WO1992021381A1 - Herstellung von protein-polyalkylenglykolkonjugaten - Google Patents

Herstellung von protein-polyalkylenglykolkonjugaten Download PDF

Info

Publication number
WO1992021381A1
WO1992021381A1 PCT/EP1992/000979 EP9200979W WO9221381A1 WO 1992021381 A1 WO1992021381 A1 WO 1992021381A1 EP 9200979 W EP9200979 W EP 9200979W WO 9221381 A1 WO9221381 A1 WO 9221381A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polyalkylene glycol
reaction
activated
hirudin
Prior art date
Application number
PCT/EP1992/000979
Other languages
English (en)
French (fr)
Inventor
Juergen Schweden
Bernhard Schmied
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO1992021381A1 publication Critical patent/WO1992021381A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol

Definitions

  • the invention relates to a new process for the production of protein-polyalkylene glycol conjugates by reacting an activated polyalkylene glycol derivative with a protein.
  • Protein-polyalkylene glycol conjugates are valued drugs because of their favorable pharmacological properties.
  • the protein polyethylene glycols have hitherto been prepared by reacting an activated PEG derivative with a protein in water or an aqueous buffer solution.
  • Veronese et al. (Applied Bioche istry and Biotechnology, 11, 141-152, 1985) describe the preparation of PEG conjugates with superoxide dismutase or ribonuclease.
  • the PEG is activated with phenyl chloroformate.
  • the activated PEG is then reacted with an aqueous solution of the protein in phosphate or borate buffer.
  • U.S. Patent 4,902,502 describes the preparation of an interleukin-2-PEG conjugate.
  • an activated PEG derivative is produced and this is reacted with interleukin-2.
  • German Offenlegungsschrift 4,014,260 describes the reaction of a hirudin mutein with activated PEG in the solvent water: 1.4 dioxane (1: 1) in the presence of sodium carbonate.
  • reaction is not very selective and therefore usually leads to a large number of reaction products.
  • the activated PEG derivatives are preferably reacted with amino functions of the protein, such as, for example, amino terminus or lysine. Groups. If there are several amino functions available, the PEG groups are statistically distributed on the protein. A mixture of isomers is thus obtained which is difficult or impossible to separate into the individual components.
  • the invention was therefore based on the object of providing a production process for protein-polyalkylene glycol conjugates which, through a selective reaction, leads to a product which is as homogeneous as possible.
  • All proteins which have at least one amino function can be used for the reaction with polyalkylene glycol derivatives.
  • the amino function can be either the amino terminus or an internal amino function, e.g. a lysine residue.
  • proteins also includes oligopeptides such as tripeptides. Proteins are preferably used which are stable to mixtures of water and the organic solvents described below, i.e. that these proteins, after coming into contact with a mixture of water and an organic solvent, experience little or no loss of their biological activity.
  • Proteins that can be modified particularly well with this method are hirudins. These include the hirudin found in the medicinal leech, the desulfate derived from it
  • Hirudin other naturally occurring isohirudine as well as not in to understand nature-occurring hirudin muteins. Those hirudins are preferably used in which the number or the position of the amino functions in relation to the natural hirudin has been changed.
  • the protein is usually used in a concentration of 1 to 50 mg / ml, preferably 5 to 30 mg / ml.
  • Molecules with a molecular weight of 1000 to 15000 are suitable as polyalkylene glycols.
  • Polyethylene glycols with a molecular weight of 2000-10000 are preferably used.
  • the polyalkylene glycols are advantageously activated before they are reacted with the protein. This can e.g. by reacting the polyalkylene glycol with 4-nitrophenyl chloroformate to give the polyalkylene 4-nitrophenyl carbonate.
  • Suitable organic solvents are aliphatic alcohols, open-chain or cyclic ethers, short-chain aliphatic ketones or aliphatic nitriles. It can too
  • Sulfur-containing solvents such as dimethyl sulfoxide can be used.
  • Low-chain carboxamides such as dimethylformamide can also be used.
  • Short-chain aliphatic alcohols such as methanol, ethanol, isopropanol, n-propanol or butanol are preferably used as solvents.
  • Cyclic compounds such as tetrahydrofuran are preferably used for the ethers.
  • Solvents which are not homogeneously miscible with water are brought into contact with the aqueous phase during the reaction by vigorous stirring.
  • Organic solvents which are miscible with water are preferably used.
  • Alkali metal or ammonium carbonates can be used as the carbonate.
  • Alkali metal carbonates are preferred, particularly preferably sodium carbonate or potassium carbonate.
  • the carbonate is preferably used in the reaction in a final concentration of 25 to 150 mM. A carbonate concentration of 30 to 90 mM is particularly preferred.
  • the reaction of the protein with the activated polyalkylene glycol is advantageously carried out in such a way that the aqueous solution of the protein is mixed with a solution of the activated polyalkylene glycol in an organic solvent.
  • the reaction is also possible by introducing the activated polyalkylene glycol in water or organic solvent or a mixture of water and organic solvent and adding the protein in the solvent which may still be missing for the reaction.
  • the reaction is carried out in a mixture of water with 10 to 80 vol%, preferably 30 to 60 vol% organic solvent.
  • the reaction time depends on the selected temperature. At room temperature, it is usually between 1 and 10 hours.
  • the temperature at which the reaction is carried out depends on the temperature sensitivity of the protein used. It can be between -20 and 800C, preferably between 0 and 600C.
  • the reaction is generally carried out at a pH from 7.0 to 10.5, preferably from 7.5 to 10.0.
  • the process according to the invention is particularly suitable for the production of proteins which carry polyalkylene glycol groups at precisely defined positions.
  • protein-polymer conjugates are preferred because of their favorable properties, such as long half-life and lack of antigenicity.
  • the new manufacturing process delivers these precisely defined protein-polyalkylene glycol conjugates in high yield. This means that valuable medicinal products can be manufactured in higher purity than before.
  • the invention is illustrated further by the following examples.
  • the reaction was stopped by adding a 10-fold molar excess (based on activated PEG) of Tris base and the product composition was analyzed by FPLC ion exchange chromatography (Mono Q, pharmacy). For this purpose, an aliquot of the reaction mixture was applied at pH 8 and the separation column was then eluted with a salt gradient from 0 M NaCl to 400 mM NaCl. PEGi-hirudin eluted at 230 mM NaCl, PEG 2 -hirudin at 210 M and PEG 3 -hirudin at 190 mM NaCl.

Abstract

Es wird ein neues Verfahren zur Herstellung von Protein-Polyalkylenglykolkonjugaten durch Umsetzung eines aktivierten Polyalkylenglykolderivats mit einem Protein beschrieben.

Description

Herstellung von Protein-Polyalkylenglykolkonjugaten
Beschreibung
Die Erfindung betrifft ein neues Verfahren zur Herstellung von Protein-Polylalkylenglykolkonjugaten durch Umsetzung eines aktivierten Polyalkylenglykolderivats mit einem Protein.
Protein-Polyalkylenglykolkonjugate sind wegen ihrer günstigen pharmakologisehen Eigenschaften geschätzte Arzneimittel.
Die Modifikation von Proteinen mit Polyethylenglykolen (PEG) ist bekannt.
Die Herstellung der Protein-Polyethylenglykole geschieht bislang durch Reaktion eines aktivierten PEG-Derivats mit einem Protein in Wasser oder einer wäßrigen Pufferlösung.
Veronese et al. (Applied Bioche istry and Biotechnology, 11, 141-152, 1985) beschreiben die Herstellung von PEG-Konjugaten mit Superoxid-Dismutase oder Ribonuklease. Dazu wird das PEG mit Phenylchlorformiat aktiviert. Anschließend wird das aktivierte PEG mit einer wäßrigen Lösung des Proteins in Phosphat- oder Borat-Puffer umgesetzt.
In der US-Patentschrift 4,902,502 wird die Herstellung eines lnterleukin-2-PEG-Konjugats beschrieben. Dazu wird ein aktivier¬ tes PEG-Derivat hergestellt und dieses mit lnterleukin-2 umge¬ setzt. Die Umsetzung erfolgt in einer wäßrigen Lösung (100 mM Borat-Puffer) bei pH=9 und Raumtemperatur.
In der deutschen Offenlegungsschrift 4 014 260 wird die Umsetzung eines Hirudinmuteins mit aktiviertem PEG in dem Lösungsmittel Wasser:1,4 Dioxan (1:1) in Gegenwart von Natriumcarbonat be- schrieben.
Diese Verfahren führen zwar zu den gewünschten Protein-PEG- Konjugaten, jedoch ist die Reaktion wenig selektiv und führt daher in der Regel zu einer Vielzahl von Reaktionsprodukten.
Die Reaktion der aktivierten PEG-Derivate erfolgt bevorzugt mit Aminofunktionen des Proteins, wie z.B. Amino-Terminus oder Lysin- Gruppen. Bei mehreren zur Verfügung stehenden Aminofunktionen erfolgt eine statistische Verteilung der PEG-Gruppen am Protein. Man erhält somit ein Gemisch von Isomeren, das sich nur schwer oder gar nicht in die Einzelbestandteile auftrennen läßt.
Der Erfindung lag daher die Aufgabe zugrunde, ein Herstell¬ verfahren für Protein-Polyalkylenglykolkonjugate bereitzustellen, das durch eine selektive Reaktion zu einem möglichst homogenen Produkt führt.
Demgemäß wurde gefunden, daß das Verfahren zur Herstellung von Protein-Polyalkylenglykolkonjugaten durch Umsetzung eines akti¬ vierten Polyalkylenglykolderivats mit einem Protein besonders selektiv erfolgt, wenn man die Umsetzung in einem Lösungsmittel- gemisch aus Wasser mit 10 bis 80 Vol% organischem Lösungsmittel in Gegenwart von Carbonat durchführt.
Für die Umsetzung mit Poylalkylenglykolderivaten kommen alle Proteine in Betracht, die mindestens eine Aminofunktion besitzen. Bei der Aminofunktion kann es sich entweder um den Amino-Terminus oder eine interne Aminofunktion, z.B. einen Lysinrest, handeln.
Die Molmasse des Proteins spielt für die Umsetzung keine Rolle. Die Bezeichnung Proteine umfaßt auch Oligopeptide, wie Tripeptide. Bevorzugt werden solche Proteine verwendet, die gegenüber Gemischen aus Wasser und den nachfolgend beschriebenen organischen Lösungsmitteln stabil sind, d.h. daß diese Proteine, nachdem sie mit einem Gemisch aus Wasser und einem organischen Lösungsmittel in Kontakt gekommen waren, keinen oder nur einen geringfügigen Verlust ihrer biologischen Aktivität erfahren.
Das Verhalten von Proteinen gegenüber organischen Lösungsmitteln kann aus der Literatur (z.B. P. Boyer: "The Enzymes", Academic Press, New York, 1972) entnommen werden. Alternativ kann durch einfache Vorversuche der Einfluß eines Lösungsmittels festge¬ stellt werden.
Proteine, die besonders gut mit diesem Verfahren modifiziert werden können, sind Hirudine. Hierunter sind das im medizinischen Blutegel vorkommende Hirudin, das davon abgeleitete Desulfato-
Hirudin, weitere natürlich vorkommende isohirudine sowie nicht in der Natur vorkommende Hirudin-Muteine zu verstehen. Bevorzugt werden solche Hirudine verwendet, bei denen die Anzahl oder die Position der Aminofunktionen gegenüber dem natürlichen Hirudin verändert worden ist.
Das Protein wird üblicherweise in einer Konzentration von 1 bis 50 mg/ml, bevorzugt von 5 bis 30 mg/ml eingesetzt.
Als Polyalkylenglykole kommen Moleküle mit einer Molmasse von 1000 bis 15000 in Betracht. Bevorzugt verwendet werden Poly- ethylenglykole mit einer Molmasse von 2000 - 10000.
Die Polyalkylenglykole werden zweckmäßigerweise vor ihrer Umsetzung mit dem Protein aktiviert. Dies kann z.B. durch Umsetzen des Polyalkylenglykols mit 4-Nitrophenyl-chloro-formiat zum Polyalkylen-4-nitrophenyl-carbonat geschehen.
Als organische Lösungsmittel kommen aliphatische Alkohole, offenkettige oder zyklische Ether, kurzkettige aliphatische Ketone oder aliphatische Nitrile in Betracht. Es können auch
Schwefel-enthaltende Lösungsmittel wie Dimethylsulfoxid verwendet werden. Auch niederkettige Carbonsäureamide wie Dimethylforma id können eingesetzt werden.
Bevorzugt werden als Lösungsmittel kurzkettige aliphatische Alkohole wie Methanol, Ethanol, isopropanol, n-Propanol, oder Butanol verwendet.
Bei den Ethern werden bevorzugt zyklische Verbindungen wie Tetra- hydrofuran verwendet.
Es können auch Gemische dieser Lösungsmittel verwendet werden.
Lösungsmittel, die mit Wasser nicht homogen mischbar sind, werden bei der Umsetzung durch starkes Rühren mit der wäßrigen Phase in Kontakt gebracht.
Bevorzugt werden solche organischen Lösungsmittel verwendet, die mit Wasser mischbar sind.
Als Carbonat können Alkalimetall- oder A moniumcarbonate eingesetzt werden. Bevorzugt werden Alkalimetallcarbonate, besonders bevorzugt Natriumcarbonat oder Kaliumcarbonat. Das Carbonat wird bei der Umsetzung bevorzugt in einer Endkonzen¬ tration von 25 bis 150 mM eingesetzt. Besonders bevorzugt ist eine Carbonatkonzentration von 30 bis 90 mM.
Die Umsetzung des Proteins mit dem aktivierten Polyalkylenglykol führt man zweckmäßigerweise so durch, daß die wäßrige Lösung des Proteins mit einer Lösung des aktivierten Polyalkylenglykols in einem organischen Lösungsmittel gemischt wird. Es ist aber auch möglich, das Protein in einem Gemisch aus wäßrigen Puffer und organischem Lösungsmittel zu lösen und das aktivierte Poly¬ alkylenglykol in fester Form zuzugeben.
Die Umsetzung ist auch möglich, indem das aktivierte Polyalkylen¬ glykol in Wasser oder organischem Lösungsmittel oder einem Gemisch aus Wasser und organischem Lösungsmittel vorgelegt wird und das Protein in dem gegebenenfalls für die Umsetzung noch fehlenden Lösungsmittel zugegeben wird.
Die Reaktion wird in einem Gemisch aus Wasser mit 10 bis 80 Vol%, bevorzugt 30 bis 60 Vol% organischem Lösungsmittel durchgeführt.
Die Reaktionsdauer ist abhängig von der gewählten Temperatur. Bei Raumtemperatur beträgt sie üblicherweise zwischen 1 und 10 Stunden.
Die Temperatur, bei der die Umsetzung durchgeführt wird, richtet sich nach der Temperaturempfindlichkeit des eingesetzten Proteins. Sie kann zwischen -20 und 800C, bevorzugt zwischen 0 und 600C betragen.
Die Reaktion wird in der Regel bei einem pH-Wert von 7,0 bis 10,5, bevorzugt von 7,5 bis 10,0 durchgeführt.
Das erfindungsgemäße Verfahren eignet sich besonders gut zur Herstellung von Proteinen, die an genau definierten Positionen Polyalkylenglykolgruppen tragen. Auf dem Arzneimittelgebiet werden Protein-Polymerkonjugate wegen ihrer günstigen Eigen¬ schaften, wie z.B. lange Halbwertszeit und fehlende Antigenität bevorzugt eingesetzt. Das neue Herstellverfahren liefert diese gewünschten genau definierten Protein-Polyalkylenglykolkonjugate in hoher Ausbeute. Somit können wertvolle Arzneimittel in höherer Reinheit als bisher hergestellt werden. Die Erfindung wird durch die folgenden Beispiele weiter veran¬ schaulicht.
Beispiel 1
Abhängigkeit des PEG2~Hirudin-Anteils von der Carbonat- Konzentration
10 mg eines Hirudin-Muteins (Pos. 27: Lys, Pos. 33: Lys, Pos. 36: Arg, Pos. 47: Arg; Herstellung in DE-A 40 14 260 beschrieben) wurden in einem Lösungsmittelgemisch n-Propanol/50 mM Triethylaminpuffer (50/50, v/v) pH 10 gelöst, die Carbonatkonzentration auf die in der Figur angegebenen Werte durch Zusatz von Natriu carbonat eingestellt, mit 35 mg p-Nitrophenylcarbonat-aktiviertem Monomethoxypolyethylen- glykolδooo versetzt und bei 25°C 4 Stunden inkubiert. Die Reaktion wurde durch Zusatz eines 10-fach molaren Überschusses (bezogen auf aktiviertes PEG) an Tris-Base abgestoppt und die Produktzusammensetzung durch FPLC-Ionenaustauschchromatographie (Mono Q, Pharmazie) analysiert. Dazu wurde ein Aliquot des Reaktionsansatzes bei pH 8 aufgetragen und die Trennsäule anschließend mit einem Salzgradienten von 0 M NaCl nach 400 mM NaCl eluiert. PEGi-Hirudin eluierte bei 230 mM NaCl, PEG2-Hirudin bei 210 M und PEG3-Hirudin bei 190 mM NaCl.
Die Abhängigkeit der Ausbeute an PEG2-Hirudin von der Carbonat¬ konzentration ist in der Figur dargestellt.
Beispiel 2
Kopplung von PEG5000 an Hirudin in Anwesenheit von verschiedenen Lösungsmitteln
0,5 ml einer Desulfatohirudinlösung (20 mg/ml) in 100 mM Natrium- carbonat pH 10 wurden mit 0,5 ml Wasser oder Lösungsmittel ver¬ setzt, danach 35 mg p-Nitrophenyl-aktiviertes Methoxypolyethylen- glykolsooo zugegeben und der Kopplungsansatz bei 25°C für 4 Stunden inkubiert. Die Reaktion wurde dann wie unter Beispiel 1 beschrieben mit Tris-Base abgestoppt und die Produktzusammen- Setzung durch FPLC-Anionenaustausch-Chromatographie analysiert. Die Ausbeuten an PEG2-Hirudin sind in folgender Tabelle zusammen¬ gefaßt:
Figure imgf000008_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung von Protein-Polyalkylenglykol- konjugaten durch Umsetzung eines aktivierten Polyalkylen- glykolderivats mit einem Protein, dadurch gekennzeichnet, daß man die Umsetzung in einem Lösungsmittelgemisch aus Wasser mit 10 bis 80 Vol% organischem Lösungsmittel, ausge¬ nommen 1,4-Dioxan, in Gegenwart von Carbonat durchführt.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet daß als Protein ein Hirudin verwendet wird.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet daß man als Lösungsmittelgemisch Wasser mit 50 Vol% n-Propanol in Gegenwart von 50 M Natriumcarbonat verwendet.
PCT/EP1992/000979 1991-05-31 1992-05-05 Herstellung von protein-polyalkylenglykolkonjugaten WO1992021381A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4117784A DE4117784A1 (de) 1991-05-31 1991-05-31 Herstellung von protein-polyalkylenglykolkonjugaten
DEP4117784.3 1991-05-31

Publications (1)

Publication Number Publication Date
WO1992021381A1 true WO1992021381A1 (de) 1992-12-10

Family

ID=6432831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/000979 WO1992021381A1 (de) 1991-05-31 1992-05-05 Herstellung von protein-polyalkylenglykolkonjugaten

Country Status (2)

Country Link
DE (1) DE4117784A1 (de)
WO (1) WO1992021381A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317780A1 (de) * 1987-11-25 1989-05-31 American Cyanamid Company System für die verzögerte (kontrollierte) Freisetzung von substituierten Dihydropyridin-Calciumantagonisten
EP0333356A2 (de) * 1988-03-04 1989-09-20 Biogen, Inc. Hirudin-Peptide
US4968495A (en) * 1987-08-28 1990-11-06 Amano Pharmaceutical Co., Ltd. Chemically modified bilirubin oxidase
WO1991008229A1 (de) * 1989-12-01 1991-06-13 Basf Aktiengesellschaft Hirudinpolyalkylenglykolkonjugate
EP0453621A1 (de) * 1990-04-28 1991-10-30 W.R. Grace & Co.-Conn. Polymermodifizierte Arzneimittel mit verbesserter biologischer und pharmakologischer Wirksamkeit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968495A (en) * 1987-08-28 1990-11-06 Amano Pharmaceutical Co., Ltd. Chemically modified bilirubin oxidase
EP0317780A1 (de) * 1987-11-25 1989-05-31 American Cyanamid Company System für die verzögerte (kontrollierte) Freisetzung von substituierten Dihydropyridin-Calciumantagonisten
EP0333356A2 (de) * 1988-03-04 1989-09-20 Biogen, Inc. Hirudin-Peptide
WO1991008229A1 (de) * 1989-12-01 1991-06-13 Basf Aktiengesellschaft Hirudinpolyalkylenglykolkonjugate
EP0453621A1 (de) * 1990-04-28 1991-10-30 W.R. Grace & Co.-Conn. Polymermodifizierte Arzneimittel mit verbesserter biologischer und pharmakologischer Wirksamkeit

Also Published As

Publication number Publication date
DE4117784A1 (de) 1992-12-03

Similar Documents

Publication Publication Date Title
DE19641876B4 (de) Streptavidinmuteine
DE69434046T2 (de) Nicht-antigene verzweigte Polymerconjugate
EP1372735B1 (de) Hydroxyalkylstärke-wirkstoff-konjugate
EP0347781B1 (de) Mini-Proinsulin, seine Herstellung und Verwendung
US20200138968A1 (en) Process for preparing intermediate of antibody drug conjugate
WO2004108634A2 (de) Reagenzien zur modifikation von biopharmazeutika, deren herstellung und anwendung
WO1991010677A1 (de) Verfahren zur anreicherung bzw. reinigung von biomolekülen
EP1919509B1 (de) Hoch verzweigte reagenzien zur modifikation von biopharmazeutika, deren herstellung und anwendung
EP0219781A2 (de) Biologisch aktive Derivate des Human-gamma-Interferons, ihre Herstellung und Arzneimittel, die solche Derivate enthalten
EP0410280A1 (de) Heterobifunktionelle Verbindungen
DE1811518C3 (de) Daunonibicinderivate, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Zusammensetzungen
EP0089007B1 (de) Verfahren zur Umwandlung von Präproinsulinanaloga zu Insulinen
EP0440207B1 (de) Expression von HIV1- und 2- Polypeptiden und deren Verwendung
WO1992021381A1 (de) Herstellung von protein-polyalkylenglykolkonjugaten
DE60310958T2 (de) Synthese und charakterisierung neuer systeme zum hinführen und zur vektorisierung von molekülen von therapeutischem interesse zu targetzellen
EP1051495B1 (de) Rekombinante mistellektine
DE60318942T2 (de) Schutzreagenzien enthaltend aktive kohlenhydrate für chemische modifizierungen, deren herstellung und verwendung
EP0584118B1 (de) Neue konjugate, bestehend aus einem glykoprotein und einer nukleinsäure-bindenden substanz
DE60127848T2 (de) T-Butoxycarbonylaminoethylamin für die Synthese von PNA-Monomereinheiten, Aminosäurederivaten, Zwischenprodukten davon und Verfahren für deren Herstellung
EP0909182A2 (de) Herstellung polyether-aufweisender chlorine und bakteriochlorine
DE3715033A1 (de) Verfahren zur isolierung von fusionsproteinen
EP0367161B1 (de) Verfahren zur selektiven Spaltung von Fusionsproteinen
EP0782456B1 (de) Konjugat aus einem wirkstoff und einem nicht als körperfremd angesehenen, nativen protein
DE3943522A1 (de) Heterobifunktionelle verbindungen
EP0164069B1 (de) Verfahren zur Isolierung und Reinigung von alpha-Interferonen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: CA