molten steel and then appropriately setting the cold rolling rate, thereby assembling the product after finish annealing. The structure can be controlled, and as a result, a non-oriented electrical steel sheet with extremely high magnetic flux density and low iron loss value has been successfully obtained.
先ず、 本発明が対象とする製品の成分系について説明す る。  First, the component system of the product targeted by the present invention will be described.
本発明は S i及び A を特定量含有させるが、 その他に 製品の機械特性の向上、 磁気特性、 耐锖性等の向上或いは その他の目的のために、 無方向性電磁綱扳に不可避的に通 常含有する C, N, Sのほかに Mn, P, B, N i, C r , S b, S n, C uを 1種または 2種以上含有させても本発 明の効果は損なわれない。  In the present invention, a specific amount of Si and A is contained. Even if one or more of Mn, P, B, Ni, Cr, Sb, Sn, and Cu are contained in addition to the normally contained C, N, and S, the effect of the present invention is impaired. Not.
Cは、 0. 50%以下であれば、 本発明の目的を達するこ とができる。 無方向性電磁鋼板の用途は、 主に回転機であ り、 磁気特性の安定という観点からは、 その使用中に磁気 特性の劣化 (磁気時効) を起こさないことが要求され、 そ のために C含有量は低い方が好ましく、 0.005%以下にす るのが望ましい。  If C is 0.50% or less, the object of the present invention can be achieved. Non-oriented electrical steel sheets are mainly used for rotating machines. From the viewpoint of stabilization of magnetic properties, it is required that the magnetic properties do not deteriorate (magnetic aging) during use. The C content is preferably as low as possible, and is desirably 0.005% or less.
本発明者等は相変態を有する無方向性電磁鋼板の冷却変 態 (r→な) 経過時の冷却速度を制御する (以下ァ処理と いう) ことによって、 磁束密度が極めて高く鉄損値が低い 無方向性電磁鋼板を製造する方法を提案した。  The present inventors control the cooling rate of the non-oriented electrical steel sheet having the phase transformation during the cooling transformation (r → n) (hereinafter referred to as “a treatment”), so that the magnetic flux density is extremely high and the iron loss value is reduced A method for producing low non-oriented electrical steel sheets was proposed.
本発明においてもこの y処理と同等の冷却条件を適用す れば、 Cを無害化できるので許容範囲を 0.05%までとする ことができる。  In the present invention, if cooling conditions equivalent to the y treatment are applied, C can be made harmless, so that the allowable range can be made up to 0.05%.
Nは、 (L 010%以下であればよい。 従来の無方向性電磁 鋼板の製造方法では、 Nは Sと同様にその含有量が多いと、 熱延のスラブ加熱時に一時再固溶し、 熱間圧延中に A£ N, M n S等の析出物を形成し、 仕上げ焼鈍時に再結晶粒の成 長を妨げたり、 製品が磁化される時に磁壁の移動を妨げる いわゆる ピニング効果により、 製品の低鉄損化を妨げる要 因になる。 従って N含有量は低い方が好ま し く 0.005%以 下とする。 しかし、 y処理と同等の冷却条件を適用すれば、 Nは無害化できるので 0.050 %までは許容できる。 N may be (L 010% or less. Conventional non-directional electromagnetic In the steel sheet manufacturing method, when N has a high content like S, it temporarily re-dissolves during slab heating during hot rolling, and precipitates such as A £ N and MnS are formed during hot rolling. However, the so-called pinning effect, which hinders the growth of recrystallized grains during finish annealing or hinders the movement of the domain wall when the product is magnetized, is a factor that hinders the reduction of iron loss in the product. Therefore, the N content is preferably as low as possible and is set to 0.005% or less. However, if cooling conditions equivalent to the y treatment are applied, N can be rendered harmless, so that up to 0.050% is acceptable.
Sは、 鋼の溶製段階で不可避的に混入する元素である。 その含有量が多 く なる と加工性を劣化するため 0. 010% 以下、 好ま し く は 0. 005%以下とすべきであるが、 7処 理と同等の冷却条件を適用すれば、 Sを無害化できるので 0.020%まで許容できる。  S is an element that is inevitably mixed in the steel smelting stage. If the content increases, the workability deteriorates, so the content should be 0.001% or less, preferably 0.005% or less, but if cooling conditions equivalent to 7 treatments are applied, S Can be made harmless, so that up to 0.020% is acceptable.
S i は、 従来からよく 知られているように鋼板の固有抵 抗を増加させ渦流損を低減するため添加される。 4.0%を 超えて S i を添加すると、 加工性が極端に劣化し冷間圧延 を困難にし、 大量生産に適さなく なる。  As is well known, Si is added to increase the specific resistance of a steel sheet and reduce eddy current loss. If Si is added in excess of 4.0%, workability will be extremely deteriorated, making cold rolling difficult and unsuitable for mass production.
Α も S i 同様に、 鋼板の固有抵抗を増加させ渦流損を 低減するため添加される。 この目的のため従来から無方向 性電磁鋼板には、 最大 2.0%の A が添加されている。 さ らに添加量を増加することは、 原理的には可能であるが、 S i 同様冷間圧延性を考慮して最大 2.0%とする。  Similar to Si, S is also added to increase the specific resistance of the steel sheet and reduce eddy current loss. For this purpose, up to 2.0% of A is conventionally added to non-oriented electrical steel sheets. Although it is possible in principle to further increase the amount of addition, the maximum is set to 2.0% in consideration of cold rolling properties like Si.
,*»  , * »
上記 S i . Ai は、 ( 3 1 + 2八 ) を 2.5%超と した 変態を有しない範囲、 及び ( S i + 2 A ^ ) が 2.5%以下 である変態を有する範囲の両方を含んでいる n M nは、 その含有量が、 0. 1%より少ないと製品の加工 性が劣化する。 また、 Sを無害化させるために添加される。 しかしながら、 M nの添加量が、 2. 0%を超えると製品の 磁束密度が著しく劣化するから M n 2. 0%とすることが 好ましい。 The above S i .Ai includes both the range where (31 + 28) is more than 2.5% without transformation and the range where (S i + 2A ^) is less than or equal to 2.5%. N If the content of Mn is less than 0.1%, the processability of the product deteriorates. It is also added to make S harmless. However, when the addition amount of Mn exceeds 2.0%, the magnetic flux density of the product is significantly deteriorated, so that Mn is preferably set to 2.0%.
Pは、 製品の打ち抜き性を良好ならしめるために、 0. ί %までの範囲内で添加される。 Ρ ≤ 0. 2%であれば、 製品 の磁気特性の観点からは問題がない。  P is added in a range of up to 0.1% in order to improve the punchability of the product. If Ρ ≤ 0.2%, there is no problem from the viewpoint of the magnetic properties of the product.
Βは、 Νの無害化のために必要に応じて添加される。 添加する場合には Νの量とのパランスが必要であり、 その 最大含有量を 0. 005%とする。 ァ処理と同等の冷却条件の 適用、 極低窒素鋼の溶製及び適量の の添加により Nは 無害化できるので、 この場合には添加しなく てもよい。  Β is added as necessary to detoxify Ν. When added, it is necessary to balance with the amount of Ν, and the maximum content should be 0.005%. Since N can be rendered harmless by applying the same cooling conditions as in the treatment with iron, melting the ultra-low nitrogen steel and adding an appropriate amount of N, it is not necessary to add N in this case.
その他 N i , C r , S b , S n及び C uについては、 そ の 1種または 2種以上を必要に応じて含有させればよく、 それらの含有量は目的により適宜選択する。  In addition, Ni, Cr, Sb, Sn and Cu may contain one or more of them as necessary, and their contents are appropriately selected depending on the purpose.
次に本発明製品について説明する。 ◎  Next, the product of the present invention will be described. ◎
本発明は製品板厚を 0. 2!)〜 1. 20隱とする。 従来から大量 に生産される無方向性電磁鋼板の製品厚は 0. 20〜1. DO醒で ある。 0.20醒未満の塲台も例外的に中, 高周波領域用とし て使用されているが、 本発明では大量生産可能な 0.20画を 板厚の下限とする。  The present invention reduces the product thickness to 0.2! ) To 1.20 hidden. The product thickness of non-oriented electrical steel sheets conventionally produced in large quantities is 0.20 to 1. DO. Batadais with a height of less than 0.20 are also exceptionally used for medium and high frequency regions. However, in the present invention, the lower limit of the plate thickness is 0.20 images that can be mass-produced.
すなわち 0. 20mm未満での製品用途は、 QHz以上での領 域であり、 この領域における鉄損は渦流損の影響が大きく、 集合組織が寄与する履歴損については影響が小さいことも 板厚限定の理由に関係がある。 また、 上限を 1. 20誦にした のは、 これ以上厚く しても、 ランダムキューブ集合組織の 有用性は変わらないが、 現状の実際加工範囲を超える。 一 方鉄損が増大するので現在の高効率、 省エネルギーの傾向 に反することになる。 製品厚みの好ま しい範囲は実用的に も多く 使用されている 0. 35〜0. 80誦である。 In other words, the product application below 0.20 mm is in the region above QHz, where iron loss is largely affected by eddy current loss and hysteresis loss contributed by texture is small. This is related to the reason for limiting the thickness. In addition, the upper limit of 1.20 is stated. Even if the thickness is further increased, the usefulness of the random cube texture does not change, but it exceeds the current actual processing range. On the other hand, the increase in iron loss is contrary to the current trend of high efficiency and energy saving. The preferred range of product thickness is 0.35 to 0.80, which is often used in practice.
本発明は製品の U I面強度を特定している。 完全な ラ ンダム方位の集合組織の場合は、 は飽和磁束密度の 約 83 %となるが、 本発明ではそれ以上の B を得よう とす るものである。 すなわち、 { 1 001の対ランダム強度を完全 なラ ンダム方位 (= 1 ) の場合より も高めて行く と、 にとつて不利な方位も同時に出現するが、 これらを含めて 上記飽和磁束密度の 83 %以上となる B ,を得るためには、 圧延面に平行な { 1 001面強度をラ ンダム方位強度の 2倍以 上にすればよい。  The present invention specifies the UI plane strength of the product. In the case of a texture having a perfect random orientation, is about 83% of the saturation magnetic flux density. However, the present invention seeks to obtain B larger than that. That is, if the anti-random strength of {1 001 is increased from the case of perfect random orientation (= 1), disadvantageous orientations will appear at the same time. In order to obtain B, which is equal to or more than%, the strength of the {1001 plane parallel to the rolling surface may be set to at least twice the random orientation strength.
ラ ンダムキュープを二次或いは三次再結晶で得る方法や、 溶鋼を直接急速に凝固させ柱状晶を形成してラ ンダム キューブを直接得る方法自体は既に知られている。 前者の 場合には、 広義のエネルギー (減圧中の長時間高温の焼鈍 等が必要) を莫大に消費し現実的でない。 後者の場合には それなりに省エネルギーと しての意義はあるが、 製品の形 状が安定していないし、 また 0. 2 0讓を超える製品厚みを得 るには非常に難かしい。  There are already known methods for obtaining random cupe by secondary or tertiary recrystallization, and for directly obtaining a random cube by directly solidifying molten steel to form columnar crystals. In the former case, energy in a broad sense (requiring long-time high-temperature annealing during decompression, etc.) is enormously consumed, which is not practical. In the latter case, it has some significance as energy savings, but the shape of the product is not stable, and it is very difficult to obtain a product thickness exceeding 0.20 sq.m.
本発明は このよ うな方法によ らず、 一次再結晶により ラ ンダムキューブを形成する。 このための具体的な製造 方法を以下に説明する。 In the present invention, a random cube is formed by primary recrystallization regardless of such a method. Specific manufacturing for this The method is described below.
本発明は、 移動更新する冷却体表面によって凝固せしめ て得られる鋅造鋼帯を適正な圧下率の下で冷間圧延する。 この鋼帯を比较的高い冷間圧延率で圧延する場合は、 磁束 密度は高く なるが、 凝固過程で形成された柱状晶は、 この 高い圧延率でかなり破壊される。 その結果製品板の再結晶 集合組織は、 鋼板法線に平行な 〈111〉 軸密度と鋼板法線 に平行な 〈 100〉 釉密度が同程度となり、 無方向性電磁鋼 板にとつて理想的な集合組織とはならない。  According to the present invention, a cast steel strip obtained by being solidified by a moving and renewed cooling body surface is cold-rolled at an appropriate rolling reduction. When this steel strip is rolled at a relatively high cold rolling reduction, the magnetic flux density increases, but the columnar crystals formed during the solidification process are considerably broken at this high rolling reduction. As a result, the recrystallized texture of the product sheet is approximately the same as the <111> axial density parallel to the steel sheet normal and the <100> glaze density parallel to the steel sheet normal, making it ideal for non-oriented electrical steel sheets. It is not a simple texture.
本発明者等は、 鋭意研究を続けたところ、 冷延圧下率を 40%未満 (好ましく は 30%未満) にした場合には、 鍀造時 に形成された柱状晶を核として、 仕上げ焼鈍後の再結晶集 合組織が、 ほぼ完全な {i i < 0vw> (ランダムキューブ) となることを見い出した。  The present inventors have conducted intensive studies and found that when the cold rolling reduction was set to less than 40% (preferably, less than 30%), the columnar crystals formed at the time of fabrication were used as nuclei, and after finish annealing. The recrystallized texture of was found to be almost perfect {ii <0vw> (random cube).
この理由は、 今だ明確ではないが、 柱伏晶の集合組織で ある U00I < 0^〉 は相対的に加工歪が蓄積し難いため軽 度の冷延圧下率では、 圧延集台組織もランダムキューブの まま温存され、 仕上げ焼鈍時の再結晶段階で、 それが再結 晶及び粒成長し、 ラ ンダムキューブが尖鋭化するためと 考んりれる ο  The reason for this is not clear yet, but U00I <0 ^>, which is a texture of columnar crystals, is relatively unlikely to accumulate work strain. It is considered that the cubes are preserved as they are, and during the recrystallization stage during the final annealing, they recrystallize and grow, and the random cubes become sharper. Ο
また、 冷延圧下率が 5 %未満であると、 錚造時の表面性 状がそのまま残存し製品に適さない。 従って 5 %以上とす On the other hand, if the rolling reduction is less than 5%, the surface properties at the time of fabrication remain and are not suitable for products. Therefore, 5% or more
Ό o Ό o
しかし、 変態鋼と非変態鋼の場台では、 移動更新する冷 却体表面で凝固して得られた錚造鐧帯は、 鐧帯表面位置と 中心位置では異なる集合組織を有しているので、 以上の解 釈が必ずしも確定的とはいえない面も有り得る。 However, at the stage of the transformed steel and the non-transformed steel, the solidified belt obtained by solidification on the surface of the cooling body that moves and renews Since the central position has different textures, the above interpretation may not always be definitive.
さ らに、 製品厚みで铸造することが考えられるが、 この 場合は 5 %未満の冷延圧下率の場合と同様に、 表面性状が 製品に適さないばかりでなく 図 1 に示すように、 磁気特性 自体もあま り良好でない。  In addition, it is conceivable that the product is manufactured with the product thickness.In this case, as in the case of the cold rolling reduction of less than 5%, not only the surface properties are not suitable for the product, but also the magnetic properties as shown in Fig. 1 The characteristics themselves are not so good.
図 1 に、 移動更新する冷却体表面によって凝固せしめて 铸造鋼帯と し、 次いで、 該当铸造鋼帯を冷間圧延して所定 の厚さ と した後、 仕上げ焼鈍する無方向性電磁鋼板の製造 方法において、 冷間圧延率と磁束密度 [ B ( T ) 〕 の関 係を示した。 製品厚みは必ずしも 0. 50鲫とは限らないが、 冷延圧下率を 5〜4 0 %にするこ とにより、 極めて優れた磁 束密度を示している。  Figure 1 shows the production of a non-oriented electrical steel sheet which is solidified by the moving and renewed cooling body surface to form a 铸 steel strip, and then cold rolled to a predetermined thickness and then finish-annealed. In the method, the relationship between the cold rolling reduction and the magnetic flux density [B (T)] was shown. Although the product thickness is not necessarily 0.50 mm, an extremely excellent magnetic flux density is shown by setting the cold rolling reduction to 5 to 40%.
実施例 1  Example 1
表 1の成分の溶綱 (残部 F e及び不可避的不純物からな る) を、 移動更新する冷却体表面にて凝固せしめて直接 The molten steel of the components shown in Table 1 (consisting of the balance Fe and unavoidable impurities) is directly solidified on the surface of the cooling body to be renewed.
0. 56 ,及び 0, 62画の鋼帯を得た。 その後酸洗を施し、 0. 50 翻の厚みに冷間圧延をした。 冷間圧延した鋼板を脱脂し、 連続焼鈍炉にて 1 050°Cで 30秒、 N 2 % : 70 %、 H 2 % : 30 % ドライ棼囲気で焼鈍した。 0.56 and 0,62 strokes of steel strip were obtained. Thereafter, it was pickled and cold rolled to a thickness of 0.50. Degreased rolled steel sheet cold 30 seconds 1 050 ° C in a continuous annealing furnace, N 2%: 70%, H 2%: were annealed at 30% dry棼囲air.
その後、 磁気特性 (22. 5度毎の平均) をェプシユタイ ン 法にて測定した。 これらの値を、 比較法である冷間圧延率 40 %以上の場合 (鋼の厚さを 2. 0翻、 及び 1. 5nmi ) と比較 した。 After that, the magnetic properties (average at every 22.5 degrees) were measured by the Epstein-Lead method. These values were compared with those of the comparative method where the cold rolling reduction was 40% or more (steel thickness was 2.0 turns and 1.5 nmi).
化 学 成 分 (重量%) 厚み (mm) 冷 間 Chemical composition (% by weight) Thickness (mm) Cold
全周特性 区 分 圧延率  All-around characteristics Category Rolling rate
C S i Mn P S N 铸片 製品 (%)  C S i Mn P S N Piece Product (%)
本発明 0.0069 2, 9 0.22 0, 019 0.0018 0.26 0.0036 0.56 0.50 11 2.57 し 本発明 0.0069 2.9 0.22 0, 019 0.0018 0, 26 0, 0036 0.62 0.50 19 2.39 1J36 比铰材 0.0050 3.0 0.2 \ 0.018 0, 0008 0.29 0.0030 2.0 0, 50 15 3.50 1.648 比絞材 0, 0050 3.0 0, 21 0.018 0.0008 0, 29 0.0030 1.5 0.50 6? 3.40 1. 6The present invention 0.0069 2, 9 0.22 0, 019 0.0018 0.26 0.0036 0.56 0.50 11 2.57 The present invention 0.0069 2.9 0.22 0, 019 0.0018 0, 26 0, 0036 0.62 0.50 19 2.39 1J36 Comparative material 0.0050 3.0 0.2 \ 0.018 0, 0008 0.29 0.0030 2.0 0, 50 15 3.50 1.648 Specific drawn material 0, 0050 3.0 0, 21 0.018 0.0008 0, 29 0.0030 1.5 0.50 6? 3.40 1.6
(注) 鉄損 w : W/kg. 磁束密度 B,0: T (Note) Iron loss w: W / kg. Magnetic flux density B, 0 : T
磁気特性は全周特性(圧延方向、 22. 向、 45度方向、 67.5 向、 90¾^Γ向、 112.5 向、 135 度方向、 15U度方向の 8方向平均、 各角度は冷間圧延方向からの角度) である。 The magnetic properties are the circumferential properties (rolling direction, 22. direction, 45 degree direction, 67.5 direction, 90 ° ^ direction, 112.5 direction, 135 degree direction, average of 8 directions of 15U degree direction, each angle from the cold rolling direction Angle).
このように移動更新する冷却体表面によって凝固せしめ て铸造鐧帯と し、 次いで該铸造鋼帯を冷間圧延し所定の厚 さと した後、 仕上げ焼鈍する無方向性電磁鋼板の製造方法 において、 冷間圧延に際し圧延率を 5 %以上 4 0 %未満とす ると、 冷間圧延率が高い場合と比べて、 全周方向で磁気特 性が極めて優れた無方向性珪素鋼板が得られる。 In the method for manufacturing a non-oriented electrical steel sheet, the solidified steel strip is solidified by the surface of the cooling body that moves and renews in this manner, and then the steel strip is cold-rolled to a predetermined thickness and then finish-annealed. When the rolling reduction is 5% or more and less than 40% in the cold rolling, a non-oriented silicon steel sheet having extremely excellent magnetic properties in all circumferential directions can be obtained as compared with the case where the cold rolling reduction is high.
図 2に本発明の実施例で得られた仕上げ焼鈍後製品板の 集合組織を示す。 このように非常に素晴ら しい、 いわゆる ラ ンダムキューブが得られている。 これは無方向性電磁鋼 板にと って理想的ともいえる。  FIG. 2 shows the texture of the product sheet after finish annealing obtained in the example of the present invention. A very nice, so-called random cube is thus obtained. This is ideal for non-oriented electrical steel sheets.
実施例 2  Example 2
表 2の成分の溶鋼 (残部 F e及び不可避的不純物からな る) を移動更新する冷却体表面にて凝固せしめて直接 0. 56 誦, 0. 62咖及び 0. 70咖の鋼帯を得た。 その後、 酸洗を施し、). 5 0誦 の厚みに冷間圧延を した。 冷間圧延された鋼板を 脱脂し、 連続焼鈍炉にて、 8 5 0 °Cで 3 0秒、 H 2 : 5 % , N 2 : 9 5 % ドライ雰囲気で焼鈍した。 The molten steel of the composition shown in Table 2 (consisting of the balance Fe and unavoidable impurities) is solidified on the surface of the cooling body that moves and renews to obtain steel strips of 0.56 recitation, 0.62 0 and 0.70 咖. Was. Then, it was pickled and cold rolled to the thickness of 50). The cold-rolled steel sheet was degreased and annealed in a continuous annealing furnace at 850 ° C. for 30 seconds in a dry atmosphere of H 2: 5% and N 2 : 95%.
その後、 磁気特性 (22. 5度毎の平均) をェプシユタイ ン 法にて測定した。 これらの値を比較法である冷間圧延率 4 0 %以上の場合 (铸造鋼の厚さを 2. 0画及び 1. 5誦) と比較 した。 表 2 After that, the magnetic properties (average at every 22.5 degrees) were measured by the Epstein-Lead method. These values were compared with the case of a cold rolling reduction of 40% or more, which is a comparative method (铸 steel thickness of 2.0 strokes and 1.5 recitations). Table 2
化 , 学 成 分 (重量%) 厚み (顏) 冷 間 全周特性 区 分 圧酵 Chemical composition (weight%) Thickness (face) Cold all-around properties
C S i M ri P S N 铸片 製品 {%) Wl 5/- Q D -50 本発明 0. 0040 0. 30 0. 19 0. 068 0. 0040 0. 0018 0, 0017 0, 56 0. 50 11 4, T6 1. 845 本発明 0. 0029 1. 14 0. 27 0' 020 0. 0039 0. 0014 0. 0026 0. 62 0. 50 19 4. 20 1. 835 本発明 0, 0045 0. 30 0, 31 0' 101 0. 0030 0. 394 0. 0014 0. 70 0. 50 29 ί 50 1. 821 比较材 0. 0040 0, 30 0. 19 0, 068 0. 0040 0. 0018 0. 0017 2. 0 0. 50 75 6, 43 1. 753 比较材 0. 0029 1. 14 0. 2? 0, 020 0. 0039 0, 0014 0. 0026 1. 5 0. 50 67 4. 29 1. 124 CS i M ri PSN piece product (%) Wl 5 /-QD -50 Present invention 0.0040 0.30 0.19 0.068 0.0040 0.0018 0, 0017 0, 56 0.50 11 4, T6 1.845 The present invention 0.0029 1.14 0.27 0 '020 0.0039 0.0014 0.0026 0.62 0.50 19 4.20 1.835 The present invention 0, 0045 0.30 0, 31 0 '101 0.0030 0.394 0.0014 0.70 0.50 29 ί 50 1.821 Comparative material 0.0040 0, 30 0.19 0, 068 0.0040 0.0018 0.0017 2. 0 0.50 75 6, 43 1.753 Comparative material 0.0029 1.14 0.2? 0, 020 0.0039 0, 0014 0.0026 1.5 0.50 67 4.29 1.124
(注) 鉄損 w : W/kg、贿密度 B 50: T (Note) iron loss w: W / kg,贿密degree B 5 0: T
磁気特性は全周特性(圧延方向、 22, 5 向、 45 向、 67. 51 ^向、 90度方向、 112. 5 向、 135度方向、 15U度方向の 8方向平均、各角度は冷間圧延方向からの角度) である。 The magnetic properties are all-around properties (rolling direction, 22, 5 direction, 45 direction, 67.51 ^ direction, 90 degree direction, 112.5 direction, 135 degree direction, average of 8 directions of 15 U degree direction, each angle is cold Angle from the rolling direction).
このよ うに実施例 1 と同様に、 移動更新する冷却体表面 によって凝固せしめて得られた铸造鋼帯を、 圧延率 5 %以 上 40 %未満で冷間圧延するこ とによ り、 冷間圧延率が高い 場合と比べて全周方向で磁気特性が極めて優れた無方向性 電磁鋼板が得られる。 In this way, as in Example 1, the forged steel strip solidified by the cooling body surface to be moved and renewed is cold-rolled at a rolling ratio of 5% or more and less than 40%. A non-oriented electrical steel sheet having extremely excellent magnetic properties in all circumferential directions as compared with a case where the rolling reduction is high can be obtained.
図 3に本発明実施例で得られた仕上げ焼鈍後製品板の集 合組織を示す。 こ の よ う に理想的と も言える ラ ンダム キュープが得られている。  FIG. 3 shows the texture of the product sheet after finish annealing obtained in the example of the present invention. Thus, a random cup that can be said to be ideal has been obtained.
産業上の利用可能性  Industrial applicability
本発明によって得られた鐧帯を冷間圧延することにより 磁気特性が極めて優れた製品となる。  By cold rolling the strip obtained by the present invention, a product having extremely excellent magnetic properties can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. 板厚 D. 20謹〜 1. 2Gmmの無方向性電磁鋼板において、 一 次再結晶後の組織が 〖 01 〈 « 集合組織を有し、 か つ圧延面に平行な U001面強度がランダム方位強度の 2 倍以上であることを特徵とする磁気特性が極めて優れた 無方向性電磁綱板。  1. Sheet thickness D. 20 ~ ~ In a 2Gmm non-oriented electrical steel sheet, the structure after primary recrystallization has a 〖01 〈«texture, and the strength of the U001 plane parallel to the rolling surface is random. A non-directional electromagnetic steel sheet with extremely excellent magnetic properties characterized by being at least twice the azimuthal strength.
2. 重量%で、 S i ≤ 4. 0%、 A ί ≤ 2. 0 . その他無方 向性電磁鋼板に通常含有する元素を含み、 残部 F e及び 不純物から成ることを特徵とする請求の範囲第 1項記載 の無方向性電磁鋼板。  2. By weight%, S i ≤ 4.0%, A ≤ ≤ 2.0. Other claims that include elements normally contained in non-oriented electrical steel sheets, the balance being Fe and impurities The non-oriented electrical steel sheet according to item 1, wherein
3. 重量%で、 S i ≤ 4. 0%、 A A ≤ 2. 0%、 その他無方 向性電磁鋼板に通常含有する元素を含み、 残部 : F e及 び不可避的不純物からなる溶鋼を、 移動更新する冷却体 表面によって凝固せしめて铸造鋼帯とする工程、 次いで、 該鍀造鐧帯を冷間圧延して所定の厚さと した後、 仕上げ 焼鈍する工程からなる無方向性電磁鋼板の製造方法にお いて、 冷間圧延の圧延率を 5 %以上 40%未満とすること を特徵とする磁気特性が極めて優れた無方向性電磁鋼板 の製造方法。  3. By weight%, Si ≤ 4.0%, AA ≤ 2.0%, and other elements normally contained in non-oriented electrical steel sheets. The balance: molten steel consisting of Fe and unavoidable impurities. Production of a non-oriented electrical steel sheet comprising a step of solidifying the surface of a cooling body to be moved and renewed into a forged steel strip, and a step of cold-rolling the forged steel strip to a predetermined thickness, followed by finish annealing. A method for producing a non-oriented electrical steel sheet having extremely excellent magnetic properties, characterized in that a cold rolling reduction ratio is 5% or more and less than 40%.
4. 铸造鋼帯が ( S i + 2 ) > 2. 5%であることを特 徵とする請求の範囲第 3項記載の製造方法。  4. The method according to claim 3, wherein the forged steel strip has (S i +2)> 2.5%.
5. 铸造鋼帯が (S i + 2 A i ) 2. 5%であることを特 徵とする請求の範囲第 3項記載の製造方法。  5. The method according to claim 3, wherein the steel strip is (Si + 2Ai) 2.5%.
PCT/JP1992/001663 1991-12-27 1992-12-18 Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same WO1993013231A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/347162 1991-12-27
JP34716291 1991-12-27
JP4/13455 1992-01-28
JP1345592 1992-01-28

Publications (1)

Publication Number Publication Date
WO1993013231A1 true WO1993013231A1 (en) 1993-07-08

Family

ID=26349259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001663 WO1993013231A1 (en) 1991-12-27 1992-12-18 Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2708682B2 (en)
WO (1) WO1993013231A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076673A2 (en) * 2002-03-11 2003-09-18 Usinor High-resistant, low-density hot laminated sheet steel and method for the production thereof
CN103649345A (en) * 2012-03-27 2014-03-19 许南会 Non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
EP2540845A4 (en) * 2010-02-26 2016-03-09 Nat Univ Corp Yokohama Nat Uni Metallic material which is solid solution of body-centered cubic (bcc) structure having controlled crystal axis<001>orientation, and process for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4319889B2 (en) * 2002-12-06 2009-08-26 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP4648910B2 (en) 2006-10-23 2011-03-09 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties
KR101227767B1 (en) * 2012-09-26 2013-01-29 허남회 (100)〔0vw〕 NON-ORIENTED ELECTRICAL STEEL SHEET WITH EXCELLENT MAGNETIC PROPERTIES
CN108277335B (en) * 2018-01-29 2019-04-12 东北大学 A method of enhancing thin strap continuous casting non-orientation silicon steel { 100 } recrystallization texture
KR102283225B1 (en) * 2021-05-03 2021-07-29 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same
KR102283222B1 (en) * 2021-05-03 2021-07-29 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732327A (en) * 1980-08-07 1982-02-22 Kawasaki Steel Corp Production of intrasurface nondirectional high silicon streel strip having superior magnetic characteristics
JPS5794517A (en) * 1980-12-03 1982-06-12 Kawasaki Steel Corp Method for rolling treatment which improves magnetic characteristic of quenched strip of high silicon steel
JPS6021328A (en) * 1983-07-13 1985-02-02 Matsushita Electric Ind Co Ltd Production of light-gauge high silicon steel strip having (100) <oki> texture
JPS619520A (en) * 1984-06-22 1986-01-17 Kawasaki Steel Corp Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation
JPS6141719A (en) * 1984-08-03 1986-02-28 Kawasaki Steel Corp Manufacture of rapidly cooled thin strip of high silicon steel for stabilizer of discharge lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324250A (en) * 1989-06-19 1991-02-01 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet reduced in in-plane anisotropy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732327A (en) * 1980-08-07 1982-02-22 Kawasaki Steel Corp Production of intrasurface nondirectional high silicon streel strip having superior magnetic characteristics
JPS5794517A (en) * 1980-12-03 1982-06-12 Kawasaki Steel Corp Method for rolling treatment which improves magnetic characteristic of quenched strip of high silicon steel
JPS6021328A (en) * 1983-07-13 1985-02-02 Matsushita Electric Ind Co Ltd Production of light-gauge high silicon steel strip having (100) <oki> texture
JPS619520A (en) * 1984-06-22 1986-01-17 Kawasaki Steel Corp Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation
JPS6141719A (en) * 1984-08-03 1986-02-28 Kawasaki Steel Corp Manufacture of rapidly cooled thin strip of high silicon steel for stabilizer of discharge lamp

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076673A2 (en) * 2002-03-11 2003-09-18 Usinor High-resistant, low-density hot laminated sheet steel and method for the production thereof
WO2003076673A3 (en) * 2002-03-11 2004-04-22 Usinor High-resistant, low-density hot laminated sheet steel and method for the production thereof
US7416615B2 (en) 2002-03-11 2008-08-26 Usinor Very-high-strength and low-density, hot-rolled steel sheet and manufacturing process
KR100986697B1 (en) * 2002-03-11 2010-10-08 아르셀러 프랑스 High-resistant, low-density hot laminated sheet steel and method for the production thereof
EP2540845A4 (en) * 2010-02-26 2016-03-09 Nat Univ Corp Yokohama Nat Uni Metallic material which is solid solution of body-centered cubic (bcc) structure having controlled crystal axis<001>orientation, and process for producing same
CN103649345A (en) * 2012-03-27 2014-03-19 许南会 Non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05306438A (en) 1993-11-19
JP2708682B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
WO2019062732A1 (en) Cold-rolled magnetic lamination steel with excellent magnetic properties and manufacturing method therefor
WO1993013231A1 (en) Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH1060532A (en) Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JP6690244B2 (en) Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
JP2014156633A (en) Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
JPH11236618A (en) Production of low core loss nonoriented silicon steel sheet
JPH11335793A (en) Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, and its production
JP2701349B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2594730B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH06128642A (en) Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JPH02258922A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3387971B2 (en) Manufacturing method of electrical steel sheet for stationary equipment with excellent bidirectional magnetic properties
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH02194123A (en) Manufacture of nonoriented silicon steel sheet excellent in magnetic property
JP4213784B2 (en) Manufacturing method of unidirectional electrical steel sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA