WO1992021219A1 - Vorrichtung zum betreiben einer gasentladungslampe - Google Patents

Vorrichtung zum betreiben einer gasentladungslampe Download PDF

Info

Publication number
WO1992021219A1
WO1992021219A1 PCT/DE1992/000363 DE9200363W WO9221219A1 WO 1992021219 A1 WO1992021219 A1 WO 1992021219A1 DE 9200363 W DE9200363 W DE 9200363W WO 9221219 A1 WO9221219 A1 WO 9221219A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
frequency
feedback network
comparator
circuit
Prior art date
Application number
PCT/DE1992/000363
Other languages
English (en)
French (fr)
Inventor
Cornelius Peter
Kay Kolberg
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1992021219A1 publication Critical patent/WO1992021219A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/382Controlling the intensity of light during the transitional start-up phase
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to a device for operating a gas discharge lamp according to the preamble of the main claim.
  • a device for example from FR-PS 2 547 128.
  • a resonance circuit is provided to ignite the lamp, which enables the high ignition voltage to be provided in the event of resonance.
  • the resonant circuit contains a series resonant circuit with a capacitor and a coil connected in series with the lamp, and a capacitor connected in parallel with the lamp.
  • the resonance frequency when the lamp is ignited is mainly determined by the inductance value of the coil and the capacitance value of the capacitor connected in parallel with the lamp.
  • a power unit is provided to supply energy to the lamp and is constructed as an inverter with a variable frequency.
  • the switching frequency is provided by a control circuit which contains a generator which emits a control signal with a predetermined frequency to the power section in order to start the resonance circuit.
  • a control circuit which contains a generator which emits a control signal with a predetermined frequency to the power section in order to start the resonance circuit.
  • the frequency of the generator is adjusted to the resonance frequency.
  • a phase locked loop is provided for this frequency tracking, in which the phase of the control signal is compared with the phase of the current flowing through the lamp which is sensed by a sensor.
  • the phase-locked loop requires a system-related settling time, during which the generator frequency still deviates from the resonance frequency. Within this settling time, there is a risk of the ignition in the lamp being broken off because it is not possible to supply sufficient energy within a short time.
  • the invention has for its object to provide a device for operating a gas discharge lamp, which enables reliable ignition of a gas discharge lamp connected to a resonance circuit.
  • the device according to the invention has the advantage that the comparator contained in the control circuit, which compares the signal emitted by means for detecting the lamp current with a predeterminable threshold, is able to emit a control signal to the power unit, the frequency of which is immediately delayed the resonance frequency occurring corresponds to the lamp. With this measure, it is possible to supply energy sufficiently quickly to maintain the ignition process in the lamp. Means are provided for oscillating the resonance circuit, which generate a control signal with a predeterminable frequency.
  • the device according to the invention is particularly suitable for igniting high-pressure gas discharge lamps which require a very high ignition voltage compared to the subsequent operating voltage. In particular, it is possible to re-ignite a lamp that is at operating temperature and has a particularly high ignition voltage.
  • the assignment of the means for oscillation of the resonance circuit to the comparator is particularly advantageous, which means that the output signal is forced to oscillate at a predetermined frequency as long as the lamp current falls below the comparator threshold.
  • This measure leads to a particularly simple and inexpensive circuit, because only a comparator with a suitable circuitry is required as the active component.
  • the predetermined frequency for oscillation of the resonance circuit is preferably set lower than the resonance frequency for igniting the lamp. An oscillation of the resonance circuit is ensured in any case.
  • a particularly simple construction of the comparator is possible with an amplifier that is connected to a suitably dimensioned feedback network. With a negative feedback that effects a frequency-dependent phase shift, the function of the comparator as a generator for generating the signal with a predetermined one Frequency possible. Wiring the amplifier with positive feedback leads to a predeterminable hysteresis which, together with the time constant of the negative feedback, determines the start-up frequency.
  • a positive differential is advantageously provided for the positive feedback, which dynamically shifts the current switching threshold.
  • the negative feedback and the positive feedback network are to be dimensioned such that both the desired start-up frequency and possibly its duty cycle as well as the predetermined one
  • Threshold for the lamp current can be achieved.
  • a further, appropriately dimensioned input circuit of the amplifier can be provided.
  • a low-pass filter arranged at the input of the amplifier reduces the influence of high-frequency interference signals on the control circuit.
  • a block diagram of a device according to the invention for operating a gas discharge lamp is shown in the figure.
  • a lamp 10 is shown, which is supplied with electrical energy by a power unit 11.
  • a series circuit comprising a coil 12 and a capacitor 13 is arranged between the lamp 10 and the power unit 11.
  • a capacitor 14 is parallel to the lamp 10.
  • a resistor 15 for detecting the current flowing through the lamp 10 is located in a power supply line to the lamp 10 Switched current.
  • a control circuit 16 is shown in the figure which, depending on the voltage occurring at the resistor 15, provides a control signal at its output 17 which is led as an input signal to the power unit 11.
  • the control circuit 16 contains a differential amplifier 20 connected to an input and a feedback network 18, 19.
  • the input network 18 contains a resistor-capacitor combination 21, 22, the resistor 21 being connected to the current sensor 15 and to the non-inverting input 23 of the Amplifier 20 leads and the capacitor 22 is between the non-inverting input 23 and the inverting input 24 of the amplifier 20.
  • the feedback network 19 initially contains a positive feedback network 25, which is connected between the output 17 and the non-inverting input 23 of the amplifier 20 and has a resistor 26 and a capacitor 27.
  • the feedback network 19 furthermore contains a negative feedback network 28, which has two resistors 29, 30 and a capacitor 31.
  • the resistor 30 lies between the output 17 and the inverting input 24 of the amplifier 20.
  • the resistor 29 and the capacitor 31 are each connected to the inverting input 24 of the amplifier 20 and to the resistor 15.
  • the device according to the invention works as follows:
  • the power section 11 contains, for example, an inverter, which converts the electrical energy made available from a battery or another energy source (not shown) into an AC voltage with a suitable curve for supplying energy to the gas discharge lamp 10.
  • the two capacitors 13, 14 and the coil 12 form a (series) resonant circuit which Generation of the high ignition voltage of the lamp 10 in comparison to the continuous operation.
  • the capacitor 14 is only effective when the lamp 10 is not yet ignited.
  • the capacitance of the capacitor 14 is generally set to be smaller than that of the capacitor 13 and thus essentially determines the resonance frequency of the resonance circuit, which is then above the operating frequency of the lamp 10 in continuous operation. After the lamp 10 has been ignited, the resonance frequency is determined by the capacitance of the capacitor 13 and the inductance value of the coil 12. However, operating the lamp 10 in continuous operation at the resonance frequency defined by the coil 12 and the capacitor 13 is not absolutely necessary. The operating frequency can also deviate from this resonance frequency when the lamp 10 is ignited.
  • the lamp 10 is ignited, for example, by exciting the
  • Resonance circuit 12, 13, 14 causes pulses that are emitted by the power section 11. It is not necessary for the excitation frequency to be equal to the resonance frequency of the resonance circuit 12, 13, 14. One suggestion leads to a decaying one
  • the device according to the invention achieves the object in that the control circuit 16 detects a current flowing through the lamp 10 and immediately outputs it in a corresponding control signal at the output 17 for controlling the power unit 11.
  • the resistor 15 is entered, at which the current causes a voltage drop.
  • the resistor 15 there are also other current sensors such as a Rogowski coil
  • the signal that can be tapped at the current sensor 15 is fed to the differential amplifier 20 via the input network 18.
  • Network 18 is a low pass filter that includes resistor 21 and capacitor 22. This R-C low-pass filter reduces the influence of higher-frequency interference signals on the subsequent circuit.
  • the control circuit 16 operates as a generator which emits a signal at the output 17 with a predetermined frequency for controlling the power unit 11. At this frequency, the resonant circuit 12, 13, 14 is excited to ignite the lamp 10 to oscillate.
  • the generator function is implemented by suitable connection of the differential amplifier 20 to the negative feedback network 28.
  • the negative feedback network 28 feeds the signal at the output 17 back to the inverting input 24 of the differential amplifier 20 with a frequency-dependent phase shift.
  • the frequency of the oscillation is determined by the resistors 29, 30, the capacitor 31 and the measure of the hysteresis, determined by the resistors 21 and 26, for a given maximum output level.
  • the resistor 29 influences the level at the inverting input 24 of the differential amplifier 20, which defines a switching threshold for the lamp current.
  • the switching threshold can be influenced with the resistors 29, 30 and 21, 26.
  • the threshold is preferably set such that a switching of the differential amplifier 20, which acts as a comparator, at least in the vicinity of the zero current crossings he follows.
  • the first time the lamp current threshold is exceeded during the ignition process means that the ignition process has been initiated.
  • Exceeding the threshold leads directly to the triggering of a control signal at the output 17 of the control circuit 16 to control the power section 11.
  • the generator function of the control circuit 16 is no longer required.
  • the control circuit 16 immediately takes over the resonance frequency of the resonance circuit 12, 13, 14 and controls with this frequency the power unit 11, which is thus able to provide enough energy to maintain the ignition process in the lamp 10 sufficiently quickly to successfully end the ignition process .
  • the positive feedback network 25 which can preferably transmit a differential component with the capacitor 27, interacts with the resistor 21 at the input of the differential amplifier 20 and enables a hysteresis to be specified.
  • the positive feedback network 25 which can preferably transmit a differential component with the capacitor 27, interacts with the resistor 21 at the input of the differential amplifier 20 and enables a hysteresis to be specified.
  • the negative feedback network 28 With a suitable dimensioning in connection with the negative feedback network 28 it can be achieved that the hysteresis has an inverse polarity in the switching point.
  • the reverse polarity means that the last one is past
  • Switching process shifts the switching threshold to the current level instead of moving away from it.
  • the capacitor 27 effects a rapid changeover of the one acting as a comparator by the feedback of a differential component
  • Differential amplifier 20 Associated with this measure is the increase in security against interference at the input 23 of the
  • Differential amplifier 20 directly after the switching times, without the hysteresis having to be made greater than absolutely necessary at the predetermined switching point.
  • an embodiment with a separately implemented generator for oscillating the resonance circuit 12, 13, 14 can also be provided, in which case the simple one shown in the figure
  • circuitry In terms of circuitry, additional elements are required which combine the signals emitted by the generator and the comparator that is still required and relate to a sequence control circuit.
  • the predetermined frequency for starting the resonance circuit 12, 13, 14 to start is set to a value which is below the resonance frequency when the lamp is ignited. Swinging of the generator formed with the differential amplifier 20 when the current falls below the current threshold is thus avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Es wird eine Vorrichtung zum Betreiben einer Gasentladungslampe (10) vorgeschlagen, die eine Steuerschaltung (16) zum Ansteuern eines Leistungsteils (11) aufweist, die eine zuverlässige Zündung der Lampe (10) dadurch gewährleistet, daß ein Komparator (19, 20) bei nicht gezündeter Lampe (10) als Generator zum Anstoßen eines zum Zünden der Lampe (10) vorgesehenen Resonanzkreises (12, 13, 14) wirkt und bei zündender Lampe (10) sofort den durch die Lampe (10) fließenden Strom mit einer vorgegebenen Schwelle vergleicht und daraufhin unmittelbar ein Steuersignal an das Leistungsteil (11) abgibt. Die erfindungsgemäße Vorrichtung ist insbesondere geeignet zum Zünden von Hochdruck-Gasentladungslampen (10).

Description

Vorrichtung zum Betreiben einer Gasentladungslampe
Stand der Technik
Die Erfindung geht aus von einer Vorrichtung zum Betreiben einer Gasentladungslampe nach der Gattung des Hauptanspruchs. Eine derartige Vorrichtung ist beispielsweise aus der FR-PS 2 547 128 bekannt. Zur Zündung der Lampe ist ein Resonanzkreis vorgesehen, der das Bereitstellen der hohen Zündspannung im Resonanzfall ermöglicht. Der Resonanzkreis enthält einen in Reihe mit der Lampe geschalteten Serienresonanzkreis mit einem Kondensator und einer Spule sowie einen zur Lampe parallel geschalteten Kondensator. Die Resonanzfrequenz beim Zünden der Lampe ist hauptsächlich durch den Induktivitätswert der Spule und den Kapazitätswert des zur Lampe parallel geschalteten Kondensators festgelegt. Zur Energieversorgung der Lampe ist ein Leistungsteil vorgesehen, das als Wechselrichter mit variabler Frequenz aufgebaut ist. Die Schaltfrequenz wird von einer SteuerSchaltung bereitgestellt, die einen Generator enthält, der zum Anschwingen des Resonanzkreises ein Steuersignal mit vorgegebener Frequenz an das Leistungsteil abgibt. Sobald ein Zündvorgang in der Lampe eingeleitet ist, wird die Frequenz des Generators auf die Resonanzfrequenz nachgeführt. Zu dieser Frequenznachführung ist ein Phasenregelkreis vorgesehen, bei dem die Phase des Steuersignals mit der Phase des von einem Sensor erfaßten, durch die Lampe fließenden Stroms verglichen wird. Der Phasenregelkreis benötigt eine systembedingte Einschwingzeit, während der die Generatorfrequenz noch von der Resonanzfrequenz abweicht. Innerhalb dieser Einschwingzeit besteht die Gefahr des Zündungsabbruchs in der Lampe, weil eine ausreichende Energiezufuhr innerhalb kurzer Zeit nicht möglich ist.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Betreiben einer Gasentladungslampe anzugeben, die eine zuverlässige Zündung einer mit einem Resonanzkreis beschalteten Gasentladungslampe ermöglicht.
Die Aufgabe wird durch die im Eauptanspruch angegebenen Merkmale gelöst.
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung weist den Vorteil auf, daß der in der Steuerschaltung enthaltene Komparator, der das von Mitteln zum Erfassen des Lampenstrom abgegebene Signal mit einer vαrgebbaren Schwelle vergleicht, ein Steuersignal an das Leistungsteil abzugeben in der Lage ist, dessen Frequenz ohne zeitlichen Verzug der an der Lampe auftretenden Resonanzfrequenz entspricht. Mit dieser Maßnahme ist eine ausreichend schnelle Nachlieferung von Energie zum Auf¬rechterhalten des Zündvorgangs in der Lampe möglich. Zum Anschwingen des Resonanzkreises sind Mittel vorgesehen, die ein Steuersignal mit vorgebbarer Frequenz erzeugen. Die erfindungsgemäße Vorrichtung eignet sich insbesondere zum Zünden von Hochdruck-Gasentladungslampen, die eine sehr hohe Zündspannung im Vergleich zur anschließenden Brennspannung benötigen. Insbesondere ist es möglich, eine betriebswarme Lampe, die eine besonders hohe Zündspannung aufweist, erneut zu zünden.
Vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Vorrichtung ergeben sich aus Unteransprüchen.
Besonders vorteilhaft ist die Zuordnung der Mittel zum Anschwingen des Resonanzkreises zum Komparator, die damit dessen Ausgangssignal zum Schwingen mit vorgegebener Frequenz zwingen, solange der Lampenstrom die Komparatorschwelle unterschreitet. Diese Maßnahme führt zu einer besonders einfachen und kostengünstigen Schaltung, weil als aktives Bauelement lediglich ein Komparator mit einer geeigneten Beschaltung erforderlich ist.
Die vorgegebene Frequenz zum Anschwingen des Resonanzkreises wird vorzugsweise niedriger als die Resonanzfrequenz zum Zünden der Lampe festgelegt. Ein Anschwingen des Resonanzkreises ist so in jeden Fall sichergestellt.
Ein besonders einfacher Aufbau des Komparators ist mit einem Verstärker möglich, der mit einem geeignet dimensionierten Rückkopplungsnetzwerk beschaltet is Mit einer Gegenkopplung, die eine frequenzabhängige Phasendrehung oewirkt, ist die Funktion des Komparators als Generator zum Erzeugen des Signals mit vorgegebener Frequenz möglich. Eine Beschaltung des Verstärkers mit einer Mitkopplung führt zu einer vorgebbaren Hysterese, die zusammen mit der Zeitkonstanten der Gegenkopplung die Anschwingfrequenz bestimmt. Vαrteilhafterweise ist bei der Mitkopplung eine Differentialanteii vorgesehen, der die Stromschaltschwelle dynamisch verschiebt.
Das Gegenkopplungs- und das Mitkopplungsnetzwerk sind derart zu dimensionieren, daß sowohl die gewünschte Anschwingfrequenz und gegebenenfalls deren Tastverhältnis als auch die vorgegebene
Schwelle für den Lampenstrom erzielt werden. Zu diesem Zweck kann eine weitere, entsprechend dimensionierte Eingangsbeschaltung des Verstärkers vorgesehen sein.
Ein am Eingang des Verstärkers angeordneter Tiefpaß reduziert den Einfluß von hochfrequenten Störsignalen auf die SteuerSchaltung.
Weitere vorteilhafte Weiterbildungen und Verbesserungen der erfindungsgemäßen Vorrichtung ergeben sich aus weiteren Ansprüchen in Verbindung mit der folgenden Beschreibung.
Zeichnung
Ein Blockschaltbild einer erfindungsgemäßen Vorrichtung zum Betreiben einer Gasentladungslampe ist in der Figur gezeigt.
In der Figur ist eine Lampe 10 gezeigt, die von einem Leistungsteil 11 mit elektrischer Energie versorgt wird. Zwischen Lampe 10 und Leistungsteil 11 ist eine Reihenschaltung aus einer Spule 12 und einem Kondensator 13 angeordnet. Parallel zur Lampe 10 liegt ein Kondensator 14. In einer Stromzuführungsleitung zur Lampe 10 ist ein Widerstand 15 zum Erfassen des durch die Lampe 10 fließenden Stromes geschaltet. Von der bisher beschriebenen Schaltungsanordnung strichliniert abgetrennt, ist in der Figur eine Steuerschaltung 16 gezeigt, die in Abhängigkeit von dem am Widerstand 15 auftretenden Spannung an ihrem Ausgang 17 ein Steuersignal bereitstellt, das als Eingangssignal zum Leistungsteil 11 geführt ist.
Die Steuerschaltung 16 enthält einen mit einem Eingangs- und einem Rückkopplungsnetzwerk 18, 19 beschalteten Differenzverstärker 20. Das Eingangsnetzwerk 18 enthält eine Widerstands-Kondensator-Kom- bination 21, 22, wobei der Widerstand 21 am Stromsensor 15 angeschlossen ist und zum nichtinvertierenden Eingang 23 des Verstärkers 20 führt und wobei der Kondensator 22 zwischen dem nichtinvertierenden Eingang 23 und dem invertierenden Eingang 24 des Verstärkers 20 liegt. Das Rückkopplungsnetzwerk 19 enthält zunächst ein zwischen dem Ausgang 17 und dem nichtinvertierenden Eingang 23 des Verstärkers 20 geschaltetes Mitkopplungsnetzwerk 25, das einen Widerstand 26 und einen Kondensator 27 aufweist. Das Rückkopplungsnetzwerk 19 enthält weiterhin ein Gegenkopplungsnetzwerk 28, das zwei Widerstände 29, 30 sowie einen Kondensator 31 aufweist. Der Widerstand 30 liegt zwischen dem Ausgang 17 und dem invertierenden Eingang 24 des Vertärkers 20. Der Widerstand 29 und der Kondensator 31 sind jeweils am invertierenden Eingang 24 des Verstärkers 20 sowie am Widerstand 15 angeschlossen.
Die erfindungsgemäße Vorrichtung arbeitet folgendermaßen:
Das Leistungsteil 11 enthält beispielsweise einen Wechselrichter, der die aus einer nicht gezeigten Batterie oder einer anderen Energiequelle zur Verfügung gestellte elektrische Energie in eine Wechselspannung mit geeignetem Kurvenverlauf zur Energieversorgung der Gasentladungslampe 10 umformt. Die beiden Kondensatoren 13, 14 und die Spule 12 bilden einen (Serien-)Resonanzkreis, der die Erzeugung der im Vergleich zum Dauerbetrieb hohen Zündspannung der Lampe 10 bereitstellt. Der Kondensator 14 ist nur bei noch nicht gezündeter Lampe 10 wirksam. Die Kapazität des Kondensators 14 wird im allgemeinen kleiner als die des Kondensators 13 festgelegt und bestimmt somit wesentlich die Resonanzfrequenz des Resonanzkreises, die dann oberhalb der Betriebεfrequenz der Lampe 10 im Dauerbetrieb liegt. Nach dem Zünden der Lampe 10 ist die Resonanzfrequenz durch die Kapazität des Kondensators 13 sowie den Induktivitätswert der Spule 12 festgelegt. Ein Betreiben der Lampe 10 im Dauerbetrieb mit der durch die Spule 12 und den Kondensator 13 festgelegten Resonanzfrequenz ist aber nicht zwingend erforderlich. Die Betriebsfrequenz kann von dieser Resonanzfrequenz bei gezündeter Lampe 10 auch abweichen.
Ein Zünden der Lampe 10 wird beispielsweise durch Anregen des
Resonanzkreises 12, 13, 14 mit Impulsen bewirkt, die vom Leistungsteil 11 abgegeben werden. Es ist hierbei nicht erforderlich, daß die Anregungsfrequenz gleich der Resonanzfrequenz des Resonanzkreises 12, 13, 14 ist. Eine Anregung führt zu einer abklingenden
Schwingung, sofern die Lampe 10 nicht zündet. Sobald die Lampe 10 zündet, wird die im Kondensator 14 gespeicherte Energie schlagartig in die Lampe 10 abgegeben. Der weitere Energienachschub zum Aufrechterhalten des Zündvorgangs muß vom Leistungsteil 11 erfolgen. Insbesondere bei Hochdruck-Gasentladungslampen 10, die eine im Vergleich zur Brennspannung sehr hohe Zündspannung aufweisen, muß eine Übernahme der Energienachlieferung durch das Leistungsteil 11 gewährleistet sein, damit der beginnende Zündvorgang nicht sofort wieder erlischt. Die erfindungsgemäße Vorrichtung löst die Aufgabe dadurch, daß die Steuerschaltung 16 einen durch die Lampe 10 fließenden Strom detektiert und unverzüglich in ein entsprechendes Steuersignal am Ausgang 17 zum Steuern des Leistungsteils 11 abgibt. Als Mittel zum Detektieren des durch die Lampe 10 fließenden Stroms ist in der Figur beispielsweise der Widerstand 15 eingetragen, an dem der Strom einen Spannungsabfall verursacht. Anstelle des Widerstands 15 sind auch andere Stromsensoren wie beispielsweise eine Rogowski-Spule
geeignet. Das am Stromsensor 15 abgreifbare Signal wird über das Eingangsnetzwerk 18 dem Differenzverstärker 20 zugeleitet. Das Netzwerk 18 ist ein Tiefpaßfilter, das den Widerstand 21 und den Kondensator 22 enthält. Dieser R-C-Tiefpaß reduziert den Einfluß höherfrequenter Störsignale auf die nachfolgende Schaltung.
Solange am Stromsensor 15 kein Signal abgreifbar ist, arbeitet die Steuerschaltung 16 als Generator, der am Ausgang 17 ein Signal mit einer fest vorgegebenen Frequenz zum Steuern des Leistungsteils 11 abgibt. Mit dieser Frequenz wird der Resonanzkreis 12, 13, 14 zum Zünden der Lampe 10 zum Schwingen angeregt. Die Generatorfunktionist durch geeignete Beschaltung des Differenzverstärkers 20 mit dem Gegenkopplungsnetzwerk 28 realisiert. Das Gegenkopplungsnetzwerk 28 führt das am Ausgang 17 liegende Signal mit einer frequenzabhängigen Phasendrehung auf den invertierenden Eingang 24 des Differenzverstärkers 20 zurück. Die Frequenz der Schwingung ist durch die Widerstände 29, 30 den Kondensator 31 und das Maß der Hysterese, bestimmt durch die Widerstände 21 und 26, bei gegebenem maximalen Äusgangs- pegel, festgelegt. Der Widerstand 29 hat in Verbindung mit dem Widerstand 30 Einfluß auf den Pegel am invertierenden Eingang 24 des Differenzverstarkers 20, der eine Schaltschwelle für den Lampenstrom festlegt.
Nach dem Einleiten des Zündvorgangs fließt ein Strom in der Lampe 10, der vom Stromsensor 15 erfaßt wird. In diesem Betriebszustand wirkt der Verstärker 20 der Steuerschaltung 16 als schneller
Komparator. Die Schaltschwelle ist mit den Widerständen 29, 30 sowie 21, 26 beeinflußbar. Die Schwelle wird vorzugsweise derart festgelegt, daß ein Umschalten des als Komparator wirkenden Differenz- verstärkers 20 zumindest in der Nähe der Stromnulldurchgänge erfolgt. Das erste Überschreiten der Schwelle für den Lampenstrom während des Zündvorgangs bedeutet, daß der Zündvorgang eingeleitet ist. Die Überschreitung der Schwelle führt unmittelbar zum Auslösen eines Steuersignals am Ausgang 17 der SteuerSchaltung 16 zum Ansteuern des Leistungsteils 11. Die Generatorfunktion der Steuerschaltung 16 wird nicht mehr benötigt. Die Steuerschaltung 16 übernimmt unverzüglich die Resonanzfrequenz des Resonanzkreises 12, 13, 14 und steuert mit dieser Frequenz das Leistungsteil 11, das damit in der Lage ist, ausreichend schnell genügend Energie zum Aufrechterhalten des Zündvorgangs in der Lampe 10 bereitzustellen, um den Zündvorgang erfolgreich zu beenden.
Das Mitkopplungsnetzwerk 25, das vorzugsweise mit dem Kondensator 27 einen Differentialanteil übertragen kann, wirkt mit dem Widerstand 21 am Eingang des Differenzverstärkers 20 zusammen und ermöglicht die Vorgabe einer Hysterese. Bei geeigneter Dimensionierung in Verbindung mit dem Gegenkopplungsnetzwerk 28 ist erreichbar, daß die Hysterese eine umgekehrte Polarität im Schaltpunkt aufweist. Die umgekehrte Polarität bedeutet, daß der letzte zurückliegende
Schaltvorgang die Schaltschwelle zum aktuellen Pegel hin verschiebt, anstelle von ihm weg zu verschieben.
Der Kondensator 27 bewirkt durch die Mitkopplung eines Differentialanteils ein schnelles Umschalten des als Komparator wirkenden
Differenzverstarkers 20. Verbunden mit dieser Maßnahme ist die Erhöhung der Sicherheit gegenüber Störungen am Eingang 23 des
Differenzverstärkers 20 direkt nach den Umschaltzeitpunkten, ohne daß am vorgegebenen Schaltpunkt die Hysterese größer als unbedingt nötig gemacht werden muß. Anstelle der in der Figur gezeigten Ausführung der Steuerschaltung 16 ist auch eine Ausgestaltung mit einem separat realisierten Generator zum Anschwingen des Resonanzkreises 12, 13, 14 vorsehbar, wobei dann gegenüber der in der Figur gezeigten einfachen
schaltungstechnischen Realisierung weitere Elemente erforderlich sind, welche die von dem dann vorgesehenen Generator und des weiterhin erforderlichen Komparators abgegebenen Signale zusammenführen und eine AblaufSteuerschaltung betreffen.
Vorzugsweise wird die fest vorgegebene Frequenz zum Starten des Anschwingens des Resonanzkreises 12, 13, 14 auf einen Wert festgelegt, der unterhalb der Resonanzfrequenz beim Zünden der Lampe liegt. Ein Anschwingen des mit dem Differenzverstärkers 20 gebildeten Generators bei Unterschreiten der Stromschwelle wird damit vermieden.

Claims

Ansprüche
1. Vorrichtung zum Betreiben wenigstens einer Gasentladungslampe, insbesondere zum Zünden der Lampe, mit einem Leistungsteil zum Versorgen der Lampe mit elektrischer Energie, mit einem die Lampe enthaltenden Resonanzkreis zum Bereitstellen der Zündspannung, mit Mitteln zum Erfassen des Lampenstromes und mit einer Steuerschaltung, die ein Steuersignal an das Leistungsteil abgibt, das bei nicht gezündeter Lampe eine vorgegebene Frequenz aufweist und das während des Lampenbetriebs von der Phase des Lampenstroms abhängt, dadurch gekennzeichnet, daß die SteuerSchaltung (16) einen Komparator (19, 20) enthält, der das Stromsignal mit einer vorgebbaren Schwelle vergleicht, daß das Steuersignal von einem Ausgang (17) des Komparators (19, 20) abgeleitet ist und daß Mittel (20, 21, 26, 29, 30, 31) zum Anschwingen des Resonanzkreises (12, 13, 14) vorgesehen sind, die das Steuersignal mit vorgebbarer Frequenz erzeugen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel (20, 21, 26, 29, 30, 31) dem Komparator (19, 20) zugeordnet sind und dessen Ausgangssignal zum Schwingen mit der vorgegebenen Frequenz zwingen, wenn das Stromsignal die Schwelle unterschreitet.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die vorgegebenen Frequenz unterhalb der Resonanzfrequenz des
Resonanzkreises (12, 13, 14) liegt.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Komparator (19, 20) einen mit einem Rückkopplungsnetzwerk (19) beschalteten Differenzverstärker (20) enthält.
5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Rückkopplungsnetzwerk (19) ein Gegenkopplungsnetzwerk (28; 29, 30, 31) enthält, das eine frequenzabhängige Phasendrehung aufweist.
6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß das Rückkopplungsnetzwerk (19) ein Mitkopplungsnetzwerk (25; 21, 26, 27) enthält.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Mitkopplungsnetzwerk (25) einen Kondensator (27) zum Übertragen eines Differential-Anteils enthält.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuerschaltung (16) einen Tiefpaß (18), vorzugsweise einen R-C-Tiefpaß (18; 21, 22) am Eingang aufweist.
PCT/DE1992/000363 1991-05-10 1992-05-02 Vorrichtung zum betreiben einer gasentladungslampe WO1992021219A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4115409.6 1991-05-10
DE4115409A DE4115409A1 (de) 1991-05-10 1991-05-10 Vorrichtung zum betreiben einer gasentladungslampe

Publications (1)

Publication Number Publication Date
WO1992021219A1 true WO1992021219A1 (de) 1992-11-26

Family

ID=6431465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000363 WO1992021219A1 (de) 1991-05-10 1992-05-02 Vorrichtung zum betreiben einer gasentladungslampe

Country Status (2)

Country Link
DE (1) DE4115409A1 (de)
WO (1) WO1992021219A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738851A1 (de) * 1997-09-05 1999-03-11 Bosch Gmbh Robert Steuergerät zum Betrieb und zur Steuerung von Gasentladungslampen in Scheinwerfern
DE202007003033U1 (de) * 2007-03-01 2007-07-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorrichtung für die Messung des Stromes einer Entladungslampe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350104A2 (de) * 1988-07-05 1990-01-10 Philips Electronics North America Corporation Signalerzeugende Schaltung zur Ballaststeuerung von Entladungslampen
EP0374617A2 (de) * 1988-12-21 1990-06-27 Hella KG Hueck & Co. Einrichtung zum Zünden und Betreiben elektrischer Gasentladungslampen
EP0390699A1 (de) * 1989-03-31 1990-10-03 Valeo Vision Versorgungsschaltung einer Bogenlampe, insbesondere eines Automobilscheinwerfers
WO1991002442A1 (de) * 1989-08-05 1991-02-21 Robert Bosch Gmbh Verfahren zum zünden einer gasentladungslampe
DE4033664A1 (de) * 1989-10-23 1991-05-02 Nissan Motor Verfahren und einrichtung zum starten einer elektrischen entladungslampe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715162A1 (de) * 1987-05-07 1988-11-17 Bosch Gmbh Robert Schaltungsanordnung zum betrieb einer gasentladungslampe an einer gleichstromquelle
DE4015397A1 (de) * 1990-05-14 1991-11-21 Hella Kg Hueck & Co Schaltungsanordnung zum zuenden und betreiben einer hochdruckgasentladungslampe in kraftfahrzeugen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350104A2 (de) * 1988-07-05 1990-01-10 Philips Electronics North America Corporation Signalerzeugende Schaltung zur Ballaststeuerung von Entladungslampen
EP0374617A2 (de) * 1988-12-21 1990-06-27 Hella KG Hueck & Co. Einrichtung zum Zünden und Betreiben elektrischer Gasentladungslampen
EP0390699A1 (de) * 1989-03-31 1990-10-03 Valeo Vision Versorgungsschaltung einer Bogenlampe, insbesondere eines Automobilscheinwerfers
WO1991002442A1 (de) * 1989-08-05 1991-02-21 Robert Bosch Gmbh Verfahren zum zünden einer gasentladungslampe
DE4033664A1 (de) * 1989-10-23 1991-05-02 Nissan Motor Verfahren und einrichtung zum starten einer elektrischen entladungslampe

Also Published As

Publication number Publication date
DE4115409A1 (de) 1992-11-12

Similar Documents

Publication Publication Date Title
DE3715162C2 (de)
DE60225425T2 (de) Elektronisch dimmbare ballastschaltung für eine hochintensitätsentladungslampe
EP0306086B1 (de) Schaltungsanordnung zum Starten einer Hochdruckgasentladungslampe
DE60112489T2 (de) EVG-Leistungssteuerung für Keramik Metall-Halogenid Lampe
EP0056642B1 (de) Verfahren und Schaltungsanordnung zum Heizen und Zünden sowie zum Steuern oder Regeln des Lichtstroms von Niederdruckgasentladungslampen
DE60205830T2 (de) Vorschaltgerät mit effizienter Elektroden-Vorheizung und Lampenfehlerschutz
EP2000010B1 (de) Ausschaltzeitregelung eines inverters zum betreiben einer lampe
EP0329988A2 (de) Hochfrequenz-Leistungsgenerator
EP0978221B1 (de) Schaltungsanordnung zum dimmbaren betrieb einer leuchtstofflampe
DE69911376T2 (de) Verfahren und anordnung zum betreiben von elektronischen vorschaltgeräten für entladungslampen hoher intensität
EP0868115B1 (de) Schaltung zur Zündung einer HID-Lampe
DE102007062242A1 (de) Entladungslampe-Erregungsschaltung
EP0791282B1 (de) Vorrichtung zum betreiben einer gasentladungslampe
DE10205896A1 (de) Betriebsschaltung für Entladungslampe mit frequenzvariabler Zündung
DE19626101A1 (de) Beleuchtungsgerät mit Entladungslampe
EP0614052B1 (de) Feuerungsautomat
DE4015397A1 (de) Schaltungsanordnung zum zuenden und betreiben einer hochdruckgasentladungslampe in kraftfahrzeugen
DE4441140A1 (de) Dimmschaltung für Leuchtstofflampen
EP0732869A2 (de) Verfahren und Schaltungsanordnung zum Betrieb einer Entladungslampe
WO1992021219A1 (de) Vorrichtung zum betreiben einer gasentladungslampe
EP1476003B1 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
EP0679047B1 (de) Steuerschaltungsanordnung für eine Leistungsschaltungsanordnung zum gepulsten Betrieb einer Entladungslampe
DE69817326T2 (de) Vorschaltgerät
DE3208607C2 (de)
EP0587602B1 (de) Vorrichtung zum betreiben einer gasentladungslampe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase